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Abstract. Given a finitary functor Φ : K → K and an object K of K , where K is a finitely accessible

category, we construct (under certain conditions) the cofree Φ-coalgebra on K. The conditions are always
satisfied when K is locally finitely presentable or, more generally, a finitely accessible category where

consistent diagrams have colimits (=Scott-complete category) and they yield a right-adjoint C ` U , for the

forgetful functor U : Coalg(Φ) → K from the category of Φ-coalgebras to K . Our construction gives as
a special case that of a final coalgebra for finitary endofunctors on locally finitely presentable categories,

as described in previous work of ours, and relies on a modification of the notion of complex (of modular

elements) introduced by T. Leinster.

1. Introduction

The concept of coalgebra has become, during the past decade, the domain of extensive research in the-
oretical computer science, in connection with the study of automata and infinite data types. Much of this
research is directed towards answering the questions of existence and identification in concrete terms of final
coalgebras, as those that codify the key notion of bisimulation between processes. In the same vein, among
the questions studied is that of the existence of cofree coalgebras, in view of providing a structural charac-
terization of categories of coalgebras dual to that of Birkhoff’s characterization of varieties of algebras (see
[R], Thm. 17.3, and [V], Thm. 14.4).

Whereas much of the initial work in the field was revolving around the notion of coalgebra for an endo-
functor of the category of sets, it has gradually become apparent that we need to move towards the study of
coalgebras over more general categories. For example, various categories of (partially) ordered sets provide
the necessary framework for a coalgebraic account of classical structures such as the real closed interval
or the Baire space ([F], [PP]). Other general categories accommodate various structures of fractal nature
as final coalgebras, as shown in [Le1]. There Tom Leinster introduces the fundamental for our purposes
technique of complexes of modular elements as a general method of construction of final coalgebras. At the
same time suitable general categories provide adequate background for extending coalgebraic logic, i.e the
characterization of various classes of coalgebras in terms of satisfaction of formulae in modal logic ([Kl]), as
well as for extending structural properties of final coalgebras (e.g as completions of initial algebras [A1]).
The common feature of these underlying categories, that makes such generalizations possible, is that they
form examples (or special subclasses) of finitely accessible categories.

In this work we construct the cofree Φ-coalgebra on an object K of a finitely accessible category K ,
when Φ is a finitary endofunctor and a certain further condition applies. In particular our condition always
holds when the underlying category K is locally finitely presentable (l.f.p). This way we obtain a concrete
description of the cofree coalgebra, which is known to exist in this case as a corollary to the existence of
bilimits in the category of accessible categories (in combination with the fact that a category of coalgebras
is an inserter in this 2-category). Specializing our construction to the cofree coalgebra over the terminal
object of the underlying l.f.p category we obtain a construction of the final coalgebra that applies uniformly
to all finitary endofunctors of l.f.p categories (the final coalgebra is also known to exist in this case for
the 2-categorical reasons explained above). As said, the mere existence of cofree coalgebras and of final
coalgebras is well-known in the case of l.f.p categories. Moreover, the former question is reducible to the
latter, as a cofree coalgebra on the object C, for the endofunctor Φ of a category with products, is simply
the final coalgebra for the endofunctor C × Φ(−). The applicability of the notion of complexes of modular
elements (due to Tom Leinster) to the construction of the final coalgebra over l.f.p categories (but also to
other finitely accessible categories) is discussed in some earlier work of ours ([KMV]).
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When it comes to the realm of l.f.p categories, the novelty of this work lies in the fact that our results
give a self-contained account of the construction of final and cofree coalgebras, that circumvents certain
technicalities of [Le1]. But furthermore our extra condition applies to all finitary endofunctors of Scott
complete categories ([A2]), i.e finitely accessible categories where all diagrams that have a cocone, have a
colimit. Such categories may lack a terminal object, so the existence of the final coalgebra for a finitary
endofunctor is not granted. Nevertheless the cofree coalgebra over an arbitrary object of the underlying
category can always be constructed. A prominent example of a Scott complete category is that of partially
ordered sets with distinct endpoints (and non-decreasing maps preserving the endpoints), used in Peter
Freyd’s construction of the real closed interval as a final coalgebra (for a suitable finitary endofunctor).
More generally, elaborating on a syntactical description of such categories in [A2], we can think of such
categories as categories of models for limit theories, extended by axioms declaring the distinctness of closed
terms (e.g 0 6= 1, in the aforementioned example).
Organization of the paper. Our construction relies on a modification of the notion of complex of modular
elements, developed by T. Leinster ([Le1]): Finitely accessible categories are, up to equivalence, categories
of the form K ' Flat(A ,Set) of flat functors from a small category A to the category of sets. The small
category A is, up to splitting of idempotents, equivalent to K op

fp , the opposite of the full subcategory of
finitely presentable objects of K . Finitary endofunctors Φ of a finitely accessible category K correspond to
certain bimodules MΦ : Kfp ×K op

fp −→ Set. The complexes are then, roughly, formal countable composites
of elements of the bimodule. They form a category that parametrizes a suitable colimit, which yields the
final coalgebra for Φ. Here we consider instead pointed complexes, which are, roughly again, similar formal
countable composites of modular elements between pairs consisting of an object a ∈ Kfp and an element
x ∈ Ka of the object K (seen as a functor under the above equivalence), over which the cofree coalgebra is
constructed. We present all the relevant technical details in Section 2.

A colimit parametrized by the category of pointed complexes yields the (carrier of the) cofree coalgebra
over K for Φ. Our main technical result is that the cofree coalgebra over K exists, provided that the category
of K-pointed complexes is co-filtered (so that the carrier of the cofree coalgebra exists as a filtered colimit
of finitely presentable objects in the category K ). The details of the (lengthy) proof occupy Section 3.

In Section 4. we discuss Scott-complete categories and show that the cofilteredness of the category of
pointed complexes is always satisfied for finitary endofunctors on them.

2. Preliminaries

Coalgebras and final coalgebras. We give a precise definition of (final) coalgebras. See, e.g., [R] for
motivation and examples of various coalgebras in the category of sets.

Definition 2.1. Suppose Φ : K −→ K is any functor.

(1) A coalgebra for Φ is a morphism e : X −→ Φ(X).
(2) A homomorphism of coalgebras from e : X −→ Φ(X) to e′ : X ′ −→ Φ(X ′) is a morphism h : X −→

X ′ making the following square

X
e //

h

��

Φ(X)

Φ(h)

��

X ′
e′
// Φ(X ′)

commutative.
(3) A coalgebra τ : T −→ Φ(T ) is called final , if it is a terminal object of the category of coalgebras,

i.e., if for every coalgebra e : X −→ Φ(X) there is a unique morphism e† : X −→ T such that the
square

X
e //

e†

��

Φ(X)

Φ(e†)

��

T τ
// Φ(T )

commutes.

