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1 Introduction

In many situations in mathematics we want to know whether the left Kan extension LanjF
of a functor F : C → E , along a functor j : C → D, where C is a small category and E
is locally small and cocomplete, preserves the limits of various types Φ of diagrams. The
answer to this general question is reducible to whether the left Kan extension LanyF of F ,
along the Yoneda embedding y : C → [Cop,Set] preserves those limits (see [12] §3). Such
questions arise in the classical context of comparing the homotopy of simplicial sets to that
of spaces but are also vital in comparing, more generally, homotopical notions on various
combinatorial models (e.g simplicial, bisimplicial, cubical, globular, etc, sets) on the one
hand, and various “realizations” of them as spaces, categories, higher categories, simplicial
categories, relative categories etc, on the other (see [8], [4], [15], [2]).

In the case where E = Set the answer is classical and well-known for the question of
preservation of all finite limits (see [5], Chapter 6), the question of finite products (see [1])
as well as for the case of various types of finite connected limits (see [11]). The answer to
such questions is also well-known in the case E is a Grothendieck topos, for the class of all
finite limits or all finite connected limits (see [14], chapter 7 § 8 and [9]).

We take up here the question of preservation of finite limits by Kan extensions into more
general cocomplete categories E . In particular in this work we focus on the case of finite
products. We leave the case of connected limits for a subsequent work. In the context of
sets or, more generally, Grothendieck toposes the well-known answer to the question has
to do with the filteredness of the category of elements of the functor F . When we deal
with finite products alone, in sets, the answer is also given in similar terms; the weaker
condition of siftedness of the category of elements is necessary and sufficient. These notions
though are hard to state for functors with values into a topos: The internal logic of the
topos has to be invoked. Given this difficulty some authors prefer to talk about variations
of those conditions that involve the composites with forgetful functors (when available)
or with representable functors (otherwise) into sets. These are essentially interpretations
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of the standard filteredness notions with respect to a certain strong site structure on the
cocomplete category. One point that we try to make here is that other weaker structures may
be relevant to the limit preservation question. In particular, the crude notions mentioned
above may fail to capture cases where the preservation of finite limits by the left Kan
extension is well-known, e.g by geometric realization of simplicial sets in Kelley speces.
The topos-theoretic context, because of the exactness conditions that it supplies, conceals
another condition that is relevant to our problem: The colimits used in the calculation of
the left Kan extension of a product have to behave well. This is a fundamental observation
due to Anders Kock ([12]) and requires ideas of categorical logic and a site structure on the
cocomplete category for its statement. A. Kock uses Diaconescu’s theorem for toposes and
with the aid of a metamathematical argument he derives preservation of finite limits by flat
functors into suitable subcanonical sites. Our approach differs in that we give a completely
elementary proof, not depending on Diaconescu’s theorem. Instead, Diaconescu’s theorem
will be derived as a corollary to our work (including the subsequent one on connected
finite limits). Moreover, stricty speaking, no “Diaconescu’s theorem” had been available
for finite-product-preserving left Kan extensions into toposes. This is our Corollary 4.5. In
more general situations (functors with values in subcanonical sites) we also provide a partial
answer to whether functors with finite-product-preserving left Kan extensions are precisely
the sifted-flat ones.

Organization of the paper In Section 2. we recall the notion of siftedness, point out
that it is expressible in geometric logic and hence interpretable in locally small categories
with a site structure and give (non-) examples of functors that fail to “have a sifted category
of elements” (in the crude sense), yet their left Kan extension preserves finite products.

In Section 3. we recall the notion of postulated colimit and explain why certain colim-
its used for the calculation of geometric and categorical realizations of certain simplicial,
bisimplicial and globular sets are postulated with respect to certain site structures.

In Section 4. we prove our main results: Functors that have finite-product-preserving
left Kan extensions are precisely those that have a suitably sifted category of elements,
provided that certain colimits are postulated in the recipient category. In particular a
functor into a Grothendieck topos has a finite-product-preserving left Kan extension if and
only if its category of elements is sifted in the internal logic of the topos.

As said, the conditions involved in answering the problems studied here are renderings of
familiar notions, when interpreted via sheaf semantics (interpretation of geometric sentences
relative to a notion of covering, as it is exposed in standard references, e.g [14], [13]). Their
statement can be given in completely elementary terms, though it is not the most economical
one. Hence no familiarity with sheaf semantics is essentially required.

Acknowledgements: Unpublished work of Nick Duncan [7] and Emily Riehl [15] raises
the question of preservation of finite products by left Kan extension in specific contexts
and provided extra motivation for taking up the problem here. We would like to thank
Emily for further discussions on the subject. We would also like to thank Professor J.
Benabou for sharing with us his ideas concerning subcanonical topologies on the category
of small categories. We owe a special dept to Anders Kock whose ideas in [12] guided
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the results presented here. Finally we would like to thank the referee for suggesting many
improvements to the initial version of this paper.

The second author acknowledges the support of the Greek Scholarships Foundation
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2 Sifted categories and sifted-flat functors

2.1 Definition. A category C is called sifted if for every pair A, B of objects of C the
category (A,B) ↓ C of all (A,B)-cospans is connected. More precisely the following two
conditions are satisfied:

1. (A,B) ↓ C is nonempty, i.e, there exists at least one object X ∈ C and morphisms
A→ X and B → X.

