
Preface

This volume contains a collection of extended and short abstracts of talks pre-
sented at NumAn 2007. The Conference had as stated aims to bring together
and bequeath scientific activities, directions and pursuits of Greek scientists in
Greece and abroad on subjects that pertain to the conference; to foster an ex-
change of views and ideas; to study the theoretical background required for
methods, algorithms and techniques used in applications; to search directions
of theoretical results towards applications; to highlight open problems and fu-
ture directions of numerical analysis. The volume also contains contributions by
several international participants; we are grateful to them for choosing to con-
tribute to this event. All this, in the magnificent surroundings of Kalamata, a
wonderful city in the Messinia region of southern Greece.

The majority of the papers deal (primarily) with computational topics in the
areas of Linear Algebra, Partial Differential Equations and Optimization. There
are also papers in Differential, Integral and Nonlinear Equations, Error Analysis,
Approximation, and applications such as Fluid Dynamics, Weather Prediction,
Statistics and Data Mining.

Several distinguished senior speakers are invited to honor this conference.
These are Professors N. Apostolatos (University of Athens), N. Artemiadis (Aca
demy of Athens), D. Bertsekas (MIT), C. Dafermos (Brown University), A. Fokas
(Academy of Athens and Cambridge), A. Hadjidimos (Thessaly), E. Houstis
(Thessaly), P. Ligomenides (Academy of Athens), G. Nicolis (Academy of Athens
and Université Libre de Bruxelles) and C. Tsallis (Brazilian Academy of Sciences
and Santa Fe Institute). We take this opportunity to extend our warmest wel-
come to all of them.

We would finally like to extend our thanks to those individuals, universities
and corporations that helped in the organization of NumAn 2007. First of all to
the members of the program committees and to the researchers who submitted
their work for presentation. Without them, NumAn and this volume would not
have materialized. We also express our deep gratitude to Professor A. Hadjidi-
mos for his efforts on behalf of the Conference, efforts that went far beyond his
duties as Program Committee member. The hard work and help of Michael G.
Epitropakis and Aris G. Vrahatis, both students at the Mathematics Depart-
ment of the University of Patras proved to be invaluable in many critical aspects
of local organization and in the compilation of this volume. We finally thank our
academic institutions, specifically the University of Patras and Wilfrid Laurier
University, the local authorities, specifically the Prefecture of Messinia and the
Municipality of Kalamata, and finally Maplesoft and MP & Associates, for sup-
porting this conference. We hope that the present volume will be a good and
useful record of NumAn 2007.

The NumAn 2007 Organizing Committee:

M.N. Vrahatis, E. Gallopoulos, I.S. Kotsireas, D. Noutsos, E. Houstis
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Educational Systems in Mathematics and Other Related
Topics.

N. Artemiadis

Academy of Athens

Approximate Solution of Very Large Linear Systems of
Equations by Simulation1

Dimitris P. Bertsekas

Massachusetts Institute of Technology MIT

Abstract. We consider linear fixed point equations, and approximation
of the solution by projection on a low-dimensional subspace. We pro-
pose stochastic iterative algorithms, based on simulation, which converge
to the approximate solution and are suitable for very large-dimensional
problems. The methodology generalizes recent approximate dynamic pro-
gramming methods, which solve a projected form of Bellman’s equation
by using simulation-based approximations to this equation, or by using
a projected value iteration method.

Hyperbolic Balance Laws with Dissipation

C. Dafermos

Brown University

Abstract. Global BV solutions will be constructed to the Cauchy prob-
lem for hyperbolic systems of balance laws with dissipative sources in-
duced by relaxation mechanisms.

1 joint research with Janey Yu (University of Helsinki)
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Integrability, boundary value problems and imaging

A. Fokas

Academy of Athens and University of Cambridge

Abstract. Ideas from the theory of nonlinear integrable PDEs have led
to the introduction of a new method for solving boundary value problems.
This is turn has led to new techniques for the numerical integration of
linear evolution PDEs and for elliptic PDEs in a convex polygon. In
addition, ideas from integrable PDEs have led to new developments in
medical imaging. In this talk, some of these recent developments will be
reviewed.

Using Extrapolation for the Solution of the Linear
Complementarity Problem1

A. Hadjidimos

University of Thessaly

Abstract. The Linear Complementarity Problem (LCP) has many ap-
plications as, e.g., in the solution of Linear and Convex Quadratic Pro-
gramming, in Free Boundary Value problems of Fluid Mechanics, etc.
In the present work we consider the case where the matrix coefficient
A ∈ R

n,n of LCP is a positive definite matrix. Considering a known it-
erative method for the solution of LCP we introduce the principle of
Extrapolation and find the best extrapolation parameter ω for which
the corresponding extrapolated iterative scheme converges asymptoti-
cally faster. Various simple and more complicated numerical examples
show that it is worth using extrapolation to solve an LCP.

1 joint work with Michael Tzoumas (University of Ioannina)
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Mathematics in the Knowledge Economy

E. Houstis

University of Thessaly

Abstract. The knowledge economy (KE) can be viewed as the combina-
tion of information and computer technologies (ICT) and highly skilled
labor to produce economic benefits for the whole of our society. Edu-
cation and Innovation are two of the pillars of this new economy. ICT
technologies are becoming part of every productive organization of the
human enterprise, from manufacturing to entertainment, telecommuni-
cations, transportation and education. ICT is changing the way we de-
liver, consume, and administer education. Today, we are educating a new
generation of engineers and scientists raised on ”Sesame Street” like pro-
grams, where learning through dynamic visual imagery is emphasized.
This generation is immersed in an electronic media world surrounded
by television, MP3 music boxes, multimedia cellular phones and Blue-
tooth/WiFi communication devices, digital cameras, internet cafe, elec-
tronic games and toys. Against this background, interactive multimedia
based learning is becoming the norm. At the same time, mathematics is
increasingly used in almost all areas of human activity and recognized as
the basis of KE. It is the language in which knowledge is expressed for
solving problems with computers. However, mathematics as a discipline
affecting only a small minority of the so-called mathematically gifted
people. In this presentation, we will examine proposals to reconfigure
the way we educate in this discipline the next generation of engineers
& scientists in the context of KE and present some tools for modeling
”innovation” in the design of new ”products”.

The Reality of Mathematics

P. Ligomenides

Academy of Athens

Abstract. The unreasonable effectiveness of mathematics. Why are the
laws of nature mathematical?? Why is the physical world knowable??
Computability, Compressibility, and the Physical laws. Scientific mysti-
cism.
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Computational Science and Complex Systems Research

G. Nicolis

Academy of Athens and Université Libre de Bruxelles

Abstract. Complex systems are ubiquitous in nature, technology and
everyday life. They can give rise under certain conditions to a multitude
of states associated with such properties as the spontaneous emergence
of large scale self-organizing patterns, adaptation, evolution, or the gen-
eration and processing of information. These phenomena unfold on a
wide spectrum of space and time scales and need thus to be analyzed by
means of a bottom-up, multilevel approach integrating microscopic as
well as macroscopic formulations, deterministic as well as probabilistic
views, structural as well as dynamical aspects. In this presentation some
key problems of present day complex systems research are reviewed and
the challenges posed by them to computational science are brought out.
Examples of successful cross-fertilization between the two fields are given
and a number of significant problems that remain open are identified.

Entropy, nonextensive statistical mechanics, and numerical
applications

C. Tsallis

Brazilian Academy of Sciences and Santa Fe Institute, USA

Abstract. The usual Boltzmann-Gibbs-Shannon entropy SBGS and its
associated statistical mechanics are well known to be adequate for sys-
tems whose elements are not too strongly correlated. Whenever this sim-
plifying hypothesis is not satisfied, we can use instead the nonadditive
entropy Sq (with S1 = SBGS), and its associated nonextensive statisti-
cal mechanics. The whole theory generalizes that of Boltzmann-Gibbs.
Applications to areas such as global optimization techniques, signal and
image processing, will be presented as well.
Bibliography: http://tsallis.cat.cbpf.br/biblio.htm
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Optimal detection of redundant features via

artificial neural network pruning using genetic
algorithms

Adam Adamopoulos

Medical Physics Laboratory
Department of Medicine

Democritus University of Thrace
681 00, Alexandroupolis, Hellas

adam@med.duth.gr

Introduction

The method proposed in the present work is related to the problem of the opti-
mal detection of feature redundancy in artificial neural network (ANN) inputs.
The subsequent ANN pruning that the detection and elimination of the redun-
dant and / or overlapping imposes lead to ANN pruning and size minimization.
The method is based on Genetic Algorithm (GA) search [1] to detect the optimal
(minimal) subset of ANN input parameters that should be used for ANN train-
ing, in order the trained ANN to achieve the lowest error possible at the testing
phase. The part of the input parameters that is not included in the optimal
(minimal) subset of the essential input parameters, are considered as redundant
and therefore can be omitted and eliminated during ANN training and testing.
Obviously, the investigation for a minimal subset of ANN training parameters
is justified only in the case that these parameters that are not omitted and are
used for ANN training and testing manage to retain, if not to improve, ANN per-
formance in terms of the success on the task that the ANN was designed for. In
that case, the detection of redundancy and overlapping of the input parameters
may support the elimination of the redundant input parameters. This may lead
to the development of even simpler ANN architectures since fewer neural nodes
should be necessary to built-in the input and the hidden layers of the ANN.
Simpler ANN architecture with decreased number of neural nodes and synaptic
connections may result to less complicated and less time-consuming training and
testing procedures and at the same time to performance improvement. Nowadays
increased computer power and the contemporary development of ANN training
algorithms, provide the essential means for fast and accurate implementation of
ANN techniques to solve problems of various types, in different scientific fields,
(classification, prediction, system identification, to name a few). Despite the fact
that ANN training and testing even for complicated problems and large data sets
is accomplished with low computational cost, it is legitimate, if not desirable,
to investigate for even faster, more reliable and more accurate ANN training
and testing methods. The present work is focused on the detection of any kind
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of redundancy in the data sets that are used as inputs during ANN training
and testing. Redundancy and overlapping in data sets that are used for ANN
training, when exists, definitely increase computational cost for ANN training,
while at the same time, may mislead, or suppress the training procedure. This
could be generate problems in terms of ANN ability to accomplish successfully
and with the desired accuracy the task that it was designed for.

Methods

The problem described above is faced with the use of GA search. For any specific
problem, given the data set that is used for ANN, the detection of any redundant
and overlapping input parameters is attempted by performing the following two
steps: (1) full training and testing, and, (2) pruned training and testing.
As a first step, the ANN is fully trained, that means, all given input parameters
in the original data set are used to train the ANN, and all parameters are used
to test the performance of the previously trained ANN. The mean square error
(MSE) generated by the trained ANN is saved in order to be compared to the
corresponding results that would be generated by the ANN that will be trained
with a subset of the original data. Ten independent experiments are performed
and the mean MSE is recorded.
As a second step a GA is invoked selection of training parameters: In the second
step, pruned training and testing is performed. A GA is utilized to search for
the optimal subset of the input parameters that should be used for training and
testing of the pruned ANN. The individuals of the GA population are consisted
of binary strings of length equal to the number of parameters of the original
data set. Therefore, each gene of the individual corresponds to an input param-
eter. Since genes are binary digits, the allele 0 denotes that the corresponding
parameter is not included in the subset of the parameters that will be used for
ANN training and testing and therefore is omitted. On the opposite, the allele 1
denotes that the corresponding parameter will be considered for ANN training
and testing. Since binary representation is adopted for the individuals of the GA,
all the well known genetic operators for selection, crossover and binary mutation
can be applied on the GA population. Two are the fitness functions that were
used in order to evaluate the individuals

f1 = MSE (1)

and

f2 = MSE +
I

N
(2)

where, in Eq. (2), I is the number of input parameters used for ANN training
and testing, and N is the total number of input parameters in the original, full-
sized data set. Obviously, by using f2 as fitness function, the GA searches to
optimize two objectives: first to construct the minimum training data set, and
second to minimize the MSE generated at the test phase. For each individual
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of the GA, an ANN is constructed, with the number of input nodes that is
indicated by the individual. In all cases, the number of hidden neurons is equal
to the number of input nodes. Subsequently, the constructed ANN are trained
and tested and the generated MSE is recorded.

Results and Discussion

The proposed methodology was applied on two different kinds of data and on
ANN that are used for two different purposes: (1) breast cancer classification,
and, (2) Lorenz system timeseries prediction. In the first case the ANN is used
for classification, whereas in the second case the ANN is used for timeseries
prediction.

Breast cancer classification

Breast cancer classification data were provided by the UCI Machine Learning
Repository [2]. This data set is consisted of 683 cases of breast cancer, classified
by medical experts to 239 (37.46%) malignant and to 444 (62.54%) benign cases.

Nine cell features (input parameters) were considered during the clinical eval-
uation of these cases. All these 9 features were evaluated by medical experts in
the range from 1 to 10. Namely, the 9 cell features considered in the study, are
the following:

(1) Clump Thickness
(2) Uniformity of Cell Size
(3) Uniformity of Cell Shape
(4) Marginal Adhesion
(5) Single Epithelial Cell Size
(6) Bare Nuclei
(7) Bland Chromatin
(8) Normal Nucleoli
(9) Mitoses

Results of the application of the first step of the proposed methodology, that
is, full-sized ANN training and testing with all the 9 features as input, for 10
independent experiments, generated mean MSE = 0.0215 and standard deviation
0.0086. On the other hand, results of the GA search for the optimal subset of
input parameters indicated that that data subsets consisted of features (1, 2, 6)
generated MSE = 0.0032, the subset of features (1, 2, 6, 9) generated MSE =
0.0029, and the subset of features (1, 3, 6, 7) generated MSE = 0.0037.

In all cases, the subsets of input features obtained by the application of the
GA resulted to pruned ANN with MSE on the test set ranging from 13.49% up
to 17.21% of the MSE of the full-trained ANN. So, ANN using only 3 or 4 of the
9 in total input features, that is, pruned down to the 1/3 of the original full-size,
exhibited remarkable improvement in breast cancer classification.
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The Lorenz system

The Lorenz system [3] is described by the following triplet of coupled differential
equations:

dx/dt = −ax+ ay (3)

dy/dt = −xz + rx− y (4)

dz/dt = xy − bz (5)

where, by setting a = 10, r = 28, and b = 8/3 the well-known non-linear
dynamics and a strange attractor are observed. The z-component of the de-
rived triple timeseries was considered for prediction. Ten consecutive samples
constructed the input patterns to train an ANN to predict the value of the fol-
lowing sample. When trained and tested with the full-sized input data for 10
independent experiments, the mean MSE derived was 5.8598 · 10−7. The appli-
cation of the GA search for the optimal subset of inputs indicated that samples
2, 4, 5, 7, and 8 resulted to MSE = 2.5482 · 10−7 on the test set. That is, by
using only 5 over 10 (50%) of the input parameters, the predicting ability of the
ANN is even improved, since the generated MSE on the test set is reduced down
to 43.48% of the corresponding MSE of the full-trained ANN.

The results presented above clearly indicate that the proposed method man-
aged to unveil redundancy and overlapping in data set of both cases. Elimination
of the redundant input parameters led to simpler ANN architecture and at the
same time to performance improvement in both pattern classification and time-
series prediction tasks.
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Abstract. H−matrices appear in many areas of science and engineer-
ing, e.g., in the solution of the Linear Complementarity Problem (LPC)
in Optimization Theory, in the solution of Free Boundary Value Prob-
lems of Fluid Mechanics, etc. Several authors have proposed direct and
iterative criteria to identify whether a certain n × n complex matrix is
an H−matrix. Based on previous and new ideas we propose a new it-
erative algorithm (Algorithm AH) for irreducible matrices that decides
about the H− or non H−matrix character of a certain matrix in a finite
number of steps. As an extension of it, Algorithm AH2 is also proposed
to cover the reducible case as well.

Introduction

The theory of H−matrices is very important for the numerical solution of linear
systems of algebraic equations arising in various applications. E.g.: a) In the
Linear Complementarity Problem (LPC) in Optimization Theory [1] (see also
Section 10.1 of [3]), in the Free Boundary Value Problems in Fluid Analysis [3],
etc. An H−matrix A ∈ Cn,n can be defined in several ways the most common
of which is by means of a strictly diagonally dominant matrix. Specifically:

Definition 1. A ∈ Cn,n is an H−matrix if and only if there exists a positive
diagonal matrix D ∈ IRn,n so that AD is (row-wise) strictly diagonally
dominant, that is |aii|di >

∑n
j=1, j 6=i |aij |dj , i = 1(1)n.

The reader is also reminded that: i) An H−matrix is also called general-
ized (row) strictly diagonally dominant (GSDD) matrix. ii) Definition 1
implies the nonsingularity of A which is consistent with the original definition
by Ostrowski [18] (see also [21]).

For the identification of an H−matrix A many criteria have been proposed
the majority of which are iterative ones (see, e.g., [11], [15], [14], [16], [17], [10]
and [2]). This is because direct criteria (see, e.g., [8], [12], [9], [7] and [5]) have
high computational complexities. It is noted that the only iterative criterion that
takes into account the sparsity of A is the one in [10], where an extension of the
compact profile technique of [13] was developed.
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Having as starting points the Algorithms in [15], [16] and [17] a new Algo-
rithm is proposed (analytically given in [2]), Algorithm AH, to deal with irre-
ducible matrices only. Together with it an extension of Algorithm AH which
covers the reducible case as well, is Algorithm AH2.

Algorithm AH

For both Algorithms the following matrices are needed and are defined. A
sequence of positive diagonal matrices that will be defined in the Algorithm

D(k), k = 0, 1, 2, . . . , D(0) = I, and the matricesA(k) =
(
D(k−1)

)−1
A(k−1)D(k−1),

k = 1, 2, 3, . . . , A(0) = (diag(A))−1A, assuming that aii 6= 0, i = 1(1)n. From

them, it is readily seen that a
(k)
ii = 1, i = 1(1)n, k = 0, 1, 2, . . . . Algorithm AH

is presented below.

Algorithm AH.

INPUT: An irreducible matrix A := [aij ] ∈ Cn,n.
OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DD−1A ≡ DA or /∈ DA if A is or is not an
H−matrix, respectively
1. If aii = 0 for some i ∈ IN, “A is not an H−matrix”, STOP; Otherwise
2. Set D = I , A(0) = (diag(A))

−1
A, D(0) = I, k = 1

3. Compute D = DD(k−1), A(k) =
(
D(k−1)

)−1
A(k−1)D(k−1) = [a

(k)
ij ]

4. Compute s
(k)
i =

∑n
j=1, j 6=i |a

(k)
ij |, i = 1(1)n, s(k) = mini=1(1)n s

(k)
i , S(k) =

maxi=1(1)n s
(k)
i

5. If s(k) > 1, “A is not an H−matrix”, STOP; Otherwise
6. If S(k) < 1, “A is an H−matrix”, STOP; Otherwise
7. If S(k) = s(k), “M(A) is singular”, STOP; Otherwise

8. Set d = [di], where di =
1+s

(k)
i

1+S(k) , i = 1(1)n

9. Set D(k) = diag(d), k = k + 1; Go to Step 3. END

For Algorithm AH the following two statements were proved in [2]:

Theorem 1. Let A ∈ Cn,n be an irreducible matrix. Then, Algorithm AH al-
ways converges (except, maybe, when det(M(A)) = 0).

Theorem 2. Let A ∈ Cn,n be any irreducible matrix. If Algorithm AH con-
verges, then its output is correct.

If for the irreducible matrix A ∈ Cn,n, with aii 6= 0, i = 1(1)n, we set as in

Algorithm AH A(k) =
“

diag(d
(k−1)
1 , d

(k−1)
2 , . . . , d

(k−1)
n )

”−1

A(k−1)diag(d
(k−1)
1 , d

(k−1)
2 ,

. . . , d
(k−1)
n ), with d(0) = e, where e ∈ IRn is the vector of ones, and |A(k)| =

I + B(k), k = 0, 1, 2, . . . , and where |X | denotes the matrix whose elements are
the moduli of the corresponding elements of X , we note that B(0) is the Jacobi
matrix associated with the comparison matrix of A, JM(A). If in the Algorithm
we allow k → ∞ then in the proofs of Theorems 1 and 2 it was also proved in
[2], among others, that:
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Corollary 1. Under the assumptions and notations so far the Perron vector d of

|A(0)| (and B(0)) is given by d =
(
limk→∞

(∏k
i=1 D

(i)
))

e. Also limk→∞ |A(k)| e
= ρ(|A(0)|) e. Moreover, limk→∞ a

(k)
ij =

dj

di
a
(0)
ij .

Even though Algorithm AH was designed to work for irreducible matrices, we had
observed that it worked perfectly well for certain classes of reducible matrices.
This motivated the investigation of the effect of the application of Algorithm
AH to reducible matrices a little further. So, we were led to an extension of it
and created Algorithm AH2 which is shown to converge in all possible cases of
irreducible and reducible matrices.

Algorithm AH2

Using material from combinatorial matrix theory and results from [19], [20] we
manage to tackle the problem of the general p×p block reducible case in connec-
tion with Algorithm AH. For the new algorithm we need the definitions below.

Let N := {1, 2, . . . , n} and N
(k)
0 ≡ N0(A

(k)) :=
{
i ∈ N : |a(k)

ii | ≤ s
(k)
i

}
, where

s
(k)
i is defined in Step 4 of Algorithm AH, and let n

(k)
0 := n0(A

(k)) be the

cardinality of N
(k)
0 .

Algorithm AH2.

INPUT: A matrix A := [aij ] ∈ Cn,n and a maximum number of iterations
allowed (“maxit”)
OUTPUT: D = D(0)D(1) · · ·D(k) ∈ DD−1A ≡ DA or /∈ DA if A is or is not an
H−matrix, respectively
1. If aii = 0 for some i ∈ N, “A is not an H−matrix”, STOP; Otherwise
2. Set D = I , A(0) = (diag(A))

−1
A, D(0) = I, k = 1

3. Compute D = DD(k−1), A(k) =
(
D(k−1)

)−1
A(k−1)D(k−1) = [a

(k)
ij ]

4. Compute s
(k)
i , i = 1(1)n, s(k) = mini=1(1)n s

(k)
i , S(k) = maxi=1(1)n s

(k)
i

5. If s(k) > 1, “A is not an H−matrix”, STOP; Otherwise
6. If S(k) < 1, “A is an H−matrix”, STOP; Otherwise
7. If S(k) = s(k), “M(A) is singular”, STOP; Otherwise

8. Set d = [di], where di =
1+s

(k)
i

1+S(k) , i = 1(1)n

9. Set D(k) = diag(d), If k < maxit, k = k + 1, Go to Step 3; Otherwise

10. Determine N
(iter)
0 and n

(iter)
0

11. If n
(iter)
0 = 1, “Inconclusive, increase maxit”, STOP; Otherwise

12. Compute s
(iter)
ij

=
∑n

(iter)
0

l=1, l6=j |a
(iter)
ij ,il

|, j = 1(1)n
(iter)
0 , ij , il ∈ N

(iter)
0

13. If s
(iter)
ij

≥ 1, j = 1(1)n
(iter)
0 , ij ∈ N

(iter)
0 , “A is not an H−matrix”,

STOP; Otherwise

14. Update N
(iter)
0 (by discarding ij ∈ N

(iter)
0 : sij < 1) and n

(iter)
0 ; Go to Step

11. END
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For Algorithm AH2 we may prove analogous theorems to Theorems 1 and 2 of
the previous section.
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Abstract. A class of adaptive particle swarm optimization (PSO) meth-
ods is presented that combines the traditional position update rule with
annealing schedules based on the nonextensive entropy. Preliminary re-
sults show that the tested algorithms are very promising, outperforming
in most cases the global version of PSO.
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Introduction

The Particle Swarm Optimization (PSO) algorithm is an evolutionary compu-
tation technique for global optimization [4]. Many variants of the PSO method
have been proposed so far following Eberhart and Kennedy’s work in this area [4,
5]. A Fuzzy PSO algorithm, proposed by Eberhart [7], demonstrated reliable per-
formance in many cases. Another modification of the PSO, the Hybrid Particle
Swarm Optimizer (HPSO) produced even better results on unimodal and mul-
timodal functions [9] using mass extinction. In other PSO methods, velocities
were updated using gaussian distributions [6]. In this work, new variants of the
PSO algorithm, which are based on nonextensive statistical mechanics [2], are in-
vestigated. The next sections present the basic theory underlying our approach,
preliminary results and some plans for future work.

Nonextensive Particle Swarm Optimization Methods

PSO is part of the swarm intelligence paradigm and it is based on updating a
population of potential solutions. In mathematical notation this is expressed by
the following set of equations:

vi(t+ 1) = φ(t)vi(t) + η1r[pi − xi(t)] + η2r[pg(t) − xi(t)], (1)

xi(t+ 1) = xi(t) + vi(t), (2)
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where i is the particle’s index, vi(t) is the current velocity of the i–th particle,
φ(t) is an inertia function (usually a linearly decreasing one), xi(t) is the current
position of the i–th particle, pi is the position with the best fitness value visited
by the i–th particle, g(t) is the particle with the best fitness among all the
particles (best position found so far – global version of the PSO), r is a positive
constant called acceleration constant and η1, η2 are random vectors uniformly
distributed in [0, 1].

In our proposed approach, the PSO based methods are characterized by the
nonextensive entropic index q. In particular, Tsallis has defined the nonextensive
entropy [2]:

Sq ≡ K
1 − ∑W

i=1 p
q
i

q − 1
(q ∈ R), (3)

where W is the total number of microscopic configurations, whose probabilities
are {pi}, and K is a conventional positive constant. When the entropic index
q = 1, Equation (3) recovers to Boltzmann–Gibbs entropy. The entropic index
works like a biasing parameter: q < 1 privileges rare events (values of p close
to 0 are benefited), while q > 1 privileges common events (values of p close to
1). The optimization of the entropic form (3) under appropriate constraints, [2],
yields for the canonical ensemble:

pi ∝ [1 − (1 − q)βEi]
1

(1−q) ≡ e−βEi
q , (4)

where β is a Lagrange parameter, {Ei} is the energy spectrum, and the q-
exponential function is defined as:

exq ≡ [1 + (1 − q)x]
1

(1−q) =
1

[1 − (q − 1)x]
1

(q−1)

(5)

The first PSO variant, called Nonextensive Hybrid PSO– NHPSO, incorpo-
rates stochasticity in search by adopting the following model:

Q(T,k) = e−T (ln 2)·k
q = [1 − (1 − q)T (ln 2) · k] 1

1−q , (6)

where T is the temperature and k indicates iterations. In this approach particles
have no neighborhood restrictions, the velocity equation uses an inertia weight as
in the classical PSO method and the location of a particle is updated as follows:

xk+1
id = xkid +Qi(T,k) · vkid, (7)

where Qi(T,k) is defined by Eq. (6). By tuning the entropic index q and the tem-
perature T , the term Qi(T,k) provides an alternative to using a fixed constriction
coefficient [3] to control the velocity term without compromising the diversity
of the search. In this way, we can have better control and constriction of the
velocity.

The second PSO variant described here is inspired by [1, 8] and uses a cooling
procedure. This defines the relationship between the Temperature T and the
entropic index q values. The application of cooling helps to regulate better the
PSO algorithm. This new Nonextensive Evolving Particle Swarm Optimization–
NEPSO behaves in a more stochastic way during the initial stages, compared
to the PSO and NHPSO, and then becomes more deterministic as the number
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of iterations increases. Thus, as we are getting close to the neighborhood of a
minimizer, the algorithm hopefully will avoid oscillations and converge faster.
In this approach the velocity equation as well as the location of a particle are
updated as in NHPSO but the termQ(T,k) is changing dynamically by the cooling
procedure that is described by the next equation:

T = T0 · [
2q−1 − 1

(1 + k)q−1 − 1
], q > 1, (8)

where T0 is the initial temperature, T is the current temperature, k is the number
of iterations, and q is the Tsallis entropic index. The cooling procedure makes
the temperature to decrease as a power–law of time, in contrast to the much
slower decrease (logarithmic in time) of the q = 1 case.

Simulation Study

In this section, we evaluate the performance of the Nonextensive Particle Swarm
Optimization (NPSOs) algorithms and compare them with with the standard
PSO (SPSO). Figure 1 shows the average fitness performance calculated over
20 runs for the new class of the tested algorithms compared with the standard
PSO. The population size is 20 and the dimension is also 20 for all graphs. The
new class of the PSO methods converges faster than the Standard PSO.
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Fig. 1. The average fitness performance for Standard PSO (SPSO) and the new mod-
ifications in the Rastrigrin and Rosenbrock functions.

Discussion and Concluding Remarks

In this paper, we proposed a new class of Particle Swarm Optimization algo-
rithms, which constitute efficient modifications of the standard PSO method.
The approach builds on principles from nonextensive statistics and the two al-
gorithms, called NHPSO and NEPSO, are characterized by the nonextensive
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entropic index q. A formula that adaptively controls the relationship between
the T and q parameters was also proposed.

Further experiments, which are not reported here due to lack of space, show
that there is a range of q values (1.1 < q < 4.0) that allows the new PSO methods
to achieve reliable and improved performance when compared with other PSO
variants, such as the fuzzy PSO and the hybrid PSO.

Further testing is of course necessary to fully explore the advantages and
identify possible limitations of this class of PSO methods. Moreover, exhaustive
testing of the new methods in other classes of problems is under way.
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Abstract. In this paper is attempted to propose a backtrack technique
that can approximate a time series’ future optima. The estimation of
the future optimum is based on sequenced points produced from the
repetitive process of the continuous optima finding. Additionally, it is
proved that the use of a proper optimization technique finally results to
local optimum point.

Introduction

Times series is considered as a sequence of data points arranged according to
time. In finance the daily stock prices may comprise a time series, and in mete-
orology, daily maximum or minimum temperatures may report one, too. Agri-
culture, physics, ecology and demography, as most scientific fields interested in
reporting data based on time observations tend to produce time series reports.

Apart from the data history itself, time series has promoted into a major
forecasting tool, based on statistical methodologies that use historical data to
predict not future points, but the future prices, of any time series regardless
their data content.

In this paper we propose a backtrack technique that allows any optimization
algorithm that obtains ”memory” being applied in finding future local optima.
Section 4 includes a brief literature review of most methodologies based on which
time series prediction is made. The methodology proposed in 4 shows how the
proposed backtrack technique is generated, while section 4 promotes further
research interests and applications.

Time Series prediction techniques

The most applicable form of a time series assumes that if Y1, Y2, . . . , Yn forms
the time series, at time n for n ≥ 1, interest is focused in predicting the next
point’s value Yn+1 based on the observed realizations of Y1, Y2, . . . , Yn, [1].
It was not until H. Markowitz [2] proposed the use of the mean-variance model
that would finally predict future prices quite accurate in respect to the real ones.
Based on his pioneer contribution that future points may be detected through



20 G.S. Androulakis and E.G. Lisgara

the historical information provided by past data, and statistical assumption in-
cluding means, variances and covariances, many applications in several subject
areas introduced. Several bibliography on time series forecasting for finance in-
corporated with the probability theory [3–9].

Furthermore, the distinctive introduction of the exponential smoothing model
provided by Brown [10] and Box and Jenkins [11] arose new evidence towards
predicting time series prediction most efficiently. Such methodologies applied
the so called auto-regressive integrated moving average (ARIMA) models to
find the best fit of a time series on its own past values; the effectiveness of both
methodologies though is a rather controversial issue [12].

Most methodologies put aside the issue of the next point on which a research
may focus and be interested in, and they highlight forecasting the next value.
It was the financial research the first to focus on the next point’s prediction
instead of the next value’s prediction, since portfolio optimization itself craves
for the best time-to-market regardless prices. Therefore, [13] and [14] included
the concept of the stock market timing in theoretical means, involving financial
trends and macroeconomic policies. Applications appeared at the late 90’s, when
[15] and [16] incorporated with the best time-to-market issue in terms of Artificial
Intelligence to predict future stock price movements including weighted factors
such as past data and market volatility.

Additionally, [17, 18] incorporated the time series modeling and prediction
through the spectrum of feed-forward neural networks as one-step local pre-
dictors applied on exchange rates. [19, 20] incorporated results from genetic al-
gorithms and neural network applications together, in a single multiobjective
algorithm to conclude that the obtained results appear more accurate than the
single use of one technique.

The Backtrack Procedure

Lots of the unconstrained minimization methods are iterative in nature and
hence they start from an initial random solution, X0 ∈ IRn, and proceed towards
the minimum point in a sequential manner. The general iterative scheme of an
optimization algorithm is shown in Figure 1.

Recall that a time series Y as a sequence of data points t produces the
Y = Yt : t ∈ T function, where t data points only refer to time. Let Yt be a
time series and Yn be the time series’ value. The f(t) function interprets the
continuity that any time series is characterized from, and its value at the last
known data point is equal to the Yt.

In many applications, predictions are made regardless the next point’s value
but concentrate when the maximum or minimum would appear i.e. in weather
forecasting, knowing the most highest temperatures during summer is rather
useful that just know the next day’s -probably ordinary- temperature. In math-
ematical means this could be translated as the local minimum and maximum of
the function f(t), respectively.
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Fig. 1. General iterative scheme for optimization

When applying the optimization techniques, it is concluded that most of
them in order to generate the new point tn+k, use prior knowledge collected
from the process data including points, function values, gradient values, matrix
approximations etc. Thus, the next estimate of local optimum is calculated as
follows

tn+k = tn − Φ(t0, t1, . . . , tn), (1)

where Φ(·) corresponds to the to process of the repetitive algorithm described
in Fig.1.

Practically, we seek for future optima Ytmax, where max > n, which is possi-
ble to obtain only by possessing information about future values. Based on the
past data, a past local minimum, denoted by tmin may approximated, using a
“sequence” of m past points that starts at the last known data point. This se-
quence can be shown as [tn, tk1 , tk2 , . . . , tkm−2 , tmin], where n > k1 > k2 > · · · >
km−2 > min.

When this “sequence” of points is viewed as a forward process, appears as
a “sequence” that starts from the minimum past point tmin, crisscrosses the
last known point tn and it probably leads to a maximum future one tmax. When
applying this backtrack technique, the constructed “sequence” of points provides
us with all the information needed to proceed in estimating a future maximum.
Thus, by applying a maximization technique

tn+k = tn + Ψ
(
tkm−2 , . . . , tk1 , tn

)
(2)

that uses prior information about points and since the “sequence” of points
is known, may lead to the most appropriate Ψ(·) that finally converges to a
future local maximum. Thus, the previously described process gives the following
backtrack algorithm for the estimation of future local maximum:

1. Start with last known value tn.
2. Use Algorithm described in Fig.1 to compute a sequence of points tn, tk1 ,
tk2 , . . . , tkm−2 , tmin leads to “past” local minimum.
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3. Calculate “future” point tn+k by applying optimization algorithm described
in Fig.1 using points tmin, tkm−2 , . . . , tk2 , tk1 , tn.

The proposed application is tested on the daily closing prices of the Athens’
Stock Market. The data consists of the daily closing prices of 18 years - from 1985
until 2002. In Figure 2 is presented an application of the backtrack algorithm
towards predicting Athens’ Stock Market general index for the randomly chosen
date of April 14, 1999. The last 50 known values of general index are used; i.e. in
the case of April 14, 1999, the 50 last known indexes are from January 29, 1999
until April 14, 1999. These points are represented on Figure 2 with the square
symbol. In Figure 2, again, the gray circles stand for the index’s actual values
index for the exchanging period from April 15, 1999 till July 14, 1999. Future
values are connected together with the discontinuous line. The points depicted
from the backtrack algorithm are symbolized with the rhomb symbol.

Fig. 2. An application of the backtrack algorithm on Athens Stock Market general
index on April 14, 1999

Further research interests and Applications

In this paper we proposed a backtrack technique which enables us to forecast
the future optima of a time series.

As mentioned before such application allows forecasts in a depth of time
instead of the ”next day’s value”. This appear to be a useful tool in research areas
that focus on predicting future optima. These may include not only meteorology,
but geology and finance in terms of portfolio optimization.
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Further research may be on applying the proposed backtrack technique in
the forementioned subject areas and compare the obtained results with other
methodologies in order to show its efficiency.
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Abstract. The Discontinuous Galerkin (DG) methods (Reed and Hill
1973 [8]) are finite element methods highly parallelizable, and they han-
dle complicated geometries and adaptivity strategies since refinement can
be applied without continuity restrictions. The degree of the polynomial
approximation may be changed from one element to the other ([3], [5],
[6], [1]). We use Space-Time (S-T) methods which are discontinuous in
time (special case of DG) for the linear Schrödinger evolution equation in
non-cylindrical domains of Rm with Dirichlet boundary conditions, and
prove stability and error estimates in finite element spaces of general
type. When m = 1 the resulting problem is the standard ‘parabolic’ ap-
proximation of Helmholtz equation as it appears in underwater acoustics,
[9], [7].

Introduction

Space-Time methods has been applied by Jamet [5], in evolutionary problems
with Dirichlet boundary conditions. Karakashian and Makridakis in [6] used (S-
T), discontinuous in time methods, to the non-linear Schrödinger equation with
Dirichlet boundary conditions in cylindrical domains in R2 × [0, T ], and proved
error estimations of optimal order in L2. Akrivis and Makridakis in ([1]), applied
these methods in general non-linear parabolic equations and proved existence,
uniqueness and optimal a priori error estimates. In the present work, we apply
(S-T) methods in the linear Schrödinger equation with Dirichlet boundary con-
ditions in non-cylindrical domains in m dimensions, using finite element spaces
of general type. We prove uniqueness of the discrete solution, L2 stability for the
discrete schemes, and L2 general error estimates. In the case of non-cylindrical
domain in two dimensions we transform the domain into a horizontal one and
specify the choice of finite element spaces. We discretize in space and time and
prove uniqueness of discrete solution, and L2 stability for the scheme. In the case
of non-uniform adaptive mesh we present L2 error estimates. Karakashian and
Makridakis in [6], by use of Lagrange polynomials at Radau points in subinter-
vals of time discretization, under some assumptions for the mesh, proved optimal
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error estimates in L2 for the non-linear Schrödinger equation with constant coef-
ficients. In our case - the case of linear Schrödinger equation in non - cylindrical
domains - after the horizontal bottom change of variables, the coefficients be-
come dependent by t, here we present suboptimal L2 estimates, in t, and optimal
L2 estimates, in space variables.