Finitely accessible and locally finitely presentable categories. Finitely accessible and locally finitely
presentable categories are those where every object can be reconstructed knowing its “finite parts”. This
is a property that, for example, the category Set of sets and mappings has, where a set P is recognized
as finite exactly when its hom-functor Set(P,−) : Set −→ Set preserves colimits of a certain class — the
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so-called filtered colimits. We can also verify this property for the category Pos of partially oredered sets and
order-preserving mappings, or for the category Lin of linearly oredered sets and order-preserving mappings.
We can also verify it for any category of algebras defined by finitary operations and homomorphisms between
them (there the “finite” objects are the finitely presentable ones, in the classical sense of algebra), but not
for, say, the category of topological spaces and continuous mappings.

A colimit of a general diagram D : D −→ K is called filtered , provided that its scheme-category D is
filtered. A category D is called filtered provided that every finite subcategory of D admits a cocone. In more
elementary terms, filteredness of D can be expressed equivalently by the following three properties:

(1) The category D is nonempty.
(2) Each pair d1, d2 of objects of D has an “upper bound”, i.e., there exists a cocone

d1
))
d

d2

55

in D .
(3) Each parallel pair of morphisms in D can be “coequalized”, i.e., for each parallel pair

d1
//
// d2

of morphisms in D there is a completion to a commutative diagram of the form

d1
//
// d2

// d

in D .

A category is D called cofiltered provided that the dual category Dop is filtered.
An object P of a category K is called finitely presentable if the hom-functor K (P,−) : K −→ Set

preserves filtered colimits.

Definition 2.2. A category K is called finitely accessible if it has filtered colimits and if it contains a small
subcategory consisting of finitely presentable objects such that every object of K is a filtered colimit of
these finitely presentable objects.

A cocomplete finitely accessible category is called locally finitely presentable.

Example 2.3.

(1) The category Set of sets and mappings is locally finitely presentable. The finitely presentable objects
are exactly the finite sets.

(2) Every variety of finitary algebras is a locally finitely presentable category. The finitely presentable
objects are exactly the algebras that are presented by finitely many generators and finitely many
equations in the sense of universal algebra.

(3) The category Inj having sets as objects and injective maps as morphisms is a finitely accessible
category that is not locally finitely presentable. The finitely presentable objects are exactly the
finite sets.

(4) Denote by Field the category of fields and field homomorphisms. Then Field is a finitely accessible
category that is not locally finitely presentable.

(5) The category Lin of linear orders and monotone maps is finitely accessible but not locally finitely
presentable. The finitely presentable objects are exactly the finite ordinals.

(6) Let Pos0,1 denote the following category:
(a) Objects are posets having distinct top and bottom elements.
(b) Morphisms are monotone maps preserving top and bottom elements.
Then Pos0,1 is a Scott complete category in the sense of Jǐŕı Adámek [A2]: it is finitely accessible
and every small diagram in Pos0,1 that has a cocone, has a colimit.

Scott complete categories are therefore “not far away” from being cocomplete and thus locally
finitely presentable.

However, Pos0,1 is not locally finitely presentable since it lacks a terminal object. Finitely pre-
sentable objects in Pos0,1 are exactly the finite posets having distinct bottom and top elements.

(7) The category of topological spaces and continuous maps is not finitely accessible. Although this
category has filtered (in fact, all) colimits, the only finitely presentable objects are finite discrete
topological spaces and these do not suffice for reconstruction of a general topological space.
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Flat functors. Every finitely accessible category K is equivalent to a category of the form

Flat(A ,Set)

(where A is a small category) that consists of all flat functors X : A −→ Set and all natural transformations
between them. The small category A is, up to splitting of idempotents, equivalent to K op

fp , the opposite of
the full subcategory of finitely presentable objects of K .

A functor X : A −→ Set is called flat if its category of elements elts(X) is cofiltered. The category
elts(X) has pairs (x, a) with x ∈ Xa as objects and as morphisms from (x, a) to (x′, a′) those morphisms
f : a −→ a′ in A with the property that Xf(x) = x′.

Flat functors X can be characterized by any of the following equivalent conditions:

(1) The functor X : A −→ Set is a filtered colimit of representable functors.
(2) The left Kan extension LanYX : [A op ,Set] −→ Set of X : A −→ Set along the Yoneda embedding

Y : A −→ [A op ,Set] preserves finite limits.

In case when K is locally finitely presentable one can prove that K is equivalent to the category

Lex(A ,Set)

of all finite-limits-preserving functors on a small finitely complete category A . In fact, the flat functors are
exactly the finite-limits-preserving ones in this case.

Remark 2.4. The category A can be chosen as the dual category of finitely presentable objects, K op
fp .

Flat modules. On finitely accessible categories there is class of functors that can be fully reconstructed by
knowing their values on “finite parts”. An example is the finite-powerset endofunctor

Pfin : X 7→ {S | S ⊆ X, S is finite }
of the category of sets. Such endofunctors can be characterized as exactly those preserving filtered colimits.

Definition 2.5. A functor Φ : K −→ L between finitely accessible categories is called finitary if it preserves
filtered colimits.

By the above considerations, every finitary endofunctor Φ : K −→ K of a finitely accessible category K
can be considered, to within equivalence, as a finitary endofunctor

Φ : Flat(A ,Set) −→ Flat(A ,Set)

Since the full embedding A op −→ Flat(A ,Set) exhibits Flat(A ,Set) as a free cocompletion of A op w.r.t.
filtered colimits (also denoted as Ind(A ), the “inductive” cocompletion), we can then reconstruct Φ from a
mere functor

MΦ : A op −→ Flat(A ,Set)

(no preservation properties) by means of filtered colimits.
The latter functor can be identified with a functor of the form MΦ : A op ×A −→ Set with the property

that every MΦ(a,−) : A −→ Set is flat. Such functors of two variables (without the extra flatness property)
are commonly called modules. We will give the extra property a name.

Definition 2.6. A module M : A � // B from a small category A to a small category B is a functor
M : A op × B −→ Set. Given two such modules, M and N , a module morphism M −→ N is a natural
transformation between the respective functors.

A module M as above is called flat if every partial functor M(a,−) : B −→ Set is a flat functor in the
usual sense.

Remark 2.7. The above module terminology makes perfect sense if we denote an element m ∈M(a, b) by
an arrow

a �
m //b

and think of it as of a “vector” on which the categories A and B can act by means of their morphisms
(“scalars”):

(1) Given f : a′ −→ a in A , then

a′
f
//a �

m //b

denotes the element M(f, b)(m) ∈M(a′, b).
Had we denoted such an action by m@f , then it is obvious that equations m@(f ·f ′) = (m@f)@f ′

and m@1a = m hold — something that we know from classical module theory.
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(2) Given g : b −→ b′ in B, then

a �
m //b

g
//b′

denotes the element M(a, g)(m) ∈M(a, b′).
(3) Functoriality of M gives an unambiguous meaning to diagrams of the form

a′
f
//a �

m //b
g
//b′

(4) We also extend the notion of commutative diagrams. For example, by saying that the following
square

a �
m //

f

��

b

g

��

a′ �
m′
// b′

commutes we mean that the equality m′@f = g@m holds.