2. Every two objects in (A,B) ↓ C are connected via a zig-zag, i.e, for each two objects
in the category (A,B) ↓ C, there exists a zig-zag in this category connecting them.

2.2 Remark. Usually a sifted category is defined as a category C with the property that,
colimits over C commute in Set with finite products (see [1]). The equivalence of the two
notions is of course non-trivial. Towards the end of the last section we explain how this
equivalence can be derived from our analysis.

2.3 Remark. A (small) category C with finite coproducts is sifted

2.4 Definition. A functor F : C → Set is called sifted flat if the dual of the category of
elements of F is sifted. More explicitly if

1. For every C1 ∈ C and x1 ∈ FC1, C2 ∈ C and x2 ∈ FC2, there exists C3 ∈ C , x3 ∈ FC3

and arrows f : C3 → C1, g : C3 → C2, such that Ff(x3) = x1 and Fg(x3) = x2.

(C3, x3)
g

&&LLLLLLLLLL
f

xxrrrrrrrrrr

(C1, x1) (C2, x2)

and

2. For each A, B in C and for every X in C, x ∈ FX, and X ′ in C, x′ ∈ FX ′ and diagram
in C
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(X,x)
f

xxppppppppppp
g

&&NNNNNNNNNNN

(A,Ff(x)) (B,Fg(x))

(X ′, x′)

f ′

ffNNNNNNNNNNN g′

88ppppppppppp

such that Ff(x) = Ff ′(x′) and Fg(x) = Fg′(x′), there exists a zig-zag connecting
X,X ′, as in the diagram below, such that all the internal triangles in it are commu-
tative and, moreover, there exists elements x1 ∈ FX1, x2 ∈ FX2, ..., xn ∈ FXn such
that

Fd01(x1) = x′, Fd11(x1) = x2, ..., Fd
0
n(xn) = xn−1, Fd

1
n(xn) = x.

X

g

  AAAAAAAAAAAAAAAAAAAAAAAAAAAA

f

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Xn

d1n

OO

fn

yyssssssssssssssssssssss

gn

%%KKKKKKKKKKKKKKKKKKKKKK

A X3

d03
��

f3
oo

g3
// B

X2

f2

iiTTTTTTTTTTTTTTTTTTTT
g2

55jjjjjjjjjjjjjjjjjjjj

X1

f1

ddIIIIIIIIIIIIIIIIIIIIIII

g1

::uuuuuuuuuuuuuuuuuuuuuuu

d01
��

d11

OO

X ′

f ′

^^>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

g′

@@�����������������������������

One then has ([1], Theorem 2.6)

2.5 Theorem. A functor F : C → Set is sifted flat if and only if its left Kan extension
LanyF , along the Yoneda embedding of C preserves finite products.
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2.6 Remark. When one deals with a functor F : C → E , into a locally small, cocomplete
category with finite products, then a similar characterization is missing. Some authors deal
with flatness notions in this more general context in a rather inadequate way: F is (or ought
to be) sifted-flat when for each object E ∈ E , the functor E(E,F−) : C → Set is sifted-flat.
This is partly justified by the fact that a functor F : C → E , where C and E have finite
products, preserves finite products if and only if it is sifted-flat in this sense. But in the
absense of finite products in C things do not work that well, as the example of the following
paragraph shows.

Simplicial sets and their realization: Let ∆ be the category whose objects are finite,
totally ordered sets

[n] = {0, 1, ..., n}

and morphisms are order preserving functions. Consider the functor

U : ∆→ Cat

from ∆ to the category of small categories that sees a linear order as a category.

Claim 1: U is not sifted-flat, in the sense that it is not true that, for any small category
C, the functor

Cat(C, U−): ∆→ Set

has a sifted category of elements.

This will take a while to explain. It depends on the following proposition, which is an
explication of [8], 5.5, in view of [10], Proposition 3.4.

2.7 Proposition. In the category ∆, for any two objects [m], [n], there is a finite family
of cones over them, all of them having as vertex the ordinal [m+ n], with the property that
any other cone factors through one in that family.

Proof: Given [m], [n] in ∆ consider the family of pairs of surjective, order-preserving
maps α: [m+n]→ [m], β: [m+n]→ [n]. They correspond to maximum length paths on the
[m]× [n] grid on the plane, where motion is allowed only upwards and to the right, since α
and β are order-preserving:
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. . . . .

.

n

. . . // // .

OOOO

.2 . // // . . .

.1 .

OOOO

. . .

.0 // // .

OOOO

1
.
2

.
m
.

So the path depicted above corresponds to the maps α and β having α(0) = 0, α(1) =
α(2) = 1, ..., α(m+ n− 2) = m− 1, α(m+ n− 1) = α(m+ n) = m while β(0) = β(1) = 0,
β(2) = 1, β(3) = 2, ..., β(m + n − 2) = β(m + n − 1) = n − 1, β(m + n) = n. There are
obviously

(
m+n
n

)
such cones.

Now given any cone γ: [k]→ [m], δ: [k]→ [n], there is a set of points (γ(i), δ(i)), i ∈ [k],
inside the [m] × [n]-grid. Extend that set of points into a maximal path in any possible
way. This extension specifies a factorization through a cone with vertex [m+n] so that the
given one factors through that. The desired factorization is ε: [k]→ [m+ n] given by

ε(i) = the number of position of (γ(i), δ(i)) inside the maximal path

2.8 Proposition. For any finite diagram in the category ∆ there is a finite family of
cones over it with the property that any other cone factors through one in that family.
Moreover, for any finite diagram D:D → ∆, the limit of the diagram of representables
y ·D:D →∆→ Sset in simplicial sets is isomorphic to a finite colimit of representables.