The problem

Let 0 ≤ t ≤ T , and Ω(t) bounded domain in Rm, continuously depended from
t ∈ [0, T ]. We consider the boundary Γ (t) of Ω(t) and define

ST = {(x, t) : x ∈ Ω(t), 0 ≤ t ≤ T}, ΣT = {(x, t) : x ∈ Γ (t), 0 ≤ t ≤ T}.
(1)

ΣT is piecewise smooth. Let a ∈ R∗, f , b and u0 are functions of t and the space
variables, f, b ∈ L2(ST ), u0 ∈ L2(Ω(0)), where 4 is the Laplacian in space
variables. We consider the Dirichlet initial and boundary value problem for the
linear p.d.e. of Schrödinger type

ut = ia4u+ ibu+ f in ST , u = 0 in ΣT , u = u0 in Ω(0). (2)

This problem admits a unique solution if f , b, u0 are smooth enough. We define:
(·, ·)Ω(t) =inner product in L2(Ω(t)), | · |Ω(t) =norm in L2(Ω(t)), ((·, ·))G =inner
product in L2(G), with G subdomain of ST , ||.‖G=norm in L2(G). Let G =
{(x, t) : x ∈ Ω(t), τ0 ≤ t ≤ τ1}, (·, ·)Ω(t) = (·, ·)L2(Ω(t)), and H̃1(G) = {f ∈
H1(G) : f(x, t) = 0 if (x, t) ∈ ΣT ∩ G} is the space of all functions of H1(G)
that equal zero on ΣT ∩ G - the lateral boundary of G. If ψ and φ are smooth,
we define the sesquilinear form

BG(ψ, φ) = −((ψ, θφθt ))G + ia((∇ψ,∇φ))G − i((bψ, φ))G + (ψ, φ)Ω(τ1)−
−(ψ, φ)Ω(τ0).

(3)

Discontinuous approximations

Let 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1 ≤ · · · ≤ tN = T , Ωn = Ω(tn), Gn =

G(tn, tn+1), G̃n = G
n −Ω

n
= {(x, t) : x ∈ Ω(t), tn < t ≤ tn+1}. We consider a

subspace V nh of H̃1(Gn) of finite dimension, for 0 ≤ n ≤ N − 1, and Vh = {vh
defined in ST : for any n exists φh ∈ V nh : vh|G̃n ≡ φh|G̃n}. The functions of Vh
are in general discontinuous in t at the points tn. We define: vh(·, tn) := vnh ,
for 0 ≤ n ≤ N (vh(·, tn) = lim

ε→0+
vh(·, tn − ε) for 0 ≤ n ≤ N − 1) and vn+0

h :=

lim
ε→0+

vh(·, tn + ε) for 0 ≤ n ≤ N − 1. We will approximate the problem (2) by

the discrete analogue of relation (3).
The discrete problem. We seek uh ∈ Vh such that u0

h = u0 and

BGn(uh, φh) = ((f, φh))Gn , for any φh ∈ V nh and for any n, 0 ≤ n ≤ N − 1.
(4)

We define in Vh × Vh the sesquilinear form Bn(uh, vh) := BGn(uh, vh).
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Theorem 01 The discrete problem (4) has a unique solution uh, which satisfies
the estimate

(min
x,t

bI −
1

2
)‖uh‖2

G(0,tn) ≤
1

2
|u0|2Ω0 +

1

2
‖f‖2

G(0,tn). (5)

Change of variables for the problem (2)

We consider a bounded domain of R, (m = 1), continuously dependent by
t ∈ [0, T ] with Γ (t) = {x = 0, x = s(t), t ∈ [0, T ]}. In problem (2) if ṡ, s̈ exist

in ST we apply the transformation z(y, t) = ect−iy2ω(t)u(x, t) with y = x
s(t) and

ω(t) = ṡ(t)s(t)
4a with c a complex constant such that the coefficient of z in equation

is bounded, [2]. We define for ψ and φ smooth, for s := s(t)

BGz(ψ, φ) = −((s2(t)ψ, θφθt ))Gz + ia((∇ψ,∇φ))Gz − i(((s2bz − 2iṡs)ψ, φ))Gz +
+(s2ψ, φ)Ωz(τ1) − (s2ψ, φ)Ωz(τ0).

(6)
There exists a unique solution of the transformed problem and satisfies: if φ ∈
H̃1(Gz) and if Gz = Gz(τ0, τ1) then BGz(z, φ) = ((s2fz, φ))Gz , with 0 ≤ τ0 ≤
τ1 ≤ T . We will define the discrete analogue of previous equation:
Discrete problem. We seek zh ∈ Vh such that z0

h = z0 and

BGn
z
(zh, φh) = ((s2fz, φh))Gn

z
, for any φh ∈ V nzh

and any n, 0 ≤ n ≤ N − 1.
(7)

Theorem 02 The discrete problem (7) admits a unique solution zh, which sa-
tisfies the estimate

(min
x,t

(s2bzI − ṡs) − 1

2
)‖zh‖2

Gz(0,tn) ≤
1

2
|s0z0|2Ω0

z
+

1

2
‖s2fz‖2

Gz(0,tn). (8)

Discontinuous in time (Space-Time) finite elements for the
transformed problem

Let 0 = t0 < t1 · · · < tN = T a discretization of [0, T ], kn := tn+1 − tn,
In = (tn, tn+1]. For simplicity we define Ωz =: Ω (Ω is the domain after the

change of variables) then G̃nz = Ω × In, Ω
n
z = Ω, with Ω independent of t.

We consider a triangulation Thn of Ω that satisfies [4]: (H1) Thn is regular:
(i) There is a constant σ such that ∀k ∈ ∪hnThn,

hk

%k
≤ σ, with %k the largest

diameter of spheres in k. (ii) The quantity hn = max
k∈Thn

hk, with hk = D(k) =

diameter of k, is near zero. (H2) The finite element family (k,Pk, Σk), with
k ∈ Thn, is affine for any h. (H3) All finite elements (k,Pk, Σk), k ∈ ∪hnThn
are of class C0 [4]. We also assume [4] that: (H4) There exist integers r − 1 ≥
0, l ≥ 0, l ≤ r − 1 such that Pr−1(k̂) ⊂ P̂ ⊂ H i(k̂), and, Hr(k̂) ↪→ Cs(k̂),
where s is the largest order of derivatives that appears as degree of freedom
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(in set Σ̂), where Pr−1(k̂) are the polynomials defined in k̂, of order at most

r − 1. Let Snh := {x ∈ H1
0 (Ω) : x| ∈ Pr−1(K),K ∈ Thn} (of class C0(k̂)) with

s = 0, l = 1, 0 ≤ m ≤ 1 where Pr−1 is the space of polynomials of order at most
r − 1. The space Snh has finite dimension in every In and satisfies (H1) − (H4).
We define for q positive integer, the space Vhk = Vhk(q) of piecewise polynomial

functions φ : Ω × (0, T ] → C : φ|Ω × In =
∑q−1

j=0 t
j x̃j(y), x̃j ∈ Snh . For any n, let

V nhk := {φ|Ω × In : φ ∈ Vhk}. The functions of Vhk are elements of Snh for any
t ∈ In, and for any x ∈ Ω piecewise polynomial functions of order at most q− 1
possibly discontinuous at points tn for n = 0, . . . , N −1, [6]. We assume that the
solution z of the problem is q times continuously differentiable in t in any Ii. If
Si−1
h 6= Sih for finite number of times cd, independent of N , then we can prove

the next Theorem:

Theorem 03 If z is the solution of the transformed problem, zh the solution of
discrete problem (7) and vh ∈ Vzh

then for h := max
i≤n−1

hi, k := max
i≤n−1

ki holds

that

c‖z − zh‖Gz(0,tn) + 1
2

∑n−1
i=0 |si(zi+0

h − zih)|Ωi
z

+ 1
8 max
0≤j≤n

|sj(zj − zjh)|Ωj
z
≤

≤ c(1 + cd){hr + kq−1} + c(N − cd)(h
rk + kq) ≤ c{hr + kq−1}.

(9)

We notice that Theorem 03 can be applied when Snh := {x ∈ H1
0 (Ω) : x|K ∈

Prn−1(K),K ∈ Thn} where Prn−1 is the space of polynomials of order at most
rn − 1. Theorem 03, in the present case, can be extended using r = min

n
rn, q =

min
n
qn. Consequently, in every Ω×In, one can use different degree of polynomial

approximation in time and in space variables.
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Abstract. Solving the Vlasov-Maxwell problem can lead to very expen-
sive computations. To construct a simpler model, Laval et al. [5] proposed
to exploit the paraxial property of the charged particle beams, i.e the par-
ticles of the beam remain close to an optical axis. They so constructed
a paraxial approximation and performed its mathematical analysis. In
this contribution, we examine some recent developments: using a parax-
ial axisymmetric model, and coupling it with the Vlasov equation, one
contructs a Particle In Cell (PIC) code, in the case of highly relativistic
beams. We provide numerical results to illustrate the efficiency of this
approach.

Introduction

Charged particle beams simulations require to develop models appropriate for
numerical experiments, such as the Vlasov-Maxwell system of equations (cf. [4]).
This model, even if it is unavoidable in many situations [2], [1], leads to very
expensive computations. We consider here the transport of a bunch of highly
relativistic charged particles in the interior of a perfectly conducting tube. As
we are in the same physical assumptions as Laval et. al [5], we start from their
approach to investigate a paraxial axisymmetric situation. First, we recall the
Vlasov-Maxwell model. Then, by introducing an ad hoc scaling, we develop a
paraxial Vlasov-Maxwell model, based on asymptotic expansions. Finally, nu-
merical approximations are used to construct a PIC code, from which numerical
results illustrate the efficiency of the method.

From Vlasov-Maxwell to a paraxial axisymmetric model

Consider a beam of charged particles with a mass m and a charge q which moves
inside a perfectly conducting cylindrical tube, the z-axis being the axis of the
tube. Suppose that the beam is confined in a neighborhood of the z-axis, which is
chosen as the optical axis of the beam. Each particle can be characterized by its
position x = (x, y, z) and its velocity v = (vx, vy, vz) in the phase space (x,v).
Assuming that the beam is relativistic and noncollisional, the motion of these
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particles can be described in terms of particle distribution function f(x,p, t) by
the relativistic Vlasov equation

∂f

∂t
+ v · ∇xf + F · ∇pf = 0 , (1)

where the momentum p verifies p = γmv, γ = (1 − v2

c2 )−1/2 . In equation (1),
F denotes the electromagnetic Lorentz force given by

F = q(E + v ×B) , (2)

that describes how an electromagnetic field E(x, t) and B(x, t) acts on a particle
with a velocity v. This electromagnetic field satisfies the Maxwell equations in
the vacuum

1

c2
∂E

∂t
−∇×B = −µ0J, ∇ · E =

1

ε0
ρ, (3)

∂B

∂t
+ ∇×E = 0, ∇ ·B = 0 . (4)

The charge and the current densities ρ and J are obtained from the distribution
function f

ρ = q

∫
fdp, J = q

∫
vfdp. (5)

Following [5], we assume that the beam is highly relativistic i.e., satisfies γ >>
1. Since v ' c for any particle in the beam, we rewrite the Vlasov-Maxwell
equations (1-4) in the beam frame, which moves along the z-axis with the light
velocity c. Hence we set ζ = ct − vz , vζ = c − vz . Then, to derive a paraxial
model, we first introduce a scaling of the equations. As in [5], we assume that
the dimensions of the beam are small compared to the longitudinal length of
the device, the longitudinal particle velocities vz are close to the light velocity
c, whereas the transverse particle velocities are small compared to c. Hence we
can introduce the transverse characteristic velocity of the particles v, and define
a small parameter η, η = v

c � 1 . We thus obtain (cf [3]) a Vlasov-Maxwell
equations expressed in dimensionless variables, where appear powers of the small
parameter η. The next step consists in developing asymptotic expansions of all
these quantitites (f,E,B,F, etc.) in powers of the small parameter η. It is proved
in [5] that the resulting new model is an approximation exact up to the order
3 in η. In this paper, we focus on the axisymmetric case, which is well adapted
to our problem. Using the coordinates (r, θ, ζ) (with obvious notations), the
electric field is now denoted (Er, Eθ, Ez), the magnetic one (Br, Bθ, Bz). Hence,
the paraxial model of ultrarelativistic Maxwell equations is written

Er = cBθ =
1

ε0 r

∫ r

0

ρs ds and Eθ = Br = 0

for the zero-order fields. For the first-order ones, we have

∂Ez
∂r

=
∂Bθ
∂t

with Ez(r=R)
= 0 and

∂Bz
∂r

= µ0Jθ with

∫ R

0

Bzrdr = 0.
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Finally, the second-order pseudo-fields Er = Er − cBθ and Eθ = Eθ + cBr verify

Er =
1

r

∫ r

0

(µ0cJζ −
1

c

∂Ez
∂t

)s ds and Eθ = −1

r

∫ r

0

∂Bz
∂t

s ds.

We approximate these equations with specific numerical schemes based on a
finite-difference approach. The order of the computations is induced by the
asymptotic expansion. Hence, the zero order fields have to be first computed,
and are necessary to obtain the first order quantities etc. More details can be
found in [3].

Starting from the Vlasov equation (1), we now derive its axisymmetric coun-
terpart. Denoting by x = (r, z), p = (pr, pθ, pz), we assume that the particle
distribution function f(x,p, t) is independent of θ. According to the particle
method, rf(x,p, t) is approximated in the phase space (x,p) by (wk being the
weight of the particle k)

rf(x,p, t) =
∑

k

wkδ(x − xk(t))δ(p − pk(t)), (6)

This gives the following approximations for J and ρ

rρ(x, t) = q
∑

k

wkδ(x − xk(t)), rJ(x, t) = q
∑

k

wkvk(t)δ(x − xk(t)). (7)

Using (6), the solution to the Vlasov equation is equivalent to solve for each
particle k, the system for the positions and for the momentum respectively





∂r

∂t
=

1

γm
pr,

∂z

∂t
=

1

γm
pz,





∂pr
∂t

=
1

γmr
p2
θ + Fr,

∂pθ
∂t

= − 1

γmr
prpθ + Fθ,

∂pz
∂t

= Fz

where the paraxial electromagnetic force F satisfies

Fr = q(Esr + vnθB
s
z + vζB

s
θ),

Fθ = q(Esθ − vnrB
s
z − vζB

s
r),

Fz = q(Esz + vrB
s
θ − vθB

s
r).

Numerical results

As a numerical example, consider a bunch of particles emitted with velocities
such that the paraxial assumptions are verified. According to stability condition
[4], more than 10 particles are placed in each cell, with the same weight and a
charge following w = J∆t

Ne , (J the total current to be emitted, and N the particle
number). Figures 1 and 2 show respectively the self-consistent electric radial field
Er, and the charge density ρ obtained after 50 time steps of simulation with the
resulting PIC paraxial code.
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Fig. 1. Er component (50 ∆t). Fig. 2. charge density ρ (150 ∆t).

Conclusion

PIC code for highly relativistic beam has been developed. It has been constructed
from a paraxial approximation of the Vlasov-Maxwell equations in an axisym-
metric geometry. We construct numerical schemes based on finite differences
methods for the Maxwell equations, and we develop a well-adapted particle
method for the Vlasov equation. Numerical results were presented to illustrate
the feasibility and the accuracy of this approach.
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Abstract. The most expensive part of all electronic structure calcula-
tions based on Density Functional Theory, lies in the computation of an
invariant subspace associated with some of the smallest eigenvalues of
a discretized Hamiltonian operator. We show that polynomial filtered
Lanczos iterations combined with selective reorthogonalization schemes
can yield a powerful tool for this demanding problem.

Introduction

Ab initio electronic structure calculations, in the framework of Density Func-
tional Theory (DFT) [3, 4], have proven remarkably accurate in providing a
wealth of information concerning several important physical properties of com-
plex materials. However, DFT calculations are extremely demanding and have
stretched our computational capabilities to their very limits. Therefore, advances
in better computational techniques and algorithms receive much of attention in
this very active field of research.

The core problem in DFT calculations is the solution of the Kohn-Sham
equations

HρΨρ = EΨρ, (1)

where ρ is the charge density of the electrons distribution, Hρ is the Kohn-Sham
Hamiltonian operator, Ψρ are the wavefunctions and E is the energy of the
system. Observe that this is a nonlinear eigenvalue problem, since the Hamilto-
nian and the wavefunctions depend upon each other through the charge density
ρ. The last decades have seen many methods that attempt to efficiently solve
equation (1). Many of these methods utilize some sort of iteration which aims
at improving some initially selected wavefunctions so that at the end of the
iteration the approximate energy E is as small as possible, or in other words
the solution of equation (1) is self-consistent. The computational complexity of
practical algorithms for this problem stems mainly from two factors:
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Discretization The Hamiltonian operator and thus the wavefunctions have to
be discretized in some suitably selected basis. This typically results in a very
large discretized Hamiltonian (possibly in the order of millions of degrees of
freedom). Consequently, standard eigensolvers for dense matrices, such as the
ones in LAPACK3, are ruled out in this case. Thus, iterative techniques must be
utilized instead, which only require applications of the discretized Hamiltonian
operator on a likewise discretized function (i.e. vector).

Orthogonality The wavefunctions Ψρ are orthogonal among each other. Thus,
the approximate discretized wavefunctions must likewise form an orthogonal
basis. This has the consequence that all iterative methods that aim to solve the
nonlinear eigenproblem (1) must maintain orthogonality among the approximate
wavefunctions at each iteration. Maintaining orthogonality will of course come
at a heavy cost, as it scales as the cube of the total number of valence electrons
in the system.

Large scale eigenvalue calculations in DFT

Let us consider a molecular system with N valence electrons. Furthermore, let
ψi, i = 1, . . . , N be the eigenvectors associated with the N smallest eigenvalues
of the discretized Hamiltonian H . Then, the charge density ρ(j) at the j−th
point in the discretized domain space is given as:

ρ(j) =

N∑

i=1

|ψi(j)|2. (2)

The HamiltonianH is a symmetric (or Hermitian) very large matrix that is either
sparse if the wavefunctions are directly discretized in real space4 or it allows a
fast matrix-vector multiplication, by means of the FFT transform, should the
wavefunctions be discretized in Fourier space5.

Thus, it is natural to consider the Lanczos iteration in order to approximate
eigenvectors that correspond to the N algebraically smallest (leftmost) eigen-
values of H . There are two main problems in successfully deploying Lanczos for
this task.

Convergence The number of required eigenvectors is equal to the number of va-
lence electronsN , which grows very quickly especially for molecular systems with
many atoms. Thus, while very small simulations already involve roughly hun-
dreds of valence electrons, several thousands are typically involved for medium
to large scale simulations. However, it is well known that even though Lanczos
converges quickly for exterior eigenvalues it requires many more iterations to

3 http://www.netlib.org/lapack
4 see for example http://www.ices.utexas.edu/parsec/
5 See for example http://www.cpmd.org
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approximate eigenvalues that reach deep into the interior of the spectrum. In
particular, consider the Lanczos factorization

HVm = VmTm + βm+1vm+1e
>
m, (3)

where Vm is an orthonormal basis for the Krylov subspace

Km(H, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1},

and Tm is a symmetric tridiagonal matrix that is the restriction of the Hamilto-
nian H on this subspace. The basis Vm and matrix Tm are calculated by means of
the Lanczos algorithm that relies on a three term recurrence among the columns
of Vm starting from a unit norm vector v1. At each step k, the last vector vk is
multiplied by the matrix H and the result is orthogonalized against all previous
basis vectors. The special structure of the problem allows the Lanczos algorithm
to achieve this orthogonalization with a three term recurrence. The eigenvalues
of the Hamiltonian are approximated by those of the matrix Tm. It is easy to
see that if the starting vector v1 had no components towards the direction of
unwanted eigenvectors (these would be the ones that correspond to the largest
eigenvalues in our case), then the wanted eigenvalues would converge faster.
However, round-off will always put components of the largest eigenvectors into
the Lanczos basis. To see this consider the expansion of the Am−1v1 onto the
eigenvectors ui of matrix H :

Am−1v1 = Am−1
∑

i

ξiui = λm−1
i ξiui, (4)

where λi are the eigenvalues of the Hamiltonian H . Thus, even very small com-
ponents ξi towards the largest eigenvalues can be greatly amplified (by the factor
λm−1
i ).

In [1] we propose to work with a filtered Hamiltonian H = p(H), where p
is a carefully selected polynomial. Following the approach in [6] we can employ
a variant of the Conjugate Residual iteration (see [5]) that is selected to keep
the degree of the polynomial p as small as possible (i.e. smaller than 10). It is
key to observe that the eigenvectors of p(H) will be identical to the eigenvectors
of the Hamiltonian H . This also reflects the property that the charge density
ρ is invariant under orthogonal transformation of the wavefunctions. The poly-
nomial p(H) is applied in order to map the largest eigenvalues of H to 0 while
mapping the desired leftmost eigenvalues of H to 1. Thus, the effect of round-off
is minimized. Instead of multiplying the vector vk with the Hamiltonian at each
step of the Lanczos algorithm we perform the operation p(H)vk. This induces an
additional cost of d matrix-vector products, where d is the degree of the polyno-
mial p. However, we have shown that this additional cost is offset by the gains
obtained from requiring a much smaller Lanczos basis Vm (that is a smaller m)
in order for the eigenvalues deep into the spectrum converge.

Loss of orthogonality A second important advantage of a smaller Lanczos
basis Vm is the reduced computational cost for reorthogonalization of the Lanc-
zos vectors. Although in exact arithmetic the Lanczos algorithm is able to keep
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Table 1. Performance comparison of Filtered Lanczos, Lanczos with partial reorthog-
onalization and the popular ARPACK package for N = 248, 350, 496 eigenvalues of a
Ge99H100 cluster. MV is the total number of matvecs, RTH is the number of reorthogonal-
izations, RES is the number of restarts, MEM is the required memory (MBytes) and t is
time in seconds (on a single MIPS R10000 cpu).

F. Lanczos Partial Lanczos ARPACK

N MV RTH MEM t MV RTH MEM t MV RES MEM t

248 5194 (550) 102 396 2379 3150 109 2268 2746 3342 20 357 16454

350 8794 (950) 178 684 4648 4570 184 3289 5982 5283 24 504 37371

496 12934 (1410) 270 1015 8374 6550 302 4715 13714 6836 22 714 67020

the columns of Vm orthonormal by a simple three term recurrence, in practice
the basis vectors quickly loose orthogonality. This fact requires the Lanczos vec-
tors to be reorthogonalized by means of a Gram-Schmidt process. In the most
common practice, when the next vector vk+1 is calculated at step k, it is re-
orthogonalized against all previous vectors. This will induce a cubic cost m3

relative to the length m of the Lanczos basis, thus a shorter basis significantly
reduces the overall cost. An important improvement is selective (or partial) re-
orthogonalization [7], in which the current vector vk+1 is reorthogonalized only
when it is needed. It is possible to monitor the loss of orthogonality by means of
a simple three term recurrence. In [2] it was shown that such a technique can be
successfully adapted for the calculation of charge density with significant gains
over the standard approach.

Conclusions The filtered Lanczos iteration and the efficient selective reorthog-
onalization techniques have been the basic ingredients for creating a highly effi-
cient method (which we denote by F. Lanczos in Table 1) for calculating charge
densities in DFT calculations.
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Abstract. Semi-Lagrangian semi-implicit (SLSI) method is currently
one of the most popular approaches for numerical solution of the atmo-
sphere dynamics equations. In this research we apply splitting techniques
in the context of a two-time-level SLSI scheme in order to simplify the
treatment of the slow physical modes and optimize the solution of the
elliptic equations related to implicit part of the scheme. The performed
numerical experiments show the accuracy and computational efficiency
of the scheme.

Introduction

Semi-Lagrangian semi-implicit approach is currently one of the most efficient
methods for numerical solution of the hydrothermodynamic equations used in
weather prediction and atmospheric modeling . Since the proof of its extended
stability and accuracy in the 80’s, the SLSI method is being used in an increasing
range of atmospheric models aimed for atmospheric motions of different space
and time scales [2, 3, 7, 8]. In the last years, two-time-level versions of this
method are being used in different atmospheric centers, because they allows to
choose larger time steps than three-time-level ones and achieve the same accuracy
almost doubling the efficiency [1, 3, 5, 6].

Although SLSI schemes have been shown to be quite efficient, there are some
computationally expensive parts of calculations, which can be treated in a more
optimal manner. In this research we consider an alternative computation for
slow gravity modes and solution of 3D elliptic problems for implicitly treated
linear terms. For explicit and simple approximation of slow gravity waves, the
SLSI algorithm is split into two successive steps: in the first step, all terms are
treated explicitly, and in the second step, an implicit time discretization for the
fastest waves and more accurate approximation for the most energy valuable
terms are introduced. The first step requires simple computations for the entire
spectrum of processes described by primitive equations, but the stability criterion
is very restrictive. The second step improves the overall stability at a reduced
computational cost, because only the terms responsible for the fastest processes
are involved in these calculations. This kind of splitting is achieved by vertical
decoupling, which transforms the linearized hydrostatic equations to a set of
decoupled barotropic modes with different equivalent depths. In this way, 3D
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elliptic problem is reduced to a set of 2D systems and only a few of these systems
related to the fastest barotropic modes should be solved in order to ensure a
large time step. Performed evaluations of computational efficiency and forecast
accuracy confirm validity of applied techniques of scale separation and show
reduced computational cost of the constructed scheme.

Time discretization

To introduce the SLSI splitting scheme design, let us consider the linearized
prognostic equations of the hydrostatic atmosphere on a tangent f -plane [3,4]:

du

dt
= fv − px,

dv

dt
= −fu− py, L

dp

dt
=
R2T0

cp
(ux + vy). (1)

Here t, x, y, σ are independent variables, representing the time, horizontal Carte-
sian coordinates and vertical pressure coordinate, respectively, and u, v, p are the
unknown functions, representing the horizontal velocity components and gener-
alized pressure function, respectively. The last is defined as p = gz + RT0 ln ps,
where z is the height of a pressure surface and ps is the pressure at the Earth
surface. Besides, the following thermodynamic parameters are used: g is the
gravitational acceleration, R is the gas constant of dry air, T0 = const is the
reference temperature profile, cp is the specific heat at constant pressure, and
f is the mean value of the Coriolis parameter. The operator notation is quite
standard: the subscripts t, x, y, σ denote the partial derivatives with respect to
indicated variable and the symbols d

dt and L denote the individual 3D derivative
induced by constant advection vector (a, b, c) and vertical coupling operator,
respectively:

dφ

dt
= φt + aφx + bφy + cφσ , Lφ = (σ2φσ)σ . (2)

Semi-Lagrangian forward-backward time approximation of equations (1) can
be written in the form:

ũτ−u
τ

=f
ṽτ+v

2
− p̃τx,

ṽτ−v
τ

=−f ũ
τ+u

2
− p̃τy , L

p̃τ−p
τ

=
R2T0

cp
(ux+vy). (3)

Here τ is the time step, the functions φτ denote the values at the arrival point
of the 3D trajectory at the new time level tn+1 = (n + 1)τ , and φ denote the
values at the departure point at the current time level tn = nτ . For the linearized
model, the trajectory equations of air particles dx/dt = a, dy/dt = b, dσ/dt = c,
t ∈ [tn, tn+1] are readily solved for the coordinates of the arrival points assuming
that the departure points are chosen to be the points of a spatial grid.

The forward-backward time step is computationally very simple, because the
formulas (3) are actually explicit in time. However, the stability criterion is very
rigid: τ ≤

√
2hg/cg , where hg is the mesh size of spatial grid used for gravity

terms and cg = 350m/s is the maximum velocity of gravity waves in the system
(1). For example, on staggered grid C with the main mesh size h = 50km, the
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minimum gravity mesh size is hg = h/2 = 25km, and the maximum allowable
time step is about τ = 1.5min, which is too small as compared with accuracy re-
quirement of τphys = 60min defined by principal synoptic atmospheric motions.

The spectral analysis of the primitive equations (1) shows that they support
both fast and slow gravity waves as well the slow synoptic processes which carry
the principal part of the atmosphere energy [3, 4]. The separation of the fast
and slow gravity waves can be achieved by vertical decoupling using the first
eigenfunctions of the operator L:

φ =
∑

Φiψi, Lψi = λiψi, i = 1, ..., n. (4)

Then the equations (3) can be written separately for amplitudes Ui, Vi, Pi of a
single vertical mode (from now on the index i is omitted for simplicity):

Ũτ−U
τ

=f
Ṽ τ+V

2
− P̃ τx ,

Ṽ τ−V
τ

=−f Ũ
τ+U

2
− P̃ τy ,

P̃ τ−P
τ

=−c2g(Ux+Vy), (5)

where cg =
√
−R2T0

λcp
is the gravity wave velocity for individual vertical mode.

These velocities decrease with i and have the first characteristic values cg1 =
350m/s, cg2 = 210m/s, cg3 = 120m/s, cg4 = 80m/s, cg5 = 55m/s in such a way
that only the first four-five vertical modes contain the fast gravity waves. To
improve stability of the scheme (3), only the fast gravity waves are corrected
using the following equations:

Uτ−Ũτ
τ

=f
V τ−Ṽ τ

2
−P τx −2P̃ τx +Px

2
,
V τ−Ṽ τ

τ
=−f U

τ−Ũτ
2

−
P τy −2P̃ τy +Py

2
,

P τ − P̃ τ

τ
= −c2g

(Uτx + V τy ) − (Ux + Vy)

2
. (6)

The last system is reduced to 2D Helmholtz equation for the pressure amplitude:

P τxx + P τyy −
τ2c2g

4 + τ2f2
P τ = F, (7)

with F containing the previously found functions, and it is solved by efficient
multigrid method. For specified P τ , respective velocity amplitudes U τ , V τ are
found from the first two explicit formulas in (6). After corrections for the fast
vertical modes, the physical functions uτ , vτ , pτ are found using formulas (4).

Numerical experiments

To evaluate efficiency and accuracy of the developed two-time-level SLSI splitting
scheme (SLSIS in Table 1) applied to nonlinear equations of the hydrostatic
atmosphere, 24-h forecasts were calculated and compared with those obtained
by forward-backward scheme (SLFB in Table 1) and standard non-splitting SLSI
scheme (SLSI in Table 1).
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The computational domain consisting of 100x100 uniform horizontal grid
with mesh size h = 50km and 30 vertical levels was centered at Porto Alegre city
(300S, 520W ). The initial and boundary conditions were obtained from objective
analysis and global forecasts of National Centers for Environmental Prediction
(NCEP). The stability analysis showed that the constructed scheme allows the
use of time steps up to one hour that is close to physical requirement on accuracy
of the numerical solution.

Table 1 shows two standard measures of the forecast skill for the geopotential
height at the surface level of 500hPa: the root-mean-square (RMS) differences
between 24-h forecasts and analysis (in meters), and the correlation coefficient
(COR) between predicted and observed tendencies (non-dimensional). In the
last line, the used time step τ in minutes (chosen in accordance with stability
condition) and CPU time in the fraction of one SLFB forecast run are presented.

Table 1. The RMS, COR, time step τ and CPU time for three semi-implicit schemes

scheme SLFB SLSI SLSIS

RMS 23 21 21

COR 0.91 0.92 0.92

τ / CPU 1.5 / 1 60 / 0.27 60 / 0.19

These evaluations show the efficiency and accuracy of the constructed two-
time-level SLSI splitting scheme.
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Abstract. Different processes of the atmosphere and ocean dynamics
are of a large scale, which implies a formulation of the respective math-
ematical models in spherical coordinates to take into account the earth
curvature. Due to complexity of these mathematical models only a few
particular analytical solutions are known with a little application to prac-
tice. Therefore, approximate solutions are found by applying numerical
methods. When high accuracy solutions are need in large areas, the most
uniform representation of spherical domains is required because that en-
sures the highest accuracy and stability of numerical schemes. In such
cases, the original geographical coordinates are not suitable for construc-
tion of computational grids because of strong variation of mesh size with
latitude and the pole singularity. The most used approach for planar
representation of spherical domains is the conformal mapping, including
classical stereographic, conic and cylindrical projections. The important
properties of the conformal mappings as applied to grid generation for the
models of geophysical fluid dynamics are conservation of a simpler form
of the primitive partial differential equations, locally isotropic treatment
of derivatives and smoothness of the variation of physical mesh size.
In our recent studies we have solved some variational problems of confor-
mal mappings of spherical domains. In particular, for circular spherical
domains we have found the most uniform conformal mappings and evalu-
ated advantages of its employment comparing with traditional mappings.
In this study, we design computational grids based on different conformal
mappings for rectangular computational domains. The employed confor-
mal mappings include the tangent and secant stereographic, conic and
cylindrical projections both polar and oblique. Generated grids are used
in the context of the numerical schemes for forecasting the actual at-
mospheric fields of pressure and wind over the chosen spherical domains
of different extent. The stability and accuracy properties of the explicit
and semi-implicit schemes are evaluated and obtained numerical results
are compared with the analytical evaluations. It is found that the com-
putational grids based on the analytically found most uniform grids for
circular spherical domains ensure the most accurate and stable scheme
for square or nearly square computational domains of different extent.
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Abstract. Given a matrix A ∈ Rm×n (m ≥ n) and an integer k (k � n)
we discuss deterministic and randomized algorithms for selecting the k
“most linearly independent” columns of A. After summarizing previous
deterministic and randomized algorithms for this task, we present a hy-
brid approach. First, we employ a randomized algorithm presented in [7]
to select c = O(k log k) columns of A and then we employ the determin-
istic algorithm of [9] to pick exactly k columns from the c columns that
were kept after the first step. We provide novel provable bounds for the
singular values of the matrix containing the selected columns.

Introduction

Given an m×n (m ≥ n) matrix A we study the problem of selecting the k � n
“most linearly independent” columns of A. Formally, given A ∈ Rm×n and an
integer k (k � n), we select k columns from A and form the matrix C ∈ Rm×k

such that:

– σj(C), j = 1 . . . k is maximized (σj(C) is the j-th singular value of C),

– |det(C)| is maximized (det(C) is the determinant of C),

– vol(C) is maximized (vol(C) is the volume spanned by the columns of C).

Intuitively, we seek the k columns of A forming a matrix C ∈ Rm×k such as C
is “as non-singular as possible”. Prior results in [9, 11, 6, 10], suggest that all the
above objectives are (approximately) equivalent. Additionally, identifying the
“most linearly independent” columns of a matrix leads to the computation of
the numerical rank of the matrix [1], the solution of rank deficient least squares
problems [2], and the construction of a near-optimal low rank matrix approxima-
tion [3]. See [9, 5] and references therein for further motivation on this problem.

Notation: For the remainder of the paper A ∈ Rm×n is the input matrix and
k � n denotes the number of columns that will be chosen. Given X ∈ Rm×n,
X+ ∈ Rn×m denotes the pseudoinverse of X and Vk ∈ Rn×k the matrix whose
columns are the top k right singular vectors of X .
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Deterministic column selection

Golub in [8] presented the first algorithm (called pivoted QR factorization) to
address the aforementioned objectives. It is a deterministic, greedy approach that
works as follows: given a set of already selected columns, the algorithm chooses
as next column the one that is farthest away in the Euclidean norm from the
subspace spanned by the already chosen columns. There are no provable bounds
for this algorithm; however, it works well in practise. The first algorithm that
provided provable bounds for the singular values of C ∈ Rm×k was proposed by
Chan in [1]. It guarantees that

σk(A) ≥ σk(C) ≥ σk(A)√
n(n− k + 1)2n−k

. (1)

The left bound is trivial, unlike the other one, which is useful only if k is very
close to n. For smaller values of k the theoretical bound is very weak; however,
the algorithm works quite well in practise provided a sharper bound than the
theoretical one. For extensions of this algorithm with the same bounds see [3, 4].

Hong and Pan [10] provided the first existence proof of today’s state-of-the-
art bounds (see eqn. (2)). Chandrasekaran and Ipsen in [5] and then Pan and
Tang in [12] presented (different) efficient algorithms that achieve these bounds.
Gu and Eisenstat in [9] presented an existence proof and the first algorithm
that achieves the bound of eqn. (2) for all top k singular values of C and the
corresponding k top singular values of A:

σj(A) ≥ σj(C) ≥ σj(A)√
1 + k(n− k)

, (2)

for j = 1 . . . k. See [6] for yet another algorithm that achieves the same bound.
The complexity of all these algorithms is O(mn2).

Randomized column selection

In [7] Drineas et al presented a randomized algorithm for selecting columns
from matrices. The goal there was to construct efficient, column-based, low rank
matrix approximation, i.e., to choose columns to form a matrix C that minimizes
the error ∥∥A− CC+A)

∥∥
F
. (3)

Given the rank parameter k, an error parameter ε ∈ (0, 1], and a failure proba-

bility δ, [7] chooses c = O(
k log k log 1

δ

ε2 ) columns of A to form the m× c matrix C
such as with probability at least 1 − δ

∥∥A− CC+A)
∥∥
F
≤ (1 + ε) ‖A−Ak‖F . (4)

In this work we investigate whether a carefully rescaled version of the matrix
C ∈ Rm×c satisfies bounds similar to the ones in eqn. (2) and we prove the
following lemma.
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Lemma 1. Given matrix A (m ≥ n), a rank parameter k � n, an error
parameter ε ∈ (0, 1], and a failure probability δ, form the matrix C ∈ Rm×c

(c = O(
k log k log 1

δ

ε2 )) as described in [7] and rescale it appropriately. Then, with
probability at least 1− δ, for all j = 1 . . . k,

ε(n− k)
1
4σk+1(A) + (1 + ε)σj(A) ≥ σj(CD) ≥ (1 − ε)σj(A). (5)

Here D is a c× c diagonal rescaling matrix.