Remark 2.8. The broken arrow notation also allows us to formulate flatness of a module M : A � // B
in elementary terms. Namely, for every a in A the following three conditions must be satisfied:

(1) There is a broken arrow

a �
m //b

for some b in B.
(2) For any two broken arrows

b1

a
"lll

m1 66lll

�RRR
m2 ((RRR

b2

there is a commutative diagram

b1

a

#mmmmmmm

m1

66mmmmmmm

�
m //

�QQQQQQQ

m2
((QQQQQQQ

b
f1

==

f2

!!

b2

(3) For every commutative diagram

b1

u
��
v
��

a
"lll

m1 66lll

�RRR
m2 ((RRR

b2

there is a commutative diagram

b

f
��

a

-m
==

�
m1 //

sCCCC

m2
!!CCCC
b1

u
��
v
��

b2

Definition 2.9. Suppose M : A � // B and N : B � // C are modules. By

N ⊗M : A � // C

we denote their composition which is defined objectwise by means of a coend(
N ⊗M

)
(a, c) =

∫ b

N(b, c)×M(a, b)
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Remark 2.10. A coend is a special kind of colimit. The elements of
(
N ⊗ M

)
(a, c) are equivalence

classes. A typical element of
(
N ⊗M

)
(a, c) is an equivalence class [(n,m)] represented by a pair (n,m) ∈

N(b, c)×M(a, b) where the equivalence is generated by requiring the pairs

(n, f@m) and (n@f,m)

to be equivalent, where n, f and m are as follows:

a �
m //b

f
//b′ �

n //c

Above, we denoted the actions of M and N by the same symbols, not to make the notation heavy.

It is well-known (see [Bo]) that the above composition organizes modules into a bicategory : the composition
is associative only up to a coherent isomorphism and the identity module A : A � // A , sending (a′, a) to
the hom-set A (a′, a), serves as a unit only up to a coherent isomorphism. The following result is then easy
to prove.

Lemma 2.11. Every identity module is flat and composition of flat modules is a flat module.

Remark 2.12. The above composition of modules makes one to attempt to draw diagrams such as

a2 �
m2 //a1 �

m1 //a0

for elements m1 ∈M(a1, a0), m2 ∈M(a2, a1) of a module M : A � // A . Such diagrams are, however, to
be considered only formally — we never compose two “broken” arrows.

The tensor notation from the above paragraphs allows us to pass from endofunctors to modules completely.
Observe that any flat functor X : A −→ Set can be considered as a flat module X : 1 � // A where 1

denotes the one-morphism category.
Then, given a flat module M : A � // A , the assignment X 7→M ⊗X defines a finitary endofunctor of

Flat(A ,Set).
In fact, every finitary endofunctor Φ of Flat(A ,Set) arises in the above way: construct the flat module

MΦ as above, then there is an isomorphism

Φ ∼= MΦ ⊗−
of functors.

Assumption 2.13. In the rest of the paper,

K ∼= Flat(A ,Set)

denotes a finitely accessible category, A is the dual of the category Kfp representing finitely presentable
objects of K .

Φ : K → K is a finitary endofunctor, where

Φ ∼= MΦ ⊗−
for a flat module

M : A op ×A −→ Set

Also,
U : Coalg(Φ) −→ K

denotes the forgetful functor, where Coalg(Φ) is the category of coalgebras for the endofunctor Φ.

Definition 2.14. Given a (flat) module M and an object K ∈ K , the category

ComplexK(M)

of M -complexes over K and their morphisms is defined as follows:

(1) Objects, called M -complexes pointed in K, are countable chains of the form

. . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

where ai are in A and xi ∈ K(ai), mi ∈M(ai+1, ai).
Equivalently xi : A (ai,−)→ K.
A single complex, for a fixed object K, as above will be denoted by (a•,m•)

K for short and called
K-pointed or simply pointed complexes if the object K is clear from the context.



COFREE COALGEBRAS ON ACCESSIBLE CATEGORIES 7

(2) Morphisms from (a•,m•)
K to (a′•,m

′
•)
K are sequences fn : an −→ a′n, denoted by (f•), such that

all squares in the following diagram

. . . �
m3 // (a2, x2) �

m2 //

f2

��

(a1, x1) �
m1 //

f1

��

(a0, x0)

f0

��

. . . �
m′3

// (a′2, x
′
2) �

m′2

// (a′1, x
′
1) �

m′1

// (a′0, x
′
0)

commute and also Kfi(xi) = x′i hold for each i ≥ 0.

3. Construction of the right adjoint

Our purpose is, for a given object K in K , to construct a cofree Φ-coalgebra on K. This means the
following:

Definition 3.1. A Φ-coalgebra κ : K̂ −→ Φ(K̂) together with a morphism εK : K̂ −→ K is called a cofree
Φ-coalgebra on K if for any Φ-coalgebra e : X −→ Φ(X) and any morphism δ : X −→ K, there exist a
unique coalgebra homomorphism

X
e //

e]

��

Φ(X)

Φ(e])

��

K̂ κ
// Φ(K̂)

such that the equality
δ = εK · e]

holds.

Theorem 3.2. A cofree coalgebra for M ⊗− on K exists provided the category ComplexK(M) is cofiltered.

Proof. We are going to construct the cofree coalgebra in several steps.

Step 1: Definition of the coalgebra (K̂, κ). Define K̂ : A −→ Set as the colimit of(
ComplexK(M)

)op prop
0 // A op Y // [A ,Set] (3.1)

By our assumption, the functor K̂ : A −→ Set is flat, being a filtered colimit of representables.

An element of K̂(a) is an element of a colimit A (ai0,−), evaluated at a, where ai0 runs over all heads of

complexes in ComplexK(M). Thus it is an equivalence class [f : ai0 −→ a], for some i, where

[f : ai0 −→ a] = [g : aj0 −→ a]

if there are complex morphisms

. . . � // (ai1, x
i
1) �

mi
1 // (ai0, x

i
0)

. . . � // (ak1 , x
k
1) �

mk
1 //

f1
99ttttttttt

g1
$$JJJJJJJJJ

(ak0 , x
k
0)

f0
99ttttttttt

g0
$$JJJJJJJJJ

. . . � // (aj1, x
j
1) �

mj
1 // (aj0, x

j
0)

such that the following diagram,

ai0
f

##FFFFFFF

ak0

f0
;;vvvvvv

g0 ##GGGGGG a

aj0

g

<<xxxxxxx

commutes.
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To stress the dependence on the complex, we represent an element of K̂(a) as

[ . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f
// a ]

This equals to

[ . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
f@m1 // (a,Kf(x0)) ]

since there is always a morphism

. . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
f@m1 // (a,Kf(x0))

. . . �
m3 // (a2, x2)

id

OO

�
m2 // (a1, x1)

id

OO

�
m1 // (a0, x0)

f

OO

in ComplexK(M)

The action of K̂ on h : a −→ a′ is given by postcomposition:

K̂(h) : K̂(a) −→ K̂(a′)

It sends the equivalence class

[ . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f
// a ] ∈ K̂(a)

to the equivalence class

[ . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

h◦f
// a′ ] ∈ K̂(a′)

I K̂ is the carrier of a Φ-coalgebra structure κ : K̂ −→ M ⊗ K̂. We define the coalgebra structure κ
objectwise. For each a ∈ A

κa : K̂(a) −→ (M ⊗ K̂)(a) =

∫ a′

M(a′, a)× K̂(a′)

is a map sending the equivalence class

[ . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f
// a ]

to the element

[ a1 �
m1 // a0

f
// a , [ . . . �

m2 // (a1, x1)
id // a1 ]]

of the coend.