Proof: For the first claim notice that ∆ has a terminal object and that a pair of parallel
arrows either has an equalizer (if they agree somewhere) or otherwise they have an empty
(hence finite) set of cones. Then we conclude from [3], Theorem 2.1. For the second claim,
we conclude from [10], Theorem 3.5.

Returning to the proof of Claim 1, consider [1]× [1] with the pointwise order, viewed as
a category, and take the following diagram in Cat

[1]× [1]
p1

wwppppppppppp
p2

''OOOOOOOOOOO

[1] = U([1]) [1] = U([1])
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If U was sifted-flat in the above sense, there would have to be an ordinal [n], an order
preserving function [1] × [1] → [n] and two order preserving functions [n] ⇒ [1] such that
in the following diagram the two triangles commute.

[1]× [1]

p2

��6666666666666666

p1

������������������
h
��

[n]

f2 $$f1zz
[1] [1]

But, by Proposition 2.7 the desired factorization through an ordinal [n] should eventually
factorize through the ordinal [2], so we are searching for a factorization as indicated in the
following diagram

[1]× [1]

p2

��6666666666666666

p1

������������������
h
��

[2]

f2 $$f1zz
[1] [1]

where f1, f2 are surjective and order-preserving. By direct inspection we see that there is
no h such that the two triangles in the above diagram commute. This proves Claim 1. Yet,

Claim 2: The left Kan extension of U along the Yoneda embedding (a.k.a the categorical
realization of simplicial sets) preserves finite products.

This can be easily seen, taking into account that the right adjoint to the categorical
realization (a.k.a the nerve functor) is fully faithful, its image contains the representables
and Cat is cartesian closed. Nevertheless, it can be derived as a corollary to the results in
the next two sections.

Formulas for Flatness What resolves the “contradiction” in the above example? Topos
theory indicates the answer: When dealing with flatness conditions one should take into
account the local character of these conditions. In [14], chapter 7, we see that the key
concept (e.g in proving Diaconescu’s theorem) of filtering functor arises when one restates
the usual flatness conditions “up to epi covering”. This means that certain logical formulas
are interpreted with respect to the canonical site structure of the topos. On the other
hand, the version of sifted-flatness discussed in the previous paragraph amounts to the
interpretation of the relevant conditions with respect to the coarsest site structure (where
only isomorphisms cover).

More precisely, let C be a small category and consider the language LC for “functors on
C”: it has one sort C for each object of C, and one function symbol f :C → C ′, for each
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arrow in C, respectively. Structures of this language in sets are sorted sets F (C) (one for
each C), equipped with functions Ff :F (C)→ F (C ′). Axioms in this language account for
the functoriality of this assignment, hence models in sets correspond bijectively to functors
F : C → Set. The same applies to models of the same theory into any category.

Furthermore the two conditions describing the notion of a sifted-flat functor have a
description in LC sentences that are geometric, hence they can be interpreted in a sound
way in any category equipped with a Grothendieck topology. In particular the theory of
sifted-flatness comprises the following axioms:

SF1: For every pair of objects C ′, C ′′,

∀x′:C ′ ∀x′′:C ′′
∨
C

∨
u′:C→C′
u′′:C→C′′

∃x:C (u′(x) = x′ ∧ u′′(x) = x′′)

Interpreting this formula relative to a site structure (E , j) means that it is satisfied at
every stage T ∈ E . In more plain terms this says that, whenever we have a diagram

T
x′

||yyyyyyyy
x′′

##FFFFFFFF

FC ′ FC ′′,

there exists a cover {tα:Tα → T | α ∈ A} of T such that for each α ∈ A there exists
an object Ca , morphisms u : Ca → C ′, v : Ca → C ′′ and a morphism (generalized
element) xα : Tα → FCa, such the following diagram is commutative

Tα
tα //

xα

##HHHHHHHHH T

x′

��																

x′′

��6666666666666666

FCa

Fuzzvvvvvvvvv

Fv $$IIIIIIIII

FC ′ FC ′′

i.e

Fu ◦ xα = x′ ◦ tα
Fv ◦ xα = x′′ ◦ tα

SF2: For every diagram of the form

Z ′

f ′

}}{{{{{{{{ g′

!!CCCCCCCC

A B

Z

f

aaCCCCCCCC g

=={{{{{{{{
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∀z :Z ∀z′ :Z ′ ((f(z) = f ′(z′) ∧g(z) = g′(z′))→
∨

Z(Z,Z′)
∃z1 :Z1 ∃z2 :Z2...∃zn : Zn(d01(z1) =

z ∧ d11(z1) = z2 ∧ ... ∧ d0n(zn) = zn−1 ∧ d1n(zn) = z′

Here the disjunction is taken over the set Z(Z,Z ′) of all zig-zags connecting Z and
Z ′ in the category (A,B) ↓ Cop of all (A,B)-spans. Again, when stated in elementary
terms, this condition takes the form that for any pair of arrows z:T → FZ, z′:T →
FZ ′, such that Ff ·z = Ff ′ ·z′ and Fg ·z = Fg′ ·z′, there exists a j-cover {tα:Tα → T},
and, for each α, a zig-zag in the category (A,B) ↓ Cop of all (A,B)-spans and arrows
zα,i:Tα → FZi, i = 1, ..., n, to the images under F of the vertices Zi of the zig-zag,
satisfying the obvious commutativities.