A hybrid approach

Table 1. Our hybrid approach

Input: Matrix A ∈ Rm×n, integer k � n, error parameter ε ∈ (0, 1], failure probability
δ

Output: Matrix C ∈ Rm×k with columns of A, diagonal k × k rescaling matrix D.

Randomized step: randomly select c = O(
k log k log 1

δ
ε2

) columns of A and form T ∈
Rm×c.
for j = 1 : n

(a) assign a score at the j-th column of A: pj = ‖Vk(j,:)‖2

k

(b) select the j-th column with probability min(1, cpj)

(c) if the j-th column is chosen, keep the rescaling factor
q

1
min{1,cpj}

end
Deterministic step: deterministically select exactly k columns from T and form C
using the algorithm of [9]. Assign the corresponding rescaling factors to the diagonal of
D

Table 1 presents our approach to select the k “most linearly independent”
columns from a matrix A. The output of the algorithm is a set of k rescaled
columns of A. (Notice that rescaling the selected columns does not change the
subspace spanned by these columns, and that in problems such as the subset
selection and the low rank matrix approximation [3], it is in principle feasible to
rescale the columns without any affecting the final output.) Our main result is
summarized in the following theorem.

Theorem 1. Given a matrix A ∈ Rm×n (m ≥ n) and an integer k (k � n),
we can form an m× k matrix C and a diagonal k × k rescaling matrix D using
the hybrid algorithm of Table 1 such that with probability at least 1 − δ, for all
j = 1 . . . k,

ε(n− k)
1
4 σk+1(A) + (1 + ε)σj(A) ≥ σj(CD) ≥ (1 − ε)σj(A)√

k(c− k) + 1
. (6)

The running time of our hybrid approach is O(mn2).
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Introduction

Collocation is a simple to implement discretization technique for differential
equations’ problems that gives an approximation to the solution over the whole
domain of the problem. Spline collocation has been primarily used for the solu-
tion of Boundary Value Problems (BVPs) for ODEs or PDEs, and shown to be
an effective method. Two types of spline collocation methods have been devel-
oped, the extrapolated (a.k.a. modified) and the deferred-correction methods,
both giving rise to optimal order of convergence of the approximation to the
solution. These methods have been extended recently to non-uniform grids and
integrated with adaptive techniques.

In this paper, we consider quadratic and cubic spline collocation formulated
as deferred-correction methods for the space discretization of parabolic PDEs.
We focus primarily on the case of one space dimension, but several of the re-
sults in this paper can be naturally extended in two or more dimensions. The
time discretization is handled by finite difference techniques. Deferred-correction
methods normally require the solution of two linear systems per timestep. We
discuss ways to avoid the solution of the second linear system, thus improv-
ing the efficiency of the methods, without sacrificing accuracy and stability. We
incorporate adaptive techniques in the space dimension, while maintaining the
efficient formulation of the methods. We present results that demonstrate the
stability properties of the resulting methods. We also apply the adaptive spline
collocation methods to the American option pricing problem, formulated as a
free-boundary PDE problem. The numerical experiments indicate that the pro-
posed methods correctly capture the behaviour of the problem, including the
discontinuities due to the initial conditions and the free boundary.

Problem and Discretization

We are concerned with the numerical solution of the parabolic PDE problem

ut − Lu = g in Ω × (O, T ) (1)

Bu = γ on ∂Ω × (0, T ) (2)

u = g0 on ∂Ω ∪Ω (3)
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where Lu(x) ≡ p(x)u′′(x)+q(x)u′(x)+r(x)u(x) is a linear second-order operator,
Bu(x) ≡ α(x)u(x)+β(x)u′(x) a boundary operator, p, q, r, g, α, β, γ, g0 are given,
Ω ≡ (ω1, ω2) is the spatial domain, (0, T ) with T > 0 is the time domain, and
u(x) is the unknown function.

We apply a standard Finite Difference (FD) discretization of (1) in the time
dimension

(I−λhtL)U j(x) = (I+(1−λ)htL)U j−1(x)+ht(λg
j(x)+(1−λ)gj−1(x)), x ∈ Ω,

(4)
where U j(x) ≡ U(x, tj) is the approximation to u(x, tj) at the jth timestep, with
tj = jht and ht the chosen time stepsize. The values λ = 1/2 and λ = 1 give rise
to the standard Crank-Nicolson (CN) and fully-implicit methods, respectively.
We can view the above time-stepping technique as equivalent to solving a BVP
at each time step.

For the space discretization, we apply collocation, based on quadratic or cubic
splines. Let ∆j ≡ {x0 ≡ ω1 < x1 < · · · < xn ≡ ω2} be the partition of Ω at
time tj and U j(x) =

∑
i θ
j
iφ
j
i (x) be the spline approximation to u(x, tj) written

in terms of appropriate spline basis functions φji (x). Let also Dj be the set
of collocation points at time tj . The standard spline collocation approximation
U j(x) is computed by forcing it to satisfy (4) for x ∈ Dj , and the boundary
conditions arising from (2), that is, BU j(x) = γ at x = ω1, ω2.

This spline collocation approximation turns out to be second-order, that is,
non-optimal. In order to develop optimal spline collocation methods for Prob-
lem (1)-(3), we develop perturbations of L and B similar to those used to obtain
optimal spline collocation methods for BVPs, see for example [1, 4, 6]. For sim-
plicity, we assume Bu ≡ u, so that no perturbation is needed for B. Thus we
have the extrapolated or one-step method (1QSC-CN) in which uj∆ is determined
by the equations

(I− λht(L + PL))uj∆(x) = (I + (1 − λ)ht(L + PL))uj−1
∆ (x) + ht(λg

j(x) +

(1 − λ)gj−1(x)), x ∈ Dj ,(5)

and the boundary conditions uj∆(x) = γ at x = ω1, ω2. We also have the deferred-
correction or two-step method (2QSC-CN) that first computes a second-order
approximation U j by

(I−λhtL)U j(x) = (I+(1−λ)htL)U j−1(x)+ht(λg
j(x)+(1−λ)gj−1(x)), x ∈ Dj ,

(6)
then an optimal order approximation uj∆ by

(I − λhtL)uj∆(x) = (I + (1 − λ)ht(L + PL))uj−1
∆ (x) + htλPLU

j(x) +

ht(λg
j(x) + (1 − λ)gj−1(x)), x ∈ Dj . (7)

Both U j and uj∆ also satisfy the boundary conditions (2). When λ = 1/2 the
methods 1QSC-CN and 2QSC-CN give rise to discretization errors of O(h2

t +h
4),

locally at the gridpoints and midpoints of the space partition, where h is the
(maximum) space partition stepsize.
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Each set of equations (5), (6) and (7) results in a linear system to be solved.
Method 1QSC-CN solves one linear system per timestep, while 2QSC-CN solves
two but sparser linear systems. We propose a method that solves one linear
system per timestep with the same matrix as that arising from 2QSC-CN.

The method QSC-CN is an one-step, still non-extrapolated method, that
computes uj∆ by the equations

(I − λhtL)uj∆(x) = (I + (1 − λ)htL + htPL))uj−1
∆ (x) + ht(λg

j(x) +

(1 − λ)gj−1(x)), x ∈ Dj , (8)

and by the boundary conditions uj∆(x) = γ at x = ω1, ω2. One can view
this method as combining (6) and (7) into one equation and treating the term
htλPLU

j of (7) explicitly, i.e. substituting uj−1
∆ in place of U j .

Stability properties and improvements

In this section, we summarize the stability properties of the QSC-CN method
(8). Let

Aθj = Bθj−1 + gj (9)

be the matrix problem arising from (8), and let R = A−1B be the iteration
matrix. As expected, treating the term htλPLU

j of (7) explicitly, has negative
effects in the stability properties of QSC-CN. More specifically, for the model
PDE problem ut = puxx with homogeneous Dirichlet boundary conditions, dis-
cretized on a uniform partition, we have ρ(R) < 1, if σ ≤ 5.06, where σ = p ht

h2 .
This means that we have a stepsize restriction to preserve stability. On the other
hand, the 2QSC-CN method (i.e. equations (6) and (7)) does not have a stepsize
restriction, as is expected for a CN-based (or implicit) method.

We examined the source of the instability of QSC-CN, and we found that it
is the perturbation term PLu

j−1
∆ of (8) corresponding to the first and last mid-

points (collocation points) that is responsible for the fact that some eigenvalues
of R may become larger than 1 in magnitude. We examined some remedies to
this issue, namely altering the perturbation term PLu

j−1
∆ at the first and last

midpoints. One remedy approximates the term by an O(h) approximation ob-
tained by the perturbation terms of the nearby midpoints (QSC-CN1), another
sets the term so that the eigenvalues of R satisfy certain desirable formulae
(QSC-CN2), and a third omits this perturbation completely (QSC-CN0).

Numerical experiments show that, all these remedies result in methods with-
out stability restrictions, and that the third remedy (resulting in method QSC-
CN0) gives rise to the smallest ρ(R), and slightly more accurate approxima-
tions, even more accurate than 2QSC-CN. Similar results where obtained for
cubic splines. Note that [1], for extrapolated cubic spline methods, also alters
the perturbation corresponding to collocation points near the boundary.

The case of convection-dominated problems needs to be dealt carefully, since
quadratic splines require a perturbation for the term qux of L in order to reach
the optimal order of convergence, while cubic splines do not. For a model problem
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of the form ut = puxx + qux with homogeneous Dirichlet boundary conditions,
discretized on a uniform partition, QSC-CN0 is stable if ht ≤ c pq2 , with c ≈ 25,
while the respective cubic spline method, CSC-CN0, does not have a stability
restriction.

Adaptive mesh methods

Recently, quadratic and cubic spline collocation methods with optimal order
of convergence have been developed on non-uniform grids and integrated with
adaptive mesh techniques [3, 2]. We incorporate adaptive mesh techniques in
the space discretization of parabolic PDEs. More specifically, at each timestep,
we incorporate the Algorithm PlaceMap in [2], that uses the error equidistri-
bution principle to move the partition points in order to obtain a better error
distribution, and thus a smaller error.

To proceed from tj−1 to tj , we solve (8) using the partition ∆j−1 at tj−1. If
PlaceMap needs to redistribute the partition points, a new partition ∆j is com-
puted and (8) is re-solved using interpolated values from the previous timestep
in the right hand side of (8). The algorithm for timestepping from tj−1 to tj
using an adaptive mesh technique is summarized as follows:
1. Let ∆j = ∆j−1

2. Compute uj∆j by solving (8)
3. Apply PlaceMap to possibly obtain a new ∆j

4. If ∆j remains the same, proceed to line 7, else
5. Interpolate uj−1

∆j−1 to obtain uj−1
∆j

6. Compute uj∆j by solving (8)
7. Proceed to step j
For slowly evolving functions, lines 6 and 7 in the above algorithm can be com-
bined in
6, 7. Interpolate uj∆j−1 to obtain uj∆j

Numerical results

In Figures 1 and 2, we present graphically indicative results that verify the
unconditional stability of QSC-CN0 and the conditional stability of QSC-CN,
for a model problem of the form ut = puxx, with u(x, t) = sin(πx) exp(−t). In
Figure 3, we see that QSC-CN0 is at least twice more efficient than 2QSC-CN.

We applied the adaptive mesh QSC-CN method to the American put option
pricing problem. We model the problem using the Black-Scholes PDE with ap-
propriate initial and boundary conditions, together with additional conditions
that define the free boundary for this problem. We solve the free-boundary prob-
lem by a penalty method applied to the nonlinear PDE vt−Lv = ρ̂max{f−v, 0},
where Lv ≡ σ̂2S2

2 vSS+ r̂SvS− r̂v, with σ̂ being the volatility, r̂ the risk-free rate,
f = max{E − S, 0} the payoff function (also initial state), E the strike price,
S the asset price that plays the role of the space variable, and ρ̂ a large num-
ber (penalty parameter). In the example chosen, E = 100, σ̂ = 0.80, r̂ = 0.10,
T = 0.25, and ρ̂ = 107.
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In Figure 4, we show the location of the partition points at selected timesteps,
as computed by the adaptive algorithm. We start with a uniform grid (as if we
do not know how the solution behaves). At the first timestep, the points are
concentrated around the strike. As the time evolves, the points spread to cover
the interval between the free boundary (which moves from E to the left) and
E, with concentration around the free boundary. Almost no points are needed
to the left of the free boundary (where the solution is linear) and few points are
needed towards the right end of the interval, where the solution is almost linear.

Figure 11 shows that the QSC-CN adaptive mesh method outperforms the
adaptive FD method (our implementation), the non-uniform FD method of [5],
as well as other methods. The “exact” value was computed by the data in [5]
and extrapolation.
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Abstract. The Singular Function Boundary Integral Method (SFBIM)
for two-dimensional elliptic boundary value problems with boundary sin-
gularities is reviewed. In this method, the solution is approximated by
the leading terms of the local asymptotic solution expansion which are
also used to weight the governing PDE in the Galerkin sense. The sin-
gular coefficients, i.e. the coefficients of the asymptotic expansion of the
solution, are unknowns to be calculated. By means of the divergence the-
orem the discretized equations are reduced to boundary integrals. The
Dirichlet boundary conditions are weakly enforced by means of Lagrange
multipliers, the values of which are calculated together with the singu-
lar coefficients. For two-dimensional Laplacian problems, we have shown
that the approximate singular coefficients converge to the true ones at
an exponential rate, as the number of singular functions increases. This
is demonstrated via several applications, including ones involving the
biharmonic operator which can be viewed as an extension of the theory.

Introduction

Planar elliptic boundary value problems with boundary singularities have been
extensively studied in the last few decades. Many different methods have been
proposed for the solution of such problems, ranging from special mesh-refinement
schemes to sophisticated techniques that incorporate, directly or indirectly, the
form of the local asymptotic expansion, which is known in many occasions. The
local solution, centered at the singular point, in polar coordinates (r, θ) is of the
general form:

u(r, θ) =

∞∑

j=1

aj r
µj fj(θ) , (1)

where µj are the eigenvalues and fj are the eigenfunctions of the problem, which
are uniquely determined by the geometry and the boundary conditions along the
boundaries sharing the singular point. The singular coefficients αj , also known
as generalized stress intensity factors or flux intensity factors, are determined by
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the boundary conditions in the remaining part of the boundary. In the past few
years, Georgiou and co-workers [1,2] developed the Singular Function Boundary
Integral Method (SFBIM), in which the unknown singular coefficients are cal-
culated directly. The solution is approximated by the leading terms of the local
asymptotic solution expansion and the Dirichlet boundary conditions are weakly
enforced by means of Lagrange multipliers. The method has been tested on stan-
dard Laplacian and biharmonic problems, yielding extremely accurate estimates
of the leading singular coefficients, and exhibiting exponential convergence with
respect to the number of singular functions. In the present paper, the SFBIM is
reviewed and its convergence is discussed.

The singular function boundary integral method (SFBIM)

We consider a general Laplacian problem with a boundary singularity: Find u
such that:

∇2u = 0 in Ω , (2)

with
∂u
∂n

= 0 on S1

u = 0 on S2

u = f(r, θ) on S3

∂u
∂n

= g(r, θ) on S4




, (3)

where ∂Ω=S1 ∪S2 ∪S3 ∪S4, Ω has a smooth boundary with the exception of a
boundary singularity at the corner O, formed by the straight boundary segments
S1 and S2. In the remaining parts of the boundary, either Dirichlet or Neumann
boundary conditions apply and the given functions f and g are such that no
other boundary singularity is present.

In general, the asymptotic expansion of the solution is given by expansion
(1). The SFBIM is based on the approximation of the solution by the leading
terms of the local solution expansion:

ū =

Nα∑

i=1

ᾱiW
i (4)

where Nα is the number of singular functions used, which are defined by W i ≡
rµi fi(θ). Note that this approximation is valid only if Ω is a subset of the conver-
gence domain of expansion (1). By applying Galerkin’s principle and by double
application of Green’s second identity, the problem is discretized as follows:

∫

∂Ω

W i ∂ū

∂n
dS −

∫

∂Ω

ū
∂W i

∂n
dS +

∫

Ω

ū∇2W i dV = 0, i = 1, 2, . . . , Nα . (5)

Since the singular functions are harmonic and exactly satisfy the boundary con-
ditions along S1 and S2, the dimension of the problem is reduced by one and for
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i = 1, 2, . . . , Nα, we have:

∫

S3

(
∂ū

∂n
W i − ū

∂W i

∂n

)
dS +

∫

S4

(
W i ∂ū

∂n
− ū

∂W i

∂n

)
dS = 0 . (6)

It should be noted that the integrands in Eq. (6) are non-singular and all integra-
tions are carried out far from the boundaries causing the singularity. To impose
the Neumann condition along S4, we simply substitute the normal derivative by
the known function g. The Dirichlet condition along S3 is imposed by means of
a Lagrange multiplier function, λ, replacing the normal derivative. The function
λ is expanded in terms of standard, polynomial basis functions M j ,

λ =
∂ū

∂n
=

Nλ∑

j=1

λj M
j , (7)

where Nλ represents the total number of the unknown discrete Lagrange mul-
tipliers (or, equivalently, the total number of Lagrange-multiplier nodes) along
S3. The basis functions M j are used to weight the Dirichlet condition along the
corresponding boundary segment S3. We thus obtain the following system of
Nα+Nλ discretized equations:

∫

S3

(
λW i − ū

∂W i

∂n

)
dS −

∫

S4

ū
∂W i

∂n
dS = −

∫

S4

W i g(r, θ) dS , (8)

∫

S3

ū M j dS =

∫

S3

f(r, θ)M j dS, (9)

where i = 1, 2, . . . , Na and j = 1, 2, . . . , Nλ . It is easily shown that the system
of Eqs. (8) and (9) is symmetric and nonsingular, provided Na > Nλ. The
“optimal” relationship between these two parameters will be discussed in the
conference.

The theoretical convergence of the SFBIM in the case of Laplacian problems
is discussed in Ref. [2]. Numerical results will be presented for test Laplacian
problems and biharmonic elasticity problems. The formulation of the SFBIM
for a certain 3-D Laplace problem with a straight-edge singularity is currently
investigated. The extraction of the leading singular functions for this problem is
based on the work of Yosibash et al. [3].
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Abstract. This survey is intended to present a package of algorithms for
the computation of exact or approximate GCDs of sets of several polyno-
mials and the evaluation of the quality of the produced solutions. These
algorithms are designed to operate in symbolic-numeric computational
environments. The key of their effectiveness is the appropriate selection
of the right type of operations (symbolic or numeric) for the individual
parts of the algorithms. Symbolic processing is used to improve on the
conditioning of the input data and handle an ill-conditioned subproblem
and numeric tools are used in accelerating certain parts of an algorithm.
A sort description of the basic algorithms of the package is presented by
using the symbolic-numeric programming code of Maple.

Introduction

The interaction of different type of computations (symbolic-numerical) is chal-
lenging for the development of new algorithms and has become an interesting
area of research in the last decade. The presented software package for the com-
putation of the GCD of several polynomials includes the following algorithms:

1. The ERES algorithm, which is a matrix based algorithm for the computa-
tion of the GCD of polynomials [2, 9].

2. The ResultantMatrix algorithm, which constructs a Resultant type matrix
for more than two polynomials [5].

3. The PSVD1 algorithm, which computes the partial singular value decom-
position [13] for rank-1 matrices.

4. The Strength algorithm, which evaluates the quality of an approximate
GCD [7].

The algorithms have been implemented and thoroughly tested in the pro-
gramming environment of Maple and we shall present them in a matrix based
formulation by using the notation of the programming code of Maple and rou-
tines of the LinearAlgebra package, which is included in Maple 8 and later ver-
sions.
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Description and implementation of the algorithms

The Hybrid ERES algorithm

The main algorithm that we use for the computation of the GCD is the ERES
algorithm [2, 9].

Hybrid_Eres_GCD := proc ( Pmn :: set(polynom), et::float )

INPUT : et = Tolerance for the termination

criterion of the algorithm.

OUTPUT : gcd = Vector of the GCD coefficients.

Pm := BasisMatrix( Pmn );

P := convert( Pm, rational );

k := 1;

While k > 0 do # MAIN ITERATIVE PROCEDURE

r, q := Dimensions( P );

di := RowDegree( P, i=1..r );

RowReorder( P );

If max( di ) = min( di ) then

Pf := convert( P, float );

Normalize( Pf );

rho, sigma, tol, w := PSVD1( Pf, et )

If rho=1 then # TERMINATION CRITERION

If hastype( Pm, float ) then

gcd := w; # GCD FROM SVD

else

gcd := P[1,1..q]; # GCD FROM THE MATRIX

end if;

break;

end if;

end if;

Scale( P );

GaussianElimination( P );

Shifting( P );

Shrink( P );

end do;

gcd;

end proc;
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Description of subroutines :

BasisMatrix( Pmn ) : Creates the initial m× n+ 1 basis matrix of the
given set Pmn from the coefficients of its polynomials.

RowDegree(P,i=1..r) : Specifies the degree di, i = 1..r of
each polynomial row of the matrix P.

RowReorder( P ) : Reorder matrix P : di−1 ≤ di for all i = 2..r.
Normalize( Pf ) : Normalizes the rows of Pf using the Euclidean norm.
Scale( P ) : Scales the the matrix P such that P[1,1] > P[i,1]

for all i = 1..r .
Shifting( P ) : Apply the shifting operation on every row of P,
Shrink( P ) : Deletes the zero rows and columns of P.

The PSVD1 algorithm : The PSVD1 algorithm is based on the methodology
of the partial singular value decomposition [12, 13]. It is actually a variation
of the classical singular value decomposition method [4, 1], especially developed
for the efficient computation of the unique singular value and its right singular
vector of an approximate εt-rank 1 matrix. The PSVD1 algorithm is a quick
and effective tool for the detection of an approximate rank 1 matrix. It can
increase the performance of other methods, such as the ERES method, and can
be implemented easily in any software programming environment.

PSVD1 := proc( A::Matrix, theta::float )

INPUT: A = m x n matrix with real floating-point data.

theta = a small positive bound such that

sigma_1=<...=<sigma_{k-1}=<theta<=sigma_{k}

where k = min{m,n}.

OUTPUT: rho = Indicator of the rank of the matrix.

sigma = Maximum singular value.

w = Respective right singular vector.

tol = Recommended tolerance for a potential

rank-1 matrix.

The Strength of an approximate GCD

The quality of a given approximate GCD known as the strength of the approxi-
mate GCD is evaluated by the following algorithm. A rigorous definition of the
approximate GCD has been given recently [7] that allows the computation of the
strength of approximation and sets up a framework for computing the optimal
approximate GCD. This approach is based on recent results on the representation
of the GCD of many polynomials in terms of the factorisation of the generalised
resultant and a Toeplitz matrix representation of the GCD [5].
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The procedure Strength

minstrength := proc( Pmn::set(polynom), GCD::polynom )

INPUT: Pmn = set of m univariate polynomials.

GCD = a polynomial which is given as a GCD

from a GCD algorithm.

OUTPUT: St = strength of the given GCD.

The strength of a given approximation can be computed by the routine :
Optimization[Minimize] in Maple.
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Abstract. The aim of the present study is to test two approaches to
inferring connectivity among sources of neural oscillations. The first ap-
proach is based on linear frequency domain analysis of interdependencies
in multivariate time series using the measures of partial coherence and
partial directed coherence. The second approach is based on nonlinear
dynamic models of coupled oscillator systems. The results of experimen-
tal data analysis show that, even though the two approaches are concep-
tually different, they provide similar estimates of the degree of mutual
engagement of the active brain areas during the considered task. Inconsis-
tency in what regards the directional aspects of the inferred interactions
might reflect differential sensitivity of measures to particular aspects of
coupling.

Introduction

How to infer brain connectivity from experimental data? The question has re-
ceived a great deal of attention from both experimental and theoretical neu-
roscience communities, since brain function and its computational properties
appear to be a direct consequence of its circuitry. Nowadays, technologically
advances in measurement of brain activity based on a variety of neuroimaging
methods enable the acquisition of massive multimodal data which form the basis
of investigation of brain network structure and dynamics.

A number of methodological approaches have been utilized to recover the
underlying network of interactions from multisite recordings of brain activity
[5]. The structural and functional aspects of reconstructed networks have been
further studied using graph theoretical concepts and methods. However, the
topology of the inferred brain functional networks may depend on the specific
way interaction is inferred from the data.

The aim of the present study is twofold: 1). to compare and contrast two
approaches for inferring interaction from multivariate data and 2). to apply
them to the problem of inferring functional connectivity among sources of neural
oscillations engaged in real and imagined human movements.
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Partial Directed Coherence (PDC)

To study connectivity in the frequency domain, particularly relevant to neural
signals analysis, the partial directed coherence (PDC) [3] has been introduced
within the multivariate autoregressive (MAR) modeling framework. For a sta-
tionary time series of state vectors st ∈ <D (adjusted to have mean zero), the
MAR process of order p is defined by St =

∑p
k=1 Akst−k + Et where the ma-

trices Ak ∈ <D×D are the coefficient matrices and the noise term Et (error-
term) is an D-dimensional iid sequence with mean zero and covariance matrix
Σ. Autoregressive coefficients a(i,j)(k), i, j = 1, ..., D represent the linear in-
teraction effect of s(t − k) onto s(t). Several numerical methods are available
for estimating the parameters of the model [1]. The spectral matrix of a MAR
process is defined by S(f) = H(f)ΣHH(f) where the subscript (.)H denotes the
Hermitian transpose and H(f) = [I − A(f)]−1 = [Ā(f)]−1. A(f) is given by
the Fourier transform of the coefficients, Aij(f) =

∑p
k=1 ak,ije

−i2πkf . The in-
verse spectral matrix can be used to derive the partial spectral density matrix:

PSij(f) =
∑

k Ā
∗
ki(f)Ākj(f)/[

∑
k Ā

∗
ki(f)Āki(f))

∑
k Ā

∗
kj(f)Ākj(f)]

1/2

It is then possible to define partial directed coherence (PDC) [3] as πij(f) =

Āij(f)/
√∑N

k=1 Ā
∗
ki(f)Ākj (f). The PDC (πij(f)) measures the linear influence

from sj to si, whereupon common effects produced by all other signals are
excluded. PDC measure is normalized, π2

ij ∈ [0, 1]. Data non-stationarity and
observational noise limit interpretation of MAR-based inferred interactions in
terms of genuine causal effects [2]

Phase modeling analysis (PMC)

The second approach to inferring interaction among processes, restricted to oscil-
latory systems is based on phase dynamics modeling. The important theoretical
idea put forth by phase models is that weak interaction of self-sustained oscil-
lators affects only their phases, whereas the amplitudes can be considered as
unchanged [6]. The reduced description of weakly coupled oscillators takes the
form

φ̇i = ωi + f1(φi, φj) + ξi,

φ̇j = ωj + f2(φi, φj) + ξj ,
(1)

where ωi,j are frequencies of uncoupled systems, φi,j are the two phase vari-
ables, and functions fi,j , 2π-periodic with respect to their arguments, describe
the coupling. The irregular terms ξi,j correspond to perturbations to the phase
dynamics due to noise and/or the chaotic nature of amplitudes. Aside from large
interest in phase models for explaining cooperative behavior and synchroniza-
tion phenomena in large ensemble of oscillators, recently it has been showed
that they can be used for inferring features of interaction (strength, direction-
ality and time delay) from data [7],[4]. The strength of coupling between two
oscillators i and j can be quantified by the mean phase coherence index, defined
as ρi,j = | < e(i(nφi−mφj)) > |, where n,m are integers and average is taken
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over time. The index of synchronization is normalized, with ρi,j = 1 reflecting
perfect locking, and ρi,j = 0 indicating a uniform distribution of the relative
phase. Estimation of asymmetric relations between oscillators can be obtained
by reconstructing the coupling functions fi,j(.) from data. Using a Fourier ex-
pansion, as the most convenient way to handle periodic functions, fi,j(.) are
approximated by F̄ (φi, φj) =

∑
m,nAm,ne

(i(nφi+mφj)). Coefficients Am,n can
be estimated by least-square regression. Further, integrative measures of influ-
ence of one oscillator on its counterpart can be derived [7]. Here, we quantify
the strength of the directional coupling from oscillator j to i by coefficients
PCi,j =

∑
m6=0,n=0 |Am,n|2.

Experimental data analysis

The experimental data come from EEG measurements of ERP (event related
potentials) from healthy subjects performing an auditorily paced finger tapping
task (inter-stimulus interval of 1.5s), in real and imaginary situation. The data
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Fig. 1. PDC and PMC -based estimation of cortical connectivity. (a),(c) shows the
connectivity matrices (significant coupling coefficients lie in [0, 1]), whereas (b),(d)
shows the strength of each node (electrode site).

consists of 100 single trial measurements at 10 electrodes sites located over the
brain areas involved in motor function. Details on the experimental protocol
and data pre-processing can be found in [8]. Our interest was in reconstructing
the functional connectivity in the beta frequency range, widely observed in sen-
sorimotor cortex in relation to motor behavior in humans. Assuming the ERP
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data as realizations of the same (multivariate) stochastic process, the informa-
tion from all the trials has been used in PDC and PMC approaches to increase
the statistical significance of the fitted model parameters. Structural properties
of the inferred undirected (by partial coherence (pCOH) and ρ) and directed
(by PDC and PC) networks are quantified by coarse-grained measurement using
the node strength given by si = (1/10)

∑
i wji, where wji denotes the coupling

strength. To note, that for directed networks si defined above represents the
out-strength of the node. Fig.1 summarizes the results of data analysis.

Discussions and conclusions

The results of EEG data analysis show that, even though the two approaches
have different theoretical bases, the two methods provide similar estimates of
the degree of mutual engagement of the active brain areas during both (real and
imagery) experimental conditions. In addition, the results support the hypothesis
that the functional connectivity over the contralateral hemisphere during finger
tapping is preserved in imagery. The discrepancy between estimated directional
influences among the co-activated brain areas can be attributed to the differential
sensitivity of the measures to particular aspects of interaction.
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Abstract. If function measurements include uncorrelated errors, then
piecewise monotonic trends may be captured by a least squares fit to the
data so that the sequence of the first differences of the components of
the fit includes at most k−1 sign changes. Then the best fit is composed
of at most k monotonic sections, alternately increasing and decreasing,
whereas the positions of its extrema are calculated automatically by the
optimization calculation. We prove that as the data increase, the posi-
tions of the corresponding extrema of the best fit increase as well. One
strong corollary is that the local maxima of a best fit with k − 1 mono-
tonic sections are separated by the local maxima of the best fit with k
monotonic sections, and local minima separate similarly. Interesting ap-
plications of these results may be found in global and local analyses of the
data, in extrema forecasting concerning future events and in developing
fast procedures for piecewise monotonic data fitting.
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Abstract. Conjugate Gradient Squared (CGS) method[2] is an attrac-
tive iterative method for the solution of a linear system of equations
with nonsymmetric coefficient matrix[1]. However, the popularity of CGS
method has diminished over time except for the context of device simu-
lations becuase of instability of convergence rate[2]. Therefore some ver-
sions of CGS method which have stability of convergence as compared
with CGS method have been proposed. However, the amount of com-
putational costs per one iteration of some versions of CGS method are
increased. Moreover some versions of CGS method badly affect its con-
vergence rate and limit its attainable accuracy in some situations. In this
article, we propose product types of BiCR iterative methods i.e., CRS[1],
S(Stabilized) CRS and M(Modified) SCRS methods, whose residual vec-
tor is based on that of the original BiCR method.

SCRS method

In general, Lanczos polynomial Rn(λ) satisfies the next alternative reccurence

R0(λ) = 1, P0(λ) = 1, (1)

Rn+1(λ) = Rn(λ) − αnλPn(λ), (2)

Pn+1(λ) = Rn+1(λ) + βnPn(λ), n = 0, 1, . . . (3)

using auxiliary polynomial Pn(λ). The residual rSCRS
n of S (Stabilized) CRS

method is defined as a form of product of polynomial Rn(λ) and accelerated
polynomial Hn(λ) as

rSCRS
n = Hn(λ)Rn(λ)r0.

The accelerated polynomial Hn(λ) satisfies the following reccurence

H0(λ) = 1, (4)

Hn+1(λ) = Rn(λ) − ωnλPn(λ), n = 0, 1, . . . . (5)

,where parameter ωn is decided from minimization of 2-norm of the residual
vector rSCRS

n+1 . Next we update the product of polynomial of Hn+1(λ)Rn+1(λ).
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When we utilize reccurences (1)-(3) and the accelerated polynomials Hn+1(λ),

Hn+1(λ)Rn+1(λ) = Rn(λ)Rn(λ) − αnλRn(λ)Pn(λ) − ωnλRn+1(λ)Pn(λ)

is gained, and the residual vector rSCRS
n can be updated by reccurence

rSCRS
n+1 = rCRS

n − αnAen − ωnAhn. (6)

However, computational cost of multiplication of matrix and vector can be
evaluated as three times per one iteration. Therefore, for reduction of computa-
tional cost we calculate Ahn as

Ahn = A(en + hn) −Aen. (7)

Moreover, by defining auxiliary vector qn := Apn, the next reccurences

qn+1 = Aen+1 + βn(Ahn + βnqn), hn+1 = en+1 − αn+1qn+1 (8)

are also adopted for reduction of the computational cost. As a result, the com-
putational cost of multiplication of matrix and vector of SCRS method reduces
to two times per one iteration. Parameter ωn can be decided as

ωn =
(Ahn, r

CRS
n − αnAen)

(Ahn, Ahn)
(9)

from minimization of 2-norm ||rSCRS
n+1 ||2 of the residual vector rSCRS

n+1 . The solution
vectors xn+1 and xCRS

n+1 can be calculated using the next reccurence, respectively.

xn+1 = xCRS
n + αnen + ωnhn, xCRS

n+1 = xCRS
n + αn(en + hn). (10)

Parameters αn and βn can be decided as

αn =
(Rn(A)Rn(A)r0, A

Tr∗
0)

(ARn(A)Pn(A)r0, AT r∗
0)

=
(rCRS
n , AT r∗

0)

(Aen, ATr∗
0)
. (11)

from the following bi-orthogonal conditions:

Rn(A)r0 ⊥ ATKn(A
T ; r∗

0), (12)

APn(A)r0 ⊥ ATKn(A
T ; r∗

0). (13)

Similarly, parameter βn is also written as

βn =
(ARn+1(A)r0, Rn+1(A

T )r∗
0)

(ARn(A)r0, Rn(AT )r∗
0)

=
αnωn−1

ωnαn−1

(ArSCRS
n+1 , r∗

0)

(ArSCRS
n , r∗

0)
. (14)

Furthermore for reducing computational cost of multiplication of matrix and
vector, parameter βn is calculated actually with transpose matrix of A as

βn =
ρ1

ρ0

(rSCRS
n+1 , AT r∗

0)

(rSCRS
n , AT r∗

0)
, (15)
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using ρ0 := αn−1/ωn−1 and ρ1 := αn/ωn. At last we must note that we calculate
AT r∗

0 once only before the iteration loop of iterative methods.

Algorithm 1: SCRS

Let x0 be an initial guess,

put r0 = b −Ax0,

Choose r∗
0 such that (r0, r

∗
0) 6= 0,

Set β−1 = 0, xCRS
0 = x0,

For n = 0, 1, . . . , Do

qn = Aen + βn−1(Ahn−1 + βn−1qn−1) (16)

αn =
(rCRS
n , r∗

0)

(Aen, r∗
0)

(17)

hn = en − αnqn (18)

Ahn = A(en + hn) −Aen (19)

ωn = (Ahn, r
CRS
n − αnAen)/(Ahn, Ahn) (20)

ρ1 =
αn
ωn

(21)

rSCRS
n+1 = rCRS

n − αnAen − ωnAhn (22)

if ||rSCRS
n+1 ||2/||r0||2 ≤ ε then (23)

xn+1 = xCRS
n + αnen + ωnhn (24)

end if and stop

rCRS
n+1 = rCRS

n − αnA(en + hn) (25)

xCRS
n+1 = xCRS

n + αn(en + hn) (26)

βn =
ρ1

ρ0

(rSCRS
n+1 , r∗

0)

(rSCRS
n , r∗

0)
(27)

ρ0 = ρ1 (28)

en+1 = rCRS
n+1 + βnhn (29)

End Do

As well as the residual vector of SCRS method, residual vector rMSCRS
n of M

(Modified) SCRS method is defined as follows:

rMSCRS
n := Hn(A)Rn(A)r0 = rCRS

n − αn−1Aen−1 − ωn−1Ahn−1. (30)

Here, we introduce newly the following associate residual vector a rn(:= Hn(A)Rn−1(A)r0)
with the polynomial Rn−1(A) at the (n− 1)step of iteration loop as

Hn(A)Rn−1(A)r0 = (Rn−1(A) − ωn−1APn−1(A))Rn−1(A)r0 = rCRS
n−1 − ωn−1Aen−1.(31)

The parameter ωn−1 is decided from minimization of 2-norm ||rCRS
n−1−ωn−1Aen−1||2

as

ωn−1 = (rCRS
n−1 , Aen−1)/(Aen−1, Aen−1). (32)
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Algorithm 2: Modified SCRS

Let x0 be an initial guess,

put r0 = b −Ax0, rMSCRS
0 = r0,

Choose r∗
0 such that (r0, r

∗
0) 6= 0,

Set β−1 = 0, sign = 0, xCRS
0 = x0,

For n = 0, 1, . . . , Do

qn = Aen + βn−1(Ahn−1 + βn−1qn−1)

αn =
(rCRS
n , AT r∗

0)

(Aen, AT r∗
0)

hn = en − αnqn

Ahn = A(en + hn) −Aen

rCRS
n+1 = rCRS

n − αnA(en + hn)

if ||rCRS
n+1 ||2/||r0||2 ≤ δ then (Condition M1)

sign = 1

end if

if sign = 1 then (Condition M2)

ωn =
(rCRS
n , Aen)

(Aen, Aen)

rMSCRS
n+1 = rCRS

n − αnAen − ωnAhn

if ||rMSCRS
n+1 ||2/||rMSCRS

0 ||2 ≤ ε then

xMSCRS
n+1 = xCRS

n + αnen + ωnhn

end if and stop

end if

xCRS
n+1 = xCRS

n + αn(en + hn)

βn =
(rCRS
n+1 , A

Tr∗
0)

(rCRS
n , ATr∗

0)

en+1 = rCRS
n+1 + βnhn

End Do

The numerical results in Table 1 verify stability of convergence and efficiency
of the SCRS and MSCRS methods as well as CRS method. SCRS and MSCRS
methods outperform greatly compared with the CGS method.

