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Sifted colimits.

Sifted colimits.

A category is sifted if colimits indexed by it commute in Set with
binary products. Equivalently, if

© For any two objects there exists a cospan to a third one

@ Any two cospans from two given objects are connected by a
zig-zag.

Sifted flatness

A functor F: A — Set is sifted flat if its left Kan extension along
the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor F: A — Set is sifted flat iff the dual of its
category of elements is sifted.
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Sifted colimits.

Sifted inductive completion

Sind(.A) is the free cocompletion of A under sifted colimits. It can
be described as the closure of representables in [LA°, Set] under
sifted colimits.
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Varying the base category

For certain purposes (e.g homotopical algebra) we may want
category to mean category enriched over a symmetric monoidal
closed ¥ (e.g ¥ =simplicial sets). In particular:
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Sifted colimits.

Varying the base category

For certain purposes (e.g homotopical algebra) we may want
category to mean category enriched over a symmetric monoidal
closed ¥ (e.g ¥ =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories
under sifted colimits is that of a cartesian closed base V which is
strongly Ifp as closed category. This means that

@ Has a set of dense generators G that are strongly f.p, i.e
colimyV(G, Vy) =2 V(G, colimy Vy) is an iso whenever Vy is a
sifted diagram.

Q /issfp

© Vi x Vs is sfp, whenever V4, V, are sfp.
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Sifted colimits.

E.g
@ Presheaf categories [G°P, Set], when G has finite products

@ or, more generally, has the property that the terminal presheaf
and the product of two representables is a finite coproduct of
representables

© Interesting non-example (especially if homotopical algebra is
under focus!): simplicial sets.
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Sifted colimits.

Sifted weights

A weight w: D°P — V is sifted if Lanyw preserves
@ finite (conical) products and
@ cotensors with sfp objects of V.

Sifted inductive completion

For a V-category A we define Sind(.A) to be the closure of
representables in [A°P, V] under sifted weighted colimits.

We don't know in general whether sifted weighted colimits of
representables are conical sifted colimits of such.
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Sifted colimits.

Assume that V is strongly Ifp as a (cartesian) closed category,
V:V, — Set preserves colimits (as it is the case when V), is
presheaves on a category with terminal object). In this setting:

Lemma 1: If F: A — V is sifted flat, (eltsVF,)P is a sifted
category.

Lemma 2: If A admits cotensors with sfp objects and F: A — V
is sifted flat, then F is a conical sifted colimit of representables.
(When V is a presheaf category cotensors with representables
suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat. )

Corollary:If o7 admits tensors with sfp objects then
(SindA), = sind(A,).
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Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved

by Lan, VF,

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:

Consider the product of two representables

Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:

Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved

by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [ Ao(A, A1) X Ao(A, Ag) x VFo(A) =

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:

Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved

by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [/ Ao(A, AL) X Ag(A, Ap) x VFo(A) =
© [ VA(=, A1)o(A) x VA(=, A2)o(A) x VF,(A) =2

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:

Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved

by Lan, VF,
Q Lany VFo(Ao(—, A1) x Ao(—, A2)) =
o fAer Ao(A, A1) x Ao(A, A2) X VFo(A) =
o fAEAO VA(—,A1)o(A) x VA(—, A2)o(A) x VF,(A) =
o fAEAO V(A(—, A1)o(A) X A(—, A2)o(A) x Fo(A)) =

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:
Consider the product of two representables

Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,

@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =

@ A Ay(A Ar) X Ao(A, Ag) x VFo(A) =

© [ VA(=, A1)o(A) x VA(=, A2)o(A) x VF,(A) =2

O [ V(A(=, A1)o(A) X A(—, A2)o(A) X FolA)) =

@ V([ A(=, A)o(A) x A(—, Az)o(A) X Fo(A)) =

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:
Consider the product of two representables

Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [ AL(A, A1) x Ao(A, Ag) X VF,(A) =
Q [ VA(—, A1)o(A) x VA(—, A2)o(A) x VF, (A) o
Q [ V(A(=, A1)o(A) x A(—, A2)o(A) X =
Q V([ A(=, A1)o(A) X A(—, Az)o(A) X
Q@ V([ A(A Ar) x A(A, Ay) x F(A)) =

P.K. & J.V. Coimbra, 26 October 2007 8/14



Sifted colimits.

Proof of Lemma 1:
Consider the product of two representables

Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [ A (A, A1) X Ao(A, Ag) X VF,(A) =
© [AS4 VA(—, Ar)a(A) X VA(=, A2)o(A) X VFo(A) =
Q [ V(A(—, A1)o(A) x A(—, Az)o(A) X FolA)) =2
@ V(5 A(—, A1)o(A) x A(=, A2)o(A) X Fo(A))
0 V([ A(A A1) x A(A, A2) x F(A)) =
@ V(Lany F(A(—, A1) x A(—, Ap))) =

P.K. & J.V. Coimbra, 26 October 2007 8/14
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Proof of Lemma 1:
Consider the product of two representables

Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [A4 AG(A, Ar) x Ao(A, Ag) x VFo(A) =
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Proof of Lemma 1:

Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved

by Lan, VF,

@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =

@ [ Ao(A, A1) X Ao(A, Ag) x VFo(A) =

@ [N VA(=, A1)o(A) X VA(—, Ap)o(A) x VF,(A) =

o fAEA"VA( 1 A1)o(A) X A(=, A2)o(A) X Fo(A)) =
V([ A(=, A1)o(A) X A(—, Az)o(A) X Fo(A)) =
V([ A(A, Ar) x A(A, Ao) x F(A)) =
V(Lany F(A(—, A1) x A(—, A2))) =
V(Lany F(A(—, A1) x Lany F(A(—, A2))) =
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Sifted colimits.