2.9 Remark. Notice that when interpreting the above axioms with respect to various
Grothendieck topologies, their validity in a site (E , j) implies their validity in any (E , j′),
where j ≤ j′, i.e there are more j′-coverings. In particular, validity in the “absolute sense”
of the previous paragraph (coarsest topology) implies validity with respect to any topology.

The above considerations give the correct notion of sifted-flatness and resolve the “con-
tradiction” mentioned above: One just has to interpret the conditions defining sifted-flatness
with respect, not to the coarsest topology, but with respect to a suitable subcanonical topol-
ogy on Cat.

Still though certain complications may arise. For example, in the following situation

BAlgf
y //

i %%KKKKKKKKKK [BAlgf
op,Set]

Lanyiwwooooooooooo

BAlg

S
77ooooooooooo

where i: BAlgf → BAlg denotes the inclusion of finite Boolean algebras into all Boolean
algebras, i is sifted flat (even with respect to the coarsest structure) because it preserves
products. Also i is dense, hence BAlg is a reflective subcategory of [BAlgf

op,Set]. At
the same time Lanyi does not preserve finite products. In such a case we would have as
a conclusion that BAlg is cartesian closed (see [9], A4.3.1). Clearly this is not the case.
Hence some extra condition is required, that would guarantee the preservation of finite
products by the left Kan extension.

3 Postulated colimits

Whenever we have a diagram D : D → Set, the colimit of it is given as a quotient of the
coproduct of all the values of D divided by an equivalence relation. This description allows
us, whenever dealing with colimits in Set, to argue about its elements in such a way that

1. An element of the colimit can be represented by an element of some component.

2. If an element of the colimit has two such representations, then there exists a zig-zag
connecting the two sets, where the representations live, and a sequence of elements
satisfying certain compatibility equations.
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Anders Kock ([12]) realized that this behaviour of colimits in Set is the key ingredient
that allows us to deduce preservation-of-finite-limit properties by the Kan extension of a
functor, out of properties of the category of elements of the functor. He exploited the fact
that these are properties expressible by geometric sentences in a suitable language and hence
are soundly interpretable in sites and deduced preservation-of-finite-limit properties by Kan
extensions of functor into sites. More precisely, given a diagram D : D → E , where (E , j) is
a site and a cocone {incld : D(d) → L| d ∈ D}, we say that the cocone is j-postulated if it
satisfies the following two conditions, which are written in the internal language of E :

PC1: ∀x : L
∨
d∈D
∃y : Dd (incld(y) = x) and

PC2: ∀x : Dd ∀y : Dd′ (incld(x) = incld′(y) →
∨

Z(d,d′)
∃z1 :Dd1... ∃zn :Ddn (Dδ1,0(z1) =

x ∧Dδ1,1(z1) = Dδ2,0(z2) ∧ ... ∧ Dδn,1(zn) = y)),

where Z(d, d′) stands for the set (class) of zig-zags from to d to d′, as in

d1
δ1,0

���������� δ1,1

��======== dn
δn,0

���������� δn,1

��@@@@@@@

d . . d′

Again, the interpretation of these conditions in a site (E , j) can be stated in an elemen-
tary way. The first one says that, for all T ∈ E , all x:T → L, there is a j-cover {tα:Tα → T}
and, for all α, arrows yα,d :Tα → Dd to some Dd, such that x · tα = incld · yα,d. The second
condition says that, for all T ∈ E and x:T → Dd, y:T → Dd′, if incld · x = incld′ · y, then
there is a j-cover {tα:Tα → T} so that, for all α, there are zα,i :Tα → Ddi, i = 1, ..., n, to
the images under D of the vertices of the zig-zag, satisfying the obvious commutativities.

3.1 Remark. (i) As noted in connection to the sifted-flatness conditions, validity of the
above conditions in a site (E , j) implies their validity in any (E , j′), where j ≤ j′

(ii) One way to restate condition PC1 is that the colimit inclusions incld :Dd→ colimD
form a j-covering family (because, for the identity arrow of colimD, the existence of a cover
of colimD with the prescribed property implies that the sieve generated by the colimit
inclusions is larger than that covering, hence also covering).

(iii) As explained in [12] (remark following the proof of Proposition 1.1), ignoring any
size issues that may arise, postulated colimits with respect to a subcanonical site (E , j) are
those that are preserved by the Yoneda embedding E ↪→ shv(E , j). Hence the colimit of
a diagram D:D → E is postulated iff the colimit of the restriction along any final functor
J :D′ → D is postulated. Nevertheless, in the applications it turns out that it is crucial
that certain diagrams have finite final sets of cocones, for finding suitable subcanonical
topologies so that the required colimits are postulated.

(iv) A. Kock shows that if finite (all) colimits are postulated with respect to a sub-
canonical topology on E then E is a(n ∞-) pretopos. So one may wonder whether this is
the case with the main examples of categories where realization functors take values, such
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as Cat or the category of Kelley spaces. For Cat it is well-known that it fails even to be
regular ([5]). With Kelley spaces the situation is subtler, as Cagliari, Mantovani and Vitale
([6]) show that this category, while it is regular, it is not exact. But as will become evident
in the next section, if we are interested in showing the preservation of finite products by
geometric or categorical realization functors only specific colimits need to be postulated
with respect to some subcanonical topology. Hence we turn to showing that various useful
colimits (colimits used in the calculation of certain values of left Kan extensions) have this
property.