References

1. Abe, K., Sogabe, T., Fujino, S., and Zhang, S.-L., A product-type Krylov sub-
space method based on Conjugate Residual method for nonsymmetric coefficient
matrices, Transaction of IPSJ, Vol.48 No.SIG8(ACS18), 2007, pp.11-21.

2. Sonneveld, P., A Fast Lanczos-type Solver for Nonsymmetric Linear Systems,
SIAM J. Sci. Stat. Comput., 10(1989), pp.36-52.



68 S. Fujino, Y. Onoue and K. Abe

Table 1. Convergence property of iterative methods with accelerated ILU(0) precon-
ditioner when 31 parameters γ are varied from 1.0 up to 1.3 at the equi-interval of 0.01
for seven matrices in the field of fluid analysis of Florida sparse matrix collection.

matrix method successful ave. itr. ave. time ave. true ratio of
cases [sec.] res. [log10] time

EX10HS CGS 15 2326 2.11 −7.14 1.000
CRS 16 193 0.19 −7.04 0.090

SCRS 16 320 0.32 −7.04 0.152
MSCRS 14 184 0.19 −7.03 0.090

EX19 CGS 15 2351 10.70 −7.11 1.000
CRS 19 299 1.44 −7.10 0.135

SCRS 19 180 0.92 −7.09 0.086
MSCRS 18 203 1.03 −7.07 0.096

FIDAP003 CGS 14 1924 1.44 −7.16 1.000
CRS 19 326 0.26 −7.17 0.181

SCRS 15 111 0.10 −7.03 0.069
MSCRS 15 128 0.12 −7.04 0.083

FIDAP007 CGS 23 385 0.30 −7.34 1.000
CRS 24 83 0.08 −7.10 0.267

SCRS 22 49 0.06 −7.10 0.200
MSCRS 23 78 0.08 −7.11 0.267

FIDAP010 CGS 7 5156 4.43 −7.15 1.000
CRS 15 326 0.30 −7.11 0.068

SCRS 14 298 0.28 −7.05 0.063
MSCRS 11 341 0.32 −7.02 0.072

FIDAPM37 CGS 16 2084 21.80 −7.16 1.000
CRS 17 733 7.97 −7.02 0.366

SCRS 13 448 5.19 −7.02 0.238
MSCRS 14 867 9.50 −6.98 0.436

LI CGS 11 2951 82.51 −7.20 1.000
CRS 12 90 3.35 −7.03 0.041

SCRS 12 98 3.64 −7.15 0.044
MSCRS 12 99 3.63 −7.08 0.044
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Introduction

A very interesting task in the field of signal analysis is the modeling of real world
signals. That means finding the mathematical relationship that governs the ob-
served variables measuring a system. Most conventional modeling techniques
begin by selecting size and shape of the mathematical model, which is usually a
linear model. In the sequence they use some methods to calculate the values of
certain coefficients and constants required by the particular model in order to
achieve the best possible fit between the observed data and the model. However
the most important issue in modeling a system is finding the right size and shape
of the mathematical model itself. Koza [9], [10] suggested that finding the func-
tional form of a mathematical model can be considered as being equivalent to
searching a space of possible computer programs (they can be viewed as math-
ematical models) for the particular computer program (model) which produces
the desired output for given inputs. That is one is searching for the computer pro-
gram (model) whose behavior best fits the observed data. The fittest individual
computer programs can be found using the Genetic Programming evolutionary
technique. In particular, the problem of modeling requires finding a mathemati-
cal function, in symbolic form, which fits given numeric data points representing
some observed system. Finding such an empirical model for a system can be
used also in forecasting future values of the state variables of the system.
In this paper we focus on the modeling of MEG recordings of epileptic patients.
MEG recordings were obtained using a Superconductive QUantum Interference
Device (SQUID) which is installed in Medical Physics Laboratory, in the Gen-
eral Hospital of Alexandroupolis, Hellas, model NEUROMAG-122 provided by
4-D Imaging. SQUIDs are very sensitive magnetometers, capable to detect and
record biomagnetic fields of the order of 10−15 T, generated in the human brain
due to electrical microcurrents at neural cellular level [6]. MEG recordings were
digitized and stored for off-line analysis. Considering the MEG as timeseries, the
problem of MEG modeling can be considered as a problem of finding a math-
ematical relationship that associates the value of the MEG at time t to values
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of MEG at previous time intervals, t− 1, t− 2, and so on. GP methods are uti-
lized, in order to optimize the nonlinear model fitting to MEG measurements.
Specifically, in this paper we use a variation of traditional Genetic Program-
ming, namely Linear Genetic Programming (LGP). LGP is a particular subset
of GP wherein computer programs in population are represented as a sequence of
instructions from imperative programming language or machine language. The
graph-based data flow that results from a multiple usage of register contents and
the existence of structurally noneffective code (introns) are two main differences
to more common tree-based genetic programming (TGP) [8]. To our knowledge,
this is the first time that GP is used for such kind of signal modeling. Until
now there were a lot of efforts to model and predict the MEG of patients and
healthy subjects but none of these efforts uses GP. So, in [3], [4], [5], and [11], an
Evolutionary Neural Network with Multiple Extended Kalman Algorithm was
used in order to model and forecast the behavior of MEG signals of patients suf-
fering from epilepsy. MEG modeling and prediction, if successful, could provide
information on the complexity of the underlying brain dynamics in epilepsy or
any other normal or pathological condition of the Central Nervous System. This
information could be of clinical interest [1].

Methods

For the MEG signal modeling the following preparations according to [10] were
done:

(1) Set of terminals: As terminals were used the input variables of the
data sets that were constructed using the MEG recordings, and a num-
ber of random constants. Since the MEG recording can be considered as
a time series, then the problem of MEG modeling can be considered as a
problem of finding a mathematical relationship that associates the value
of the MEG at time t (the output) with values of MEG at previous time
intervals, t− 1, t− 2, and so on. Since it isn’t known how many previous
time intervals are necessary in order to model better MEG a number of
different previous time intervals were used varying from 2 to 7.
(2) Set of primitive functions: As functions were used the classical math-
ematical functions of addition, subtraction, multiplication, division (a
protected version), absolute value, square root, exponential, sine and co-
sine.
(3) Fitness measure: As fitness measure it was used the Mean Square
Error between the desired output (the observed MEG recordings) and
the real output of the model.
(4) Parameters for controlling the run: as population size, M , it was
used the 500 individuals, while the maximum number of generations to
be run, G, it was set equal to 300.
(5) Method for designating a result and criterion for terminating a run:
As method of result designation for a run we choose to designate the best
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individual obtained in any generation of the population during the run
(i.e., the best-so-far individual) as the result of the run. While, as a ter-
mination criterion it was used the maximum number of 300 generations
that genetic programming was left to run.

In all the experiments we used the same parameter values, for comparison
reasons. The MEG recordings were organized in 6 data sets according to the
number of previous time intervals used (they vary from 3 to 7). In the sequence,
every data set was split to three other data sets, namely training set consisting of
200 patterns, validation set consisting of 200 patterns and test set consisting of
1600 patterns. Training set was used for the training of the individuals (computer
programs - models) of the population, the validation set were used to exhibit the
generalization performance of the individuals, while the test set was used at the
end of the whole evolutionary process in order to appraise the performance of
the produced model (the output of Genetic Programming technique) on unseen
data. In order to evaluate the performance of the produced computer programs
three well-known error measures, the Normalized Root Mean Squared Error
(NRMSE), the Correlation Coefficient (CC) and the Mean Relative Error (MRE)
were used.

Table 1. Performance of the produced models on the Test Set

inputs NRMSE CC MRE MSE
2 0.0735 0.9973 0.3603 3.6032 · 10−1

3 0.0293 0.9996 0.1337 5.9385 · 10−4

4 0.0288 0.9996 0.1313 5.7302 · 10−4

5 0.0307 0.9995 0.1410 6.5096 · 10−4

6 0.0215 0.9998 0.0851 3.1991 · 10−4

7 0.0259 0.9997 0.1166 4.6285 · 10−4

Results and Discussion

Table 1 depicts the performance of the produced computer programs (models)
on the test set for the six different cases of number of inputs used. The obtained
results are in accordance to the corresponding ones obtained by non-linear anal-
ysis and chaotic methods for the analysis of the epileptic MEG [2], [7]. In that
works, signal processing methods based on Complexity Theory and the Theory
of chaotic dynamics of nonlinear systems were applied on MEG signals for the
purpose of a better physical understanding of the underlying processes in epilep-
tic brain dynamics. From the view of the Complexity Theory, low-dimensional
non-linear dynamics were revealed to undergo the MEG of epileptic patients
and the existence of low-dimensional strange attractors in the dynamics of brain
function in epilepsy was justified. In addition, in [1] MEG signals of epileptic
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patients were modeled using NARMAX (Nonlineal ARMA with external noise)
methods and strong evidence were obtained that the nonlinear coefficients are
rather weak compared to the linear coefficients of the obtained models. These
results can be explained only considering the high level of synchronization and
rhythmicity that appears in brain function of epileptic patients. Thus, the hy-
pothesis that epileptic behavior is due to highly synchronized neural dynamics
seems also to be supported by the present work. It is in our intentions to inves-
tigate much further the ability of GP to produce models of biological systems
like the MEG and many others. For this reason we have already started to build
a GP environment specialized in modeling problems.
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Abstract. Discontinuous Galerkin methods raise new challenges with
regard to the solution of the ensuing linear system. Due to the nature
of the discretisation, the problems can become very quickly very large,
particularly when the degree of the polynomial approximation is also in-
creased. In the case of general elliptic problems, useful iterative methods
can be designed by taking into account the finite element formulation. In
this work we devised a preconditioner based on equivalence to the norm
inherited from the finite element space. The preconditioner is employed
together with a 3-term GMRES routine in order to maintain storage at
a minimum. The resulting solver was applied to the case of DGFEM
discretizations of problems with non-negative characteristic form. Theo-
retical results were derived to explain the convergence behaviour.

Summary

Recent years have seen an increasing interest in a class of non-conforming finite
element approximations of elliptic boundary-value problems with hyperbolic na-
ture, usually referred to as discontinuous Galerkin finite element methods. Var-
ious families of discontinuous Galerkin finite element methods (DGFEMs) have
been proposed, particularly for the numerical solution of convection-diffusion
problems, due to the many attractive properties they exhibit. In particular,
DGFEMs admit good stability properties, they offer flexibility in the mesh de-
sign (meshes containing hanging nodes are admissible) and in the imposition
of boundary conditions (Dirichlet boundary conditions are weakly imposed),
and they are increasingly popular in the context of hp-adaptive algorithms. The
increase in popularity for DGFEMs has created a corresponding demand for
developing linear solvers.

Existing approaches to solving systems arising in DGFEMs include domain
decomposition, either non-overlapping [10], [11] or overlapping [21] and multigrid
[18], [4]. Another favoured approach consists in reformulating the problem as a
system of PDEs which is then solved using a mixed finite element method for
which block-preconditioners can be devised [27], [22], [20].

Remarkably, preconditioned Krylov methods feature rarely and have been
mostly employed for the case of time-dependent problems, whether using time-
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discontinuous discretizations [8], or space-discontinuous ones [3]. One of the rea-
sons for this notable absence may be explained through the ill-conditioning the
resulting linear systems suffer from [5] coupled with a need for preconditioner
design.

In this work, we extend results available for the case of standard finite element
methods to the hp-discontinuous case. In particular, it is now known that the
norms associated with the finite element analysis of convection-diffusion prob-
lems can be employed as preconditioners. Here, we extend this idea to the case
of hp-version DGFEMs who are known to given rise to ill-conditioned stiffness
matrices with block structure

More precisely, we construct scalable preconditioning strategies (in the sense
that the number of iterations in a preconditioned GMRES algorithm is inde-
pendent of the mesh size and the local elemental polynomial degree) for the
hp-version DGFEM. Moreover, the preconditioner is employed together with a
3-term GMRES routine in order to maintain storage at a minimum. The re-
sulting solver was applied to the case of DGFEM discretizations of the wide
family of boundary-value problems with non-negative characteristic form. The-
oretical results were derived to explain the convergence behaviour accompanied
by numerical experiments that are in complete agreement with the theoretical
predictions.

We shall also present some recent results and extensions of the ideas found
in Georgoulis and Loghin [15] when anisotropic meshes are employed to resolve
possible boundary layers. Some of the presentation will be inspired by the work
[15], but recent development and extensions of these results will be presented.

Numerical Example

The validity of our theoretical results providing scalable (i.e., GMRES iteration
counts independent of the mesh-size and the local polynomial degrees) precondi-
tionining strategies for DGFEM-discretisations of convection-diffusion problems
is illustrated by the following numerical experiment.

We solved
−ε∆u+ b · ∇u = f for (x, y) ∈ (0, 1)2,

with b = (1, 1), subject to a Dirichlet boundary condition, which, along with
the forcing function f , is chosen so that the analytical solution is

u(x, y) = x+ y(1 − x) +
e−

1
ε − e−

(1−x)(1−y)
ε

1 − e−
1
ε

.

This problem was considered in [19] (Example 3). The solution exhibits boundary
layer behaviour along x = 1 and y = 1, and the layers become steeper as ε→ 0.

We solved the problem for a range of ε. Discretisations for a range of uniform
h (meshsize) and p (degree of polynomial approximation) were employed. We
denote by n the number of unknowns of the the linear system. The results are
presented Table 1.
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Table 1. GMRES iterations for DGFEM-discretisation of the convection diffusion
problem using the proposed preconditioning strategy (left table) and the corresponding
results using the standard ILU(10−2)-preconditioning strategy(right table).

p h n ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

0.04 2,500 7 15 22 77
1 0.02 10,000 7 15 22 80

0.01 40,000 7 14 22 80

0.04 5,625 7 14 22 80
2 0.02 22,500 6 14 22 80

0.01 90,000 6 14 21 78

0.04 10,000 6 14 22 79
3 0.02 40,000 6 14 22 78

0.01 160,000 6 13 21 78

p n ε = 0.5 ε = 0.1 ε = 0.01

2,500 12 13 7
1 10,000 36 40 29

40,000 124 117 69

5,625 18 17 12
2 22,500 61 59 60

90,000 235 231 137

10,000 39 29 23
3 40,000 112 114 100

160,000 > 300 > 300 > 300

As predicted by theory, the number of iterations is independent of discreti-
sation parameters.
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Abstract. A perturbed Newton method for unconstrained optimiza-
tion problem is proposed in this paper. Proper perturbed parameters
are defined at each iteration to perturb the Hessian matrix in Newton’s
method in order generally to accelerate it. The idea behind the choice
of these parameters is to use information of a properly selected compo-
nent of the gradient of the objective function in addition to information
of some norm of a column-vector of the Hessian matrix. The quadratic
convergence of the produced new algorithm can be proved. Preliminary
results from the application of the new method on various well known
test functions are promising.

Introduction

Consider the general unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is assumed to be a continuously differentiable function and
x = (x1, x2, . . . , xn)

T ∈ Rn. As it is known, all the local minimizers of the
objective function f are stationary points. Thus, at these points the gradient
∇f(x) = G(x) = (g1(x), g2(x), . . . , gn(x))

T vanishes :

∇f(x) = G(x) = 0 (2)

If the Hessian matrix H(x) is symmetric and positive definite then solving the
problem (1) is equivalent to solving the problem (2). There are several numerical
methods for solving this problem [1, 3–6]. Among others, Newton’s algorithm,
given by : xp+1 = xp−H(xp)

−1G(xp), p = 0, 1, 2, . . . , has been shown as a suc-
cessful algorithm for solving optimization problems. For this reason, we remain in
Newton’s method and try to accelerate it, without increasing the computational
cost per iteration, by applying a new strategy on it. In particular, the goal of our
study is to develop a robust perturbed Hessian matrix to substitute the trivial
one in Newton’s method. In this sense, the new method may be viewed as a new
quasi-Newton method. Moreover, it is known that the perturbation of the Hes-
sian matrix in Newton’s method is part and parcel with the rotation of tangent
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planes at the gradient surfaces. Thus, the new perturbed Hessian matrix, from
a geometric point of view, may be considered as a rotation of tangent planes at
the gradient surfaces which results in removing the current approximation point
closer to the solution one. Therefore, an efficient Hessian may join to accelerate
Newton’s method and at the same time enlarge the convergence area [2]. The
challenge that arises now is how to select properly such parameters to modify
Newton’s Hessian. Inspired by the importance of a properly selected component
of the gradient of the objective function and of some norm of a column-vector of
the Hessian matrix, we produce the perturbed parameters accordingly to such
information. Thus, an efficient perturbed Newton algorithm is proposed.

Moreover, the proposed algorithm can also be considered as a new Newton
method applied to a proper system that is equivalent to the original one given
by (2) and thus its quadratic convergence is evident.

We now present all the above more formally. So, we consider the mapping
W = (w1, w2, . . . , wn)

T : D ⊂ Rn → Rn, with

wi(x) = gi(x) +

n∑

j=1

tjxj , i = 1, 2, . . . , n (3)

where T = (t1, t2, . . . , tn)
T is the vector of the perturbed parameters tj , j =

1, 2, . . . , n and the inner product 〈x, T 〉 = 0, i.e. the
∑n

j=1 tjxj = 0. If xp =

(xp1, x
p
2, . . . , x

p
n)T is the approximation of the solution at the p-th iteration,

p = 0, 1, . . ., G′(x) = H(x) is the Jacobian matrix of G and G′
ij = Hij =

(∂jg1, ∂jg2, · · · , ∂jgn)T is the j-th column-vector of the Jacobian matrix of G,
then the perturbed parameters are given by

tj =





gj(xp)

||G′

ij(xp)||22
, for j = 1, . . . , n− 1

−
Pn−1

k=1 tkx
p
k

xp
n

, for j = n and xpn 6= 0
(4)

The application of Newton’s method in the new system of the equations
wi(x) = 0, i = 1, 2, . . . , n, results in our new iterative scheme given by

xp+1 = xp −W ′(xp)
−1W (xp), p = 0, 1, 2, . . . (5)

where, because of (3), the Jacobian matrix of the new function W (x) is given by

W ′(xp) = G′(xp) +Ξ = H(xp) +Ξ, p = 0, 1, 2, . . . (6)

where G′(xp) is the Jacobian matrix of G(x) at the current point xp, and Ξ is
the rank-1 n× n matrix with Ξij = tj , j = 1, . . . , n, for all i = 1, . . . , n.

Due to the iterative form (5), our algorithm is a new Newton’s method and
therefore its quadratic convergence is evident.

Taking into account the original system (2), the relation wi(xp) = gi(xp), i =
1, . . . , n, p = 0, 1, . . . (due to (3) and the fact that 〈x, T 〉 = 0) and (6), our
iterative scheme (5) may also be written in the form

xp+1 = xp−(G′(xp)+Ξ)−1G(xp) = xp−(H(xp)+Ξ)−1G(xp), p = 0, 1, . . . (7)
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In the form (7) our new method can also be considered as a new quasi-Newton
method. Also, with an appropriate procedure similar to the one presented in [3],
a new perturbation to the proposed Hessian matrix W ′(x) may be applied in
order to transform it into a symmetric one as well as into a diagonal one. The
quadratic convergence of the last procedure may also be proved.

Numerical Results

The proposed algorithm has been implemented using a new Fortran program,
named PN OPT (Perturbed Newton OPTimization). PN OPT was compared
with well known test functions. The preliminary results are quite satisfactory.
The reported parameters in the Tables 1-6 indicate : IT the total number
of iterations required to obtain x∗, FE the total number of function evalua-
tions(including derivatives) and D indicates divergence or nonconvergence.

First, we give the Tables 1, 2 and 3 where we compare our new method given
by (7) with the well known methods: Armijo’s steepest descent method, Fletcher-
Reeves[FR], Polak-Ribiere[PR] and Broyden-Fletcher-Goldfarb-Shanno[BFGS]
with our new method Perturbed Newton’s Method[PN OPT]. Next, we give
Table 4 comparing (7) with the trivial Newton method. In all cases the accuracy
is eps = 10−12. Due to lack of space, the interested reader is encouraged to see
the full version of the paper [7] for more examples.

Table 1. Brown’s Almost Linear Function (see Example 1)

Armijo FR PR BFGS PN OPT

x0
1 x0

2 x
0
3 IT FE IT FE IT FE IT FE IT FE

0 0 3 221 1612 27 389 9 143 9 131 1 12
-1 0 3 233 1691 34 491 42 612 12 180 6 72

0.8 0.7 -2 193 1446 70 996 23 336 14 216 10 120

Table 2. Freudenstein & Roth’s Function (see Example 2)

Armijo FR PR BFGS PN OPT

x0
1 x0

2 IT FE IT FE IT FE IT FE IT FE

0.5 1000 1380 18770 D D D D D D 33 198
4 -1000 1886 25597 D D D D D D 34 204

12 2 2027 26886 70 1145 8 130 7 103 5 30

Example 1 (Brown’s almost-linear function [5, 2]). In this case the objective

function f is given by f(x) =
∑3

i=1 fi
2(x), where, in general, fi(x) = xi +∑n

j=1 xj − (n+ 1), 1 ≤ i < n and fn(x) =
∏n
j=1 xj − 1. In our case n=3.
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Table 3. Rosenbrock’s Function (see Example 3)

Armijo FR PR BFGS PN OPT

x0
1 x0

2 IT FE IT FE IT FE IT FE IT FE

10 10 18416 251611 310 7469 26 526 32 505 7 42
100 100 D D D D 33 746 54 822 7 42

-2000 -2000 2542 35743 D D 93 2466 173 2667 9 54

Example 2 (Freudenstein and Roth’s function [5, 2]). In this example the ob-

jective function f is given by f(x) =
∑2

i=1 fi
2(x), where f1(x) = −13 + x1 +

((5 − x2)x2 − 2)x2 and f2(x) = −29 + x1 + ((x2 + 1)x2 − 14)x2.

Example 3 (Rosenbrock’s function [5, 2]). In this example the objective function

f is given by f(x) =
∑2

i=1 fi
2(x), where f1(x) = 10

(
x2 − x2

1

)
and f2(x) = 1−x1.

Example 4 (Beale’s function [5, 2]). In this example the objective function f

is given by f(x) =
∑2

i=1 fi
2(x), where f1(x) = 1.5 − x1(1 − x2) and f2(x) =

2.25− x1(1 − x2
2).

Table 4. Beale’s Function (see Example 4)

Newton PN OPT

x0
1 x0

2 IT FE IT FE

-2 -100 61 366 38 228
0.1 0.1 40 240 23 138
-1 20 51 306 42 252
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Introduction

In [1], [4] the Preconditioned Simultaneous Displacement (PSD) iterative method,
was introduced and studied for the numerical solution of the linear system

Au = b (1)

where A is a N ×N positive definite and consistently ordered matrix and u, b
are N ×1 vectors. PSD is a first order extrapolation of SSOR and as such it was
shown to be asymptotically twice as fast as SSOR for the natural ordering [1]. In
[4] various accelerated techniques were applied to PSD, which increased its rate
of convergence by an order of magnitude. Comparisons with the SOR method
proved that PSD combined with Semi-Iterative(SI) techniques is even better
than SOR, in certain cases [4]. However, all these results were based on “good”
(near the optimum) values of the involved parameters as, at the time, there was
not known any functional relationship analogous to the SOR one connecting the
eigenvalues of the PSD iteration matrix to the ones of the Jacobi matrix, except
in the red-black case [5]. By the time that such a functional relationship was
shown to exist for SSOR [10] it also exists for PSD and the theory concerning
p-cyclic matrices (see e.g. [2], [8]) can be extended for the PSD method also. It
is the purpose of the present work to proceed towards this direction and study
the convergence of the PSD method in case the block Jacobi iteration matrix is
weakly 2-cyclic [9] and possesses either real or imaginary eigenvalues.
Let us consider the linear system (1), where A is a p× p matrix partitioned into
block form

A =
[
Ai,1, Ai,2, . . . , Ai,p

]
, i = 1, 2, · · · p, p ≥ 2 (2)

and each diagonal Ai,i is square and nonsingular. Let the coefficient matrix A
be splitted as

A = D − CL − CU , (3)

? This author’s research was carried out while on leave of absence at the Department
of Informatics, University of Cyprus, Cyprus.
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so thatD := diag(A1,1, A2,2, · · · , Ap,p) and −CL, −CU are the strictly lower and
upper triangular parts of A, respectively. The associated block Jacobi matrix is
defined by

B := L+ U, (4)

where L = D−1CL, U = D−1CU . The PSD method is given by the following
scheme [1], [5]

u(n+1) = Dτ,ωu(n) + δτ,ω, (5)

where

Dτ,ω := I − τBω, Bω := (I − ωU)
−1

(I − ωL)
−1
D−1A (6)

and

δτ,ω := τ(I − ωU)
−1

(I − ωL)
−1
D−1b, (7)

where τ 6= 0, ω ∈ <. Note that if τ = ω(2 − ω), then (5) reduces to the well
known SSOR method. Let B be a weakly cyclic matrix of index p [9].
Working as in [10] we can prove the following

Theorem 1 Assume that the block-partitioned matrix A of (2) is such that all
diagonal submatrices Ai,i are square and non-singular, 1 ≤ i ≤ p, and B of (4)
is a weakly cyclic of index p block matrix. If ω 6= 0, 2, if λ 6= 1 is an eigenvalue
of Bω, and if µ satisfies

(1 − λ)p = (1 − λω)p−2[1 − λω(2 − ω)]µp, (8)

then µ is an eigenvalue of the block Jacobi matrix B. Conversely, if µ is an
eigenvalue of B and if λ̂ 6= 1 satisfies (8), then λ̂ is an eigenvalue of Bω.

If ν is an eigenvalue of Dτ,ω, then because of (6) we have

ν = 1 − τλ. (9)

Expressing (8) in terms of ν, yields

(ν + τ − 1)p = τ(τ − ω + ων)p−2[τ − ω(2 − ω)(1 − ν)]µp. (10)

The above functional equation relates the eigenvalues of Dτ,ω and those of the
block Jacobi matrix B. The paper is organized as follows. In Section 3 we derive
sufficient and necessary conditions for PSD to converge under the assumption
that the eigenvalues of the Jacobi iteration matrix are either all real or all imag-
inary. Under the same assumptions we find the optimum values of the involved
parameters in Section 4. In Section 5 we compare PSD with SSOR. Our nu-
merical results are presented in Section 6. Finally, we discuss our conclusions in
Section 5.
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Final remarks and Conclusions

In this paper we studied the rate of convergence of the iterative methods PSD,
SSOR and PJ under the assumptions that the coefficient matrix A is two-cyclic
and the Jacobi iteration matrix B possesses either real or imaginary eigenvalues.
Applying the results of [6], [7] we were able to find sufficient and necessary
conditions for the aforementioned iterative schemes to converge. Additionally, we
determine the optimum values of the parameters involved such that the methods
attain their optimum rate of convergence. The conclusions from our analysis are:
(i) PSD attains a faster rate of convergence than SSOR and PJ methods and
(ii) the rate of convergence of the PSD method is similar to the Extrapolated
Gauss-Seidel method if B possesses real eigenvalues and is equal to the ESOR
one if B possesses imaginary eigenvalues.
The problem of using complex parameters τ, ω with σ(B) belonging to a compact
subset Σ of the complex plane C is open for the PSD method. This problem
has been solved recently in [3] for the SOR method under the assumption that
Σ is symmetric with respect to the origin. SSOR shares the same functional
eigenvalue relationship with SOR, where now instead of ω we have ω̂ = ω(2 −
ω), hence the theory in [3] applies to SSOR also. Since PSD is a first order
extrapolation scheme of SSOR it follows that a similar theory will also hold. It is
therefore conjectured that in case the outer boundary of Σ is not an ellipse, then
Semi-Iterative PSD will be better than simple PSD and the optimum value of ω
will be unity. Alternatively, if the outer boundary of Σ is an ellipse, symmetric
with respect to the origin, then it is conjectured that PSD, as SOR (and SSOR)
[3], will attain its maximum convergence for complex optimum ω, τ .
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Abstract. Several methods have been proposed to solve systems of non-
linear equations. Among them, Newton’s method holds a prominent posi-
tion. Recently, we have proposed a Newton’s method to manage problems
with inaccurate function values or problems with high computational
cost. Due to the existence of many such problems in real-life applications
and the promising results of the above method, we remain in this goal
and introduce a new improved version of it. For this reason, we alter
the above method such that, on one hand, to accelerate it and more-
over to reduce its computational cost, by requiring even less information
per iteration and, on the other hand, holding its important advantages.
These are its quadratic convergence, its good behavior in singular and ill-
conditioned cases of Jacobian matrix and, of course, its capability to be
ideal for imprecise function problems. The efficiency of the new method
is demonstrated by numerical applications.

Introduction

We consider nonlinear systems of equations

F (x) = 0 (1)

where F : D ⊂ IRn →IRn is continuously differentiable on an open neighborhood
D∗ ⊂ D of a solution x∗ = (x∗1, . . . , x

∗
n) ∈ D of the system (1). We denote F =

(f1, . . . , fn) and by F ′(x) the Jacobian matrix of F for all x = (x1, . . . , xn) ∈ IRn.
Newton’s method is the most widely used algorithm for solving systems of

nonlinear equations [3, 8, 9], given by:

xp+1 = xp − F ′(xp)−1F (xp), p = 0, 1, . . . . (2)

where xp = (xp1, x
p
2, . . . , x

p
n) is the current approximation and xp+1 is the next

approximation.
In Newton’s method and its variants a main drawback is the computational

cost due to the function and derivative evaluations. On the other hand, there are

? Corresponding author: e-mail: grapsa@math.upatras.gr, Phone: +30 2610 997332,
Fax: +30 2610 992965
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many cases where exact function or derivative values are not available. So, it is
important to find methods, which are free of function or derivative evaluations,
in order to reduce the total computational cost or to work out problems with im-
precise function or derivative values. There are several methods in bibliography,
which are derivative free [2, 3]. However, we have detected only one method free
of function values, but it is only for polynomial equations [1] and furthermore
there are some other methods ideal for problems with imprecise function values
[6, 7, 11].

We have recently proposed a method in [4] to make Newton’s method ideal
when accurate function values are not available or their computational cost is
high. Thus, in [4] the function values in Newton’s method are not directly evalu-
ated from the corresponding functions fi, i = 1, 2, . . . , n, but they issue by some
appropriate approximated expressions of them. To succeed it, we have taken ad-
vantage of the proper selected pivot points xp,ipivot = (xp1, x

p
2, . . . , x

p
n−1, x

p,i
n ), i =

0, 1, 2, . . . , n, p = 0, 1, . . ., which we have already defined in [4, 5], where ran-
domly we have selected to differ from the current point xp at the n−th compo-
nent, and which are extracted via a sign-function-based technique [4–7, 10, 11].
The iterative form of this method, named WFEN (Without Function Evaluations
Newton) method, has been given by

xp+1 = xp − F ′(xp)−1∂nfi(x
p,i
pivot)(x

p
n − xp,in ), i = 1, 2, . . . , n, p = 0, 1, . . . . (3)

In this paper, due to the contribution of the above method we reissue to
improve it, in the sense of reducing its computational cost and accelerating it.
Thus, a new Newton method is proposed, also without requiring the explicit
evaluation of functions and so that to be applicable to imprecise problems. The
key point is to define new quantities to approximate function values in Newton’s
method with even less cost than the corresponding one in the previous work [4],
given by the relation (3). Working in a similar way, as in [4], using proper Taylor’s
series and utilizing the proposed pivot points, we produce the new method,
named IWFEN (Improved Without Function Evaluations Newton) method, given
by:

xp+1 = xp − F ′(xp)−1∂nfi(x
p)(xpn − xp,in ), i = 1, 2, . . . , n, p = 0, 1, . . . . (4)

Note 1. Comparing the schemes (3) and (4), it is easy to notice that in (4) we
need n less partial derivatives evaluations per iteration contrary to (3), because
the ∂nfi(x

p), i = 1, 2, . . . , n, p = 0, 1, . . . have already been evaluated in the
Jacobian matrix F ′(xp). Moreover, it is important to point out that the new
method, while it works well for imprecise problems, it also works well even in
singular cases or in cases of an ill-conditioned Jacobian matrix.

From another point of view, we consider the mapping L = (l1, l2, . . . , ln)
T :

D ⊂ IRn → IRn, by

li(x) = (xpn − xp,in )∂nfi(x
p) +

n∑

j=1

(xj − xpj )∂jfi(x
p), i = 1, 2, . . . , n, p = 0, 1, . . . .(5)
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It may be proven, that li(x
p) = ∂nfi(x

p)(xpn − xp,in ), i = 1, 2, . . . , n, p = 1, 2, . . .
and since L′(x) = F ′(x) we have that L′(xp) = F ′(xp), p = 1, 2, . . . . Hence, ap-
plying Newton’s method to the approximated system li(x) = 0, our new method
may also be written in the form

xp+1 = xp − L′(xp)−1L(xp), p = 0, 1, . . . . (6)

According to the scheme (6), the new proposed method is a new Newton method
on the function L and therefore, its quadratic convergence is evident.

Numerical Applications

We apply the proposed method to random problems, given in [4, 7], with nonsin-
gular, singular and ill-conditioned Jacobian matrices. The algorithms have been
implemented, using two FORTRAN programs: a program named WFEN for the
scheme (3), which has been proposed in [4] and a new program named IWFEN
for our new iterative scheme, given by (4).

The numerical results are quite satisfactory and the new method is similar
or superior to Newton’s one.

In Tables 1,2,3 we present the results obtained by Newton’s method and the
Schemes (3) and (4), with accuracy ε = 10−14, for three examples, given in [4].
The ‘IT’ indicates the number of the iterations, ‘FE’ the number of the function
evaluations (including derivatives), the ‘AS’ the total number of algebraic signs
for the computation of the n−th component, xp,in , of the pivot points xp,ipivot,
i = 1, 2, . . . , n, p = 0, 1, . . . and ‘ri’ the root to which each method converges.

Table 1. Comparison between WFEN, IWFEN and Newton’s method for Example 1

Newton WFEN IWFEN

x0
1 x0

2 x0
3 IT FE ri IT FE AS ri IT FE AS ri

0.4 0.5 0.5 53 636 r2 20 240 600 r2 20 180 600 r2
-4 -2 1 33 396 r2 33 396 990 r2 33 297 990 r2
-2 2 2 32 384 r2 32 384 960 r2 32 288 960 r2

Table 2. Comparison between WFEN, IWFEN and Newton’s method for Example 2

Newton WFEN IWFEN

x0
1 x

0
2 x

0
3 IT FE IT FE AS IT FE AS

2 2 15 387 4644 119 1428 3570 16 144 480
3 3 3 122 1464 19 228 570 19 171 570
3 3 15 612 7344 42 504 1260 18 162 540

Note 2. In examples 1 and 3, the number of iterations of the methods (3) and
(4) is identical. This is because of the fact that the ∂nfi, i = 1, 2, . . . , n are
independent from the xn component and thus ∂nfi(x

p) ≡ ∂nfi(x
p,i
pivot), i =

1, 2, . . . , n, p = 0, 1, . . ., hence the methods, given by (3) and (4) are identical,
but the new method cost less (n less partial derivatives evaluations per iteration).
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Table 3. Comparison between WFEN, IWFEN and Newton’s method for Example 3

Newton WFEN IWFEN

x0
1 x

0
2 x

0
3 x

0
4 x

0
5 IT FE ri IT FE AS ri IT FE AS ri

-8 -3 4 2 1.5 85 2550 r3 8 240 400 r3 8 200 400 r3
-4 -4 4 2 1.5 80 2400 r3 10 300 500 r3 10 250 500 r3
10 3 4 2 1.5 83 2490 r3 12 360 600 r3 12 300 600 r3
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Abstract. Traditionally, backward error analysis for Gaussian Elimina-
tion (GE), on a matrix A = (a

(1)
ij ) is expressed in terms of the growth

factor

g(n,A) =
maxi,j,k |a

(k)
ij |

maxi,j |a
(1)
ij |

,

which involves all the elements a
(k)
ij , k = 1, 2, . . . , n, that occur during

the elimination. Matrices with the property that no row and column
exchanges are needed during GE with complete pivoting are called com-
pletely pivoted (CP) or feasible. In other words, at each step of the elim-
ination the element of largest magnitude (the “pivot”) is located at the
top left position of every appearing submatrix during the process. For a
CP matrix A we have

g(n,A) =
max{p1, p2, . . . , pn}

|a
(1)
11 |

,

where p1, p2, . . . , pn are the pivots of A.
In 1968 Cryer conjectured that “g(n,A) ≤ n, with equality iff A is
a Hadamard matrix”. In 1991 Gould discovered a 13 × 13 matrix for
which the growth factor is 13.0205. Thus the first part of the conjec-
ture was shown to be false. The second part of the conjecture concerning
the growth factor of Hadamard matrices still remains open. Interesting
problems remain, such as determining limn→∞ g(n)/n and evaluating
g(n,A) for Hadamard matrices. The approach of the growth problem
for Hadamard matrices, and for orthogonal matrices in general, from a
statistical point of view is also under investigation.
In this talk we will present the overall progress that has been done on
the growth problem for Hadamard matrices. Also we take a small step
towards proving the Hadamard part of Cryer’s conjecture by demostrat-
ing all 34 possible pivot patterns for a Hadamard matrix of order 16. The
peculiarity of this problem lies in the fact that H-equivalent operations
do not preserve pivots, i.e. the pivot pattern is not invariant of the H-
equivalency. So, H-equivalent matrices do not have necessarily the same
pivot pattern. Although Hadamard matrix problems might sound tanta-
lizingly easy, they are non-trivial, because e.g. for the case of proving the
pivot structures for H16, a naive computer exhaustive search performing
all posible H-equivalence operations would require (16!)4 ≈ 1053 trials
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Abstract. We consider the L2 conservative, symmetric coupled KdV
system of Boussinesq equations

ηt + ux + 1
2
(ηu)x + 1

6
uxxx = 0

ut + ηx + 1
2
ηηx + 3

2
uux + 1

6
ηxxx = 0.