I κa is well-defined: Suppose the equation

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ] = [ . . . �

n2 // (b1, y1) �
n1 // (b0, y0)

g
// a ]

holds.
Then there are complex morphisms

. . . �
m2 // (a1, x1) �

m1 // (a0, x0)

. . . �
q2 // (c1, z1) �

q1 //

f1
99ttttttttt

g1
%%JJJJJJJJJ

(c0, z0)

f0
99ttttttttt

g0
%%JJJJJJJJJ

. . . �
n2 // (b1, y1) �

n1 // (b0, y0)
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such that the following diagram,
a0

f

%%KKKKKK

c0

f0
99rrrrrr

g0 %%KKKKKK a

b0
g

::tttttt

commutes.
Hence the equalities

κa([ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]) =

[
a1 �

m1 // a0
f
// a , [ . . . �

m2 // (a1, x1)
id // a1 ]

]
κa([ . . . �

n2 // (b1, y1) �
n1 // (b0, y0)

g
// a ]) =

[
b1 �

n1 // b0
g
// a , [ . . . �

n2 // (b1, y1)
id // b1 ]

]
hold.

The latter two elements of the coend are identified by virtue of the equations

K̂f1([ . . . �
q2 // (c1, z1) ]) = [ . . . �

m2 // (a1, x1)
id // a1 ]

K̂g1([ . . . �
q2 // (c1, z1) ]) = [ . . . �

n2 // (b1, y1)
id // b1 ]

and

f@m1@f1 = (f · f0)@q1 = (g · g0)@q1 = g@n1@g1

I κ is natural: Choose any h : a −→ b and consider the following diagram:

K̂(a)
κa //

K̂(h)

��

∫ a′
M(a′, a)× K̂(a′)

∫ a′ M(a′,h)×K̂(a′)

��

K̂(b) κb

//
∫ a′

M(a′, b)× K̂(a′)

In order to prove the commutativity of the above diagram we choose an element

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]

in K̂(a). Observe that κa sends

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]

to [
a1 �

m1 // a0
f
// a , [ . . . �

m2 // (a1, x1)
id // a1 ]

]
and then

∫ a′
M(a′, h)× K̂(a′) sends it to[

a1 �
m1 // a0

h·f
// b , [ . . . �

m2 // (a1, x1)
id // a1 ]

]
On the other hand, K̂(h) sends

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]

to

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a

h // b ]

that is mapped by κb to [
a1 �

m1 // a0
h·f
// b , [ . . . �

m2 // (a1, x1)
id // a1 ]

]
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Therefore κ is natural and this completes the definition of the coalgebra κ : K̂ −→M ⊗ K̂.

Step 2: Definition of the morphism εK : K̂ −→ K. As before, we define εK objectwise. For a in
A , let

εKa : K̂(a) −→ K(a)

map the element

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]

to

Kf(x0)

I εKa is well-defined. The equality

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ] = [ . . . �

n2 // (b1, y1) �
n1 // (b0, y0)

g
// a ]

gives the existence of the diagram

. . . �
m2 // (a1, x1) �

m1 // (a0, x0)

. . . �
q2 // (c1, z1) �

q1 //

f1
99ttttttttt

g1
%%JJJJJJJJJ

(c0, z0)

f0
99ttttttttt

g0
%%JJJJJJJJJ

. . . �
n2 // (b1, y1) �

n1 // (b0, y0)

such that the following diagram

a0
f

%%KKKKKK

c0

f0
99rrrrrr

g0 %%KKKKKK a

b0
g

::tttttt

commutes. Therefore the equality

Kf(x0) = Kf(Kf0(z0)) = Kg(Kg0(z0)) = Kg(y0)

holds.

I εK is natural. Consider h : a −→ b and the diagram

K̂(a)
εa //

K̂(h)

��

K(a)

K(h)

��

K̂(b) εb
// K(b)

It is easy to see that both passages send

[ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ] ∈ K̂(a)

to the same element

K(h · f)(x0) ∈ K(b)

Step 3: The morphism ε : K̂ −→ K is U-couniversal. Recall that U : Coalg(Φ) −→ K denotes the
forgetful functor. Hence we need to prove that for a given morphism

δ : U(X, e) −→ K

there is a unique coalgebra homomorphism

e] : (X, e) −→ (K̂, κ)
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such that the following diagram

U(X, e)

δ

##GGGGGGGGG

U(e])

��

K

U(K̂, κ)

ε

;;wwwwwwwww

(3.2)

commutes.

I Existence of e]. Given a coalgebra e : X −→ M ⊗ X, where X is a flat functor, we define for each
a in A the map

e]a : X(a) −→ K̂(a)

in the following way.
Since X is flat, there exists an element x ∈ X(a). By applying ea : X(a) −→ (M ⊗X)(a) we obtain an

element

ea(x) = [ a1 �
m1 // a , x1 ∈ X(a1)]

Repeating the same procedure to x1 ∈ X(a1) we obtain

ea1(x1) = [ a2 �
m2 // a1 , x2 ∈ X(a2)]

In this manner we construct a complex

. . . �
m3 // a2 �

m2 // a1 �
m1 // a

together with a sequence (xn)n∈N such that xn ∈ X(an). Such a complex is called an e-resolution of x ∈ X(a)
and a choice of such will be denoted by

resK(x)

Since δ : X −→ K is a natural transformation we can take, for each xi ∈ X(ai), i ≥ 0, a sequence of
elements

δa1(x1) ∈ K(a1) , δa2(x2) ∈ K(a2) , δa3(x3) ∈ K(a3) , . . .

In this sense we construct a resolution over K and define,

e]a(x) = [resK(x)] = [ . . . �
m3 // (a2, δa2(x2)) �

m2 // (a1, δa1(x1)) �
m1 // (a, δa(x))

id // a ] (3.3)

We have to verify that this definition is independent from the choice of the resolution. This is a direct
application of Lemma 5.9 of [Le1]. We carry out the argument in every detail for the sake of completeness.

Suppose that we have two resolutions of x:

resK1 (x) = . . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a, x)

resK2 (x) = . . . �
m′3 // (a′2, x

′
2) �

m′2 // (a′1, x
′
1) �

m′1 // (a, x)
(3.4)

In particular, this means that the equality

[ a1 �
m1 // a , x1 ∈ X(a1)] = [ a′1 �

m′1 // a , x′1 ∈ X(a′1)]

holds and therefore, by Lemma 3.2 of [Le1], there exist a commutative square

b1
f1

��

f ′1

��

a1

rAAA

m1   
AAA

a′1
/}}}

m′1~~}}}

a

(3.5)

and an element y1 ∈ X(b1) such that Xf1(y1) = x1 and Xf ′1(y1) = x′1.
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In our setting (3.4) and (3.5) take the following form:

. . . �
m3 // (a2, δa2(x2)) �

m2 // (a1, δa1(x1)) �
m1 // (a, δa(x))

. . . �
m′3 // (a′2, δa′2(x′2)) �

m′2 // (a′1, δa′1(x′1)) �
m′1 // (a, δa(x))

(3.6)

and

(b1, δb1(y1))

f1

yy

f ′1

$$

(a1, δa1(x1))

{KKKKK

m1
%%KKKKK

(a′1, δa′1(x′1)

)ttttt

m′1zzttttt

(a, δa(x))

(3.7)

with the property, Kf1(δb1(y1)) = δa1(x1) and Kf ′1(δb1(y1)) = δa′1(x′1).