3.2 Proposition. There exists a subcanonical topology on the category K of Kelley spaces
such that the families of colimit inclusions {incli:Ki → colimKi} of finite diagrams of
compact Hausdorff spaces are covering.

Proof: Consider the Grothendieck topology generated by families of colimit inclusions
{incli:Ki → colimKi} of finite diagrams of compact Hausdorff spaces. Such families are
not stable under pullback along a continuous map from an arbitrary Kelley space. Hence
we close the family under such pullbacks, generating thus a Grothendieck pretopology on
K.

If {fi:Ki → Z} is a compatible family of continuous maps, then we may define

f : colimiKi → Z

by f(x) = fi(xi), since every x ∈ colimiKi is x = incli(xi), for some xi ∈ Ki. This is a
correct definition by the compatibility of the family. This f is continuous because, if C ⊆ Z
is closed, then f−1C =

⋃
i incli[f

−1
i C]. Each incli[f

−1
i C] is closed because incli is closed,

being a map between compact Hausdorff spaces, and the union is finite. Thus f−1C is
closed. This proves that each representable functor K(−, Z) on Kelley spaces has the sheaf
property with respect to the generating family of the pretopology.

Not only this, but K(−, Z) has the sheaf property with respect to a pullback {ti:Ti → T}
of a generating family along any map T → colimiKi: The extension map T → Z is
defined as above because the underlying set of the pullback Ti ×T Ti′ is the pullback of the
underlying sets of the involved spaces (although the topology on it may not be inherited by
the Tychonoff topology on Ti×Ti′). The induced map is continuous by the same argument
as above, because each ti:Ti → T is closed: The maps incli:Ki → colimiKi = K, being
continuous maps between compact Hausdorff spaces, are stably closed and, moreover, the
pullbacks Ti ∼= Ki×K T are computed as in the category of all topological spaces, since the
Ki’s are compact.

3.3 Proposition. Let C be a category with the property that for any finite diagram D:D →
C, the limit of the corresponding diagram of representables in [Cop,Set] is isomorphic to a
finite colimit of representables,

lim y ·D ∼= colimk yPk

If F : C → K is a functor to the category of Kelley spaces and the spaces FPk are compact,
then the colimit colimk FPk satisfies PC1 for the topology of Proposition 3.2.
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Proof: This is an immediate consequence of Remark 3.1 (ii)

3.4 Corollary. If C is either ∆ or G (the basis of globular sets [4]), then the colimit used
for the calculation of the left Kan extension of a limit lim

d∈D
yDd of representables, satisfies

PC1 with respect to the subcanonical topology of Proposition 3.2.

Proof: This is so because the limit of a finite diagram of representables on ∆ or G is
a finite colimit of representables, as shown explicitly for ∆ in Proposition 2.7 and as can
easily be seen for G, invoking the arguments in the proof of Proposition 2.7. Moreover the
representables are realized as simplices or closed balls, in the respective cases, hence are
compact.

3.5 Proposition. Let U : ∆ → Cat be the obvious functor and colimk U [pk] the colimit
arising from the description of a product of two representable simplicial sets as a finite
colimit of representables. Then this colimit satisfies PC1 with respect to some subcanonical
topology.

Proof: Since the nerve functor N : Cat → [∆op,Set] is fully faithful and preserves pull-
backs, we can easily see that there is a topology on Cat defined as follows: {Ci → C | i ∈ I}
covers in Cat iff {NCi → NC | i ∈ I} covers for the canonical topology on simpli-
cial sets. It is also straightforward that this topology is subcanonical. Then the family
{U [pk]→ colimk U [pk]} is covering for this topology, essentially by Proposition 2.7, and the
well-known fact that U is dense.

The fact that the colimit in question satisfies PC1 is again a consequence of Remark
3.1(ii).

4 The main results

4.1 Proposition. Let F : C → E be a functor from a small category C into a cocomplete,
locally small, subcanonical site with finite products. Let also, for every pair of objects C1,
C2 in C, {Pk|k ∈ K} be a diagram of cones for this pair of objects, so that the product of
the two representables is a colimit of representables

yC1 × yC2
∼= colimkyPk

and the colimit colimkFPk satisfies PC1 with respect to j. Then if F is j-sifted flat, the
canonical morphism

f : colimkFPk → FC1 × FC2

is an isomorphism
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Proof: First we show that f is a monomorphism: Consider

T
v
//

u //
colimFPk

f // FC1 × FC2

with f · u = f · v
Using PC1 for the morphism u : T → colimFPk we have that there exists a cover

{tα:Tα → T | α ∈ A} of T such that, for each α ∈ A, there exists an index k(α) ∈ K and a
morphism uα : Tα → FPk(α), such that the following square commutes

Tα
tα //

uα
��

T

u

��
FPk(α)

ink(α)

// colimFPk

Similarily, for v : T → colimFPk we get, for each α ∈ A, a commutative square

Tα
tα //

vα
��

T

v

��
FPk′(α)

ink′(α)

// colimFPk

We may assume that the same cover occurs in the two applications of PC1 above, since any
two covers have a common refinement. The site is subcanonical so for the equality u = v,
it is enough to show that u · tα = v · tα for each α ∈ A. Then, by the commutativity of the
two squares above, we have to show ink · uα = ink′ · vα.