(1)

This system describes the bidirectional propagation of small-amplitude
long waves on the surface of water in a channel, when the surface ten-
sion is omitted. In this work we mainly describe traveling wave solu-
tions of the above system. Some solutions appear to be homoclinic to
small oscillatory profiles, i.e. symmetric, non-localized solitary waves
with identical oscillatory tails on both sides of the central core; these
are usually referred as nanopterons or generalized solitary waves. Us-
ing a stable and efficient fully discrete numerical method based on a
standard Galerkin/finite element method combined with the two stage
Gauss-Legendre implicit Runge-Kutta scheme, we study solutions of the
initial-periodic boundary value problem for the system (1), the gener-
ation of radiating waves and the interactions between generalized soli-
tary waves. Finally we present an optimal-order error estimate for the
semidiscrete finite element scheme.

? Expanded version of a talk presented at the Conference in Numerical Analysis 2007
(NumAn 2007) Recent Approaches to Numerical Analysis: Theory, Methods and
Applications September 3-7, 2007 – Kalamata, Greece.
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Introduction

Consider the computation of solutions to 2nd order ODEs of the form:

y
′′ − b|y′ |q−1y

′

+ |y|p−1y = 0, t > 0, y(0) = y1,0, y
′

(0) = y2,0. (1)

For p, q > 1 this model describes the motion of a membrane element linked to
a spring. The non-linear term in y is related to the rigidiy of the spring and
that in y′ models a “speed-up” of the phenomenon when b > 0 and a “slow-
down” when b < 0. In this last case, the IVP is dissipative and the existence
of the solution is global on [0,∞) ([1], [2]). Computationally, such case is not
difficult to handle. However, when b > 0, the existence domain of the solution
is finite, with the existence of a finite “blow-up time” Tb > 0, at which y(t)
and y′(t) “explode”, i.e. limt→Tb

|y(t)| = limt→Tb
|y′(t)| = ∞. Such situation can

exhibit two types of explosive Oscillatory and Non-Oscillatory behaviors. For the

case when b = 1, Souplet ([3], [4], [5]) considered the equation y
′′

+ |y|p−1y =
|y′ |q−1y

′

, t ≥ 0, ∀ p, q > 1. They proved the existence of 2 critical values q = p
and q = 2p

p+1 in the plane (p, q) with three distinct behaviors of the solution to

(1): (1) q ≥ p, explosion in a finite time, (2) 2p
p+1 < q < p, non-oscillatory finite

time blow-up. (3) 1 < q ≤ 2p
p+1 , oscillatory finite time blow-up. In [6], Balabane,

Jazar and Souplet have also studied the critical case where q = 2p
p+1 , p > 1, with

b a positive number. In this work, we present a robust algorithm to efficiently
compute the solutions to these singular problems, based on the idea of “sliced-
time” computations introduced in [7]. Basic elements of this method are given
in the simple case of the next section.

Rescaling for a case study: y
′′

= yp, p > 1

Consider the initial value problem:

y
′′

= yp, t > 0, p > 1, (2)

with the initial conditions of (1), (2) can be reduced to a first order initial

value problem: y
′

= F (y) =

√
yp+1(t)
p+1 +

y2
2,0

2 − yp+1
1,0

p+1 , t > 0, y(0) = y1,0 ≥ 0.
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As F (y) = O(y
p+1
2 ), one easily shows that this problem has a finite time blow-

up Tb, such that limt→Tb
y(t) = +∞. Re-scaling techniques start by selecting

a coarse grid that would subdivide the time interval [0, T ] of integration of
the differential equation (2). Since the problem under study has a finite-time
existence domain [0, Tb), where a-priori Tb is unknown, we seek a subdivision of
[0, Tb) into an infinite number of subintervals (slices):

[0, Tb) = ∪∞
n=1[Tn−1, Tn), lim

n→∞
Tn = Tb and lim

n→∞
(Tn − Tn−1) = 0. (3)

Letting y1,n = y(Tn), and y2,n = y′(Tn), then on the nth slice [Tn−1, Tn], we
introduce the change of variables:

t = Tn−1 + βns, y(t) = y1,n−1(1 + z1,n(s)), y
′(t) = y2,n−1(1 + z2,n(s)). (4)

The parameter βn is selected on the basis of allowing the rescaled systems to
become “similar” on all the slices. For simplicity of notations, we shall use
z1 = z1,n and z2 = z2,n and find out that z1 verifies:

d2z1
ds2

= β2
ny

p−1
1,n−1(1 + z1)

p, s > 0, z1(0) = 0, z
′

1(0) = βn
y2,n−1

y1,n−1
. (5)

By selecting βn = 1
(y1,n−1)(p−1)/2 , (5) becomes

d2z1
ds2

= (1 + z1)
p, s > 0, z1(0) = 0 ≥ 0, z

′

1(0) = ωn =
y2,n−1

(y1,n−1)(p+1)/2
.

At that point, an additional constraint is needed: the end of slice condi-
tion. It allows determining the size of the slice Tn−Tn−1 = βnsn. In this case, it
is based on the observation that y(Tn) = y1,n = y1,n−1(1 + z(sn)) > y(Tn−1) =
y1,n−1. Hence, the condition z1(sn) = S, where S is a “cutoff” value that “stops”
the growth of y(t) on [Tn−1, Tn] (and z(s) on [0, sn]). Such restriction leads to:
y(Tn) = y1,n = y1,n−1(1+S) = y1,0(1+S)n, βn = 1

(1+S)(n−1)(p−1)/2 and the com-

putation of (2) reduces into solving a sequence of “shooting problems”, whereby
on the nth slice, one computes an initial value problem with a stopping criterion:

d2z1
ds2

= (1 + z1)
p, 0 < s ≤ sn, z1(0) = 0, z

′

1(0) = ωn, z1(sn) = S (6)

Note that in such problem, the initial and end values of z1(s) are preset to
0 and S respectively, while z′1(0) varies with n. One proves that the sequence
of problems (6) are “similar”, in the sense that, there exists constants c0, c1,
d0, d1 such that: ∀n, c0 ≤ ωn ≤ c1, ∀n, d0 ≤ sn ≤ d1. As a consequence the
sequence {Tn} associated with the similar problems (6) verifies: limn→∞ βn = 0,

limn→∞ Tn = Tb, and d0g(S) ≤ Tb ≤ d1g(S), where g(S) = (1+S)(p−1)/2

(1+S)(p−1)/2−1
.

Numerically, we deal with (6) by changing it into a first order system of equations
through the introduction of the variable z2(s), given by:
y′(t) = y2,n−1(1 + z2(s)). This yields with z1(0) = z2(0) = 0, z1(sn) = S :

dz1
ds

= ωn(1 + z2),
dz2
ds

=
1

ωn
(1 + z1)

p, 0 < s ≤ sn. (7)
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A numerical solver on the nth slice, n ≤ n0

Since βn ∼= Tn−Tn−1

T1
, note that for a given computational tolerance of εTol, the

total number of slices n0, on which we solve (7) is reached when βn0 ≤ εTol <
βn0−1. Since rescaling provides similar models on all the slices, a first advantage
consists in implementing a scheme that uses a uniform mesh for numerical inte-
gration on each nth slice 1 ≤ n ≤ n0. Specifically, let us first rewrite (7) in the
form:

dz

ds
= gn(z), 0 < s ≤ sn, z(0) = 0, z1(sn) = S. (8)

We have chosen the standard 4th order explicit Runge-Kutta method with mesh
size τ . On the nth slice, the method would yield: {Zc,k ∼= z(sk)}, sk = kτ |Zc1(sk)| ≤
S, ∀k ≤ l. To reach the stopping criterion of (8), an adaptative procedure is
adopted whereby the final time interval [sl−1, sl] is iteratively modified until

Zc,l1
∼= S. The computed sn, is such that scn = sl. The mesh size τ , is found on

the basis of solving (8) for n = 1 using the Runge-Kutta scheme for the given
computational tolerance εTol. One starts with τ1 = 1

2 and refines until achieving
a value τ0 that fulfills the computational tolerance εTol.

Results of Numerical Tests on y
′′

= (y)p, p > 1, y(0) = 1 and

y′(0) =
√

2

p+1
.

In such case, the blow-up time is given by: Tb =
∫ ∞

0
dy

q

2
p+1 (1+y)p+1

=

√
2 (p+1)

p−1 .

The following table gives the blow-up time Tb of the solution when y(0) = 1,

y′(0) =
√

2
p+1 , p = 5, precision = 1

210−09 (T exactb = 8.660254037844386e− 001).

Cutoff Value Number of Slices Computed Tb Relative Error

1 17 8.660254109836718e-001 8.312958463015252e-009

3 9 8.660256537609148e-001 2.886479716334406e-007

10 6 8.660390890898021e-001 1.580242947111533e-005

Case of y
′′

− b|y′|q−1y′ + |y|p−1y = 0, q = 2p

p+1

On the basis of the subdivision (3) and the change of variables (4), one finds for
(1), the equivalent form to (5):

d2z1
ds2

= bβ2−q
n |y1,n−1|q−1|z′1|q−1z′1 − β2

n|y1,n−1|p−1|1 + z1|p−1(1 + z1), s > 0 (9)

z1(0) = 0, z
′

1(0) = βn
y2,n−1

y1,n−1
. To make these slices similar, one needs to have

the coefficients ωn = βn
y2,n−1

y1,n−1
, γ1,n = β2

n|y1,n−1|p−1, γ2,n = β2−q
n |y1,n−1|q−1,

uniformly bounded, independently from n. By selecting γ1,n = 1, we prove a
similarity result when q = 2p

p+1 , specifically: βn = 1
|y1,n−1|(p−1)/2 and in case of

blow-up limn→∞ βn = 0, γ2,n = 1 and if the blow-up is non-oscillatory (b ≥
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b1(p) = (p + 1)( p+1
2p )

p
p+1 ), then ωn has a constant sign and there exist positive

constants c1 and c2 independent from n such that for large n, c1 ≤ ωn ≤ c2.
If the blow-up is oscillatory (b < b1(p) = (p+1)( p+1

2p )
p

p+1 ), then ωn changes sign
and for large n, ωn ≤ c3, where c3 is independent from n.
As for the computational approach, we transform (9) into a first-order system,
by fixing a cutoff value S that would determine the slice size Tn−Tn−1 = βnsn.
Specifically one computes the Initial value shooting problem:

dz1
ds

= ωn(1+z2), 0 < s ≤ sn,
dz2
ds

= b|ωn|q−1|1+z2|q−1(1+z2)−
1

ωn
|1+z1|p−1(1+z1),

with z1(0) = 0 ≥ 0, z2(0) = 0, |z1(sn)| = S. The sequences {y1,n}, {y2,n}, and
{Tn} verify:

y1,n = y1,n−1[1 + z1(sn)], y2,n = y2,n−1[1 + z2(sn)], Tn = Tn−1 + β(n)sn.

The choice of the cutoff value S is based on the facts that if the blow-up is non-
oscillatory, then for n ≥ n0, |y1,n| = |y1,n−1|(1+S). Otherwise, if the blow-up is
oscillatory, then for ∀n, |y1,n−1|(S − 1) ≤ |y1,n| ≤ |y1,n−1|(1 + S). As a result, if
the blow-up is oscillatory, then a sufficient condition for the choice of S is S > 2.
Results of Numerical Tests for y

′′

= −|y|p−1y+|y′|q−1y
′

, q = 2p
p+1 = 1.2592,

y(0) = 1, y
′

(0) = 1, b = 1.5, q = 2p
p+1 p = 1.7, εTol = 1

210−006, τ0 = 7.8125e−003

Cutoff S Computed Tb Number of Slices

2 4.741936108013850 49
3 4.741940732163934 37
5 4.741941541394696 27
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Abstract. We are concerned with the study of spectral properties of
the sequence of matrices {An(a)} coming from the discretization, using
centered finite differences of minimal order, of elliptic (or semielliptic)
differential operators L(a, u) of the form



− d
dx

`

a(x) d
dx
u(x)

´

= f(x) on Ω = (0, 1)
Dirichlet B.C. on ∂Ω

where the nonnegative, bounded coefficient function a(x) of the differen-
tial operator may have some isolated zeros in Ω̄ = Ω∪∂Ω. More precisely,
we state and prove the explicit form of the inverse of {An(a)} and some
asymptotic behavior of the minimal eigenvalue (condition number) of the
related matrices. As a conclusion, and in connection with our theoretical
findings, first we extend the analysis to higher order (semi-elliptic) dif-
ferential operators, and then we present various numerical experiments,
showing that similar results must hold true in 2D as well.
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Abstract. Linear differential systems ẋ(t) = Ax(t), A ∈ R
n×n, whose

solutions become and remain nonnegative are studied. The corresponding
matrices possess the Perron-Frobenius property and are associated to
eventually nonnegative matrices, namely, matrices whose powers become
and remain nonnegative. Initial conditions that result in nonnegative
states are shown to form a convex cone that is related to the matrix
exponential etA and its eventual nonnegativity.
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Abstract. We discuss the numerical integration of polynomials times
exponential weighting functions arising from multiscale finite element
computations. The new rules are more accurate than standard quadra-
tures and are better suited to existing codes than formulas computed by
symbolic integration. We test our approach in a multiscale finite element
method for the 2D reaction-diffusion equation.

Standard finite elements usually fail to accurately solve equations with multi-
scale behavior. This can happen if coefficients are oscillatory or if a small param-
eter multiplies some of the terms in the equation. A strategy to overcome these
difficulties is to use special spaces instead of the space of piecewise polynomial
functions [1, 2]. However, for polynomial basis functions, standard quadratures
are exact and this is not the case for more complicated spaces. We investigate
quadratures to integrate elementwise products of polynomials and exponential
basis functions. Such integrals appear when developing enriched methods for
reaction-advection-diffusion equations [2], but also in other contexts [3]. Quadra-
ture formulas are simpler to implement into existing finite element codes than
results of symbolic integrations.

We define an N -point weighted quadrature in [a, b] with weighting function
w by a set of integration weights Al and integration points xl ∈ [a, b] such that

∫ b

a

q(x)w(x) dx ≈
N∑

j=1

Alq(xl) (1)

for a given function q. The Newton-Cotes rule, one of the simplest quadratures
of degree of precision n, is defined by choosing xl = a+ (l − 1)(b− a)/n and

Al =

∫ b

a

n+1∏

i=1
i6=l

(x− xi)

(xl − xi)
w(x) dx, l = 1, . . . , n+ 1 . (2)

The Gaussian quadrature uses integration weights defined as in (2), but the
integration points are the roots of the n-th degree polynomial p satisfying

∫ b

a

p(x)q(x)w(x) dx = 0 ∀ q of degree ≤ n . (3)
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The Gaussian quadrature has the optimal degree of precision 2n− 1. However,
Gaussian quadratures may not be the best choice when performing weighted
integrals in finite element codes, since the quadrature points may change from
element to element. Newton-Cotes rules are sub-optimal, but allow one to fix
the quadrature points and re-calculate only the quadrature weights.

We employ one-dimensional quadratures to approximate weighted integrals
over quadrilateral regions. Using isoparametric maps, such integrals can be trans-
formed into integrals in the reference square [−1, 1]2. Assuming that w(x, y) =
wx(x)wy(y) and that f(x, y) is a polynomial function of degree at most 2N − 1
in both x and y, we have that

∫ 1

−1

∫ 1

−1

f(x, y)w(x, y) dxdy =
N∑

j=1

N∑

k=1

AxjA
y
kf(xj , yk) , (4)

where xl and Axl are the integration points and weights for the 1D Gaussian
quadrature with respect to wx (similarly for y). The above rule is referred to as a

product rule. For instance, let φ̂1(x) = (1−x)/2 and wx(x) = exp[−ax(1−φ̂1(x))],
ax > 0. The integration weights Axj for the nine-point Newton-Cotes rule with

x1 = y1 = −1/3, x2 = y2 = 0, x3 = y3 = 1/3 , (5)

are found by replacing (5) and w(x) = exp[−ax(1−φ̂1(x))] into (2). In particular,

Ax3 = 6
12− ax(5 − ax) − (12 + ax(7 + 2ax))e

−ax

a3
x

.

Replacing ax by ay in the equations above yields the definition of Ayj . The
Gaussian rule with similar degree of precision has two points in either direction
(a total of four points); the orthogonal polynomial that generates the integration
points associated to the weight function wx(x) is

p2(t) = 8 + a2 − 8at+ a2t2 − 2a
a(8 + a2 − 2at) − 2(4 − at) sinh(a)

2 + a2 − 2 cosh(a)
.

For the sake of illustration, we plot the point locations as we vary ay, keeping
ax = 10. We choose w(x, y) = wx(x)wy(y). We plot in Fig. 1 the Gaussian points
for ay = 1, 10, 100. We also plot the points of the Newton–Cotes quadrature,
which do not depend neither on ax, nor on ay.

Quadratures in Triangular Regions

Optimal quadratures for triangles rely on two-dimensional orthogonal polyno-
mials or on the solution of non-linear systems [4]. Similarly to quadrilaterals,
integrals in arbitrary triangles can be transformed into integrals in the triangle
with vertices (0, 0), (0, 1) and (1, 0). However, the limits of integration in

Iw(f) :=

∫ 1

0

∫ 1−x

0

f(x, y)w(x, y) dydx, w(x, y) = wx(x)wy(y) . (6)
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Fig. 1. Gaussian points with ax = 10. Diamonds correspond to ay = 1, crosses to
ay = 10, and squares to ay = 100. The fixed circles correspond to Newton–Cotes.

prevent the direct use of product rules. We consider next integrals of the form
(6) with w(x, y) = e−ax−by, where a and b are postive numbers.

Let us start with a three-point Newton–Cotes Rule. Each integration weight
Ak can be found by integrating the Lagrange interpolation polynomial associated
to the point pk = (xk , yk) as in (2). Given the points p1 = (1/2, 1/2), p2 =
(0, 1/2), and p3 = (1/2, 0), we have Ak = bk/(a

2(a− b)b2), where

b1 = e−a(2 + a)b2 − a2(2 + b)e−b − (a(b− 2) − 2b)(a− b),

b2 = (a− 2)(a− b)2 + (2 + b− a)a2e−b − (a2 − a(b− 4) − 2b)be−a,

b3 = (b− 2)(b− a)2 + (2 + a− b)b2e−a − (b2 − b(a− 4) − 2a)ae−b .

The Gaussian quadrature of degree of precision one easily follows from the equa-
tion Iw(f) = A1f(x1, y1). Making f = 1 yields A1 = Iw(1); x1 and y1 follow
from choosing f = x and f = y, i.e., x1 = Iw(x)/A1, and y1 = Iw(y)/A1. If
w(x, y) = e−ax−by, then A1 = [b(1 − e−a) − a(1 − e−b)]/[a(b− a)b], while

x1 = [(a− b)2 + b((a− b)(1 + a) + a)e−a − a2e−b]/[a2(b− a)2bA1],

y1 = [(a− b)2 − a((a− b)(1 + b) − b)e−b − b2e−a]/[a(b− a)2b2A1] .

Application: a Multiscale Finite Element

Let us consider the linear reaction-diffusion problem

−ε∆u+ σ u = f in Ω ⊂ IR2, u = 0 on ∂Ω , (7)

where σ, ε > 0. To approximate (7), we discretize Ω by a conforming and regular
partition using triangular elements K and select the finite dimensional subspace
Vh(Ω) ⊂ H1

0 (Ω) of piecewise linear polynomials. We seek uh ∈ Vh(Ω) such that

ε

∫

Ω

∇uh · ∇vh dx + σ

∫

Ω

uh vh dx =

∫

Ω

f vh dx ∀vh ∈ Vh(Ω) . (8)
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The classical Galerkin method just described is inadequate if ε� σh2
K , where hK

denotes the characteristic length of element K. The method lacks stability, and
non-physical oscillations appear in the numerical solution. Such issue is treated
in [2] by enriching the trial space Vh(Ω) with multi-scale functions λ(x) =
sinh(αK ψ(x))/ sinh(αK), where αK ∼ hK(σ/ε)1/2 is the Peclet number, and
ψ(x) are piecewise linear shape functions. Thus we need to accurately compute

∫

K

λ(x)ψ(x) dx,

∫

K

∇λ(x)∇ψ(x) dx .

The above integrals can be written in the form presented in the previous section.
Let the domain Ω be the unit square, which we discretize by a non-uniform

mesh of 400 elements. We impose the boundary conditions u(x, 0) = u(0, y) = 0
and u(x, 1) = u(1, y) = 1. We set σ = 1, f = 0, and ε = 10−6. The three-
point Newton-Cotes rule allows us to conserve all desirable properties of the
multi-scale method unlike the classical one-point Gauss, which leads to a loss of
accuracy similar to the one observed through the Galerkin method (Fig. 2).

Fig. 2. Solutions by the new exponential-adaptative integration formula (left) and
standard (non-weighted) one-point Gauss integration (right).
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Abstract. In this paper we study the Ox−asymmetric solutions of the
planar photogravitational restricted three-body problem in the case of
primaries with equal masses (1 − µ = µ = 0.5) and equal values of the
radiation pressure parameters (q1 = q2 = q). In particular, we concern
with the families of asymmetric orbits which bifurcate from the well
known families a, b, and c. Their evolution is examined via the numerical
construction of series of the critical bifurcation points of a, b, and c
with respect to the variation of the radiation parameter q, in the range
between the classical gravitation case q = 1 and the critical case q∗ = 1/8
when the triangular equilibrium points coincide with the inner collinear
point [4].

Key Words: Asymmetric orbit, critical orbit, Levi-Civita regularization, numerical

integration, periodic orbit, radiation pressure, three-body problem.

Introduction

We have adopted the usual dimensionless rectangular rotating coordinate system
in which the equations expressing the motion of the test particle are given by :

ẍ− 2ẏ = x− q1(1 − µ)

r31
(x + µ) − q2µ

r32
(x+ µ− 1),

ÿ + 2ẋ = y

(
1 − q1(1 − µ)

r31
− q2µ

r32

)
,

(1)

where,
r1 =

√
(x + µ)2 + y2, r2 =

√
(x+ µ− 1)2 + y2.

For details see [6]. The Jacobian integral of this motion is given by the expression

C = x2 + y2 + 2

(
q1(1 − µ)

r1
+
q2µ

r2

)
− (ẋ2 + ẏ2). (2)
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For the determination of the series of critical orbits we have used the method
that has been developed by Hénon [1, 2]. Whenever we had to face orbits which
went through the close vicinity of the singularities of the problem, we regularized
the equations of motion by applying the transformations of Levi-Civita [3].

Numerical Results and Comments

In our case study, the evolution of the family a is similar to that of b due to the
symmetry with respect to Oy, so, in what follows, we will just refer to family
b. In the case q = 1, each of the families a, and b contains exactly one critical
orbit for which ah = 1 and bh = 0. In Table 1 and the left part of Figure 1 we
present the evolution of the bifurcation point of b. Here we note by x0 and x1

Fig. 1. Left: The evolution of the critical periodic orbit of the family b as the radiation
factor varies : (1) q = 1, (2) q = 0.409, (3) q = 0.32355, and (4) q = 0.397547. Right:
The corresponding evolution of the original critical periodic orbit of the family c : (1)
q = 1, (2) q = 0.4, and (3) q = 0.15. Small circles indicate the positions of L4 and L5.
The small triangle (right frame) indicates the common position of L1, L4 and L5 when
q = q∗.

the x−coordinates of the intersections of the Ox−axis with the members of the
series of critical orbits at t = 0 and t = T/2. In Figure 1, the orbit named by
(1) represents the period−1 critical orbit of b when q = 1. The orbit (2) is the
bifurcation point of b for q = 0.409 and it is still a solution of period 1. The
solution indicated by (3) is a period−2 critical solution when q = 0.32355. For
q = 0.397547 we have the solution (4) which is the termination periodic orbit of
the series and coincides to a member of the family h. For any value of q in the
range from 1 to 0.397547, the families a and b continue to contain exactly one
critical solution (ah = 1 and bh = 0).

In the case q = 1, the family c also contains exactly one critical orbit for which
ah = 1 and bh = 0. This original critical orbit continues to exist until q = q∗. Its
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Table 1. Series, with respect to the radiation parameter q, of critical periodic orbits
(ah = 1, bh = 0) of the family b.

q x0 x1 T/2 C

1.0 -1.71555788 -0.54973450 2.89508541 2.02078683
0.9 -1.65423664 -0.54116423 2.87621884 1.84732407
0.8 -1.58742265 -0.53220019 2.85434619 1.66660773
0.7 -1.51363274 -0.52289059 2.82862262 1.47708066
0.6 -1.43055580 -0.51344303 2.79786439 1.27633591
0.5 -1.33410663 -0.50462341 2.76045357 1.06002398
0.4 -1.21467874 -0.50008147 2.71481830 0.81699447
0.323493 -1.05121053 -0.54532783 2.68181192 0.53617102
0.397547 -0.85286119 -0.85286119 2.70576395 0.48489815

evolution with respect to q is presented in the right part of Figure 1 and the left
part of Table 2. The corresponding series consists of period−1 symmetric orbits
whose size gradually decreases until, finally, this series terminates on L1. The

Table 2. Two series, with respect to the radiation parameter q, of critical periodic
orbits (ah = 1, bh = 0) of the family c.

q x0(= −x1) T/2 C q x0(= −x1) T/2 C

1.0 -0.26244069 2.63087648 2.37166911 0.955 -0.33179341 6.16472801 2.72677099
0.9 -0.25540454 2.63030912 2.21393119 0.9 -0.31577097 6.12020973 2.60447449
0.8 -0.24761727 2.63209761 2.04817200 0.8 -0.29198680 6.04754239 2.38018634
0.7 -0.23882563 2.63729051 1.87301444 0.7 -0.27110771 5.98210494 2.14973073
0.6 -0.22861934 2.64761066 1.68660412 0.6 -0.25108033 5.92423804 1.91023469
0.5 -0.21627271 2.66609874 1.48633231 0.5 -0.23045895 5.87799828 1.65873290
0.4 -0.20033150 2.69868437 1.26830458 0.4 -0.20741814 5.85443733 1.39127733
0.3 -0.17725424 2.75881792 1.02618644 0.3 -0.17827074 5.88550058 1.10173368
0.2 -0.13456609 2.88646856 0.74814705 0.2 -0.13115529 6.10260555 0.77889489
1/8 0.0 3.14159265 0.5 1/8 -0.03701696 7.03027714 0.50039431

afore mentioned series of critical solutions of family c is not unique. For values
of the parameter q less than 0.955 this family contains more critical orbits.
For these values of q, the family c starts from the collinear equilibrium point
L1 and terminates on a homoclinic asymptotic solution which intersects the x-
axis perpendicularly and spirals to L4 for t → +∞ and to L5 for t → −∞
[5]. The characteristic curve (C, x0) of the family c also spirals asymptotically
to (CL4,5 , xL4,5). Along each loop of the spiral there is a critical solution of
c. This characteristic curve retains this behavior for 0.955 ≥ q ≥ 0.14. So,
theoretically, for each of these values of q, the family c contains an infinite
number of bifurcation points with families of asymmetric periodic orbits. If q is
smaller than 0.14 but greater than q∗, there are exactly two critical solutions in
the family c. For q < q∗, one critical orbit exists on the “Short”-family that starts
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from L1,4,5. The behavior of the critical solution of c that persists throughout
the whole range from 0.955 to q∗ is represented in the right part of Table 2.
The shapes of the members of the corresponding series are almost alike to those
given in the right part of Figure 1.

In the left part of Figure 2, we present the intersection points x0 and x1 of
the members of the series of critical orbits of families a and b. In the right part
of the same figure we display the corresponding intersections points that concern
the two series of critical solutions which are given in Table 2. In Figure 3, the

Fig. 2. The intersection points x0 and x1 of the critical periodic orbits (ah = 1, bh = 0)
of the families a, b (left) and c (right) for varying q.

Fig. 3. q = 0.75. First frame : The critical member of b and the asymptotic orbit-
termination point of the bifurcating family of asymmetric periodic orbits. Second and
third frame : The two critical orbits of c and the terminations orbits of the bifurcating
families of asymmetric solutions.

bifurcation and the termination point of three families of asymmetric periodic
solutions are illustrated for q = 0.75. The first frame corresponds to the asym-
metric family which bifurcates from b while the other frames represent the two
asymmetric families bifurcating from c.
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Extended Abstract. Consider an n × n matrix polynomial P (λ) =
∑m
j=0 Ajλ

j ,

where λ is a complex variable and Aj ∈ Cn×n with detAm 6= 0. The spectrum
of P (λ), i.e., the set of all eigenvalues of P (λ), is defined and denoted by

σ(P ) = {λ ∈ C : detP (λ) = 0} .
An eigenvalue λ0 ∈ σ(P ) is called multiple if its multiplicity as a zero of
detP (λ), that is, its algebraic multiplicity, is greater than one. Moreover, the
geometric multiplicity of λ0 ∈ σ(P ) is the dimension of the null space of matrix
P (λ0). The study of matrix polynomials has a long history, especially with re-
gard to their spectral analysis, which leads to the solutions of higher order linear
systems of differential equations [1].

We are interested in perturbations of P (λ) of the form Q(λ) =
∑m

j=0(Aj +

∆j)λ
j , where the matrices ∆j ∈ Cn×n are arbitrary. For a given ε > 0 and a set

of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we define the class
of admissible perturbed matrix polynomials

B(P, ε,w) =



Q(λ) =

m∑

j=0

(Aj +∆j)λ
j : ‖∆j‖2 ≤ εwj , j = 0, 1, . . . ,m



 .

The weights wj allow freedom in how perturbations are measured.
For a µ ∈ C, we define the distance from P (λ) to µ as a multiple eigenvalue

by

Ea(µ) = min {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε,w) with µ as a multiple eigenvalue} ,
and the distance from P (λ) to µ as an eigenvalue with geometric multiplicity κ
by

Eg,κ(µ) = min {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε,w) with µ as an eigenvalue

of geometric multiplicity at least κ} .
1 Research supported by a grant of the EPEAEK project PYTHAGORAS II. The

project is co-funded by the European Social Fund (75%) and Greek National Re-
sources (25%).
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Denote by
s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0

the singular values of a matrix A, and let

w(λ) = wmλ
m + · · · + w1λ+ w0 and φ =

w′(|µ|)
w(|µ|)

µ

|µ| .

Define also the 2n× 2n matrix polynomial

F [P (λ); γ] =

[
P (λ) 0
γP ′(λ) P (λ)

]
; γ ≥ 0,

and for

[
u1(γ)
u2(γ)

]
,

[
v1(γ)
v2(γ)

]
∈ C2n (uk(γ), vk(γ) ∈ Cn) a pair of left and right

singular vectors of s2n−1(F [P (µ); γ]), respectively, the n× 2 matrices

U(γ) = [u1(γ) u2(γ)] and V (γ) = [v1(γ) v2(γ)].

Then we have the following results [2]:

(a) It holds that

Eg,κ(µ) =
sn−κ+1(P (µ))

w(|µ|) .

(b) For every γ > 0,

Ea(µ) ≥ s2n−1(F [P (µ); γ])

w(|µ|)

∥∥∥∥∥

[
1 0

γ w
′(|µ|)
w(|µ|) 1

]∥∥∥∥∥

−1

2

,

and if rank(V (γ)) = 2, then

Ea(µ) ≤ s2n−1(F [P (µ); γ])

w(|µ|)

∥∥∥∥U(γ)

[
1 −γ φ
0 1

]
V (γ)†

∥∥∥∥
2

,

where V (γ)† denotes the Moore-Penrose pseudoinverse of V (γ).

(c) If µ ∈ C\σ(P ′), s2n−1(F [P (µ); γ]) attains a maximum value at γ∗ > 0 and
s∗ = s2n−1(F [P (µ); γ∗]) > 0, then there exists a right singular vector of s∗,[
v1(γ∗)
v2(γ∗)

]
∈ C2n, such that

Ea(µ) ≤ s∗
w(|µ|)

∥∥∥∥V (γ∗)

[
1 −γ∗ φ
0 1

]
V (γ∗)

†

∥∥∥∥
2

.

(d) If µ ∈ C\σ(P ), s2n−1(F [P (µ); γ]) attains a maximum value at γ∗ = 0 and
s∗ = s2n−1(F [P (µ); 0]) = sn(P (µ)) (> 0), then

Ea(µ) ≤ s∗
w0
.

In all cases, perturbations that correspond to the upper bounds are directly
constructed. Finally, numerical examples are presented to illustrate and evaluate
our results.
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Abstract. A method for simultaneous solution of large and sparse lin-
earized equation sets and the corresponding eigenvalue problems is pre-
sented. Such problems arise from the discretization and the solution of
nonlinear problems with the finite element method and Newton itera-
tion. The method is based on a parallel version of the preconditioned
GMRES(m) by deflation. The parallel code exploits the architecture of
the computational clusters using the MPI (Message Passing Interface).
The proposed method has high parallel speedup and small memory re-
quirements.

Introduction

The main computational cost of the finite element codes comes from the so-
lution of large linear algebraic equation systems. Krylov-type iterative solvers
are commonly used for the solution of these systems due to their small memory
requirements and high parallel efficiency compared with the direct solvers.

Of crucial importance in engineering applications and related computations
is the structure of the solution space of nonlinear problems, which depicts the
dependence of the solution on the parameters. Most interesting among the as-
pects of the solution space are singularities, i.e., critical values of parameters at
which solution multiplicity and stability change, such as bifurcation and turning
points.

In computational practice, a turning point can be easily detected from the
failure of Newton iteration to converge in an ordinary parameter continuation.
It is circumnavigated by special parameter continuation techniques, such as of
arc-length type [4], and its detection is completed by an eigenvalue computa-
tion on each side of the singularity. On the other hand, bifurcation points can be
passed without any noticeable effect on the convergence rate of Newton iteration,
provided that the continuation step is large enough to straddle the singularity
- which is usually the case. Therefore, to secure detection of singular points,
several eigenvalue problems with the Jacobian must be solved during the contin-
uation for monitoring the so-called dangerous eigenvalues and the corresponding
eigenvectors; this results to large computational cost.

? corresponding author; boudouvi@chemeng.ntua.gr
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Newton-like methods [3] are commonly used for the numerical solution of
nonlinear equations systems

F (u, λ) = 0 (1)

F : IRN × IR → IRN is a vector of nonlinear functions, u is a vector of size N
and λ ∈ IR is a continuation parameter. Newton’s method solves (1) iteratively
starting from an initial guess u0 and at each step approximates the solution of
(1) with the vector

uk+1 = uk + xk, k = 0, 1...until convergence (2)

In (2), xk is the solution of the linear system

J(uk, λ)xk = −F (uk, λ) (3)

where J(uk, λ) ≡ Fu(u
k, λ) ∈ IRN×N is the Jacobian matrix.

When the Jacobian is large, storage limitations as well as exploitation of par-
allel computing demand the iterative solution of the linear system (3). Krylov
subspace iterative methods are commonly used to extract an approximate so-
lution of (3). A Krylov-type method requires only the product of the Jacobian
matrix with several vectors and not the explicit computation of the elements of
the Jacobian [1]. This is indispensable in cases where no analytical expression
for these elements is available (i.e. matrix-free computations).

The restarted variant of the GMRES method [5], commonly known as
GMRES(m) is the Krylov-type iterative solver of preference in case where the
linear system (3) is non-symmetric. The combination of the GMRES(m) with
a good preconditioning technique is necessary for its convergence. At regular
points as well as near singular points, the GMRES(m) is preconditioned by a
deflation technique [2].

Preconditioned GMRES(m) by deflation

Preconditioned GMRES is the method of choice for the iterative solution of
large algebraic equation sets with non-symmetric matrices, on the basis of
its parallel efficiency [6]. Starting from an initial guess, x0, of the solution
of (3), GMRES uses Arnoldi’s method, combined with an orthogonalization
technique - the Modified Gram-Schmidt method is used here - to construct
an orthonormal basis Vm ∈ IRN×m of the m-dimensional Krylov subspace,
Km (J, v) = span

{
v, Jv, J2v, ..., Jm−1v

}
, where v ≡ ro/||ro||2, ro ≡ −F − Jxo,

F ≡ F
(
uk, λ

)
, J ≡ J

(
uk, λ

)
.The new approximation of the solution is

xm = xo + Vmym (4)

where ym is a vector of size m and it is computed from the solution of the least
squares problem

ym = argmin
y

‖βe1 − H̄my‖2, y ∈ IRm (5)
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In (5), β ≡ ‖ro‖2, e1 = [1, 0..., 0]T and H̄m ∈ IR(m+1)×m is an upper Hessenberg
matrix, such as

JVm = Vm+1H̄m ⇒ V TmJVm = Hm (6)

Hm ∈ IRm×m is an upper Hessenberg matrix obtained from the H̄m by deleting
its last row.

The storage requirements and the computational cost of Arnoldi’s method
increase rapidly with m and, thus, a restarting variant of the GMRES -the
GMRES(m)- is used in practice. When m reaches a certain preset value, the
algorithm restarts, using the last approximation xm from (4) as a new initial
guess.

