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Sifted colimits.

A category is sifted if colimits indexed by it commute in Set with
binary products. Equivalently, if

1 For any two objects there exists a cospan to a third one

2 Any two cospans from two given objects are connected by a
zig-zag.

Sifted flatness

A functor F : A −→ Set is sifted flat if its left Kan extension along
the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor F : A −→ Set is sifted flat iff the dual of its
category of elements is sifted.
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Sifted inductive completion

Sind(A) is the free cocompletion of A under sifted colimits. It can
be described as the closure of representables in [Aop, Set] under
sifted colimits.
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Varying the base category

For certain purposes (e.g homotopical algebra) we may want
category to mean category enriched over a symmetric monoidal
closed V (e.g V =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories
under sifted colimits is that of a cartesian closed base V which is
strongly lfp as closed category. This means that

1 Has a set of dense generators G that are strongly f.p, i.e
colimdV(G , Vd) ∼= V(G , colimdVd) is an iso whenever Vd is a
sifted diagram.

2 I is sfp

3 V1 × V2 is sfp, whenever V1, V2 are sfp.
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E.g:

1 Presheaf categories [Gop, Set], when G has finite products

2 or, more generally, has the property that the terminal presheaf
and the product of two representables is a finite coproduct of
representables

3 Interesting non-example (especially if homotopical algebra is
under focus!): simplicial sets.
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Sifted weights

A weight w : Dop −→ V is sifted if LanY w preserves

1 finite (conical) products and

2 cotensors with sfp objects of V.

Sifted inductive completion

For a V-category A we define Sind(A) to be the closure of
representables in [Aop,V] under sifted weighted colimits.
We don’t know in general whether sifted weighted colimits of
representables are conical sifted colimits of such.
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Assume that V is strongly lfp as a (cartesian) closed category,
V : Vo −→ Set preserves colimits (as it is the case when Vo is
presheaves on a category with terminal object). In this setting:

Lemma 1: If F : A −→ V is sifted flat, (eltsVFo)op is a sifted
category.

Lemma 2: If A admits cotensors with sfp objects and F : A −→ V
is sifted flat, then F is a conical sifted colimit of representables.
(When V is a presheaf category cotensors with representables
suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

Corollary:If A admits tensors with sfp objects then
(SindA)o

∼= sind(Ao).
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Proof of Lemma 1:

Consider the product of two representables
Ao(−, A1)×Ao(−, A2) : Aop

o −→ Set. We want it to be preserved
by LanyVFo

1 LanyVFo(Ao(−, A1)×Ao(−, A2)) ∼=
2

∫ A∈Ao Ao(A, A1)×Ao(A, A2)× VFo(A) ∼=
3

∫ A∈Ao VA(−, A1)o(A)× VA(−, A2)o(A)× VFo(A) ∼=
4

∫ A∈Ao V (A(−, A1)o(A)×A(−, A2)o(A)× Fo(A)) ∼=
5 V (

∫ A∈Ao A(−, A1)o(A)×A(−, A2)o(A)× Fo(A)) ∼=
6 V (

∫ A∈AA(A, A1)×A(A, A2)× F (A)) ∼=
7 V (LanY F (A(−, A1)×A(−, A2))) ∼=
8 V (LanY F (A(−, A1))× LanY F (A(−, A2))) ∼=
9 V (FA1 × FA2) ∼= VFoA1 × VFoA2

∼=
10 LanyVFo(Ao(−, A1))× LanyVFo(Ao(−, A2))
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Sifted colimits.
Completeness of Sind - Varieties

Proof of Lemma 2:

Almost identical to [Kelly, Structures defined by finite limits in the
enriched context], Prop. 6.9. Hinges on the fact that F preserves
cotensors with sfp objects of V. With that we show that F is a
conical colimit of representables, indexed by (eltsVFo)op.

Proof of Lemma 3:

Uses the fact that V is strongly lfp as a closed category.
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Sifted colimits.
Completeness of Sind - Varieties

We denote by Sind the class of sifted weights and by Lim the class
of small weights. If V and V are as above we have

Theorem: Let A be a V -category that has tensors by sfp objects
in V (representables would suffice if V where presheaves). Then
A is Sind-Lim-multicomplete iff SindA is complete.
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Sifted colimits.
Completeness of Sind - Varieties

Sketch of Proof

Suffices to show:

1 The underlying ordinary category Sind(A )o has small limits.

2 Sind(A ) has tensors by representables (necessary in order to
show that small limits in Sind(A )o are actual conical limits in
Sind(A )).

3 Sind(A ) has cotensors.

Small limits exist in the underlying category

1 because Sind(A ) has limits of representables (as J.V’s talk),
hence Sind(A )o has limits of representables, hence Ao is
sind-Lim-multicomplete as an ordinary category, hence
sind(Ao) has all the limits that sind(LimAo) has (again J.V’s
talk), but the latter is complete by [Adamek, Lawvere,
Rosický, How algebraic is algebra?].
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Sifted colimits.
Completeness of Sind - Varieties

Sketch of Proof, continued

2 Define the tensor of a representable A(−, A) by an sfp K as
K ⊗A(−, A) = A(−, K ⊗ A). Then extend by (conical) sifted
colimits.

3 Since Sind(A ) is coreflective in Sind(LimA ), suffices to
show that Sind(A ) has cotensors in case A has. To that end
define, for V = colimiKi in V, X = colimjA(−, Aj),
K t X as limicolimjA(−, Ki t Xj).
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Sifted colimits.
Completeness of Sind - Varieties

Complete Sind ⇔ Cocomplete Sind

Corollary: For V, V as above and a V-category K the following
are equivalent:

1 K ∼= Sind(A ), for some A admitting tensors with sfp objects
and K is complete.

2 K ∼= Sind(A ) for some A admitting tensors with sfp objects
and K is cocomplete.

3 K ∼= Sind(A ) for a Sind-Lim-multicomplete category
admitting tensors with sfp objects.
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Sifted colimits.
Completeness of Sind - Varieties

Notice that, for a Cauchy complete G, an object in [Gop, Set] is sfp
iff it is a finite coproduct of representables. Thus simplicial sets are
not strongly lfp as a closed category, or else the square would have
to be the coproduct of two triangles.
Symmetric simplicial sets [Rosický, Tholen, Left determined model
categories] may be a better option for studying homotopy varieties.

Everything can be generalized to D-flatness, for a sound doctrine,
over cartesian closed bases that are locally D-presentable as such.
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