Now consider the following diagram in E (where pi:FC1 × FC2 → FCi, i = 1, 2 are the
projections from the product in E ):

FPk(α)

p1·f ·ink(α)yyttttttttt p2·f ·ink(α)

%%JJJJJJJJJ

Tα

uα
55jjjjjjjjjjjjjjjjj

vα ))TTTTTTTTTTTTTTTTT FC1 FC2

FPk′(α)

p1·f ·ink′(α)
eeJJJJJJJJJ p2·f ·ink′(α)

99ttttttttt

The equations

p1·f ·ink(α) = Fp1k(α), p1·f ·ink′(α) = Fp1k′(α), p2·f ·ink(α) = Fp2k(α), p2·f ·ink′(α) = Fp2k′(α)

hold, where ink(α):FPk(α) → colimFPk are the colimit injections and pik:Pk → Ci, i = 1, 2,
are the projections from the cone Pk to C1, C2 in C. The following equations hold

p1 · f · ink′(α) · va = p1 · f · v · tα = p1 · f · u · tα = p1 · f · ink(α) · uα

13



p2 · f · ink′(α) · vα = p2 · f · v · tα = p2 · f · u · tα = p2 · f · ink(α) · uα,

exploiting the commutativity of the two commutative squares above.
F is j- sifted flat, thus we can apply SF2: We have that, for all α there exists a cover

of Tα, say {tαξ : Tαξ → Tα| ξ ∈ Ξα}, such that for every ξ ∈ Ξα there exists a zig-zag

in (C1, C2) ↓ Cop connecting C1 Pk(α)
p2
k(α) //

p1
k(α)oo C2 and C1 Pk′(α)

p2
k′(α) //

p1
k′(α)oo C2 as

indicated in the diagram bellow (which, for the economy of the presentation we depict as
one of length three):

Pk(α)

p1
k(α)

$$IIIIIIIIIIIIIIIIIIIIIIII

p2
k(α)

zzuuuuuuuuuuuuuuuuuuuuuuuu

Pk3(α)

d03
��

d13

OO

p1
k3(α)uujjjjjjjjjjjjjjjjjjjj

p2
k3(α) **TTTTTTTTTTTTTTTTTTTT

C1 Pk2(α)
p1
k2(α)

oo
p2
k2(α)

// C2

Pk1(α)

p1
k1(α)

jjTTTTTTTTTTTTTTTTTTTT p2
k1(α)

55jjjjjjjjjjjjjjjjjjjj

d01
��

d11

OO

Pk′(α)

p1
k′(α)

ddIIIIIIIIIIIIIIIIIIIIIIII

p1
k′(α)

::uuuuuuuuuuuuuuuuuuuuuuuu

Without loss of generality we took the components of the zig-zag to be from the final family
of cones Pk. The reason is that each component of the zig-zag constitutes a cone for the
discrete diagram in C therefore they factorize through a Pk.

Furthermore, condition SF2 gives, for every ξ ∈ Ξα, generalized elements

FPk1(α)

Tαξ

x1
::uuuuuuuuu

x2 //

x3 $$IIIIIIIII
FPk2(α)

FPk3(α)

such that the following diagram is commutative
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Tα

uα
��

FPk(α)

<Fp1
k(α)

,Fp2
k(α)

>

##GGGGGGGGGGGGGGGGGGGGGGG

FPk3(α)

Fd03
��

Fd13

OO

))SSSSSSSSSSSSSSS

Tαξ

tαξ

CC���������������������������
x3

66nnnnnnnnnnnnnn
x2

//

x1 ((QQQQQQQQQQQQQQ

tαξ

��777777777777777777777777777
FPk2(α) // FC1 × FC2

FPk1(α)

55kkkkkkkkkkkkkkk

Fd01
��

Fd11

OO

FPk′(α)

<Fp1
k′(α),Fp

2
k′(α)>

;;wwwwwwwwwwwwwwwwwwwwwww

Tα

vα

OO

i.e

Fd01 · x1 = vα · tαξ, Fd11 · x1 = x2, Fd03 · x3 = x2, Fd13 · x3 = uα · tαξ

Also from the fact that we have a colimiting cocone we have the commutativity of the
following diagram:

FPk1(α)
Fd1,0

yysssssssss
Fd1,1

&&LLLLLLLLLL

ink1(α)

��;;;;;;;;;;;;;;;;;;
FPk3(α)

Fd3,0

xxrrrrrrrrrr
Fd3,1

%%JJJJJJJJJ

ink3(α)

��������������������

FPk′(α)

ink′(α) **VVVVVVVVVVVVVVVVVVV FPk2(α)

ink2(α)
��

FPk(α)

ink(α)ttiiiiiiiiiiiiiiiiiiii

colimFPk

Combining all the above we have

ink(α) · uα · tαξ = ink(α) · Fd13 · x3
= ink3(α) · x3
= ink2(α) · Fd

0
3 · x3

= ink2(α) · x2
= ink2(α) · Fd

1
1 · x1

= ink1(α) · x1
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= ink′(α) · Fd01 · x1
= ink′(α) · vα · tαξ

so
ink(α) · uα = ink′(α) · vα

because they become equal when they are restricted along a cover.
Next we show that f is a split epi. Let x = 〈x1, x2〉:T → FC1 × FC2, be an arbitrary

generalized element of the product. An application of SF1 gives us a cover {tα : Tα →
T |α ∈ A} of T , such that for every α ∈ A there exists an object Pk(α) in the final family of
cones (again there is no loss of generality) and a generalized element xα : Tα → FPk(a) so
that the following diagram is commutative