The latter comes from naturality of δ and from the equations Xf1(y1) = x1 and Xf ′1(y1) = x′1.
Indeed, for example, from the commutative square

X(b1)
δb1 //

Xf1

��

K(b1)

Kf1

��

X(a1)
δa1

// K(a1)

for y1 ∈ X(b1), we obtain

Kf1(δb1(y1)) = δa1(Xf1(y1)) = δa1(x1)

Our aim is to prove that the equivalence classes

[resK1 (x)] = [ . . . �
m3 // (a2, δa2(x2)) �

m2 // (a1, δa1(x1)) �
m1 // (a, δa(x))

id // a ]

[resK2 (x)] = [ . . . �
m′3 // (a′2, δa′2(x′2)) �

m′2 // (a′1, δa′1(x′1)) �
m′1 // (a, δa(x))

id // a ]

are equal.
To this end, we will construct, by induction, a commutative diagram

. . . �
m4 // (a3, δa3(x3)) �

m3 // (a2, δa2(x2)) �
m2 // (a1, δa1(x1))

{KKKKK
m1

%%KKKKK

. . . �
l3 // (b2, δb2(y2)) �

l2 //

f2
88qqqqqqqqqq

f ′2 &&MMMMMMMMMM
(b1, δb1(y1)) �

m1@f1=m′1@f ′1 //

f1
88qqqqqqqqqq

f ′1 &&MMMMMMMMMM
(a, δa(x))

. . . �
m′4 // (a′3, δa′3(x′3)) �

m′3 // (a′2, δa′2(x′2)) �
m′2 // (a′1, δa′1(x′1))

(sssss m′1

99sssss

in ComplexK(M).

The base step, k = 1, is valid from (3.7).
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For the inductive step, k = n, suppose that bn, fn, f
′
n and δbn(yn) have been constructed so that the diagram

(an, δan(xn)) �
mn // . . . �

m2 // (a1, δa1(x1))

{KKKKK
m1

%%KKKKK

(bn, δbn(yn)) �
ln //

fn
88qqqqqqqqqqq

f ′n &&MMMMMMMMMM
. . . �

l2 // (b1, δb1(y1)) �
m1@f1=m′1@f ′1 //

f1
88qqqqqqqqqq

f ′1 &&LLLLLLLLLL
(a, δa(x))

(a′n, δa′n(x′n)) �
m′n // . . . �

m′2 // (a′1, δa′1(x′1))

(sssss m′1

99sssss

(3.8)

commutes.
Using the fact that e : X −→M ⊗X is a coalgebra and yn ∈ X(bn) we deduce that

ebn(yn) = [ c �
q
// bn , z ∈ X(c)]

and this gives an element δc(z) ∈ K(c).
Hence the diagram (3.8) becomes

(an+1, δan+1
(xn+1)) �

mn+1
// (an, δan(xn)) �

mn // . . . �
m2 // (a1, δa1(x1))

{KKKKK
m1

%%KKKKK

(c, δc(z)) �
q
// (bn, δbn(yn)) �

ln //

fn

66nnnnnnnnnnnn

f ′n ((PPPPPPPPPPPP
. . . �

l2 // (b1, δb1(y1)) �
m1@f1=m′1@f ′1 //

f1

88rrrrrrrrrr

f ′1 &&LLLLLLLLLL
(a, δa(x))

(a′n+1, δa′n+1
(x′n+1)) �

m′n+1
// (a′n, δa′n(x′n)) �

m′n // . . . �
m′2 // (a′1, δa′1(x′1))

(sssss m′1

99sssss

(3.9)

Naturality of e

X(bn)
εbn //

Xfn

��

(M ⊗X)(bn)

(M⊗X)(fn)

��

X(an)
εan

// (M ⊗X)(an)

then ensures that equalities

[ an+1 �
mn+1

// an , xn+1 ∈ X(an+1)] = ean(xn) = ean(Xfn(yn)) = (M ⊗X)(fn)(ebn(yn)

= [ c �
fn@q

// an , z ∈ X(c)]

hold.
Again by Lemma 3.2 of [Le1] we have the commutative diagram

d
g

��

h

##
c

q@@@

fn@q   
@@@

an+1

+www
mn+1{{www

an

(3.10)

and an element w ∈ X(d) such that Xg(w) = z and Xh(w) = xn+1.
As before, δd(w) ∈ K(d) and from naturality of δ the diagrams

X(d)
δd //

Xh

��

K(d)

Kh

��

X(an+1)
δan+1

// Kan+1

X(d)
δd //

Xg

��

K(d)

Kg

��

X(c)
δc

// Kc

commute.
Therefore the equalities

Kh(δd(w)) = δan+1
(Xh(w)) = δan+1

(xn+1) , Kg(δd(w)) = δc(Xg(w)) = δc(z) (3.11)
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hold.
From (3.10) and (3.11) it is easy to conclude the commutativity of:

(an+1, δan+1
(xn+1))

�RRRRRRR
mn+1

))RRRRRRR

(d, δd(w))

h

66mmmmmmmmmmmmm

g

��

(an, δan(xn))

(c, δc(z)) �
q

// (bn, δbn(yn))

fn

55llllllllllllll

(3.12)

Applying naturality of εK to the morphism f ′n : bn −→ a′n and following the same procedure we obtain
the diagram

(a′n+1, δa′n+1
(x′n+1))

�RRRRRRR
m′n+1

((RRRRRRR

(d′, δ′d(w
′))

h′
66mmmmmmmmmmmmm

g′

��

(a′n, δa′n(x′n))

(c, δc(z)) �
q

// (bn, δbn(yn))

f ′n

55lllllllllllll

(3.13)

From the above, the diagram (3.9) takes the shape

(an+1, δan+1
(xn+1)) �

mn+1
// (an, δan(xn)) �

mn // . . .

(d, δd(w))

h

77nnnnnnnnnnnn

g

��

(c, δc(z)) �
q
// (bn, δbn(yn)) �

ln //

fn

>>||||||||||||||||||||

f ′n

  
BBBBBBBBBBBBBBBBBBBB
. . .

(d′, δd′(w
′))

g′

OO

h′ ''PPPPPPPPPPPP

(a′n+1, δa′n+1
(x′n+1)) �

m′n+1
// (a′n, δa′n(x′n)) �

m′n // . . .