A preconditioner is essential to enhance the convergence rate of the
GMRES(m), especially near singular points [7]. Thus, the original linear sys-
tem (3) must be transformed to an equivalent one that has better convergence
properties. The linear system (3) is preconditioned from the right

JM−1z = −F, x = M−1z (7)

In (7) z is a vector of size N and M−1 ∈ IRN×N is the preconditioner matrix
which is constructed from a deflation technique [2] and it is given from

M−1 = IN + U(|µ|T−1 − Ir)U
T (8)

where µ ∈ IR is the largest eigenvalue of the Jacobian matrix, IN ∈ IRN×N ,
Ir ∈ IRr×r are identity matrices, U ∈ IRN×r is an orthonormal basis of the r-
dimensional invariant subspace, Pr, corresponding to the r smallest (in absolute
value) eigenvalues of the Jacobian and T ∈ IRr×r such as

T = UTJU (9)

Practical implementation - Results

The largest eigenvalue, needed in (8), and the eigenvectors of the Jacobian,
needed in (9), are approximated by those of the Hessenberg matrix Hm.

At each restart of the GMRES(m), l eigenvectors of the Jacobian are approx-
imated from l eigenvectors, zi ∈ IRm, of the Hm that correspond to the smallest
eigenvalues. In practice (l = 1 or 2). The new vectors:

ui = Vmzi, i = 1, ..., l (10)

are orthonormalized against those of U and added to U . So the dimension r of
P increases by l.

In practice, the dimension m of Hm is small (here m = 1, 000 for N =
1, 0000, 000). So the computational cost of the eigenvalue problem for Hm is
negligible.

The preconditioner needs two arrays of size 2Nr for the storage of U and JU
needed in (8) and (9). In order to save memory requirements and computational
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cost, an upper limit rmax on r is set (rmax = 20 on the problems where the
algorithm is implemented). When r > rmax the update of the preconditioner is
continued (i.e. l new vectors are added to P ) but at the same time, l vectors of
P that correspond to the l largest eigenvalues of the matrix T are deflated. The
orthonormal basis U of P is constructed from the eigenvectors zi ofHm times the
orthonormal basis Vm of the Krylov subspace (8). Thus, the vectors ui approx-
imate the eigenvectors of the Jacobian matrix that correspond to its smallest
eigenvalues. These eigenvalues are computed from the rmax × rmax matrix T
(9). The N ×N elements of the preconditioner matrix M−1 are not computed
explicitly and so are not stored. Instead, the expression of the preconditioner in
(8) is used to perform the matrix-vector product needed in (7).

The main operations of the preconditioned GMRES(m) by deflation algo-
rithm are vector updates, inner products and matrix-vector products. These
operations can be efficiently performed on several processors in parallel [6]. The
MPI-based parallel code is applied to the solution of linearized equation sets
resulting from the discretization, by the Galerkin / finite element method, of a
three-dimensional, nonlinear and free boundary problem of interfacial magneto-
hydrostatics [7]. The computations were done on a 32 processor computational
cluster of the Computer Center of the School of Chemical Engineering of NTUA.
The code exhibits parallel speedup up to 31 on 32 processors for a problem size
N = 1, 0000, 0000.
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Training Recurrent Neural Networks
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Abstract. In this paper we propose a new variant of BFGS that incor-
porates adaptive mechanisms, such as nonmonotone strategy and self-
scaling parameters and explore its performance in training recurrent
networks. Preliminary simulation results show the proposed algorithm
outperforms the BFGS, providing an effective modification that is capa-
ble of training recurrent networks of various architectures.
Keywords: recurrent neural networks, quasi-Newton methods, BFGS,
nonmonotone line-search, second-order training algorithms

Introduction

A recurrent neural network (RNN) is an artificial neural network in which self-
loop and backward connections between nodes are allowed. RNNs are well-known
for their power to memorise time dependencies, model nonlinear systems, map
input sequences to output sequences and in principle they can implement any
kind of sequential behaviour. Despite some attempts to use second-order methods
for training RNNs, first-order methods still remain the most popular choice.
This is mainly attributed to the nature of the particular problem and the time
dependency of the training data which generate error landscapes that cause
instabilities in the calculation of the Hessian matrix, vanishing gradients and
convergence to local minima that are far away from any desired minimisers.

In this paper, we propose a modified version of BFGS, which combines the
usage of adaptive nonmonotone learning and self-scaling utility; the former takes
the benefits of Lipschitz constant and provides more information of the morphol-
ogy of a given function, while the latter has been proved to have the ability of
solving unconstrained nonconvex optimisation problems.

Nonmonotone BFGS with Adaptive Self-Scaling

Traditional optimisation strategies for RNNs use monotone strategies which may
be trapped in a local minimum point and never jump out to the global one under
ill conditions, such as poorly initialised weights in the case of RNNs. In an
attempt to alleviate this situation this work explores the use of a nonmonotone
approach, which was first proposed in [3]

f (xk+1) ≤ max
0≤j≤Mk

[f (xk−j)] + γαkg
T
k
dk, (1)
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where f is the objective function and g is the gradient, d the search direction,
Mk is named nonmonotone learning horizon [6] and the constant γ ∈ (0, 1).
Furthermore, [6] proposed a dynamic and efficient way to automatically adapt
the size of M through a local estimation of the Lipschitz constant which could
provide helpful information on the morphology of a function.

We combine this approach with a quasi-Newton method. At each iteration,
the new approximated Hessian matrix Bk+1 is required to satisfy the quasi-
Newton condition Bk+1sk = yk, where sk and yk are the changes in func-
tion variable and in gradient, respectively. In our work, Bk+1 is updated us-
ing the Broyden-Fletcher-Goldfarb-Shanno formula (BFGS), which is the most
commonly used update technique for training feedforward neural networks. In
practice, it is better to tune the Hessian approximations at each iteration when
eigenvalues become large. To this end, there are several scaling approaches in
the optimisation literature, such as [1, 4], where the scaling factor ρk, [8], can be
defined as

ρk =
yTk sk

sTkBksk
(2)

Numerical evidences show that methods that apply a scaling factor for Bk+1

are superior to the original quasi-Newton methods. In other words, whenρkis
sufficiently large, the eigenvalues of Bk+1 are relative small, with strong self-
correcting property [8]. Despite this property looks particularly appealing for
training RNNs, to the best of our knowledge it has not been explored at all
in this area to improve the effectiveness of second-order training algorithms. A
high-level description of the proposed algorithm follows.

Algorithm: Adaptive Self-scaling Non-monotone BFGS

STEP 0. Initialise a point x0, k, a symmetric positive definite matrix B0, value
of nonmonotone learning horizon M ;
STEP 1. If g (xk) = 0, stop;
STEP 2. Determine the search direction by dk = −B−1

k
gk;

STEP 3. Adapt Mk by following conditions:

Mk =




Mk−1 + 1, if Λk < Λk−1 < Λk−2

Mk−1 − 1, if Λk > Λk−1 > Λk−2

Mk−1 , otherwise,
,where Λk = ‖g(xk)−g(xk−1)‖

xk−xk−1
;

STEP 4. Find a step length αk using the following line search.
For 0 < λ1 < λ2 and σ, δ ∈ (0, 1), at each iteration, one chooses a parameter lk
such that the step length αk = ᾱk · σlk , where ᾱk ∈ (λ1, λ2), satisfies

f (xk + αkdk) ≤ max
0≤j≤Mk

f (xk−j) + δ · αk · g (xk)
T · dk

STEP 5. Generate a new iteration point by xk = xk + αkdk;
STEP 6. Update the Hessian approximation Bk by the following self-scaling
BFGS

Bk+1 = ρk

[
Bk −

BkskskB
T
k

sT
k
Bksk

]
+
yky

T
k

yT
k
sk
,
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where sk = xk+1 − xk, yk = gk+1 − gk and ρk is the self-scaling factor in the
form of eq.(2);
STEP 7. Set k := k + 1, go to STEP 1.

There are three heuristic parameters in the above algorithm, i.e. M k in Step
3 and σ, δ in Step 4. Step 3 requires past M and Λ values to operate properly.
Thus, for a few iterations the monotone Charalambous line-search method [2]
is used to accumulate information in order to update M . We also set an upper
bound for Mk to help the algorithm concentrate on the recent past. In Step 4, σ
regulates the step size, i.e., larger σ smaller trail step-size, while δ controls the
amount of change. More details of tuning these heuristic parameters could be
found in the section of our experiments.

Experimental Results

Parity-N Problem

The first test case is the well-known n-bit parity problem which is nonlinear sep-
arable and has been widely used to verify the performance of novel training algo-
rithms [5]. We consider here two instances: the parity-5 problem and the parity-
10. The stopping criterion is set to a Mean-Squared-Error=0.01 within 2000
epochs. In both case, the heuristic parameters are set as 3 ≤M k ≤ 15, σ = 0.9
and δ = 0.01. As shown in Tables 1, the performance of our method for the
parity-5 problem on 3 different neural architectures, i.e. Feedforward Time De-
lay (FFTD), Elman’s Recurrent Network (LRN) and Nonlinear Autoregressive
Network with Exogenous Inputs (NARX), using 5 and 7 hidden nodes is always
better than the original BFGS. The notation used in these tables is as follows:
#hidden indicates the number of hidden nodes used; Conv indicates the per-
centage of runs that met the MSE condition within 2000 epochs; Ave give the
average MSE (in %) achieved by each method at the end of training; Min and
Max give the minimum and the maximum number of epochs to converge to the
MSE condition.

In particular, Tables 1 shows that the new method is able to locate minimis-
ers with smaller function values than the original method which is important
in certain real-world problems to provide good generalisation. For example, in
Table 1, 16.7% of the BFGS-trained FFTD networks reached an MSE=0.01 in a
maximum of 189 epochs, while the average MSE achieved by BFGS in that case
was 0.063093. That was caused by the fact that the majority of the BFGS-trained
networks didn’t reach the MSE goal within 2000 epochs; some of them stuck to
minima with higher function values while others failed to converge because of
instabilities in the Hessian.

For the parity-10 problem we used FFTD and LRN with 10 hidden nodes
which is the standard configuration for this problem and we also experimented
with 2, 5 and 10 hidden nodes using a NARX network; in all cases conditions
were the same as in parity-5. The results are shown in Tables 2. When BFGS



117

fails to reach the error goal we only provide the average error obtained. Also in
Table 2, a 0% convergence indicates that not a single run of the BFGS method
converged within 2000 epochs. We observed that ASCNMBFGS provided a con-
sistent behaviour and a better ability to escape from swallow local minima which
in our opinion can be attributed to its nonmonotone behaviour.

Table 1. Simulation results for the parity-5 using three RNN architectures
Algorithm #hidden Net Conv Ave. Min Max

BFGS

5

FFTD 16.7 6.309 134 189
LRN 13.3 6.127 110 157

NARX 60.0 1.991 47 149

7

FFTD 23.3 3.725 64 1324
LRN 36.7 2.470 35 1376

NARX 66.7 1.866 49 628

ASCNMBFGS

5

FFTD 100.0 0.896 53 189
LRN 100.0 0.899 55 178

NARX 100.0 0.841 41 69

7

FFTD 100.0 0.912 62 87
LRN 100.0 0.887 64 85

NARX 100.0 0.858 47 78

Table 2. Simulation results for the parity-10 using three RNN architectures
Algorithm #hidden Net Conv Ave. Min Max

BFGS

10

FFTD 0.0 6.049 – –
LRN 0.0 5.873 – –

NARX 66.7 0.069 158 573
5

NARX
66.7 3.392 92 957

2 0.0 7.083 – –

ASCNMBFGS

10

FFTD 100.0 0.996 672 1129
LRN 100.0 0.998 889 1970

NARX 100.0 0.009 112 149
5

NARX
100.0 0.091 64 144

2 100.0 0.912 75 152

Reading Aloud

This is a temporal sequence prediction problem [7], which is used for verifying
the generalisation of our algorithm. The task is to learn the mapping a set
of orthographic representation to their phonological forms [7]. Both subsets of
orthography and phonology have 3 different parts, i.e., onset, vowel and coda,
with 30, 27 and 48 possible characters for the input, and 23, 14 and 24 possible
characters for the output, respectively.

Table 3. Simulation results for the reading aloud problem

Algorithm ASCNMBFGS BFGS
Ave. Train Error (%) 5.5979 6.0887
Ave. Test Error (%) 0.6830 1.7852
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In the original paper [7], the authors use a specially designed architecture
with 100 hidden nodes for this 105-input and 61-output problem. Here we use a
NARX network with 5 hidden nodes only, and instead of 1900 training epochs,
we apply only 300 epochs within each run. The heuristic parameters used here
are 3 ≤Mk ≤ 15, σ = 0.5 and δ = 0.9. The results are shown in Table 3 for the
BFGS and the new algorithm. Both methods are able to train networks to reach
small training errors but when it comes to average performance in both training
and testing (generalisation) the new modified BFGS showed better ability to
produce solutions with lower errors on the average (cf. Table 3).

Conclusion and Future Work

Traditional algorithms for training RNNs are usually gradient descent-based and
apply monotone decrease of the learning error. In this paper, we proposed an
adaptive self-scaling nonmonotone BFGS method that aims to overcome the
drawbacks of the original BFGS. Further testing and comparisons are of course
needed but in our tests so far the modified method demonstrated some promising
results, outperforming the original method considerably. It provided more stable
behaviour and thus a higher possibility of convergence.
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62, avenue Notre-Dame du Lac, F-49000 Angers, France

Abstract. This paper aims to complete and to generalize the analysis
of a particular class of hybrid dynamical systems (h.d.s.) presented in
[1]. We present a method to obtain equations of cycles of any period k,
k ≥ 1 and we extend our application fields thanks to a more general
mathematical model. Realistic applications to a thermal device and to a
power converter come to illustrate all theoretical results.

Presentation of the studied mathematical model

General presentation

In RN , we consider a basis which in practice, will be either the canonical basis or
an eigenvectors basis. In relation to this basis, we consider the following h.d.s.:

Ẋ(t) = A(q(ξ(t)))X(t) + V (q(ξ(t))), ξ(t) = ct −WX(t), (1)

where A is a square matrix of order N , V , X are columns matrices of order N ,
W is a row matrix of order N , all those matrices having real entries. Term ct is
a constant of R. Moreover, we suppose that matrix A is stable and that X and
so ξ are continuous. In this model, the discrete variable is q, taking two possible
values according to ξ and follows a hysteresis phenomenon.

Thermostat with an anticipative resistance model

The first application we consider is the one of a thermostat with an anticipative
resistance which controls a convector located in the same room (see Figure 1 on
the left). A Newton law and a power assessment give the following system:





mtCtẋ = −x−y
Rt

+ q(x)Pt
mpCpẏ = − y−z

Rc
− y−θe

Rm

mcCcż = − z−y
Rc

+ q(x)Pc

which can be put in form (1):{
Ẋ = AX(t) + q(ξ(t))B + C,
ξ(t) = LX(t).

Coefficients Rt, Rc, Rm are thermal resistances, Ct, Cp and Cc are mass heats
according to indexes t, p, c which correspond respectively to the thermostat, the
room and the convector.
Discrete variable q here follows the hysteresis phenomenon described on the right
in Figure 1, where θ1 and θ2 represent respectively lower and upper thresholds.
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It concerns a thermostat with anticipative resistance,
common in the industrial market [CYS 93], which con-
trols a convector in the same room. Fig. 3 gives a
representation of the physical system. We can explain
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Fig. 1. Thermal process (on the left) and hysteresis phenomenon (on the right)

DC/DC converter with relay feedback control model

The second application is a DC/DC converter with relay feedback control pre-
sented in [5]. The equivalent circuit of this system is given in Figure 2. Electronics
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Fig. 2. Equivalent circuit of the DC/DC converter with relay feedback control

laws give the following differential system:




i̇0 = −R0

L0
i0 − 1

L0
U0 + E0

L0

U̇0 = 1
C0
i0 − 1+q(ξ(t))

2C0
i1

i̇1 = 1+q(ξ(t))
2L1

U0 − R1

L1
i1 − 1

L1
U1

U̇1 = 1
C1
i1 − 1

C1RL
U1,

which can be put in form (1) like this:{
Ẋ(t) = A(q(ξ(t)))X(t) +B,
ξ(t) = Uref − UX(t).

Coefficients R0, R1, RL represent resistances, L0, L1 are currents in inductances
and C0, C1 are voltages on the capacitors. This circuit compares the output
voltage σU1, 0 < σ < 1, to the reference signal Uref . The difference Uref − σU1

(deviation signal) is applied to the hysteresis (q = −1 or q = 1). Values −χ0 and
χ0 represent respectively the lower and the upper thresholds.
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Determination of period-k equations, k ≥ 1

We generalize in this section the work begun in [1], [2], giving a method to obtain
equations for cycles of any period k, k ≥ 1.
Let t0 be a given initial instant and let t1 < t2 < . . . < tn < tn+1 < . . . be the
suite of successive distinct switching times in [t0,∞[. Let us set qn , q(ξ(tn)),
∆qn , qn − qn−1, ξn , ξ(tn), An , A(qn), Vn , V (qn). Classical integration of
differential system (1) gives in [tn, tn+1[:

X(t) = e(t−tn)AnΓn −A−1
n Vn, (2)

where Γn ∈ RN correspond to integration constants, functions of n.
Thus, introducing notation ∀n ≥ 1, σn = tn − tn−1 > 0 and considering the
assumption of continuity at tn, we obtain:

∀n ≥ 1, Γn = eσnAn−1Γn−1 +A−1
n Vn −A−1

n−1Vn−1. (3)

Moreover, constant Γ0 is given by (2) for the case where n = 0 and t = t0. Then,
considering ξn as a function f of upper and lower thresholds S1, S2 and of qn−1,
qn and also using the definition of ξn, we obtain ∀n ≥ 1:

ct −W (Γn −A−1
n Vn) − f(S1, S2, qn−1, qn) = 0. (4)

Solutions of (1) with unknowns X(t), (tn)n≥1 is equivalent to the ones of (3),
(4) with unknowns (Γn)n≥1, (σn)n≥1. Later on, we restrict us to a numerical
solution. From this, we can propose a general expression for equations of period-
k cycles, k ≥ 1, different than the one proposed in [5].
Let (Un)n∈N be a suite. We introduce this notation : U in = U2k+i, n ≥ 0, for
i = 1, .., 2k with k ∈ N∗ corresponding to the period of the cycle. The suite of
successive switching times is noted (σ1

n, ..., σ
2k
n )n∈N and the suite of integration

constants is noted (Γ 1
n , ..., Γ

2k
n )n∈N so we can set: Rn , (σ1

n, Γ
1
n , . . . , σ

2k
n , Γ

2k
n ).

System of equations (3), (4), ∀n ≥ 1 is equivalent to system H(Rn, Rn+1) = 0,
∀n ≥ 1, where H = (H1, . . . , H4k)

T is a function that we define for i = 1, . . . , 2k
by:

{
Hi(Rn, Rn+1) = Γ in+1 − eσ

i
n+1Ai−1Γ i−1

r −A−1
i Vi +A−1

i−1Vi−1 = 0,
H2k+i(Rn, Rn+1) = ct −W (Γ in+1 −A−1

i Vi) − f(S1, S2, qn−1, qn) = 0,
(5)

with r = n if i = 1, r = n + 1 otherwise, Γ 0
n+1 = Γ 2k

n+1, i = 0 if i is even and
i = 1 if i is odd. Replacing Rn by its limit R = (σ1, Γ 1, . . . , σ2k, Γ 2k)T in system
(5), from each of 2k first equations and using the remaining (2k − 1), we can
determine Γ i, i = 1, .., 2k, only as functions of σi, i = 1, .., 2k. Then, replacing
those equations for Γ i, i = 1, .., 2k in the 2k last equations H2k+i, i = 1, .., 2k of
system (5) with Rn = R, we deduce for i = 1, .., 2k the following system:

Fi = ct −W ((IN − ∏2k
m=1D(i−m+1)mod(2k))

−1(IN +
∑2k−1

j=1 (−1)j

(
∏2k−j
l=1 D(i−l+1)mod(2k)))(A

−1
i Vi −A−1

i−1Vi−1) −A−1
i Vi) − f(S1, S2, qn−1, qn)) = 0.

(6)

Remark 1. To reduce notations, we used here [j] = jmod(2k) and Dj = eσ
jAj−1 ,

D0 = D2k. Moreover, if [j] = 0, we admit that Γ [j] = Γ 2k and that σ[j] = σ2k .
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Period doubling bifurcation

A one parameter variation enables to underline the crossing from a period-1 to a
period-2 cycle. It is a phenomenon called period doubling bifurcation [5]. At the
bifurcation point, the cycle of period 1 loses its stability (one of the eigenvalues
of the Jacobian of the Poincaré application is equal to −1) when a stable cycle
of period 2 appears.
Generally, bifurcations of this type are only observed on bifurcation diagrams.
However, authors of [4] propose a theorem to prove theoretically obtained graphic
results. Nevertheless, this version of the theorem is limited since it only concerns
systems of dimension 1. That’s why, in [3], we generalize and prove this result
for systems of any dimension N , N ≥ 1. This theorem is applied for values
which give diagram bifurcations in figure 3 on the left for the example of the
thermostat and on the right for the one of the DC/DC converter. Therefore,
since all conditions are satisfied, it confirms the existence of period doubling
bifurcations for our relative simple model.
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Fig. 3. Diagram bifurcations for particular values for the application of the thermostat
(on the left) and of the DC/DC converter (on the right)
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Abstract. We consider the phase field model consisting of the system
of p.d.e’ s

q(θ)φt = ∇ · (A(θ)∇φ) + f(φ, u),
ut = ∆u+ [p(φ)]

t
,

where φ = φ(x, y, t) is the phase indicator function, θ = arctan(φy/φx),
u = u(x, y, t) is the temperature, q, p, and f are given scalar functions,
and A is a 2 × 2 matrix of given functions of θ. This system describes
the evolution of phase and temperature in a two phase medium, and is
posed for t ≥ 0 on a rectangle in the x, y plane with appropriate boundary
and initial conditions. We solve the system using two numerical meth-
ods. First, we solve the system by a finite difference method, based on
the explicit Euler scheme for the first equation and the Crank-Nicolson-
ADI method for the second. We also solve the system by another finite
difference method,that uses for both equations the Crank-Nicolson-ADI
method. We show results of relevant numerical experiments, compare
the errors of the two methods, and compare their speed-up when we
implement them using parallel possessors.
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of Mathematics, University of Athens, which was co-funded by the E.U. European
Social Fund and the Greek Ministry of Education.
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Abstract. Neglecting turbulent motion of the atmosphere we consider
the Navier-Stokes equations to calculate the wind velocities. We use a
Lagrangian discrete vortex method to compute main characteristics of
the flow. The core of the vortex method is to find the solution to the
Poisson equation. For solving the Poisson equation with Dirichlet and
Neumann boundary conditions the Element Free Galerkin (EFG) and
the Finite Pointset (FP) methods, as well as a modification of the latter,
are examined. It is shown that the EFG-method increases the computa-
tional speed in comparison with the FP-method. It is determined that
the grave disadvantage of the FP-method is a low-rate convergence while
the computational complexity of each iteration is reasonable. The use of
the modified FP-method shows that the elapsed time is comparable with
that of the EFG-method although as the problem size increases the ad-
vantage of the FP-method is not so evident.

Mathematical formulation of the problem

The viscous gas dynamics equations can be written in the following form [5]:





Dtρ+ ρ (∇ ·V) = 0,

ρDtV = ρ(g + K) −∇ (p+ (2/3)µ (∇ ·V)) + 2
(
∇ · µṠ

)
,

ρcvDtT = ∇ · (λ∇T ) + 2µṠ2 − p (∇ · V) − (2/3)µ (∇ ·V)
2
,

p = ρRT.

(1)

Here t is the time, ρ is the gas density, V = (u, v, w) is the velocity vector with
the axis projections Ox1, Ox2 and Ox3 respectively, g is the acceleration of
gravity, K is the Coriolis force, p is the pressure, µ is the dynamic viscosity, Ṡ is
the strain rate tensor, T is the temperature, cv and cp are the heat capacities at
constant volume and at constant pressure respectively, λ is the heat conduction
coefficient, R is the absolute gas constant, the symbolDt at a function determines
the corresponding total derivative, and the bold type stands for vector quantities.
To solve system (1) for a particular case, problem oriented initial and boundary
conditions must be specified.
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The primary goal of our research is to solve system (1) with a meshfree vortex
method the heart of which is to find the solution to the Poisson equation. Thus,
as a subproblem one should compare different meshfree methods in the light of
convergence and speed performance. For doing that, we simplify the problem (1):

{
∇ · V = 0,
DtV = g − (1/ρ0)∇p+ ν∆V,

(2)

where ν is the kinematic viscosity coefficient, and ρo is the gas density which is
constant.

We use the Lagrangian discrete vortex method to find the solution to sys-
tem (2). We define the vorticity as ω ≡ ∇ × V. In the subsequent discussion,
the space dimension plays no crucial role. Thus, basing on the fact that ω is
normal to the plane of the flow and taking into account the potentiality of g the
evolution of vorticity is given by

Dtω = ν∆ω. (3)

To obtain V = (u, v) we are guided by the solenoidality of the velocity field:

V = ∇× ψ, where ψ is a vector potential. (4)

Substitution of (4) in ω ≡ ∇×V and bidimensionality of the equations lead to
the Poisson equation

∆ψ = −ω. (5)

The solution of (5) and subsequent substitution of it in (4) give the required
velocity vector.

Approximation of the equations and methods of numerical
investigation

There is a great number of both theoretical and numerical work dedicated to
various methods of solving the Poisson equation. Some methods base on using
a computational grid while the others rely on the meshfree approach. Usually,
the classical meshfree PIC-method [2] is used to solve the Poisson equation. It
is known that the method has several drawbacks such as numerical stability,
numerical dissipation etc. In this case the ”truly” meshfree method is a natural
choise. Two of these meshfree methods are considered in the paper, namely the
Element Free Galerkin method [1] and the Finite Pointset method [4, 6, 7, 3, 8].

We consider the Poisson equation, in a simply connected domain Ω = [0, 1]×
[0, 1], which is given by

∆ψ = −ω, ψ|Γg
= g,

∂ψ

∂n

∣∣∣∣
Γs

= s, ∂Ω = Γg ∪ Γs. (6)
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The application of the EFG-method implies using the weak form of (6):

∫

Ω

∇ψ · ∇χdΩ =

∫

Ω

χω dΩ +

∫

Γs

∂ψ

∂n
χdΓs +

∫

Γg

(ψ − g)λχdΓg +

∫

Γg

λχdΓg . (7)

Here χ is a test function, and λ is a Lagrangian multiplier which is used to take
the essential boundary conditions into consideration. In order to approximate
the distribution of function ψ in the neighborhood of a point x over a number
of randomly located nodes xi, i = 1, 2, . . . , n, we define the moving least squares
approximant ψh(x) of ψ in the form

ψh(x) = p(x)a(x), (8)

where p(x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m,
and a(x) = [a1(x), a2(x), . . . , am(x)] is a vector of coefficients which are func-
tions (to be determined) of the coordinates x = (x1, x2). By using the linear
basis p(x) = [1, x1, x2] and applying the standard technique for solving equa-
tion (8) we obtain

ψh(x) =

n∑

i=1

Φi(x)ψ̂i, Φi(x) = p(x)A−1(x)B(x)i, ψ
h(xi) ≡ ψi 6= ψ̂i. (9)

Here A(x) = B(x)P, B(x) = PTW, P = [p(x1),p(x2), ...,p(xn)], and the
matrix of the weight functions W = diag(w1(x), w2(x), . . . , wn(x)) is defined as

w(x − xi) ≡ w(r) =





2/3− 4r2 + 4r3 , r ≤ 1/2,
4/3− 4r + 4r2 − 4/3r3 , 1/2 < r ≤ 1,
0 , r > 1.

(10)

The normalized distance from the point xi to the point x is r = ‖x − xi‖/dmi,
and dmi is the size of the domain of influence at a node. In the present im-
plementation the test function χ(x) is selected to be the same as the weight
function w(r). Thus, substitution of (9) in (7) leads to a system of linear alge-

braic equations in terms of ψ̂i which are assumed to be substituted in (9) to get
the required solution.

Describe the FP-method in short. As well as in the previous case, the basis
for the FP-method is the weighted least squares approximation. The essence of
the FP-method is to approximate a function ψ(xi) and its derivatives around x
using Taylor’s series expansion:

ψ(xi) =

∞∑

j=0

1

j!
(xi − x,∇)

j
ψ(x). (11)

Basing on equation (11) and restricting our considerations to a second order
accuracy and the number of points (m) in the sub-domain we lead to a system
of linear algebraic equations. The system is overdetermined and underdetermined



127

for m+ k > 6 and m+ k < 6 respectively. The value k is supposed to be 1 or 2
for the Dirichlet and the Neumann boundary value problems. The solution to
the system is found with the weighted least squares method using the weight
function (10). To find the solution with the FP-method the following iteration
process is used

ψ(τ)(xi) =
2∑

j=0

(xi − x,∇)
j

j!
ψ(τ+1)(x), i = 1, 2, . . . ,m, τ ≥ 0, ψ(0)(xi) = 0. (12)

The system (12) must satisfy the Poisson equation at each point. For this pur-
pose, it is necessary to add the following equation

∆ψ(τ+1) = −ω (13)

to the system (12) for the Dirichlet boundary value problem, as well as

∂ψ(τ+1)

∂n

∣∣∣∣
Γs

= s (14)

in case of the Neumann boundary value problem. Thus, the final system of linear
algebraic equations at x is given by

ψ(τ+1)(x) = D−1(MTW)
[
ψ(τ)(xi),−ω, s

]T

, i = 1, 2, . . . ,m , (15)

where the matrix M is determined from (12)-(14), and D = MTWM.
The bottom line is the FP-method is local, i.e. it depends on the sub-domain

only. The distribution of points in the sub-domain can be irregular that provides
the method with all features of the meshfree methods. Furthermore, the local it-
eration process gives considerable advantages in parallelization of the algorithm
but, as it is shown below, it degradates the performance of computations. Gen-
erally speaking, to iterate it is necessary to know not the whole solution vector
of system (15) but its first component only. This circumstance was the cause
of modification of the FP-method [6]. The heart of the modification is to apply
an iterationless technique to find the solution. Running a few steps forward we
would like to note that this iterationless method reduces the computation time
dramatically.

As we have to find the first component of the solution vector, the authors of
[6] propose to get an explicit equation for the component at the point x basing
on (15). Thus, for all the points of the domain we can obtain a system of linear
algebraic equations the further inversion of which gives us the desired solution.

Results of the investigation

In the section we briefly present the results of comparison between the EFG and
the FP methods for the two-dimensional Poisson equation with homogeneous
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boundary conditions of Dirichlet and Neumann types. The comparison is done
in the following way. For each fixed grid size N we determine the relative error
between the exact and numerical solutions for the EFG and the modified FP
methods. The iteration number |τ | of the original FP-method is chosen so that for
the corresponding N the value min

|τ |
(εFPM ) ≈ εEFGM . For the sake of simplicity,

we use a uniform distribution of points in the domain that does not narrow the
scope of the research.

First we consider the Dirichlet boundary value problem

∆ψ = ∇ · ∇φ, ψ|∂Ω = 0, φ(x1, x2) ≡ ψexact(x1, x2). (16)

Summarize the results of the comparison in table 1.

Table 1. Comparison between the relative error ε and the elapsed time T for the
EFG-method, the FP-method and its modification

N εEFGM εMFPM εFPM |τ | TFPM/TEFGM TEFGM/TMFPM

16 × 16 0.476026 0.173516 0.478233 3 0.37 6.50

32 × 32 0.101127 0.040869 0.101431 58 7.36 3.16

64 × 64 0.021170 0.009743 0.021162 780 107.11 0.80

As it follows from table 1, the EFG-method surpasses the FP-method in
computation speed. However, the EFG-method is inferior to the modified FP-
method in both computation speed and accuracy. Although, as the problem size
increases the difference in the computation speed between the EFG and the
modified FP methods is not so evident. The further comparison of the methods
has been done for homogeneous boundary conditions of Neumann type, i.e.

∆ψ = ∇ · ∇φ, ∂ψ
∂n

∣∣∣
∂Ω

= 0, φ(x1, x2) ≡ ψexact(x, y). (17)

The comparison between both methods is represented in table 2.
¿From table 2, we can draw a conclusion that even for N = 64 × 64 both

methods have satisfactory accuracy. As well as in the previous case, the compu-
tational speed of the FP-method in comparison with that of the EFG-method
remains low. The analysis of the modified FP-method shows that it operates
faster then the EFG-method although, in some case, its computation time is
higher.

Conclusion

The investigation has shown that the FP-method is rather slow for all the ex-
amples considered in the paper. That is bound up with its low-rate convergence.
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Table 2. Comparison between the relative error and the elapsed time T for the element-
free Galerkin method, the FP-method and its modification

N εEFGM εMFPM εFPM |τ | TFPM/TEFGM TEFGM/TMFPM

16 × 16 2.277533 1.664913 0.741099 2 1.50 1.00

32 × 32 0.379331 0.472410 0.062771 3 1.88 1.25

64 × 64 0.084967 0.206072 0.077314 14 4.59 1.12

The modified FP-method shows the highest computation speed with regards
to almost all the test examples save for the largest grid size for the Dirichlet
boundary value problem. In spite of that, any theoretical issues on its stability
analysis, convergence rate and accuracy at present moment are not known to
the author. Thus, basing upon the presented and known results concerning the
modified FP-method it is possible to draw a conclusion that the method can
be applied to solving large scientific problems. Despite this, a deeper theoretical
analysis is needed, which will be the primary intent of our future research.

The author is grateful to Dr. S. Tiwari for helpful discussions and valuable
suggestions.
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Abstract. Taking advantage of the structural properties of the Col-
location coefficient matrix associated with the Dirichlet-Neumann map
for linear elliptic PDEs, we present a complete spectral analysis for the
Laplace’s equation on a square domain with the same type of bound-
ary conditions on all sides. Through this analysis we are able to recover
optimal classical SOR and Krylov iterative methods.

Introduction

Recently, Fokas[1, 4] introduced a new unified approach for analyzing linear and
integrable nonlinear PDEs. Central issue to this approach is a generalized Dirich-
let to Neumann map, characterized through the solution of the so-called global
relation, namely, an equation, valid for all values of a complex parameter k,
coupling specified known and unknown values of the solution and its derivatives
on the boundary. In particular, for the case of Laplace’s equation, qzz̄ = 0 ,
in a convex bounded polygon D with vertices z1, z2, . . . , zn (modulo n) indexed
counter-clockwise, the associated Global Relation takes the form (see also [2, 3])

n∑

j=1

∫

Sj

e−ikzqzdz = 0, k ∈ C , (1)

where Sj denotes the side from zj to zj+1 (not including the end points). If, for
z ∈ Sj , 1 ≤ j ≤ n, we now let g(j) denote the derivative of the solution in the

direction making an angle βj , 0 ≤ βj ≤ π with the side Sj , namely : cos (βj) q
(j)
s +

sin (βj) q
(j)
n = g(j), and f (j) denote the derivative of the solution in the direction

normal to the above direction, namely : − sin (βj) q
(j)
s + cos (βj) q

(j)
n = f (j),

where q
(j)
s and q

(j)
n denote the tangential and (outward) normal components of

qz along the side Sj , then the Generalized Dirichlet-Neumann map, that is the

relation between the sets
{
f (j)(s)

}
and

{
g(j)(s)

}n
j=1

, is characterized by the

single equation

n∑

j=1

|hj | ei(βj−kmj )

π∫

−π

e−ikhjs
(
f (j) − ig(j)

)
ds = 0, k ∈ C (2)

? This work was supported by the Greek Ministry of Education ”Herakleitos”
EPEAEK Grant which is partially funded by the EU
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where, for j = 1, 2, . . . , n, and zn+1 = z1,

hj :=
1

2π
(zj+1 − zj) , mj :=

1

2
(zj+1 + zj) , s :=

z −mj

hj
. (3)

For the numerical solution of the Generalized Dirichlet-Neumann map in
(3), a Collocation-type method has been developed (see [2] and [3]) : Suppose
that the set

{
g(j) (s)

}n
j=1

is given through the boundary conditions, and that
{
f (j) (s)

}n
j=1

is approximated by
{
f

(j)
N (s)

}n
j=1

where

f
(j)
N (s) = f

(j)
∗ (s) +

N∑

r=1

U jrϕr(s) , (4)

with N being an even integer, 2πf
(j)
∗ (s) := (s+ π) f (j) (π) − (s− π) f (j) (−π)

(the values of f (j)(π) and f (j)(−π) can be computed by the continuity require-

ments at the vertices of the polygon), and the set of functions {ϕr (s)}Nr=1 being
the basis functions. If we evaluate equation (3) on the following n-rays of the
complex k-plane : kp = − l

hp
, l ∈ R+, p = 1, . . . , n , then the real coefficients

U jr satisfy the system of linear algebraic equations

n∑

j=1

|hj |
|hp|

ei(βj−βp)e
−i l

hp
(mp−mj)

N∑

r=1

U jr

π∫

−π

e
il

hj
hp
s
ϕr(s)ds = Gp (l) (5)

where Gp(l) denotes the known function

Gp (l) = i
n∑

j=1

|hj |
|hp|

ei(βj−βp)e
−i l

hp
(mp−mj)

π∫

−π

e
il

hj
hp
s
(
g(j) (s) + if

(j)
∗ (s)

)
ds , (6)

and l is chosen as follows: l = 1
2 ,

3
2 , . . . ,

N−1
2 and l = 1, 2, . . . , N2 for the real and

imaginary part of equations (7), respectively, defining a set of Collocation points.