Proof of Lemma 1:
Consider the product of two representables
Ao(—, A1) x Ao(—, A2): AP — Set. We want it to be preserved
by Lan, VF,
@ Lan, VF,(Ao(—, A1) X Ao(—, A2)) =
@ [ AL(A, A1) x Ao(A, Ag) X VF,(A) =
@ [ VA=, AL)o(A) x VA(=, Az)o(A) x VFo(A) =
© [ V(A(=, A1)o(A) X A(=, A2)o(A) X Fo(A)) =
@ V([ A(—, A1)o(A) x A(=, A2)o(A) X Fo(A)
Q@ V([ A(A Ar) x A(A, Ay) x F(A)) =
Q@ V(Lany F(A(—, A1) x A(—, A)))) &
@ V(LanyF(A(—,A;1)) x Lany F(A(—, A))) =
Q V(FAL x FAz) 2 VF,A; x VF Ay =
@ Lan, VF,(Ao(—, A1) x Lan, VF,(Ao(—, A2))
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Sifted colimits.

Proof of Lemma 2:

Almost identical to [Kelly, Structures defined by finite limits in the
enriched context], Prop. 6.9. Hinges on the fact that F preserves
cotensors with sfp objects of V. With that we show that F is a
conical colimit of representables, indexed by (eltsVF,)°P.
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Sifted colimits.

Proof of Lemma 2:

Almost identical to [Kelly, Structures defined by finite limits in the
enriched context], Prop. 6.9. Hinges on the fact that F preserves
cotensors with sfp objects of V. With that we show that F is a
conical colimit of representables, indexed by (eltsVF,)°P.

Proof of Lemma 3:

Uses the fact that V is strongly Ifp as a closed category.
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Completeness of Sind - Varieties

We denote by Sind the class of sifted weights and by Lim the class
of small weights. If ¥ and V are as above we have

v

Theorem: Let &/ be a #'-category that has tensors by sfp objects
in 7 (representables would suffice if V where presheaves). Then
&/ is Sind-Lim-multicomplete iff Sind.e/ is complete.
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Completeness of Sind - Varieties
Sketch of Proof

Suffices to show:
@ The underlying ordinary category Sind(</), has small limits.

@ Sind(«7) has tensors by representables (necessary in order to
show that small limits in Sind(%/), are actual conical limits in

Sind(%)).
@ Sind(&) has cotensors.

Small limits exist in the underlying category
@ because Sind(.#7) has limits of representables (as J.V's talk),
hence Sind(%/), has limits of representables, hence A, is
sind-Lim-multicomplete as an ordinary category, hence
sind(.2%) has all the limits that sind(Lim.<7%,) has (again J.V's
talk), but the latter is complete by [Adamek, Lawvere,
Rosicky, How algebraic is algebra?].
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Completeness of Sind - Varieties

Sketch of Proof, continued

@ Define the tensor of a representable A(—, A) by an sfp K as
K® A(—,A) = A(—, K ® A). Then extend by (conical) sifted
colimits.
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Completeness of Sind - Varieties

Sketch of Proof, continued

@ Define the tensor of a representable A(—, A) by an sfp K as
K® A(—,A) = A(—, K ® A). Then extend by (conical) sifted
colimits.

@ Since Sind(.«) is coreflective in Sind(Lim.<?), suffices to
show that Sind(.27) has cotensors in case </ has. To that end
define, for V = colim;K; in V, X = colim;A(—, Aj),

K M X as lim;colim;A(—, K; h X;). [ |
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Completeness of Sind - Varieties

Complete Sind < Cocomplete Sind

Corollary: For V, V as above and a V-category K the following
are equivalent:
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Completeness of Sind - Varieties

Complete Sind < Cocomplete Sind

Corollary: For V, V as above and a V-category K the following
are equivalent:

Q@ K = Sind(«), for some 7 admitting tensors with sfp objects
and K is complete.

@ K = Sind(«/) for some o/ admitting tensors with sfp objects
and /C is cocomplete.

@ K = Sind(«) for a Sind-Lim-multicomplete category
admitting tensors with sfp objects.
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Completeness of Sind - Varieties

Notice that, for a Cauchy complete G, an object in [G, Set] is sfp
iff it is a finite coproduct of representables. Thus simplicial sets are
not strongly Ifp as a closed category, or else the square would have
to be the coproduct of two triangles.

Symmetric simplicial sets [Rosicky, Tholen, Left determined model
categories| may be a better option for studying homotopy varieties.
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Notice that, for a Cauchy complete G, an object in [G, Set] is sfp
iff it is a finite coproduct of representables. Thus simplicial sets are
not strongly Ifp as a closed category, or else the square would have

to be the coproduct of two triangles.
Symmetric simplicial sets [Rosicky, Tholen, Left determined model

categories| may be a better option for studying homotopy varieties.

Everything can be generalized to D-flatness, for a sound doctrine,
over cartesian closed bases that are locally D-presentable as such.
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