(3.14)

Finally, from (3.10), (3.13) the following equality

Xg(w) = z = Xg′(w′)

follows.
Hence flatness of X gives us an object bn+1 in A , two morphisms k : bn+1 −→ d , k′ : bn+1 −→ d′ and an

element yn+1 ∈ X(bn+1) such that the following equalities

Xk(yn+1) = w , Xk′(yn+1) = w′ , g · k = g′ · k′

hold.
Since δbn+1

(yn+1) ∈ Kbn+1, naturality of δ

X(bn+1)
δbn+1

//

X(k)

��

K(bn+1)

K(k)

��

X(d)
δd

// K(d)

X(bn+1)
δbn+1

//

X(k′)

��

K(bn+1)

K(k′)

��

X(d′)
δd′

// K(d′)
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yields

K(k)(δbn+1
(yn+1)) = δd(Xk(yn+1)) = δd(w) , K(k′)(δbn+1

(yn+1)) = δd′(Xk
′(yn+1)) = δd′(w

′)

Therefore we can form the following diagram

(an+1, δan+1(xn+1)) �
mn+1
// (an, δan(xn)) �

mn // . . .

(d, δd(w))

h

77nnnnnnnnnnnn

g

��

(bn+1, δbn+1
(yn+1)

k

77ooooooooooo

k′

''OOOOOOOOOOO

fn+1

33

f ′n+1
++

�
ln+1

**

(c, δc(z)) �
q
// (bn, δbn(yn)) �

ln //

fn

>>||||||||||||||||||||

f ′n

  AAAAAAAAAAAAAAAAAAAA
. . .

(d′, δd′(w
′))

g′

OO

h′ ''PPPPPPPPPPPP

(a′n+1, δa′n+1
(x′n+1)) �

m′n+1

// (a′n, δa′n(x′n)) �
m′n

// . . .

(3.15)

and defining: fn+1 := h · k , f ′n+1 := h′ · k′ , ln+1 = q@(g · k) completes the induction. Hence we proved

that e] is well-defined.

I Naturality of e]. To prove naturality of e], choose h : a −→ b and consider the following square:

X(a)
e]a //

X(h)

��

K̂(a)

K̂(h)

��

X(b)
e]b

// K̂(b)

Let x ∈ X(a). Then upper road yields:

x
e]a7−→ [ . . . �

m2 // (a1, δa1(x1)) �
m1 // (a, δa(x))

id // a ]

K̂(h)7−→ [ . . . �
m2 // (a1, δa1(x1)) �

m1 // (a, δa(x))
h // b ]

= [ . . . �
m2 // (a1, δa1(x1)) �

h@m1 // (b,Kh(δa(x))) ]

whereas the lower road gives:

x
X(h)7−→ Xh(x)
e]b7−→ [ . . . �

n2 // (b1, δb1(y1)) �
n1 // (b, δb(Xh(x)))

id // b ]

Observe first that the equality

δb(Xh(x)) = Kh(δa(x))

holds by naturality of δ. Observe furhter that from the commutativity of the diagram

X(a)
ea //

X(h)

��

(M ⊗X)(a)

(M⊗X)(h)

��

X(b)
eb
// (M ⊗X)(b)

it follows that

eb(Xh(x)) = [ a1 �
h@m1 // b , x1 ∈ X(a1)]
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Consequently, we have the equality

[ . . . �
m2 // (a1, δa1(x1)) �

h@m1// (b,Kh(δa(x))) ] = [ . . . �
n2 // (b1, δb1(y1)) �

n1 // (b, δb(Xh(x)))
id // b ]

proving that e] is natural.
I e] is a coalgebra homomorphism. We need to prove that the square

X(a)
ea //

e]

��

(M ⊗X)(a)

M⊗e]
��

K̂(a) κa

// (M ⊗ K̂)(a)

commutes.
Indeed, for each a in A and from flatness of X, there is x ∈ X(a) such that

(M ⊗ e])a(ea(x)) = (M ⊗ e])a([ a1 �
m1 // a , x1 ∈ X(a1)])

= [ a1 �
m1 // a , [ . . . �

m2 // (a1, δa1(x1))
id // a1 ]]

and
κa(e]a(x)) = κa([resK(x)])

= [ a1 �
m1 // a , [ . . . �

m2 // (a1, δa1(x1))
id // a1 ]]

by choosing the resolution of x that starts with m1, x1, i.e, res(x) = ( . . . �
m2 // (a1, x1) �

m1 // (a, x) ). We

have proved that e] is a coalgebra homomorphism.

I The triangle (3.2) commutes. To prove the commutativity of the triangle consider, as before, an ob-
ject a in A and an element x ∈ X(a). Then the triangle

X(a)

δa

##GGGGGGGG

e]a

��

K(a)

K̂(a)

εa

<<xxxxxxxx

commutes, since

εa(e]a(x)) = εa([ . . . �
m2 // (a1, δa1(x1)) �

m1 // (a, δa(x))
id // a ]) = Kida(δa(x)) = idK(a)(δa(x)) = δa(x)

I e] is the unique coalgebra map that makes (3.2) commutative. Assume that

U(X, e)

δ

##GGGGGGGGG

U(ρ)

��

K

U(K̂, κ)

ε

;;wwwwwwwww

(3.16)

commutes. We will show that ρ = e].
For x ∈ X(a) let ρa(x) ∈ K̂(a) be represented as

ρa(x) = [ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ] (3.17)

where xi ∈ K(ai) , i ≥ 0, while e]a(x) be defined, with the aid of e-resolutions of x as in (3.3), as

e]a(x) = [ . . . �
n3 // (b2, δb2(y2)) �

n2 // (b1, δb1(y1)) �
n1 // (a, δa(x))

id // a ] (3.18)
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We will exhibit a mediating K-pointed complex between those appearing in (3.17) and (3.18) and appropriate
K-pointed complex morphisms manifesting the equality

e]a(x) = ρa(x)

The commutativity of (3.16) gives

Kf(x0) = εa · Uρa(x) = δa(x)

which allows us to obtain the 0-th part of a K-pointed complex morphism

(a0, x0)
f

$$IIIIII

(a0, x0)

id 77pppppp

f ''NNNNNN
a

(a, δa(x))
id

::uuuuuu

In order to proceed to depth k > 0 we will use the following auxiliary lemma.

Lemma 3.3. Suppose that in the commutative square

X(a)
ea //

ρa

��

(M ⊗X)(a)

M⊗ρa
��

K̂(a) κa

// (M ⊗ K̂)(a)

given by the fact that ρ is a morphism of coalgebras, we have

ρa(x) = [ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ]

and

ea(x) = [ b �
n // a , y ∈ X(b)]

Then there exist morphisms of depth 1 between K-pointed complexes, (solid arrows)

(a2, x2) �
m2 // (a1, x1) �

m1 // (a0, x0)
f

$$IIIIII

(d′, w′)

88

� //

&&

� // (d1, w1) � //

77pppppp

''

��
>>>>>>>>>>>>

(a0, x0)

id 77oooooo

f

��
@@@@@@@@@@@@

a

(c′, z′) � // (c, z)

(b, δb(y)) �
n // (a, δa(x))

id

CC�����������

and an extension of the diagram to another pair of morphisms of depth 1 (dotted arrows).

Remark 3.4. The latter (dotted) part will be used as a means to propagate the morphisms from depth 1
to infinity.