The Case of Square Domains

In this section we summarize some of the results included in [5], pertaining to the
case of regular polygon domains (namely |hj | = h for all j), and, in particular,
square domains (n = 4) having the same type of boundary conditions on all
sides (namely βj = β for all j). For this case, one may easily verify that the
Generalized Dirichlet-Neumann map in (5) reduces to

4∑

j=1

e
−i l

hp
(mp−mj)

N∑

r=1

U jr

π∫

−π

e
il

hj
hp
s
ϕr(s)ds = Gp (l) , (7)

where Gp(l) is as in (6) simplified analogously. The resulting linear system is
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AU = G , A ∈ R
4N,4N , U ,G ∈ R

4N , (8)

where the Collocation coefficient matrix is in the block partitioned form (cf. [5])

A =




A0 O A1 O
O A0 O A1

A1 O A0 O
O A1 O A0


 , A0, A1 ∈ R

N,N , (9)

with

A1 = DA0 , D = diag(d1, . . . , dN ) , dr = (−1)r−1e−rπ , r = 1, . . . , N . (10)

Furthermore, the elements of the block diagonal submatrixA0 are defined through
the Finite Cosine/Sine Fourier Transform of the basis functions φr(s) :

A0 = (aq,r) , aq,r =





π∫
−π

cos( q2s)φr(s)ds , q = odd

π∫
−π

sin( q2s)φr(s)ds , q = even

, (11)

and, as φr(s) are assumed appropriately chosen real linearly independent func-
tions, A0 is assumed nonsingular. We remark that, for the case of sine basis
functions (cf. [3]), that is φr(s) = sin(r s+π2 ), A0 is a nonsingular diagonal ma-
trix.
As it is shown in [5], the associated with A block Jacobi iteration matrix T0 is
obviously weakly cyclic of index 2 and similar to the matrix

S = −




O O D O
O O O D
D O O O
O D O O


 (12)

where D is as defined in (10). Therefore the spectrum σ(·) of T0 satisfies

σ(T0) = {±e−rπ , ±e−rπ}Nr=1 . (13)

Evidently,
%(T0) = e−π u 0.0432 , (14)

where %(·) denotes the spectral radius. Taking advantage of the weakly cyclic
structure of T0 and well known results from the literature, the Gauss-Seidel
and the optimal SOR iterative methods, with iteration matrices T1 and Tωb

respectively, satisfy (cf. [5])

%(T1) = e−2π u 0.0019

%(Tωb
) =

2

1 +
√

1 − e−2π
− 1 u 0.0005

. (15)
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The above spectral analysis has been also used in [5] to determine the spectra
of various preconditioned matrices in order to determine effective convergence
properties of Krylov subspace methods. There, it is shown that the spectra of
the Jacobi, the Gauss-Seidel, and the Symmetric Gauss-Siedel preconditioned
matrix A are all real and clustered around unity. Hence, following [7], the Bi-
CGSTAB[6], combined with the above preconditioning schemes, is the method
of preference. For a complete analysis see [5].
At this point we remark that the above spectral analysis is independent of the
choice of basis functions as well as independent of the type of boundary condi-
tions.
To numerically demonstrate the above results we include Table 1 referring to the
performance of all mentioned iterative methods when they apply to the model
problem considered in [3] for the case of Chebyshev basis functions (see [3]).

Table 1 Performance of Iterative Methods

Method
Precondi- N = 8 N = 16

tioner Error Iter. Time Error Iter. Time

Jacobi — 2.09e-05 15 1.24e-03 5.78e-13 14 2.02e-03

Gauss-Seidel — 2.09e-05 9 1.10e-03 5.78e-13 9 1.52e-03

SOR — 2.09e-05 7 4.50e-04 5.78e-13 7 8.43e-04

Bi-
CGSTAB

— 2.09e-05 10 1.16e-03 5.78e-13 27 2.67e-03
Jacobi 2.09e-05 3 1.21e-03 5.78e-13 3 1.49e-03

Gauss-Seidel 2.09e-05 3 1.18e-03 5.78e-13 3 1.88e-03
Sym. Gauss-Seidel 2.09e-05 2 1.42e-03 5.78e-13 2 1.90e-03

GMRES(10)

— 2.09e-05 13 1.29e-03 5.78e-13 125 9.73e-03
Jacobi 2.09e-05 11 1.52e-03 5.78e-13 11 2.43e-03

Gauss-Seidel 2.09e-05 11 1.61e-03 5.78e-13 7 1.82e-03
Sym. Gauss-Seidel 2.09e-05 7 1.55e-03 5.78e-13 7 2.47e-03
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Abstract. Interval methods have been established for rigorously bound-
ing all solutions of a nonlinear system of equations within a given region.
In this paper, we introduce a new method for determining a good pivoting
sequence for Gauss-Seidel method, based on a greedy algorithm, called
4M, solving assignment problems with worst case complexity O(n2).
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Introduction and Motivation

We consider the problem of finding with certainty all zeros of a nonlinear contin-
uously differentiable function f : Rn → Rn in a given interval vector [x] ∈ IR

n

(an n-dimensional box). This problem is difficult due to its inherent computa-
tional complexity (NP-hard) and due to numerical issues involved to guarantee
correctness. Interval Newton methods have been established for finding all real
roots within the specified domain of a nonlinear system with both mathemat-
ical and computational certainty. In such methods, the basic idea is to apply
the interval Gauss-Seidel method to the preconditioned linearized system [12].
Nowadays, the interval Gauss-Seidel method [5, 13] serves as a basis not only for
interval Newton algorithms (see [4, Chapter 13]) but also for interval constraint
algorithms [6]. However, this method is “blind” since it works in a straightfor-
ward manner, without taking account the coupling between the variables and
functions. A natural question that arises is: if it is possible to dynamically accel-
erate the convergence rate of nonlinear Gauss-Seidel method, that still remains
an open problem.

Herbort & Ratz [7] introduced the problem in their attempt to develop a
new componentwise Newton operator, using a univariate Newton iteration on
a unary projection of fi onto one of the variables x1, . . . , xn. Actually, finding
such an assignment set is known as finding a transversal in the incidence matrix
associated with the problem. Thus, a transversal may not be unique, but finding a
“good” one is not a trivial problem. Sotiropoulos et al. [14] suggested to compute
a transversal as a preprocessing step to interval Gauss-Seidel method for solving
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polynomial systems based on the structure of the equations. In recent works,
Goualard [2] and Goulard & Jermann [3] investigated the impact of the selection
of a transversal on the speed of convergence of interval methods based on the
nonlinear Gauss-Seidel procedure. In [3], the authors concluded that it is not
possible to select statically a good transversal at the beginning of the solving
process, and therefore, the selection must be reconsidered dynamically at each
iteration of the solving process.

In this work, we propose a greedy algorithm which determines a transversal
dynamically by exploring information not only from the incidence matrix (static)
but also from the current subregion (dynamic). The algorithm has the advantage
that it does not use any first order information, in contrast to the previous
proposed algorithms [7, 2, 3, 14]. From our point of view, the selection of an
transversal can be seen as a matching problem on the bipartite graph G =
(F ,X , E) associated with the the incidence matrix of the nonlinear system.

The greedy algorithm 4M

Given a system of nonlinear equations of the form

fi(x1, x2, . . . , xn), 1 ≤ i ≤ n (1)

where the variables xj , j = 1, . . . , n are bounded by real intervals i.e. xj ∈ [xj ].
The associated incident matrix A = [aij ] of the nonlinear system (1) is a zero-one
matrix where aij is set to 1 if variable xj occurs in function fi. We represent the
incidence matrix with a bipartite graphG(F ,X , E) where each vertex fi ∈ F and
xj ∈ X corresponds to the function fi and the variable xj of the nonlinear system
(1), respectively. In order to seriate the vertices of each vertex set we apply an
ordering relation between them, associating a tuple, consists of information from
the nonlinear system. Specifically, for each vertex fi ∈ F we associate the tuple
{dG(fi), w([f ]i)} and for each vertex xj ∈ X the tuple {w([x]j), dG(xj)}.

The algorithm is iterative and requires as input only the bipartite graph
G (F ,X , E). At each iteration, Algorithm-4M selects the vertex fi ∈ F with the
minimum degree. If this vertex it is not unique, we select the least of them
according to the tuple of each vertex. Afterwards, it is matched with its best
neighbor that is, the vertex with the biggest tuple, in O(n2). The two matched
vertices are eliminated from further processing and consequently the degree of
each of their neighbors is decreased by one. The edge incident to the selected
vertices is inserted in the matching set M. Further more at any iteration of this
process, if any vertex in set X has degree equal to one then it is matched with
its unique neighbor and the vertices are removed from the graph, as well. The
iterations are repeated until that bipartite graph is empty, in O(n2). Finally,
every edge (fi, xj) in M is sorted according to the tuple of each vertex xj .

Every edge of set M determines the transversal of the nonlinear system at
the current iteration. In particular, the edge (fi, xj) ∈ M, represents the element
(i, j) of the incidence matrix, which implies, in terms of nonlinear system, that
variable xj shall be projected onto the function fi.
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We establish that the feasibility of the matching problem on the bipartite
graph G ensures the existence of the perfect matching, not its uniqueness. Our
proposed algorithm looks for the appropriate perfect matching among all others,
nevertheless, all other existing perfect matchings don’t satisfy the primitives of
the greedy selection we have defined.

Lemma 1. Suppose the bipartite graph G(F ,X , E), arising by the representa-
tion of the incidence matrix of a nonlinear system (1), where F is the set that
corresponds to the functions, X is the set that corresponds to the variables and
E = F ×X . Algorithm-4M achieves a perfect matching of graph G, in O(n2).

Note that once a vertex is matched and removed from the bipartite graph, it
is never revisited by the algorithm and all the other unmatched edges incident
on it are removed from the graph, thus proving the correctness of the algorithm.
Further, the algorithm returns a perfect match, that is because once two vertices
are matched, they remain matched until the end of the process.

Numerical results

In this section, we introduce experimental results in order to demonstrate the
acceletating of the efficiency of interval Gauss-Seidel method using our proposed
algorithm as a preprocessing step (4M+Gauss-Seidel) and comparing it with the
traditional method (Gauss Seidel) in a variate of benchmarks. The test problems
have been taken from numerical [1, 8, 11] and interval analysis [7, 10] papers.

The implementation has been carried out in C++ using the C-XSC 2.0 li-
brary [9]. We present illustrative examples, highlighting the performance and
the superiority of our proposed method.

Solving process Gauss-Seidel 4M+Gauss-Seidel

No. Problem FcEv JcEv Ps FcEv JcEv Ps

1. Floudas 17167 13306 3845 1351 989 345
2. Ex.Powell 259284 168471 90805 138977 94499 44470
3. Cyclohexane n/a n/a n/a 44747 36017 8713
4. Kinematics 17155 13164 3975 2340 1757 567
5. Powell 6591088 5459059 1132028 2642 2123 517
6. Caprasse 1520810 1329956 190815 170918 149249 21633
7. Brown5 125092 93113 31976 20481 14959 5519
8. Economics5 567619 474293 93321 47728 39351 8373
9. Economics6 n/a n/a n/a 389061 336795 52262

10. 6Body n/a n/a n/a 210983 176067 34911

Table 1 compares the results of the two solving processes applied to ten test
problems. The first row denotes the method that has been used as solving process
for isolating all zeros of a nonlinear system. For each test problem we list the
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number of function (FcEv) and jacobian (JcEv) evaluations and the number of
pruning steps (Ps). A ”n/a” in a column means that the solver was unable to find
all the solutions of the problem within two hours. It is shown that, our proposed
technique contributing in decreasing of both function and jacobian evaluations
and of pruning steps.

Conclusion

In this paper, we have proposed a new direction of research, merging combina-
torial matching theory and a greedy based technique for obtaining a maximum
transversal. Our future framework will be to access our technique to interval
constraint solvers and devise more advanced structure-based heuristics.
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Abstract. We describe and analyze a stable algorithm for the recon-
struction of bounded simply-connected planar domains from moments.
This algorithm is based on (a) the computation of the associated Bergman
orthogonal polynomials from the moments, by using an Arnoldi- type
version of the Gram-Schmidt process and (b) the approximation of the
boundary of the domain, by using the asymptotic properties of the
Bergman polynomials. The performance of the algorithm is demonstrated
by a number of numerical examples.
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Abstract. The method presented in the present contribution is a method
of ARMA system identification using a hybrid algorithm which combines
GAs and the LMS algorithm. LMS is used in the step of the evaluation
of the fitness function in order to enhance the chromosomes produced
by the GA. Furthermore, when the GA is terminated, the LMS is ap-
plied again in order to optimize the final result. In this way we utilize
the advantages of both algorithms. Simulation results demonstrate the
effectiveness and efficiency of the proposed method by comparing it with
other methods presented in the literature.

Introduction

Using the term system identification (modeling), we mean locating a model with
known structure and parameters, which verges on the operation of a real sys-
tem with unknown characteristics. Modelling is one of the main methodological
tools in science and in some sectors of scientific research. Furthermore, scientific
theories and knowledge are based on theoretical models. On the other hand,
modeling activities constitute a substantial learning procedure. From previous
remarks, one can understand the great role of modeling in the evolution of sci-
ence.
GAs have been used extensively in the identification of unknown systems (model-
ing). Specifically, they have been combined with many other classic optimization
methods and as a result many very effective hybrid algorithms have been cre-
ated. One such hybrid algorithm, which is made by combining GAs with RLS
is described in [1]. The method is called GARLS and provides quite satisfactory
results. Furthermore, in [2] an effective modeling method is created combining
GAs with Simulated Annealing. Finally, in [3], the RGO method is presented
which is a variation of GAs in order to make semi-local search without being
caged in local extremas.
The method presented in the present contribution is a method of ARMA system
identification using a hybrid algorithm. This hybrid algorithm combines GAs
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and the LMS algorithm. LMS is used in the step of the evaluation of the fitness
function in order to enhance the chromosomes produced by the GA. Further-
more, when the GA is terminated, we apply LMS again in order to optimize the
final result. In this way we utilize the advantages of both algorithms. Specifically,
GAs are applied to optimization problems with huge search space and many lo-
cal extremas, while LMS is used for local search in which it is very effective.
Except from the present contribution, in past, there have been some other ef-
forts to combine GAs with the LMS algorithm in order to solve the problem
of modeling unknown systems. For example, in [4], a method that uses LMS to
create the population of the first generation of the GA is proposed.

The Proposed Hybrid Algorithm

Basic Ideas

The proposed method is inspired by [4]. According to this method gradient
methods are used to initialize a GA which is used to find the final solution. So, the
GA is used for local search. However, GAs, as known, have better performance
when the surface in which they search is big with a lot of local optima, while
gradient methods are used for local search. So, we thought, that if we use a GA
to initialize a gradient method (in our case the LMS algorithm) we might have
better results. From the method presented in [4], our method uses the gradient
method. This is a simple LMS, which gives an MA estimation of the System
which we try to identify. The reasons for choosing LMS as our gradient method
are the following: a) it is simple to implement, b) it is on-line, c) it converges
fast, d) it has small computational complexity.
Next, using the algorithm of Hartmut Brandestein and Rolf Unbehauen, the
MA model is transformed to an ARMA model whose order is defined by the
GA. Considering that an IIR system is the limit of an FIR system we conclude
that, under certain assumptions, our algorithm is expected to give satisfactory
results. We suppose that the unknown models that we are going to identify
have, without loss of generality, the same number of coefficients both on the
numerator and on the denominator.This assumption is not expected to reduce
the performance and the flexibility of the system, because if a coefficient does
not exist in the system that we try to identify, we expect the algorithm to assign
a near zero value to it.
Finding the system’s order is a very difficult task with a lot of local optima. For
this reason, we use the GA to solve it. For simplicity and in order to reduce the
complexity of the algorithm, the order of the system is supposed to be within
the interval [1,10], which indeed includes a great number of systems. Another
problem that we have to deal with is that we do not know the specific order of the
MA system which we should use for every model in order to take satisfactory
results. We solved this problem by using linked lists as chromosomes. In this
way the chromosomes are of varying length and we can use the GA to solve the
problem of finding the best order for the MA model.



Combining Evolutionary 141

Explicit Description of the Proposed Algorithm

The proposed method constitutes of four phases which are described below:
Phase 1: In this phase, the algorithm creates the initial population which is
going to be used by the GA. Every chromosome is a type List object of the
C++ Genetic Algorithms’ library GAlib [5]. This lets us use chromosomes with
varying length. The first node of the list contains an integer number from 1 to 10
which corresponds to the order of the ARMA system. The other nodes contain
elements of type double which correspond to the MA filters’ parameters which
is going to be used as an initial filter for the LMS algorithm.
Phase 2: In this phase, the GA is applied to the initial population created during
the previous phase. The GA used is the simple Genetic Algorithm provided by
GALIB (GASimpleGA) [5]. The algorithm does not use overlapping populations
and implements the parents’ selection using the roulette wheel selection method.
Finally, this specific algorithm uses the elitism technique, which assures that
the best chromosome of each generation is included in the next generation’s
population.
Phase 3: In this phase the proposed algorithm follows the following steps:

(1.) The LMS algorithm is applied for data of length dlms with initial parameters
the ones located in the best chromosome computed by the GA. So, an MA
filter is created.

(2.) Using the algorithm of Hartmut Brandestein and Rolf Unbehauen the MA
filter is transformed in an ARMA filter with order equal to the number that
is the first element of the chromosome.

(3.) The mean square error (MSE) of the ARMA system for the specific data
window is computed.

The ARMA filter taken from the previous procedure is the final filter that the
proposed algorithm proposes as the best solution.
Phase 4: In this phase the proposed method checks the stability of the final
solution.

Experimental Results

In order to demonstrate the effectiveness and efficiency of the proposed algorithm
we conducted many experiments on different models and compared it with many
different approaches presented in the literature. In the current contribution we
present the application of the proposed algorithm on the ARMA system identi-
fication problem which is referred in [6], where two algorithms are presented for
system identification, which are named OPS and FOS respectively. Both algo-
rithms need to know ’a priori’ the order of the system which is to be identified.
The system described is used to test these algorithms in cases where the order
of the system is chosen to be 5 (instead of 4 which is the real order) for the de-
nominator and 6 for the numerator (instead of 4 which is the real order). Many
experiments were conducted using additive noise of 10db and without additive
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noise. The estimations given by the algorithms OPS, FOS are not close enough
to the real system. We tried to identify this system using the proposed algo-
rithm. The set of parameters used in this example is the following: (Ipop=50,
Pcross=0.6, Pm=0.01). The steps for the LMS algorithms which are used in the
proposed algorithm were m1lms=0.05, m2lms=0.005, respectively. Initially, we
did not use additive noise. The average MSE that resulted after 100 runs was
0.0048. 60 times out of 100, the algorithm found the correct order of the system,
while 40 times out of 100 the order found by the proposed algorithm was bigger
than the real one. We repeated the previous experiment with presence of additive
noise with SNR=10db. The average MSE that resulted after 100 runs was 0.58.
This value is quite big because the proposed algorithm found the correct order
only half times, while 30 times out of 100 found an order smaller than the real
one. However, the performance of the proposed algorithm is much better than
the performance of the algorithms OPS, FOS because the coefficients found are
much closer to the real coefficients than the ones computed by the algorithms
OPS, FOS.

Conclusions and Future Work

In this contribution a new hybrid intelligent algorithm foe system identification
is presented. Experimental results showed that the proposed method is very
effective in identifying unknown systems, even in cases with high additive noise.
Furthermore, we have observed that in the most cases, the proposed method
has found the correct order of the unknown systems without using a lot of a
priori information. So, the proposed hybrid algorithm has created models that
not only had small MSE but also were similar to the real systems. Except for
that, all the models derived from the proposed method are stable.
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Abstract. The computation of the Rank of a matrix is an interest-
ing problem with applications in many computational fields of science
such as control theory, numerical linear algebra etc. In the present paper
we study the computation of the Rank of a block bidiagonal sequence
of matrices called PAPS sequence. We propose matrix-based, numeri-
cal and symbolical, updating and direct methods computing the Rank
of block bidiagonal Toeplitz matrices and compare them with classical
procedures. Methods such as QR factorization and SVD are stable but
inefficient because of the big size of the initial matrix. Updating methods
exploit the special structure of the PAPS matrix. We present new algo-
rithms and modifications of the classical ones which deploy the special
form of the PAPS sequence reducing significant the required flops and
lead to fast and efficient algorithms. The numerical implementation of
the algorithms leads to serious problems such as the computation of the
numerical Rank in contrast with the symbolical implementation which
guarantees the computation of the exact Rank of the matrix. The combi-
nation of numerical and symbolical operations suggests a new approach
in software mathematical computations denoted as hybrid computations.
For some of the above methods their hybrid nature is presented.

Introduction

The computation of the rank of a matrix [1, 3, 7] is a problem that has concerned
many computational fields of science such as numerical analysis, numerical linear
algebra, control theory etc. In this paper we present some methods computed
the rank of a special structured matrix called PAPS. This matrix appears in
the computation of the Weierstrass Canonical form of regular Matrix Pencils
[5]. Taking advantage of its special block bidiagonal Toeplitz form we introduce
reliable and efficient algorithms for the computation of its rank.

The paper is organized as follows. In section 2, we present an updating
method for computing the rank of the PAPS matrix. Next we briefly describe
the most significant direct methods for computing the the rank of a matrix and
we suggest a new direct method which computes in an effective way the rank of
the PAPS sequence. In section 3 are presented useful conclusions.

? This research was financially supported by the Special Account for Research Grand
of Athens University.
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The PAPS Sequense

Let A, B be two n× n matrices and let Γi, , i = 1, 2, . . . , k, . . ., be the following
sequence of matrices:

Γ0 = A, Γ1 =

[
A 0
B A

]
, Γ2 =



A 0 0
B A 0
0 B A


 , . . . , Γk =




A
B A

. . .
. . .

B A


 .

Our aim is to compute the rank of each term of the previous sequence.

Updating Method

Let r0 = rankΓ0, r1 = rankΓ1 − rankΓ0, . . . , rk = rankΓk − rankΓk−1. If
rankA = k there will be k linear independent rows e1, e2, . . . , ek which produce
the row space of A. Similarly, if rankB = l there will be l linear independent
rows e

′

1, e
′

2, . . . , e
′

l, which produce the row space of B. Because rankA = k we
can zero with row operations the n-k linear dependent rows of A. Let A0 be the
resultant matrix. For the second term Γ1 of the sequence, with row operations
in matrix A arises the matrix:

Γ1 =

[
A 0
B A

]
−→

[
A(0) 0
B A

]

After row operations we zero the n-l linear dependent rows in B. There is also
the possibility to be zeroed some other rows of e

′

1, e
′

2, . . . , e
′

l which produce the
matrix B if they are coincided with some rows of e1, e2, . . . , ek which produce
the matrix A. The row operations in B affect the entries of A which are right of
B. Let B(1) and A(1) be the resultant matrices. After the row operations arises
the following matrix: [

A(0) 0
B(1) A(1)

]

whereA(1) is not necessary equal toA(0). So rankΓ1 = rankA(0)+rank[B(1), A(1)].
Also r1 = rankΓ1 − rankΓ0 = rank[B(1), A(1)].

We continue similarly in the third term:

Γ2 =



A 0 0
B A 0
0 B A


 and so rank






A 0 0
B A 0
0 B A





 = rank






A(0) 0 0
B(1) A(1) 0

0 B A






and so we continue with the last matrix. With row operations in the last block-
row [0, B,A] and particularly in B we zero the n-l linear dependent rows of B.
From the l remaining rows of B we could delete some rows if these rows are linear
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combination of the rows of A(1) and these rows of A(1) have in the corresponding
position of B(1) zero rows. After these operations we have the following matrix:



A(0) 0 0
B(1) A(1) 0

0 B(2) A(2)


 ⇒ rankΓ2 = rank



A(0) 0 0
B(1) A(1) 0

0 B(2) A(2)


 , r2 = rank

[
B(2)A(2)

]
.

Generalizing we have that rθ = rank
[
B(θ)A(θ)

]
.

Direct Methods

There are many classical direct methods for the computation of the rank of the
PAPS sequence. These methods handle the whole matrix in contrast with the
analyzed in the previous subsection updating method. The Gauss-Jordan (GJ)
factorization, the QR factorization with column pivoting (QRCP) [4], the Rank
Revealing QR (RRQR) [1], the Singular Value Decomposition (SVD) [2] and the
Partial SVD (PSVD) [6] are the most known technics for the computation of
the rank of a matrix. But as the number of blocks [B A] in PAPS sequence is
increasing, the implementation of the previous classical methods becomes inef-
ficient since the required flops of each method is of order of O(n3) for a n × n
initial matrix. If the number of blocks [B A] is of order of n then all previous
methods demand O(n4) flops and thus their complexity makes them inefficient
for implementation.

We move the first block [A] to the end of the matrix:

Γn+1 =




A
B A
B A

. . .
. . .

B A



→ Γ̃n+1 =




B A
B A

. . .
. . .

B A
A




We can take advantage of the special form of the initial modified matrix: As
we can see in the previous form of Γ̃n+1 there are n same [B A] blocks (right
shifted each time). We triangularize the first two blocks using the LU with partial
pivoting or the QR factorization:

LU(

[
B A 0
0 B A

]
) → U or QR(

[
B A 0
0 B A

]
) → R

where U , R are upper triangular matrices. We update the other entries (the [n−1
2 ]

pairs of [B A]) without making any other calculations. We repeat the previous
procedure until the number of the same blocks be less or equal to 3. Then we
apply one more time the LU or QR factorization to zero specific entries of the
whole (which is almost triangular) matrix. The number of the repeated steps is

less or equal to log2(n). Each step requires O(n
3

3 ) or O( 2n3

3 ) flops for every LU
or QR factorization and thus the total complexity remains of order O(n3) which
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makes the method efficient.

The modified LU with partial pivoting (MPLU) or modified QR (MQR)
factorization

While number of same blocks of Γ̃n+1 > 3 do

if number of same blocks of Γ̃n+1 = odd
move the last block to the bottom of the matrix

endif
Compute the upper triangular matrix R or U
R=QR(Γ ) or U=LU(Γ ), where Γ contains

the two first same blocks of Γ̃n+1

Compute the upper triangular matrix R or U :

R =QR(Γ̃
(n)
n+1) or U =LU(Γ̃

(n)
n+1)

This algorithm can be implemented in the first phase of SVD or PSVD.

Conclusions

The most efficient way to compute the rank of the PAPS sequence is the PSVD
using the MQR factorization in its first phase. The algorithm can be imple-
mented numerically since the Housholder and the Givens transformations are
orthogonal and thus stable. Alternatively we can use the MPLU in the first
phase of PSVD reducing significantly the required flops. Because the gaussian
elimination with partial pivoting is theoretically not stable we can implement
the MPLU symbolically and next the Givens rotations numerically combining in
a hybrid way the two arithmetics. The classical methods are inefficient because
of the flops that they demand. The updating method requires less flops than the
classical methods because it handles only a part of the PAPS sequence and not
the entire matrix.

References

1. Chan, T.: Rank revealing QR fact. Lin.Alg. and its App. 88/89 (1987) 67–82
2. Datta B.N.: Numerical Linear Algebra and Applications, Second Edition,

Brooks/Cole Publishing Company, United States of America (1995)
3. Foster, L.: Rank and null space calculations using matrix decomposition without

column interchanges. Lin. Alg. and its Appl. 74 (1984) 47–71
4. Golub, G.H., Van Loan, C.F.: Matrix Computations, Third Edition, The John Hop-

kins Univercity Press, Baltimore, London (1989)
5. Kalogeropoulos, G., Mitrouli, M.: On the computation of the Weierstrass Canonical

form of a Regular Matrix Pencil. Control and Computers. 22 (1994)
6. Van Huffel: Partial singular value decomposition algorithm. J. of Comp. and Applied

Math. 33 (1990) 105–112
7. Yalamov, P.Y., Mitrouli, M.: A fast Algorithm for Index Annihilation Computations.

J. of Comp. and Appl. Math. 108 (1999) 99–111



Applying robust multibit watermarks to digital

images

Dimitrios Tsolis1, Spiridon Nikolopoulos2, Lambros Drossos3, Spiridon
Sioutas4, and Theodore Papatheodorou1

1. Informatics and Telematics Institute, Centre of For Research and Technology,
Greece

2. Department of Computer Engineering and Informatics, University of Patras, Greece
3. Department of Applied Informatics in Administration and Economics,

Technological Institute of Messolongi
4. Department of Informatics, Ionian University

Abstract. The current work is focusing on the implementation of a ro-
bust multibit watermarking algorithm for digital images, which is based
on an innovative spread spectrum technique analysis. The paper presents
the watermark embedding and detection algorithms, which use both
wavelets and the Discrete Cosine Transform and analyzes the arising
issues.
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domain, subband-DCT, copyright protection, digital images.

Introduction

Watermarking is probably the most promising technological approach against In-
tellectual Property Rights protection [2]. The majority of watermarking systems
achieving high robustness are only capable of embedding one bit of information
placing specific limitations on the potentials of the encrypted information. Most
of the real word applications raise the requirement of a multibit robust water-
marking scheme where the detectors output can be interpreted into meaningful
and valuable information.

Multibit Watermark Technique

Spread Spectrum Watermarking in the Wavelet Domain

Generally, a watermark is a narrow band signal, which is embedded to the wide
band signal of a digital image [3]. Spread spectrum techniques allow the encoded
information to be spread across a wide range of frequencies. Thus, if the signal
is distorted by some process that damages only a fraction of the frequencies,
such as a band-pass filter or addition of band limited noise, the encrypted infor-
mation will still be identifiable. Furthermore, high frequencies are appropriate
for rendering the watermarked message invisible but are inefficient in terms of
robustness, whereas low frequencies are appropriate with regards to robustness
but are useless because of the unacceptable visual impact.
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General Description of the Additive Algorithm

In additive watermarking algorithms, the signature data is a sequence of numbers
wi of length N that is embedded in a suitably selected subset of the host signal
data coefficients, f. The basic and commonly used embedding formula is

f ′(m,n) = f(m,n)(1 + awi) . (1)

where a is a weighting factor and F’ is the resulting modified host data coefficients
carrying the watermark information. Alternative embedding formulas have been
proposed by Cox [39,Master thesis], such as

f ′(m,n) = f(m,n) + awi . (2)

or using the logarithm of the original coefficients,

f ′(m,n) = f(m,n)eawi . (3)

An important property of the above formula is that an inverse embedding func-
tion,

w′
i =

f ′′(m,n) − f(m,n)

a× f(m,n)
. (4)

can be easily derived to compute w’ from f” given the original host coefficients
as reference. By f’ we denote the received, possibly altered, image that might
contain the watermark w. At the next step, the extracted watermark sequence
w’ is compared to the original embedded watermark w using the normalized
correlation of the sequences as a similarity measure

δ =
w′ × w

‖w′‖ × ‖w‖ . (5)

The similarity varies in the interval [-1,1], a value well above 0 close to 1 indicates
the extracted sequence w’ matching the embedded sequence w and therefore
concluding that the image has been watermarked with w. A detection threshold
can be established to make the detection decision, ¿. The detection threshold
can be derived either experimentally by observing the correlation of random
sequences or analytically. For example, a threshold

τ =
α

S ×N

N∑
|f ′| . (6)

can be used, where S, the standard deviation, is 2 or 3.
Of course, the choice of the threshold influences the false-positive and false-

negative probability. Hence, a lot of effort has been focused on devising reliable
methods to compute predictable correlation thresholds and efficient watermark
detection systems.

The weighting factor a does not necessarily have to be constant over the
entire watermark sequence, but can be chosen adaptively to capture and exploit
local properties of the host signal.
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Before the watermark embedding, the host image F is usually subjected to
a two dimensional transform T such as the DCT, DFT or DWT to derive a fre-
quency representation f of the data, f=TxF. Following the watermarking mod-
ifications in the frequency domain, the spatial image representation is regained
by applying the inverse transform

T−1, F = T−1 × f . (7)

Subband-DCT

In our implementation, we adopted a method in which both wavelets and the well
known Discrete Cosine Transform (DCT) are involved [1]. Highpass and lowpass
filters are used to subsample and filter the original image. The combination of
the two filters for each direction (horizontal and vertical) of filtering produces
four subbands for each level of decomposition. The band that corresponds to
lowpass filtering in both directions (LL band) can be further subsampled and
filtered thus providing another level of decomposition. Finally, each of the bands
is transformed applying the DCT transform. In the proposed scheme a one level
decomposition with four bands was selected, utilizing the most trivial wavelets,
originally introduced by Haar. The next stage is transforming the produced
bands using the DCT. The watermark casting is performed according to the
following additive rule:

t′i = ti + αtixi . (8)

where ti are the transformed coefficients, are the watermarked coefficients and
xi is a random sequence of Gaussian distribution, used as a watermark. The
a-parameter specifies the casting strength.

Spread spectrum multibit watermarking technique

The embedding of a robust multibit watermark is accomplished through casting
several zero-bit watermarks onto specified coefficients. The image watermark, a
random sequence of Gaussian distribution in our case, is casted multiple times
onto the selected coefficients preserving the same sequence length but shifting
the start point of casting by one place. Actually the final watermark that will be
embedded into the image is not a single sequence but many different sequences
generated with different seeds. These sequences will be casted, one after the
other, on the mid coefficients of the image, using the additive rule mentioned
above and begging from successive starting points. If all sequences where to be
casted, beginning from the same starting point, then, besides the severe robust-
ness reduction resulting from the weak correlation, the possibility of false positive
detector response would dramatically increase, since every number that has par-
ticipated as a seed during the sequence generation procedure, will be estimated
by the detector as a valid watermark key. Shifting the starting point by one de-
gree for every sequence casting ensures that the false positive rate will remain in
very small level due to the artificial desynchronisation introduced. Every single
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random sequence of Gaussian distribution is generated using a different number
as the seed for the Gaussian sequence generator. It is important to differentiate
the sequences in order not to mislead the detection mechanism, since it is based
on the correlation between the extracted sequence and the sequence produced
with the watermark key.

The watermark key is responsible both for the generation of the first sequence
and the construction of a vector, containing the rest of the numbers that will
serve as the corresponding seeds. The placement of several Gaussian sequences
into the image content can model, under specific conventions, a multibit water-
mark. The detection of a zero-bit watermark is interpreted as if the bit value of
the specified bit is set to one. On the contrary, failure of the detector to detect
the zero-bit watermark leads to the conclusion of a zero bit value. Thus, in order
for a message to be casted into the image content, it is initially encoded using
the binary system and applied afterwards in the sense of zero-bit watermarks
using the embedding mechanism and according to the derived bit sequence.

Fig. 1. Zig-Zag coefficients of the LL Band

Concluding Remarks

Most of the effort addressed in this work was dedicated on formulating a simple
and easy to implement technique for robustly embedding multibit watermarks
into digital images. The result was a technique applicable to every spread spec-
trum frequency domain watermarking method capable of hiding 214 different
messages while maintaining a sufficient level of robustness.
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Abstract. In the last four decades many researchers have studied and
analyzed the study of sign symmetry and positivity of principal minors
of matrices, since these issues are related to stability. In this work we ex-
tend the theory about sign symmetric basic p–circulant permutation and
sifted p–circulant matrices. We present and prove sufficient and neces-
sary conditions for P–matrices and necessary conditions for P 2–matrices.
Finally we present a class of matrices, where the P 2–matrices are stable
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Abstract. In this paper, we present a numerical technique for com-
puting the real eigenvalues of real tridiagonal matrices, which have,
generally, both real and complex conjugate eigenvalues. This technique
consists in the highly accurate computation of the integral of the ratio
p′(λ)/p(λ), p(λ) being the characteristic polynomial of the tridiagonal
matrix under consideration, along a closed contour C defining a complex
region R ⊂ C, within which eigenvalues of interest are located. The value
of this integral counts the eigenvalues enclosed in R. Choosing C to be a
rectangle with basis ∆x and height running from −i∆y to +i∆y, we can
both count and localize the real eigenvalues lying on ∆x by decreasing
∆y and ∆x, respectively. That is, a sufficiently small ∆y excludes the
complex conjugate eigenvalues and a bisection–type method applied on
∆x gives the real eigenvalue(s) of interest.

Introduction

A real tridiagonal matrix

A =




a1 b2 0 . . . 0 0
c2 a2 b3 . . . 0 0
0 c3 a3 . . . 0 0
. . .
0 0 0 . . . an−1 bn
0 0 0 . . . cn an



, (1)

where ai, i = 1, 2, . . . , n and bi, ci, i = 2, 3, . . . , n ∈ IR, and bici > 0 has all
its eigenvalues real. When bici 6 0 for even one value of i, its eigenvalues are
generally complex. Computing the real eigenvalues of the latter case is a very
interesting problem since it has many engineering and scientific applications.

To this purpose, we try to localize the zeros of the characteristic polynomial
p(λ) ≡ pn(λ) of A, which is given by the recursive formula




pk(λ) = (λ− ak)pk−1(λ) − bkckpk−2(λ), k = 2, 3, . . . , n,
p1(λ) = λ− a1,
p0(λ) = 1.

(2)
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In particular, we consider a complex region R ⊂ C defined as the interior of
the closed contour C, within which eigenvalues of interest for the characteristic
polynomial p(λ) of the tridiagonal matrix A shall be localized and estimated.
Then the Residue Theorem implies that the total number, N , of the eigenvalues
of p(λ) which lie in R is given by

N =
1

2πi

∫

C

p′(λ)

p(λ)
dλ. (3)

Thus, we can calculate N via numerical integration of the contour integral (3).
The details of such a treatment are given in the next section.