Tα
tα

%%KKKKKKKKKK

xα

��8888888888888888

T

x1

�������������������

x2

��77777777777777777

FPk(α)

Fp1
k(α)zzttttttttt

Fp2
k(α) $$JJJJJJJJJ

FC1 FC2

i.e, Fp1k(α) ·xα = x1 ·tα and Fp2k(α) ·xα = x2 ·tα We will show that the family {ink(α) ·xα|α ∈
A} of elements of E(−, colimFPk) is a matching family for the cover {tα : Tα → T |α ∈ A}.
For this, consider the diagram

Tα
xα //

tα

!!BBBBBBBB
FPk(α)

ink(α)

&&NNNNNNNNNN

Tα ×T Tα′

π1
αα′

99ssssssssss

π2
αα′ %%KKKKKKKKKK T colimFPk

Tα′ xα′
//

tα′

==||||||||
FPk(α′)

ink(α′)

88pppppppppp

(∗)

for arbitary α, α′ ∈ A.
We need to show that the outer diagram in the above is commutative. To that end, we

have that the upper road followed by p1 · f , gives the same result as the down road, when
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followed by the same composite.

FC1

colimFPk
f // FC1 × FC2

p1
88ppppppppppp

p2 &&NNNNNNNNNNN

FC2

Indeed:

p1 · f · ink(α) · xα · π1αα′ = p1 · fk(α) · xa · π1αα′
= Fp1k(α) · xα · π

1
αα′

= x1 · tα · π1αα′
= x1 · tα′ · π2αα′
= Fp1k(α′) · xα′ · π

2
αα′

= p1 · fk(α′) · xα′ · π2αα′
= p1 · f · ink(α′) · xα′ · π2αα′ ,

where fk(α) is the unique factorization in E of the cone FPk(α) through FC1 × FC2.
Similarily the up and the down road gives the same result if we compose with p2 · f , i.e,

p2 · f · ink(α) · xa · π1αα′ = p2 · f · ink(α′) · xα′ · π2αα′ .

From the above equations and the universal property of the product we have that

f · ink(α) · xα · π1αα′ = f · ink(α′) · xα′ · π2αα′ .

and finally since f is a monomorphism we have the desired equation

ink(α) · xα · π1αα′ = ink(α′) · xα′ · π2αα′ .

This shows that {ink(α) · xα|α ∈ A} is matching family for the sheaf E(−, colimFPk) with
respect to the specified cover. The sheaf property of E(−, colimFPk) gives a unique arrow
r : T → colimFPk such that for every α ∈ A, r · tα = ink(α) · xα

Tα
xα //

tα

  AAAAAAAA
FPk(α)

ink(α)

&&MMMMMMMMMM

T
r // colimFPk
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Now we have:

p1 · f · r · tα = p1 · f · ink(α) · xα
= p1 · fk(α) · xα
= Fp1k(α) · xα
= x1 · tα

for every α ∈ A, hence p1 · f · r = x1 since the site is subcanonical. By a similar argument
p2 · f · r = x2 and in conclusion we have the desired factorization

f · r = 〈x1, x2〉 = x �

4.2 Remark. In the proof of the Proposition we made no use of PC2

4.3 Corollary. Let F : C → E be a functor from a small category C into a cocomplete,
locally small, subcanonical site with finite products which fullfils the assumptions of the
Proposition 4.1, i.e the colimit colimFPk, entering the calculation of LanyF of a product
of two representables, satisfies PC1 with respect to j and F is j-sifted-flat. Then its left
Kan extension along the Yoneda embedding y preserves finite products of representables.
Moreover, if E is cartesian closed, then the left Kan extension preserves finite products.

Proof: Concerning the first claim we have

LanyF (yC1 × yC2) ∼= LanyF (colimkyPk)
∼= colimkLanyF (yPk)
∼= colimkFPk
∼= FC1 × FC2

∼= LanyF (yC1)× LanyF (yC2)

Then, expressing an object in [Cop,Set] as a colimit of representables, using the commuta-
tion of binary products with colimits in that category as well as in E and the preservation
of colimits by LanyF , we conclude that preserves LanyF finite products. �

4.4 Proposition. Let F : C → E be a functor from a small category C into a cocomplete,
locally small, subcanonical site with finite products. Let also, for every pair of objects C1,
C2 in C, {Pk|k ∈ K} be a diagram of cones for this pair of objects, so that the product of
the two representables is a colimit of representables

yC1 × yC2
∼= colimyPk

and the colimit colimFPk is postulated with respect to j. Assume that the morphism f :
colimFPk → FC1 × FC2 is an isomorphism. Then F is j-sifted flat. In particular this is
the case when LanyF preserves finite products.
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Proof: We denote with f−1 : FC1 × FC2 → colimFPk the inverse of f .
Consider