Proof of the Lemma. We have equalities

(M ⊗ ρa)(ea(x)) = (M ⊗ ρa)([ b �
n // a , y ∈ X(b)]

= [ b �
n // a , ρb(y)]

and

κaρa(x) = κa([ . . . �
m2 // (a1, x1) �

m1 // (a0, x0)
f
// a ])

= κa([ . . . �
m2 // (a1, x1) �

f@m1 // (a, δa(x)) ])

= [ a1 �
f@m1// a , [ . . . �

m2 // (a1, x1)
id // a1 ]]
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By Lemma 3.2 of ([Le1]) there is a diagram

c1
f1

~~

g1

��
a1

sCCC

f@m1 !!CCC
b

0~~~
n

��~~~

a

(3.19)

and an element

[ . . . �
q2 // (c1, z1)

id // c1 ] ∈ K̂(c1)

such that

[ . . . �
q2 // (c1, z1)

f1 // a1 ] = [ . . . �
m2 // (a1, x1) ] (3.20)

and

[ . . . �
q2 // (c1, z1)

g1 // b1 ] = ρb(y) ∈ K̂(b) (3.21)

hold.
The latter element of K̂(b) is some

[ . . . �
n′4 // (b′′, y′′) �

n′3 // (b′, y′)
g′
// b ] = [ . . . �

n′4 // (b′′, y′′) �
g′@n′3 // (b,Kg′(y′)) ]

and the commutativity of (3.16) at b gives

Kg′(y′) = εb′Uρb′(y
′) = δb′(y

′)

On the other hand (3.20) gives a commutative diagram (involving morphisms K-pointed complexes to the
left)

. . . �
q3 // (c2, z2) �

q2 // (c1, z1)

f1

""FFFFFFFFF

. . . �
r3 // (d2, w2) �

r2 //

l′2

99sssssssss

l2 %%KKKKKKKKK
(d1, w1)

l′1

99sssssssss

l1 %%KKKKKKKKK
a1

. . . �
m3 // (a2, x2) �

m2 // (a1, x1)

id

<<xxxxxxxxx

(3.22)

Since

(f@m1) · l1
(3.22)

= (f@m1) · f1 ◦ l′1
(3.19)

= (n@g1) · l′1
hold, we have a commutative diagram

a1 �
m1 // a0

f

��
????????

d1 �
m1@l1 //

l1

>>}}}}}}}}

g1·l′1   
AAAAAAAA

a0

id

>>}}}}}}}}

f
  

AAAAAAAA a

b �
n // a

id

??��������

hence we would have the required solid part of the diagram if

(a1, x1) �
m1 // (a0, x0)

f

##GGGGGGGGGG

(d1, w1) �
m1@l1 //

l1

99rrrrrrrrrr

g1·l′1 %%LLLLLLLLLL
(a0, x0)

id

99rrrrrrrrrr

f
%%LLLLLLLLLL

a

(b, δb(y)) �
n // (a, δa(x))

id

;;wwwwwwwwww

(3.23)

were a diagram of K-pointed 1-complexes.
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To that end we have

Kl1(w1) = x1

by the lower part of (3.22), while

K(g1 · l′1)(w1) = Kg1(z1)

by the upper part of (3.22). Finally, (3.21) gives

. . . �
q3 // (c2, z2) �

q2 // (c1, z1)

g1

""FFFFFFFFFF

. . . �
s3 // (d2, w2) �

s2 //

h2

99sssssssss

h′2 %%KKKKKKKKK
(d1, w1)

h1

99ssssssssss

h′1 %%KKKKKKKKKK
b

. . . �
n′4

// (b′′, y′′) �
g′@n′3

// (b, δb(y))

id

<<xxxxxxxxxx

hence

Kg1(z1) = Kg1(Kh1(w1)) = Kh′1(w1) = δb(y)

showing that, indeed, we have a diagram (3.23) of K-pointed complexes of depth 1. The required dotted
part in the conclusion of the Lemma comes directly from (3.22). The proof of the Lemma is finished.

�

In order now to construct the desired complex mediating (3.17) and (3.18), that will eventually yield the
equality e]a(x) = ρa(x), apply the lemma to the square

X(a)
ea //

ρa

��

(M ⊗X)(a)

M⊗ρa
��

K̂(a) κa

// (M ⊗ K̂)(a)

for the representation

ea(x) = [ b1 �
n1 // a , y1 ∈ X(b1)]

(beginning of a resolution of x), in order to obtain morphism of K-pointed complexes at depth 1

(a2, x2) �
m2 // (a1, x1) �

m1 // (a0, x0)
f

$$IIIIII

(d2, w2)

88

� //

&&

� // (d1, w1) � //

66nnnnnn

((

  
AAAAAAAAAAAA

(a0, x0)

id 66mmmmmm

f

!!CCCCCCCCCCCCC
a

(c2, z2) � // (c1, z1)

(b1, δb1(y1)) �
n1 // (a, δa(x))

id

CC�����������

(3.24)

Applying the Lemma once more, for the commutative square

X(b1)
eb1 //

ρb1
��

(M ⊗X)(b1)

M⊗ρb1
��

K̂(b1) κb1

// (M ⊗ K̂)(b1)

where

eb1(y1) = [ b2 �
n2 // b1 , y2 ∈ X(b2)]
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(the continuation of a resolution of x) we get a commutative diagram

. . . �
q3 // (c2, z2) �

q2 // (c1, z1)

g1

$$IIIIIIIIII

. . . � // (d1
2, w

1
2) � //

88qqqqqqqqqq

&&MMMMMMMMMM
(c1, z1)

id

77ooooooooooo

g1
''OOOOOOOOOOO

b1

. . . � // (b2, δb2(y2)) �
n2

// (b1, δb1(y1))

id

::uuuuuuuuuu

(3.25)

Inserting (3.25) into (3.24) we obtain

. . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f

  
AAAAAAAAAAAAA

� // (d2, w2)

66nnnnnn
� //

((PPPPPP
� // (d1, w1) � //

66lllllll

((RRRRRRR

��
999999999999999999

(a0, x0)

id 66mmmmmm

f

��
777777777777777777

(c2, z2) � // (c1, z1)
g1

((QQQQQQQQQ
a

(d1
2, w

1
2) � //

77nnnnnn

''PPPPPP
(c1, z1)

id
66lllllll

g1 ((RRRRRRR b1

(b2, δb2(y2)) �
n2 // (b1, δb1(y1)) �

n1 //

id
66mmmmmmmmm

(a, δa(x))

id

>>~~~~~~~~~~~~~

(3.26)

Using flatness of K we complete

(d2, w2)

&&MMMMM

(c2, z2)

(d1
2, w

1
2)

88qqqqq

into a commutative square

(d2, w2)

&&MMMMM

(d2
2, w

2
2)

88

&&

(c2, z2)

(d1
2, w

1
2)

88qqqqq

so the diagram (3.26) becomes

. . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f

  
@@@@@@@@@@@@@

� // (d2, w2)

66nnnnnn
� //

''PPPPPP
� // (d1, w1) � //

66lllllll

((RRRRRRR

��
999999999999999999

(a0, x0)

id 66mmmmmm

f

��
777777777777777777

(d2
2, w

2
2)

88

&&

(c2, z2) � // (c1, z1)
g1

((QQQQQQQQQ
a

(d1
2, w

1
2) � //

77nnnnnn

''PPPPPP
(c1, z1)

id
66lllllll

g1 ((RRRRRRR b1

(b2, δb2(y2)) �
n2 // (b1, δb1(y1)) �

n1 //

id
66mmmmmmmmm

(a, δa(x))

id

??~~~~~~~~~~~~~

(3.27)
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hence getting morphisms of K-pointed complexes of depth 2

. . . �
m3 // (a2, x2) �

m2 // (a1, x1) �
m1 // (a0, x0)

f

$$IIIIII

(d2
2, w

2
2) � //

77nnnnnn

''PPPPPP
(d1, w1)

66lllllll

((RRRRRRR
a

. . . �
n3 // (b2, δb2(y2)) �

n2 // (b1, δb1(y1)) �
n1 // (a, δa(x))

id
::uuuuuu

and so on.
The proof of the Theorem 3.2 is finished.