Numerical Integration of the Closed Contour Integral

The numerical integration (numerical quadrature) of an arbitrary function g(z)
is basically no different than the numerical integration of the corresponding
ordinary differential equation (ODE) df/dz = g(z). In particular, the numerical
evaluation of the contour integral (3) is equivalent to the numerical solution of
an initial value problem (IVP) in an ODE; that is, for our problem,





df

dλ
=
p′(λ)

p(λ)
,

fs ≡ f(λs) = f re
s + if im

s ,

(4)

where λs is the starting integration point and fs is the initial value for the
unknown function f(λ). Since C is a closed contour, the final integration point,
λf , coincides with the starting integration point, λf = λs. If we define the closed
countour C as the rectangle

C =





xs − i∆y −→ xs + i∆y
xs + i∆y −→ (xs −∆x) + i∆y
(xs −∆x) + i∆y −→ (xs −∆x) − i∆y
(xs −∆x) − i∆y −→ xs − i∆y




, (5)

where the quantities xs, ∆x, ∆y are given as initial data, then the starting
integration point is λs = xs − i∆y and, without loss of generality, the initial
value fs is such that f re

s = 0, f im
s = 0. Then, we need a numerical tool to solve

this IVP, to calculate the value f(λf ), and thus to find N ,

N =
f(λf )

2πi
. (6)

Efficiency of ATOMFT for the Particular IPV

After having converted our problem to the IVP (4), we apply the ATOMFT
System (Ref. [1]) and we verify its efficiency and accuracy with respect to the
problem under consideration.
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ATOMFT is a powerful, flexible, Fortran 77-based software system for fast
and accurate solution of systems of ODEs. The user prepares a Fortran-like state-
ment of the system of ODEs to be solved, the ATOMFT translator reads this
statement and writes a Fortran 77 program, which then runs and solves the sys-
tem of ODEs by using long Taylor series (Refs. [2–4]). ATOMFT is distributed at
no cost (download from www.eng.mu.edu/corlissg/ATOMFT3 11/Atom3 11).
The user has certain obligations described in Ref. [5].

The ATOMFT system is simple enough to be used by students, practical
enough to be used by engineers, and versatile enough to be used by research
mathematicians (Ref. [1], Sect. 1.4). The very high order and precise error con-
trol used by ATOMFT enable it to solve problems, for which other methods
have difficulties. ATOMFT supports solution of ODEs defined in the complex
plane (details for solving such problems are given in Ref. [1], Sects. 3.2.4, 3.2.5,
3.7; details concerning numerical quadrature problems and their conversion to
numerical integration of ODEs are given in Sect. 6.3).

To the purpose of testing ATOMFT in the IVP (4), we have defined the
tridiagonal matrix

A =




4 −3 0 0 0 0 0 0
1 5 0 0 0 0 0 0
0 3 2 10−6 0 0 0 0
0 0 −10−6 2 8 0 0 0
0 0 0 0 7 −2 0 0
0 0 0 0 3 9 −1 0
0 0 0 0 0 0 6 3
0 0 0 0 0 0 −1 2




, (7)

with eigenvalues





λ1 = 8 + i 2.23607,

λ2 = 8 − i 2.23607,

λ3 = 5,

λ4 = 4.5 + i 1.65831,

λ5 = 4.5 − i 1.65831,

λ6 = 3,

λ7 = 2 + i 10−6,

λ8 = 2 − i 10−6.

(8)

We have run ATOMFT defining the closed contour C by choosing several val-
ues for its definition data xs, ∆x, and ∆y. We have verified that, in any case,
ATOMFT counts correctly the eigenvalues lying in the interior of C. Indicatively,
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setting xs = 10 and ∆x = 10, we find that





N = 8 for ∆y = 3,

N = 6 for ∆y = 2,

N = 4 for ∆y = 1,

N = 4 for ∆y = 10−5,

N = 2 for ∆y 6 10−7.

(9)

Thus, we are able to count correctly the real eigenvalues of A, i.e, the eigenvalues
λ3 and λ6 of Eq. (8), and then to calculate them (e.g., by a bisection–type
method).

Acknowledgments

The authors acknowledge the use of the ATOMFT System.

References

1. Chang, Y. F.: ATOMFT User Manual, Version 3.11. www.eng.mu.edu/corlissg/
Pubs/ATOMFT3 11/ Atom3 11/Manual (1994)

2. Chang, Y. F.: Automatic solution of differential equations. In Constructive and
Computational Methods for Differential Equations, edited by D. L. Colton and R.
P. Gilbert. Springer Lecture Notes in Math. 430 (1974) 61–94

3. Chang Y. F., and Corliss, G.: Ratio-like and recurrence relation tests for convergence
of series. J. Inst. Math. Appl. 25 (1980) 349–359

4. Chang, Y. F., and Corliss, G.: Solving ordinary differential equations using Taylor
series. ACM Trans. Math. Soft. 8 (1982) 114–144

5. Corliss, G.: READ.ME for ATOMFT v 3.11 (ATOMFT Compiler, version 3.11,
Copyright (C) 1979-94, Y. F. Chang. Version 3.11 completed (6/21/93)), revised
20-JAN-1994 by George Corliss. www.eng.mu.edu/corlissg/Pubs/ATOMFT3 11/
Atom3 11/read.me



156 F.N. Valvi and V.S. Geroyannis

Abstracts of Posters



Local Application of One-Level Trees

D. Anyfantis, M. Karagiannopoulos, S.B. Kotsiantis, and P.E. Pintelas

Educational Software Development Laboratory
Department of Mathematics, University of Patras, Hellas
{dany, mariosk, sotos, pintelas}@math.upatras.gr

Abstract. We propose a technique of local application of one-level de-
cision and regression trees. We recognize local regions having similar
characteristics and then build local expert on each of these regions de-
scribing the relationship between the data characteristics and the target
value. We performed a comparison with other well known lazy methods
on standard benchmark datasets and the proposed technique produced
the most accurate results.

Introduction

Instance-based (lazy) learners classify an instance by comparing it to a database
of pre-classified examples. Local learning [1] can be understood as a general
principle that allows extending learning techniques designed for simple models, to
the case of complex data for which the model’s assumptions would not necessarily
hold globally, but can be thought as valid locally. In this paper, we propose a
technique of local application of one-level decision and regression trees (decision
stumps) [7]. We performed a comparison with other well known lazy methods
on standard benchmark datasets and the proposed technique produced the most
accurate results. In the next section, we describe the proposed method and we
evaluate the proposed method on several UCI datasets by comparing it with
other lazy methods. Finally, section 4 concludes the paper and suggests further
directions.

Proposed Algorithm and Experiments

Local methods have significant advantages when the probability measure defined
on the space of symbolic objects is very complex, but can still be described by
a collection of less complex local approximations. Some theoretical results and
experimental results [4], [9] indicate that a local learning algorithm provides a
feasible solution to this problem. The proposed algorithm builds a model for each
point to be estimated, taking into account only a subset of the training points.
This subset is chosen on the basis of the preferable distance metric between the
testing point and the training point in the input space. For each testing point, a
decision stump learner is thus learned using only the training points lying close
to the current testing point. Generally, the proposed method consists of the four
steps (see Fig. 1).
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1. Determine a suitable distance metric.
2. Find the k nearest neighbors using the selected distance metric.
3. Apply the DS algorithm using as training instances the k instances.
4. The 5answer of the model is the prediction for the testing instance.

Fig. 1. Local Decision Stump

In our experiments, we used the most well known -Euclidean similarity function-
as distance metric. The proposed algorithm also requires choosing the value of
K. In the current implementation we decided to use a fixed value for K (=50):
a) in order to keep the training time low and b) about this size of instances is
appropriate for a simple algorithm, to build a precise model according to [6], [8].
We have experimented with a number of classification datasets from the UCI
repository [2]. In order to calculate the classifiers’ accuracy, cross validation was
run 10 times for each algorithm and the average value was calculated. It must
be mentioned that we used the free available source code for most of the al-
gorithms by [10] for our experiments. We compare the proposed methodology
with K-nearest neighbors using k=3 (most common used number of neighbors),
as well as k=50 because the proposed algorithm uses 50 neighbors. In addition,
we tested Kstar: another instance-based learner which uses entropy as distance
measure [5]. In following Tables, we represent as ”v” that the specific algorithm
performed statistically better than the proposed method according to t-test with
p < 0.05. On the other hand, ”*” indicates that the proposed method performed
statistically better than the specific algorithm according to t-test with p < 0.05.
In all the other cases, there is no significant statistical difference between the
results (Draws). As one can see, the performance of the presented method is
more accurate than the other techniques. Subsequently, we experimented with
a number of datasets from the UCI repository [2]. We compared the proposed
methodology with Simple DS algorithm, K-nearest neighbors using k=50 be-
cause the proposed algorithm uses 50 neighbors. In addition, we tested Kstar:
another instance-based learner which uses entropy as distance measure [5]. Simi-
larly, in order to calculate the models’ correlation coefficient for our experiments,
cross validation was run 10 times for each algorithm and the average value was
calculated. The performance of the proposed method is better than the other
tested techniques.

Conclusion

Our experiment in real datasets shows that the proposed method outperforms
other lazy classification and regression methods. In a following work we will
focus on the problem of reducing the size of the stored set of instances [3] while
trying to maintain or even improve generalization accuracy by avoiding noise
and overfitting.
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Table 1. Comparing local decision stumps with other learners

Datasets Local DS Kstar 3NN DS 50NN

audiology 72.68 80.32 v 67.97 * 46.46 * 35.95 *

autos 74.82 72.01* 67.23 * 44.9 * 48.18 *

colic 80.87 75.71* 80.95 81.52 84.04 v

credit-rating 83.61 79.1 * 84.96 85.51 86.16 v

Glass 70.58 75.31 v 70.02 44.89 * 56.16 *

heart-c 78.29 75.18 * 81.82 v 72.93 * 81.58 v

ionosphere 88.24 84.64 * 86.02 * 82.57 * 71.65 *

Iris 94 94.67 95.2 66.67 * 90.53 *

monk3 93.44 86.22 * 86.72 * 76.01 * 82.46 *

Vehicle 69.58 70.22 * 70.21 * 39.81 * 63.47 *

Vote 95.4 93.22 * 93.08 * 95.63 * 90.41 *

Table 2. Comparing the Algorithms

Dataset Local DS Kstar 50NN DS

servo 0.89 0.86 * 0.65 * 0.79 *

autoHorse 0.92 0.90 0.85 * 0.72 *

autoMpg 0.89 0.91 0.86 * 0.74 *

bodyfat 0.94 0.87 * 0.91 * 0.82 *

cholesterol 0.12 0.04 * 0.17 v 0.04 *

fishcatch 0.94 0.99 v 0.78 * 0.83 *

housing 0.84 0.90 v 0.77 * 0.60 *

lowbwt 0.78 0.62 * 0.75 * 0.78

pbc 0.43 0.30 * 0.52 v 0.43

pwLinear 0.84 0.72 * 0.85 0.68 *

quake 0.09 0.08 0.06 * 0.09

sensory 0.47 0.39 * 0.36 * 0.29 *

auto93 0.72 0.77 v 0.71 0.59 *
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Abstract. We are interested in studying the second order of accuracy
two-step absolute stable difference schemes for the approximate solutions
of the initial value problem

d2u(t)

dt2
+ A(t)u(t) = f(t) (0 ≤ t ≤ T ), u(0) = ϕ, u′(0) = ψ

in a Hilbert space H with the self-adjoint positive definite operators
A(t). In the present paper two new difference schemes of a second order
of accuracy generated by integer power of A(t) for approximately solv-
ing this initial-value problem are presented. The stability estimates for
the solutions of these difference schemes are established. The theoretical
statements for the solution of these difference schemes are supported by
the results of the gives numerical examples.
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Abstract. A machine learning system was developed for the grading of
hip osteoarthritis (OA) severity. Employing custom developed software,
64 Hip Joint Space (HJS) images (18 normal, 46 osteoarthritic) were ob-
tained from the digitized pelvic radiographs of 32 patients of unilateral
and / or bilateral hip OA. Computational descriptors, evaluating texture
and shape properties of the region of radiographic HJS were generated
from the corresponding images and were used in the design of a two-level
hierarchical decision tree structure. The latter, discriminated successfully
between Normal and osteoarthritic hips at Level1 (96.9% overall accu-
racy) as well as hips of “Mild-Moderate” OA and of “Severe” OA at Level
2 (89.1% overall accuracy). The suggested approach may contribute to
OA-patient management.

Introduction

Osteoarthritis (OA) is a major cause of morbidity worldwide, representing the
most common form of joint disorder [1]. Plain film radiography is considered as
the imaging modality of reference for the assessment of the osteoarthritic joint
[2]. The characteristic radiographic findings of hip OA comprise the narrowing
of Hip Joint Space (HJS), the sclerosis of subchondral bone, the formation of
osteophytes, the development of subchondral cysts as well as abnormalities of
the bone margins [1]. Radiographic assessment of hip OA severity is relied to a
great extend on qualitative scales. The latter comprise severity grades, which are
subjectively assigned to the studied joint, while the definition of the grades is
based on the characteristic radiographic findings of the disease [3]. Among these
scales, the one proposed by Kellgren and Lawrence (KL) has been accepted as
the reference standard [4].

Previous studies have introduced thresholds of manually measured HJS-
width, for characterizing a hip as normal or osteoarthritic [5]. In previous studies
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performed by our group, the radiographic texture as well as the shape of HJS
have been, separately, utilized for the discrimination among OA-severity cat-
egories [6], [7]. In the present study, osteoarthritic alterations of the hip are
evaluated by means of the combined use of texture and shape descriptors, not
previously employed in the hip OA investigation.

Materials and Methods

Clinical Sample and Radiographic Images

The clinical sample of the study comprised 64 hips (18 normal, 46 osteoarthritic),
corresponding to 32 patients of unilateral (18) or bilateral (14) hip OA. For each
patient, a pelvic radiograph was available. All radiographs were obtained ac-
cording to a specific radiographic protocol and were digitized. The radiographic
severity of hip OA was graded by each of three orthopaedists, employing the KL
scale [4]. Accordingly, three major OA-severity categories were formed, in which
the hips were allocated into: “Normal (18 hips)”, “Mild /Moderate (16 hips)”,
and “Severe (30 hips)”.

On each radiograph, two HJS-ROIs, corresponding to patient’s both hips,
were determined, employing custom developed algorithms in Matlab software
(The MathWorks Inc., Natick, USA). The whole procedure concerned the fol-
lowing steps: (i) contrast enhancement and emphasis of the articular margins of
the hip joint by implementing the Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) method [8], (ii) formation of an acute angle of 450, providing
the medial and lateral limits of the HJS-ROI [9] (see Fig. 1a), and (iii) man-
ual delineation of the inferior and superior articular margins of the joint. This
HJS-ROI (Fig. 1b) was subjected to further texture and shape analysis.

Generation of Computational Regional Descriptors

From each HJS-ROI two sets of computational descriptors, evaluating texture
and shape properties of the specific anatomical region, were generated employ-
ing custom developed algorithms. Texture analysis of HJS-ROIs concerned the
following: (i) calculation of the Fourier spectrum of the HJS-ROI image (see
Fig. 1c), (ii) representation of the spectrum by means of the function of polar
coordinates S(r, θ)and consideration of the latter, for each direction θ, as one
dimensional function of the form Sθ(r), (iii) generation of the one-dimensional
spectral-energy signature, according to:

S(r) =

π∑

θ=0

Sθ(r) (1)

and normalization of it to the interval [0, 1] (see Fig. 1d), (v) calculation, as
textural features, of the following descriptors of the one-dimensional signal S(r):
(a) mean value, (b) variance, (c) skewness, (d) kurtosis of the signature values
as well as (e) the absolute difference between the maximum and the mean value
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Fig. 1. (a) Determination of Hip Joint Space (HJS) Region of Interest (ROI) by uti-
lizing patient’s anatomical landmarks. O: centre of femoral head, V: highest point of
homolateral sacral wing. OB: line drawn at 450 to OV. Dotted line represents the delin-
eated articular margins. (b) Segmented HJS-ROI. (c) Spectrum of segmented HJS-ROI.
(d) Plot of S(r).

of S(r). On the other hand, Hu’s invariant moments were generated and were
employed as shape features of radiographic HJS-ROIs [10].

Design of the Computer-Based Grading System

The automatic grading of hip OA severity was performed by a hierarchical deci-
sion tree structure, which comprised two levels. The first level of the classification
system was implemented by the Bayes classifier [11], used for the characteriza-
tion of a hip as normal or osteoarthritic. At the second level, the osteoarthritic
hips were further discriminated as of “Mild / Moderate” OA or of “Severe”
OA by the Probabilistic Neural Network (PNN) classifier [12]. At both levels,
the classifiers were designed employing: (i) the computational texture and shape
descriptors that were generated from the region of the segmented radiographic
HJS-ROI and (ii) the exhaustive search procedure in conjunction with the Leave
One Out classification performance evaluation method [11].

Results and Discussion

Statistical analysis revealed the existence of statistically significant differences
for the generated computational regional descriptors (p<0.001). The overall
classification accuracy obtained for the discrimination between normal and os-
teoarthritic hips was 96.9%, since the Bayes classifier characterized properly 62
out of 64 hips. The specificity was 88.9% (correct classification for 16 out of 18
Normal hips), while all the osteoarthritic hips (46 out of 46) were assigned to the
proper category (100% sensitivity). At the second level of the hierarchical tree,
the overall accuracy classification accomplished by the PNN was 89.1% (proper
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characterization for 41 out of 46 osteoarthritic hips). Only one of 16 hips of
“Mild / Moderate” OA was misclassified as of Severe OA (93.8% classification
accuracy), while 26 out of 30 hips of “Severe” OA were properly characterized
(86.7% classification accuracy).

Conclusion

In conclusion, computational regional descriptors of radiographic Hip Joint Space
were found able to quantify osteoarthritic alterations of the hip joint. Taking into
consideration the relatively high classification scores obtained by the proposed
system, the latter may contribute in OA-patient management.
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Abstract. We have implemented a learning tool that combines the Rep-
Tree, the linear regression and the Decision Stump algorithms using
the averaging methodology. We performed a large-scale comparison with
other state-of-the-art algorithms and fast ensembles on several datasets
and we took better accuracy in most cases using less time for training,
too.

Introduction

Combining regressors is proposed as a new direction for the improvement of the
accuracy of regression models [3]. However, ensembles need increased compu-
tation and a research area is to explore learning techniques for scaling up to
large datasets. In this work, we try to bridge the gap by using fast weak algo-
rithms for building a rapid ensemble. Section 2 discusses the proposed ensemble
method and experiment results of the proposed ensemble with other learning.
We conclude in Section 3.

Proposed Ensemble

The training time is often less for generating multiple weak regressors compared
to training one strong regressor. This is because strong regressors spend a ma-
jority of their training time in fine tuning. Secondly, weak regressors are also
less likely to suffer from overfitting problems. As far as the used learning algo-
rithms of the proposed ensemble are concerned, three fast algorithms are used:
1) Linear regression (LR) [6], 2) RepTree [11] and 3) Decision stumps (DS) [8].
The corresponding predictions of the base regression models are then combined
with averaging rule to produce the final decision. It must be also mentioned that
the proposed ensemble can be easily distributed and parallelized. This parallel
and distributed execution of the presented ensemble can achieve linear speedup.
For our study, we used a number of well-known datasets by many domains from
the UCI repository [1]. In order to calculate the models’ correlation coefficient
for our experiments, cross validation was run 10 times for each algorithm and
the average value was calculated. It must be mentioned that we used the free
available source code for most of the algorithms by [11] for our experiment.
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During the experiment, the proposed ensemble was compared with a representa-
tive algorithm for each of the other sophisticated machine learning techniques:
Back Propagation (BP) algorithm [11], SMOreg algorithm [5], Kstar algorithm
[9] and decision table algorithm [10]. In Table 1 and Table 2, we represent with
”v” that the proposed ensemble looses from the specific algorithm. That is, the
specific algorithm performed statistically better than the proposed according to
paired t-test with p < 0.01. Furthermore, in Tables, ”*” indicates that proposed
ensemble performed statistically better than the specific regressor according to
paired t-test with p¡0.01. In all the other cases, there is no significant statistical
difference between the results (Draws). We also compare the proposed ensem-
ble with other fast ensembles: Bagging RepTree, Bagging DS, Boosting RepTree
and Boosting DS. Bagging is a method for building ensembles that uses different
subsets of training data with a single learning method [3]. Additive Regression
[7] is a practical implementation of the boosting [4].

Conclusion

The proposed ensemble needed less time for training than all the tested al-
gorithms. The proposed ensemble can also achieve an increase in correlation
coefficient from 2% to 17% compared to other learners. In a future work, the
proposed ensemble will be made agent-based.

Table 1. Comparing the proposed ensemble with well known regressors

AverageLRD Kstar DT BP SMOreg

auto93 0.80 0.77* 0.68* 0.85v 0.82

autoHorse 0.92 0.90 0.85* 0.95v 0.95v

autoMpg 0.90 0.91 0.90 0.91 0.92

autoPrice 0.90 0.91 0.81* 0.90 0.90

bodyfat 0.97 0.87* 0.97 0.98 0.99

breastTumor 0.27 0.19* 0.16* 0.09* 0.28

cholesterol 0.16 0.04* 0.07* 0.08* 0.16

cpu 0.97 0.97 0.92* 1.00v 0.97

echoMonths 0.71 0.39* 0.72 0.42* 0.68*

elusage 0.85 0.85 0.88v 0.86 0.84

hungarian 0.68 0.55* 0.59* 0.49* 0.58*

lowbwt 0.79 0.62* 0.78 0.60* 0.77

pbc 0.57 0.30* 0.40* 0.32* 0.58

pwLinear 0.89 0.72* 0.83* 0.90 0.86*

quake 0.10 0.08 0.09 0.08 0.06*

sensory 0.47 0.39* 0.57v 0.29* 0.35*
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Table 2. Comparing the proposed ensemble with well known regressors

AverageLRD Bagging-
RepTree

Boosting-
RepTree

Bagging-
DS

Boosting-
DS

auto93 0.80 0.43* 0.26* 0.74* 0.79

autoHorse 0.92 0.89* 0.85* 0.80* 0.90

autoMpg 0.90 0.91 0.89 0.78* 0.90

autoPrice 0.90 0.92 0.90 0.82* 0.91

bodyfat 0.97 0.98 0.98 0.84* 0.97

breastTumor 0.27 0.22* 0.16* 0.23* 0.29

cholesterol 0.16 0.18 0.07* 0.12* 0.14

cpu 0.97 0.96 0.90* 0.87* 0.97

echoMonths 0.71 0.69 0.69 0.69 0.59*

elusage 0.85 0.82* 0.80* 0.84 0.83

hungarian 0.68 0.64* 0.58* 0.60* 0.67

lowbwt 0.79 0.79 0.77 0.78 0.77

pbc 0.57 0.55 0.46* 0.46* 0.53*

pwLinear 0.89 0.91 0.90 0.68* 0.85*

quake 0.10 0.12 0.06 0.09 0.08
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Abstract. The Lomb Normalized Periodogram, a Least Squares-based
technique and a FORTRAN computer code for spectral analysis of short
time series consisting of non–equidistant values are presented. The appli-
cation of this technique in the spectral analysis of a time series reflecting
elevation changes of the deck of a short–span railroad bridge in Cen-
tral Greece in response to a passing train is also presented. Analysis of
data collected with robotic theodolite (RTS) with an updated built-in
software indicates that even in the case of short time series (< 130 val-
ues) the Lomb Normalized Periodogram can lead to easy, reliable and
statistically significant results.

Introduction

Fast Fourier Transforms (FFT) is the most common spectral analysis method,
and its basic merit is its great efficiency and the little time needed for the compu-
tations. Still, this technique has two requirements which prevent from its use in
several engineering and other applications. Time series should consist of equidis-
tant values and should be periodic, ideally infinite in length [1, 2]. While the
problem of non-equidistant data can be partly faced by interpolation techniques
in cases where the gaps between adjacent values are relatively small, spectral
analysis of a short (< 150 values) is a problem that cannot be easily solved
using FFT.

A common technique to overcome this problem is adding a series of zeros at
the beginning and the end of the time series (“zero padding”), so that a new
time series with a minimum length of at least 256 values is formed. However this
technique introduces additional noise and may lead to biased results [1]. Such
an effect, obviously, is not suitable for instance in the case we investigate the
response of an old structure in order to investigate whether or not it is safe to
be used by the public (structural health monitoring). The need of an alternative
technique to the FFT method for the spectral analysis of short-time series is
evident. The Lomb Normalized Periodogram provides a satisfactory solution to
this problem, for it also permits statistical check of its results.
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The Lomb Normalized Periodogram

Lomb [3] and later Scargle [4] developed an algorithm for the spectral analysis
of both evenly and unevenly data, as well as of short time series. This algorithm
known as the Lomb Normalized Periodogram (LNP). LNP for a specific period
T is defined by:

P (T ) =
1

2σ2




(∑N
j=1(xj − x̄) cos

2π(tj−τ)
T

)2

∑N
j=1

(
cos

2π(tj−τ)
T

)2 +

(∑N
j=1(xj − x̄) sin

2π(tj−τ)
T

)2

∑N
j=1

(
sin

2π(tj−τ)
T

)2


 ,

(1)
where the parameter τ is defined by the equation:

tan

(
4πτ

T

)
=

∑N
j=1 sin

(
4πtj
T

)

∑N
j=1 cos

(
4πtj
T

) , (2)

and

N is the number of points,
ti is the time at which the displacement i was measured,
x̄ is the mean of the data values x̄ = 1

N

∑N
i=1 xi, and

σ2 is the variance of the data values σ2 = 1
N−1

∑N
i=1(xi − x̄)2.

This process is repeated for all values, and hence a spectrogram is produced.
In addition, the significance level is defined by equation:

z0 = − ln
[
1 − (1 − p)

1
N

]
, (3)

where,

z0 is the power level above which the value P (T ) of the LNP is statistically
significant with (1 − p) × 100% confidence level,

p is the significance level, and
N is the number of data points.

Computations can be made with the FORTRAN-based Normperiod code [5].

Case Study: Spectral Analysis of the RTS monitoring
record of a railway bridge

The application and effectiveness of the Lomb periodogram is highlighted in
the following example. In order to investigate the response of the midspan of a
30m long steel railway bridge in Central Greece under dynamic loads (passing
trains) we carried out a number of experiments. Using GPS (Global Positioning
System) and RTS (robotic total station) technology, we recorded the movements
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of a control point located on the middle span of the bridge before, during and
after a passing train.

Data used in this study consist of RTS recordings of the vertical movements-
response of the bridge to a passing train, Fig. 1(top). What is evident is that this
time series consists of three parts: a first and third part reflecting measurement
noise (apparent displacements before and after the passing of the train, indicative
of the accuracy level in our data) and a middle section indicating a significant
oscillation with duration of several tens of seconds. Analysis of this last section
can permit to define the dynamic characteristics of this structure.

Spectral analysis was not possible using FFT, for the available time series
was too short (approximately 120 values). Zero padding could be used, but it
would lead to biased results, unacceptable for this particular case. Furthermore,
data were not sampled at a constant rate, and hence a transformation of the
available time series to a new one, based on interpolation techniques would be
necessary before any processing. This would also lead to additional noise. For
this reason we used the method of the Lomb Normalized Periodogram and the
Normperiod code. The result of this spectral analysis is shown in Fig. 1(bottom).
A dominant frequency equal to 0.45Hz was revealed. This frequency probably
corresponds to the interaction between train and bridge deck [6].

Fig. 1. Top: Elevation changes recorded by robotic theodolite (RTS) at the deck of a
short-span railroad bridge in central Greece.
Bottom: The corresponding frequency spectrum using the Normperiod code. Straight
line represents the 95% confidence level. A dominant frequency of 0.45Hz is revealed.
Frequencies at the left edge of spectrum are not statistically significant (edge effect; [7]).
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Conclusions

The above discussion indicates that the least-squares-based LNP is a powerful
tool for the spectral analysis of short (< 150 values) and discontinuous time series
without any interpolations, hence leading to low-noise results. In addition, the
confidence levels of computed spectra can be determined. LNP and Normperiod
code can therefore permit spectral analysis for data for which no reliable spectral
analysis was possible in the past.
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Abstract. The analytic form of the inverse for a class of matrices is
given, The class represents a generalization of already known classes of
matrices with elements defined by 4n−2 parameters. Its inverse is found
to be a lower Hessenberg matrix with elements expresssed analytically
by these parameters. The analytic expression of the determinant is also
provided and the numerical complexity in evaluating the inverse is dis-
cussed.

Introduction

In [1] a class of matrices Kn = [aij ] with elements

aij =

{
1, i 6 j,
aj , i > j,

is treated. A generalization of this class is presented in [2] by the matrix Gn =
[bij ], where

bij =

{
bj , i 6 j,
aj , i > j.

In this paper, we consider a more extended class of matrices, M , and we
deduce in analytic form its inverse and determinant. The class under consider-
ation is defined by the Hadamard product of Gn and a matrix L, which results
from Gn first by assigning the values ai = ln−i+1 and bi = kn−i+1 to the latter
in order to get a matrix K, say, and then by the relation L = PKTP , where
P = [pij ] is the permutation matrix with elements

pij =

{
1, i = n− j + 1,
0, otherwise.

The so constructed class is defined by 4n − 2 parameters and its inverse has
a lower Hessenberg analytic expression. By assigning particular values to these
parameters, a great variety of test matrices occurs.

It is worth noting that the classesL andGn that produce the classM = L◦Gn
belong to the extended DIM classes presented in [3], as well as to the categories of
the upper and lower Brownian matrices, respectively, as they have been defined
in [4].
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The Class of Matrices and its Inverse

Let M = [mij ] be the matrix with elements

mij =

{
kibj , i 6 j,
liaj , i > j,

(1)

that is,

M =




k1b1 k1b2 k1b3 . . . k1bn−1 k1bn
l2a1 k2b2 k2b3 . . . k2bn−1 k2bn
l3a1 l3a2 k3b3 . . . k3bn−1 k3bn
. . .
ln−1a1 ln−1a2 ln−1a3 . . . kn−1bn−1 kn−1bn
lna1 lna2 lna3 . . . lnan−1 knbn



.

If M−1 = [µij ] is its inverse, the following expressions determine its elements

µij =





ki+1bi−1 − li+1ai−1
ci−1ci , i = j = 2, 3, . . . , n− 1,

k2
c0c1 , i = j = 1,

bn−1
cn−1cn , i = j = n,

(−1)i+j

dj−1gi

i−1∏

ν=j+1

fν

i∏

ν=j−1

cν

, i > j,

− 1
ci , i = j − 1,

0, i < j − 1,

(2)

where




ci = ki+1bi − li+1ai, i = 1, 2, . . . , n− 1, c0 = k1, cn = bn,
di = ai+1bi − aibi+1, i = 1, 2, . . . , n− 2, d0 = a1,
fi = liai − kibi, i = 2, 3, . . . , n− 1,
gi = ki+1li − kili+1, i = 2, 3, . . . , n− 1, gn = ln,

(3)

with
i−1∏

ν=j+1

fν = 1 whenever i = j + 1, (4)

and with the obvious assumption

ci 6= 0, i = 0, 1, 2, . . . , n. (5)
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The Determinant of M

The determinant of M takes the form

det (M) = k1bn (k2b1 − l2a1) . . . (knbn−1 − lnan−1) .

Evidently, M is singular if ci = 0 for some i ∈ {0, 1, 2, . . . , n}.

Numerical Complexity

The inverse of the matrixM is given explicitly by the expressions (2). However, a
careful reader could easily derive the recursive algorithm that gives the elements
under the main diagonal of M−1. In particular,

µi,i−1 = − di−2gi
ci−2ci−1ci

, i = 2, 3, . . . , n,

µi,i−s−1 = −
(

di−s−2fi−s
di−s−1ci−s−2

)
µi,i−s, i = 3, 4, . . . , n, s = 1, 2, . . . , i− 2,

where the ci, di, fi, and gi are given by the relations (3). By use of the above
algorithms, the estimation of the whole inverse of the matrix M is carried out
in 2n2 + 11n− 19 multiplications/divisions, since the coefficient of µij depends
only on the second subscript, and in 5n− 9 additions/subtractions.
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Abstract. In this paper, we present explicit inverses for two Brownian–
type matrices, which are defined as Hadamard products of certain already
known matrices. The matrices under consideration are defined by 3n −
1 parameters and their lower–Hessenberg–form inverses are expressed
analytically in terms of these parameters. Such matrices are useful in
the theory of digital signal processing and in the theory and applications
of test matrices, i.e., matrices with known explicit inverses, which are
thus appropriate for testing matrix inversion algorithms.

Introduction

[1] gives the explicit inverse of a matrix Gn = [βij ] with elements

βij =

{
bj , i 6 j,
aj , i > j.

[2] gives the explicit inverses of two symmetric matrices K = [κij ] and N = [νij ]
with elements

κij = ki and νij = kj , i 6 j,

respectively. K is a special case of Brownian–type matrix and Gn is a lower
Brownian matrix as defined in [3]. Earlier, [4] has used the term “pure Brownian
matrix” for the type of the matrix K; and [5] has treated the so-called “diagonal
innovation matrices” (DIM), special cases of which are the matrices K and N .

In the present paper, we consider two matrices A1 and A2 defined by

A1 = K ◦Gn and A2 = N ◦Gn,

where the symbol ◦ denotes the Hadamard product. These matrices have the
explicit forms

A1 =




k1b1 k1b2 k1b3 . . . k1bn−1 k1bn
k1a1 k2b2 k2b3 . . . k2bn−1 k2bn
k1a1 k2a2 k3b3 . . . k3bn−1 k3bn
. . .
k1a1 k2a2 k3a3 . . . kn−1bn−1 kn−1bn
k1a1 k2a2 k3a3 . . . kn−1an−1 knbn




(1)
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and

A2 =




k1b1 k2b2 k3b3 . . . kn−1bn−1 knbn
k2a1 k2b2 k3b3 . . . kn−1bn−1 knbn
k3a1 k3a2 k3b3 . . . kn−1bn−1 knbn
. . .
kn−1a1 kn−1a2 kn−1a3 . . . kn−1bn−1 knbn
kna1 kna2 kna3 . . . knan−1 knbn



. (2)

In the following sections, we give the explicit inverses and determinants of
these matrices.

The Inverse and Determinant of A1

The inverse of A1 is a lower Hessenberg matrix expressed analytically by the
3n− 1 parameters defining A1. In particular, the inverse A−1

1 = [αij ] of A1 has
elements given by the relations

αij =





ki+1bi−1 − ki−1ai−1
ci−1ci , i = j 6= 1, n,

k2
k1c1

, i = j = 1,

bn−1
cn−1cn , i = j = n,

(−1)i+j

dj−1gi

i−1∏

ν=j+1

kνfν

i∏

ν=j−1

cν

, i− j > 1,

− 1
ci , j − i = 1,

0, j − i > 1,

(3)

where




ci = ki+1bi − kiai, i = 1, 2, . . . , n− 1, c0 = 1, cn = bn,
di = ki+1biai+1 − kiaibi+1, i = 1, 2, . . . , n− 2, d0 = a1,
fi = ai − bi, i = 2, 3, . . . , n− 1,
gi = ki+1 − ki, i = 2, 3, . . . , n− 1, gn = 1,

(4)

with
i−1∏

ν=j+1

kνfν = 1 if i = j + 1,
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and with the obvious assumptions

k1 6= 0 and ci 6= 0, i = 1, 2, . . . , n.

The determinant of A1 takes the form

det (A1) = k1bn (k2b1 − k1a1) (k3b2 − k2a2) . . . (knbn−1 − kn−1an−1) .

Evidently, A1 is singular if k1 = 0 or, using the relations (4), ci = 0 for some
i ∈ {1, 2, . . . , n}.

The Inverse and Determinant of A2

In the case of A2, its inverse A−1
2 = [αij ] is a lower Hessenberg matrix with

elements given by the relations

αij =





ki−1bi−1 − ki+1ai−1
ci−1ci , i = j 6= 1, n,

1
c1 , i = j = 1,

kn−1bn−1

kncn−1cn
, i = j = n,

(−1)i+j

dj−1gi

i−1∏

ν=j+1

kνfν

i∏

ν=j−1

cν

, i− j > 1,

− 1
ci , j − i = 1,

0, j − i > 1,

(5)

where




ci = kibi − ki+1ai, i = 1, 2, . . . , n− 1, c0 = 1, cn = bn,
di = kibiai+1 − ki+1aibi+1, i = 1, 2, . . . , n− 2, d0 = a1,
fi = ai − bi, i = 2, 3, . . . , n− 1,
gi = ki − ki+1, i = 2, 3, . . . , n− 1, gn = 1,

(6)

with
i−1∏

ν=j+1

kνfν = 1 if i = j + 1,

and with the obvious assumptions

kn 6= 0 and ci 6= 0, i = 1, 2, . . . , n.
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The determinant of A2 has the form

det(A2) = knbn (k1b1 − k2a1) (k2b2 − k3a2) . . . (kn−1bn−1 − knan−1) ,

which shows in turn that the matrix A2 is singular if kn = 0 or, adopting the
conventions (6), ci = 0 for some i ∈ {1, 2, . . . , n}.

Numerical Complexity

The relations (3) and (5) lead to recurrence formulae, by which the inverses A−1
1

and A−1
2 , respectively, are computed in O(n2) multiplications/divisions and O(n)

additions/substractions. In fact, the recursive algorithm

αi,i+1 = −1/ci, i = 1, 2, . . . , n− 1,

αii = −αi,i+1 +
bi−1gi
ci−1ci

, i = 2, 3, . . . , n− 1, α11 =
k2

k1c1
, αnn =

bn−1

cn−1cn
,

αi,i−1 = − di−2gi
ci−2ci−1ci

, i = 2, 3, . . . , n,

αi,i−s−1 = −
(
di−s−2ki−sfi−s
di−s−1ci−s−2

)
αi,i−s, i = 3, 4, . . . , n, s = 1, 2, . . . , i− 2,

where the ci, di, fi, and gi are given by the relations (4), computes A−1
1 in

5n2/2 + 5n/2 − 6 mult/div (since the coefficients of αi,i−s depends only on the
second subscript) and 5n− 9 add/sub.

For the computation of A−1
2 the above algorithms change only in the estima-

tion of the diagonal elements, for which we have

αii = −αi,i+1 +
ai−1gi
(ci−1ci)

, i = 2, 3, . . . , n−1, α11 = −α12, αnn =
kn−1bn−1

kncn−1cn
,

where the ci, di, fi, and gi are given by the relations (6). Therefore, considering
the relations (4) and (6), it is clear that the number of mult/div and add/sub
in computing A−1

2 is the same with that of A−1
1 .
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