T
x1

||xxxxxxxx
x2

""FFFFFFFF

FC1 FC2

If x stands for the morphism < x1, x2 >: T → FC1×FC2, we apply PC1 for the morphism
f−1 · x : T → colimFPk. So we have a cover {Tα → T |α ∈ A} of T such that, for each
α ∈ A, there exist Pk(α) and xα : Tα → FPk(α) making commutative the following square

Tα
tα //

xα
��

T

f−1·x
��

FPk(α)
ink(α)

// colimFPk

So we have the following diagram

Tα
tα

%%KKKKKKKKKK

xα

��

T

x1

�������������������

x2

��77777777777777777

FPk(α)

Fp1
k(α)zzttttttttt

Fp2
k(α) $$JJJJJJJJJ

FC1 FC2

which is commutative.
Indeed

Fp1k(α) · xα = p1 · fk(α) · xα
= p1 · f · ink(a) · xa
= p1 · f · f−1 · x · tα
= p1 · x · tα
= x1 · tα

and similarily

Fp2k(α) · xα = x2 · tα

So the first condition of sifted-flatness with respect to j holds.
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Next, for arbitary C1, C2 in C consider the diagram

T

z′

��
FPk′

Fp1
k′

zzuuuuuuuuu Fp2
k′

$$IIIIIIIII

FC1 FC2

FPk

Fp1k

ddIIIIIIIII Fp2k

::uuuuuuuuu

T

z

OO

where

Fp1k · z = Fp1k′ · z′ and Fp2k · z = Fp2k′ · z′ (1)

(In the above diagram we can take without loss of generality the Pk’s to be in the final
family of cones for C1, C2.) Then

p1 · f · ink · z = p1 · fk · z
= Fp1k · z
= Fp1k′ · z′

= p1 · fk′ · z′

= p1 · f · ink′ · z′

and similarily

p2 · f · ink · z = p2 · f · ink′ · z′

i.e,
f · ink · z = f · ink′ · z′

and since f is a mono we have that

ink · z = ink′ · z′

By an application of PC2 for the colimit cocone {ink : FPk → colimFPk} we have that
there exists a cover {Tα → T |α ∈ A} such that for every α ∈ A we have a zig-zag (in C
consisting of objects in the final family connecting Pk and Pk′
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Pk1
d1,0

}}|||||||| d1,1

��????????
Pkn

dn,0

����������� dn,1

!!CCCCCCCC

Pk . . Pk′

and generalized elements x1:Tα → FPk1 ... xn:Tα → FPkn such that

Fd01 · x1 = z · tα, Fd11 · x1 = x2, Fd03 · x3 = x2, Fd13 · x3 = x4, ..., Fd
1
n · xn = z′ · tα

Hence the second condition for sifted-flatness with respect to j holds. �

4.5 Corollary. Let F : C → E be a functor from a small category C into a Grothendieck
topos. Then F is sifted flat in the internal logic of the topos (i.e with respect to the canonical
topology of the topos) if and only if LanyF preserves finite products.

Proof: Consider the topos equipped with its canonical topology. Then all colimits are
postulated with respect to it ([12], Proposition 2.1). �

4.6 Remark. Using the above for E = Set and F the composite Cop → 1→ Set (where the
second part of the composite chooses a singleton) and C is sifted, we get that LanyF , which
is just colimit formation for C-diagrams, preserves finite products. Hence sifted colimits
commute with finite products in sets, as anticipated in Remark 2.2.

4.7 Corollary. Let S be a base topos, C an internal category in it that is dually sifted
and j a topology such that every cover R of an object C ∈ C in it is connected, i.e it is
connected as a subcategory of the category of elements of C. Then the induced geometric
morphism Shv(C, j) → S has the property that its inverse image has a further left adjoint
that preserves finite products.

Proof: There is a geometric morphism [Cop,S]→ S which has a further left adjoint, given
by internal left Kan extension along Cop → 1op. When C is dually sifted, that Kan extension
preserves finite products. If moreover every j-cover is connected, so that every constant
presheaf is a j-sheaf, then that extra left adjoint restricts to one Shv(C, j)→ S, which also
preserves finite products.

References

[1] J. Adamek, J. Rosicky, On sifted colimits and generalized varietes, Theory and Appli-
cations of Categories, Vol. 8, No. 3, 33-53 (2001)

[2] C. Barwick, D. M. Kan, Relative categories: Another model for the homotopy theory
of homotopy theories, arXiv 1011.1691v1, (2010)

[3] T. Beke, Theories of presheaf type, Journal of Symbolic Logic 69 (3), 923-934 (2004)

21



[4] C. Berger, A cellular nerve for higher categories, Advances in Mathematics 169, 118-175
(2002)

[5] F. Borceux, Handbook of Categorical Algebra 1, 2, Encyclopedia of Mathematics and
its Applications, Volumes 50-51., Cambridge University Press (1994)

[6] F. Cagliari, S. Mantovani, E. M. Vitale, Regularity of the category of Kelley spaces,
Appl. Categ. Structures 3, 357–361 (1995)

[7] Nicholas Duncan, Gros and Petit Toposes, Talk given at PSSL88, Cambridge, available
as http://www.cheng.staff.shef.ac.uk/pssl88/pssl88-duncan.pdf

[8] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag
Berlin-Heidelberg (1967)

[9] P. T. Johnstone, Sketches of an Elephant: a topos theory compendium: vol.1 and vol.2,
Oxford Logic Guides 43 and 44. Clarendon Press, Oxford (2002)
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