�

Corollary 3.5. If the category ComplexK(M) is cofiltered for every object K in K , the forgetful functor
U : Coalg(Φ) −→ K has a right adjoint.

Corollary 3.6. If K is locally finitely presentable, then the forgetful functor U : Coalg(Φ) −→ K has a
right adjoint. In particular the cofree coalgebra over the final object of K , i.e the final coalgebra, always
exists.

4. Cofree coalgebras over Scott-complete categories

Scott-complete categories were introduced in [A2] as categorical generalizations of Scott-domains with a
view towards denotational semantics, showing for example that they form a cartesian closed category and a
limit-colimit coincidence theorem about them. They are defined as finitely accessible categories, where every
diagram that has a cocone has a colimit. They have also been characterized in the same work as categories
of models for theories, in a many-sorted language, given by axioms of the form

∀~x(ϕ(~x) −→ ∃~yψ(~x, ~y)) (4.1)

where the existential quantifier is provably -in the theory- unique and ϕ, ψ are conjunctions of atomic
formulae, extended by axioms of the form

∀x : S(x = x −→ ⊥),

for a specified set of sorts S (i.e axioms saying that certain sorts of variables are sent by a model to the empty
set). Locally finitely presentable categories are trivial examples of Scott-complete categories since they are
cocomplete (and it is well-known that they are charecterized as categories of models of axioms of the form
(4.1), above). It is immediate by the above axiomatization that Scott-complete categories are closed under
binary products in the category of structures. This allows us to see that there is a supply of examples of
Scott-complete categories that are not l.f.p: Take a language with constants and form a theory T consisting
of axioms of the form (4.1) and also of the form ¬(ti = tj), for two closed terms of the theory. Then, in the
category of models Mod(T), for any model M the diagram of the two projections

M ×M ⇒M

can not be coequalized. Hence, for example, partially ordered sets with distinct endpoints (and monotone
maps preserving them) and commutative rings of characteristic different than any given n (and homomor-
phisms) form examples of Scott-complete categories. It can be shown that all Scott-complete categories can
be axiomatized in this way too, but this would demand some work that falls outside the scope of this article.
In particular it follows from the identification of such categories as categories of points of closed subtoposes
of classifying toposes of limit theories and the fact that closed topologies correspond to subobjects of the
presheaf represented by the closed terms model of such a theory.

Proposition 4.1. Suppose K is a Scott complete category and let Φ be a finitary endofunctor of K . Then
the cofree coalgebra for Φ exists.

Proof. By Corollary 3.6 it suffices to show that the category ComplexK(M) is cofiltered for every K in K .
Let

D : D −→ ComplexK(M)

be a finite diagram. We will show the diagram has as a cone (c•, z•)
K .
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For a given d −→ d′ ∈ D we have

. . . �
md

n+1
// (adn, x

d
n) �

md
n //

��

(adn−1, x
d
n−1) �

md
n−1
//

��

. . .

. . . �
md′

n+1
// (ad

′

n , x
d′

n ) �
md′

n // (ad
′

n−1, x
d′

n−1) �
md′

n−1
// . . .

Notice that (adi , x
d
i ) , (ad

′

i , x
d′

i ), for i ≥ 0, are objects of the category elts(K). Since K is a flat functor for

each (adi , x
d
i ) , (ad

′

i , x
d′

i ) there are cospans (ci, zi). Hence

D
D−→ ComplexK(M)

pri−→ K

has a cone

(adi , x
d
i )

��

(ci, zi)

pdi 88qqqqq

pd
′

i

&&MMMMM

(ad
′

i , x
d′

i )

and, from the fact that K is Scott complete, it also has a limit

adi

��

li

??����

��
>>>>

ad
′

i

Considering the factorization hi : ci −→ li

adi

��

ci

pdi

77pppppppppppppp

pd
′

i ''NNNNNNNNNNNNNN
hi // li

??��������

��
>>>>>>>

ad
′

i

we obtain a diagram

(adi , x
d
i )

��

(ci, zi)

pdi

33hhhhhhhhhhhhhhhhhhhhhhh

pd
′

i **VVVVVVVVVVVVVVVVVVVVVVV
hi // (li,Khi(zi))

88ppppppppppp

&&NNNNNNNNNN

(ad
′

i , x
d′

i )

Then we take the diagram

. . . �
md

n+1
// (adn, x

d
n) �

md
n // (adn−1, x

d
n−1) �

md
n−1
// . . .

(ln,Khn(zn))

55llllllllllllll

))RRRRRRRRRRRRRR
(ln−1,Khn−1(zn−1))

55lllllllllllll

))RRRRRRRRRRRRR

. . . �
md′

n+1
// (ad

′

n , x
d′

n ) �
md′

n // (ad
′

n−1, x
d′

n−1) �
md′

n−1
// . . .
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Finally, by flatness of M , there are commutative diagrams:

adn �
md

n // adn−1

ln � //

::vvvvvvv

$$HHHHHH ln−1

88qqqqqq

&&LLLLLL

ad
′

n
�
md

n // ad
′

n−1

hence we obtain the diagram

. . . �
md

n+1
// (adn, x

d
n) �

md
n // (adn−1, x

d
n−1) �

md
n−1
// . . .

. . . � // (ln,Khn(zn))

55llllllllllllll

))RRRRRRRRRRRRRR
� // (ln−1,Khn−1(zn−1))

55lllllllllllll

))RRRRRRRRRRRRR
� // . . .

. . . �
md′

n+1
// (ad

′

n , x
d′

n ) �
md′

n // (ad
′

n−1, x
d′

n−1) �
md′

n−1
// . . .

which is the desired cone in ComplexK(M). �
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[PP] D. Pavlović and V. Pratt, The continuum as a final coalgebra, Theoret. Comput. Sci. 280 (2002), 105–122
[R] J. J. M. M. Rutten, Universal coalgebra: A theory of systems, Theoret. Comput. Sci. 249 (2000), 3–80

[V] Y. Venema, Algebras and Coalgebras, in J. van Benthem, P. Blackburn and F. Wolter (eds.), Handbook of Modal
Logic, Elsevier Science, (2006).

Department of Mathematics, University of Patras, Patras, Greece

E-mail address: pkarazer@math.upatras.gr

Department of Mathematics, University of Patras, Patras, Greece

E-mail address: matzaris@master.math.upatras.gr

Faculty of Electrical Engineering, Czech Technical University of Prague, Prague, Czech Republic
E-mail address: velebil@math.feld.cvut.cz


