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13.1 Introduction

Many diverse artificial intelligence (AI) methods have been proposed for music gen-
eration over many decades. From the rule-based and Markov approaches of the Illiac
Suite (Hiller and Isaacson, 1979) to more recent deep learning approaches that allow
interactive piano performance tools (Donahue et al., 2018) and score filling (Huang
et al., 2019b,a), researchers find it intriguing to test Al methodologies for music gen-
eration. Among the many reasons that the application of Al for generating music is
interesting and important, we find the fact that music is organized on many levels of
abstraction, where even complex rules may not be enough to capture deeper struc-
tures. Even in the case of the Bach chorales, which is a style of music that is highly
organized music with apparently strict rules, attempts to develop generative models
for the Bach chorales with rule-based approaches are efficient up to a certain level.
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On the other hand, there is strong research interest about if or to what extent Al
methods are creative. According to Boden (2004), there are three types of creativity:
(i) explorational, (ii) transformational, and (iii) combinational. Certain Al methods
potentially allow the exploration of musical styles, the transformation of rules for
achieving novel musical results, and the combination of conceptual spaces for form-
ing altogether new ones. There is, however, still debate on whether the creativity of
such systems, some of which can arguably be categorized to one of the aforemen-
tioned creativity categories, is a reflection of the human agent’s creativity. In other
words, are the methods themselves “creative” or is the engineering of generative
algorithms an essential creativity component that is a prerequisite for achieving com-
putational creativity? Evaluation methods for answering such questions have been
developed, e.g., with the FACE/IDEA models (Colton et al., 2011), where not only
the creative output (e.g., generated music) is examined, but also the processes (e.g.,
the level of intervention of the agent constructing the algorithm) are examined to
determine how creative a system is. Such evaluation models are still theoretical and
they would potentially have very diverse implementations in different settings, e.g.,
for systems that generate music from scratch, assist composers, interact with musi-
cians, etc.

This chapter presents Al methods that have been proposed for music generation
over a wide variety of algorithmic approaches, attempting to predict which of the
research directions in Al methods will be more promising for music generation. The
concept of abstraction is highlighted and the chapter begins in Section 13.2 with pre-
senting an information-based approach to how musical abstraction can provide deep
musical meaning through simple geometric/computational modeling. Nonadaptive
methods are presented in Section 13.3, which rely on human modeling for achiev-
ing interesting results. Section 13.4 presents methods that are adaptive and learn
from data, and these methods are categorized as learning explicit or implicit features.
Evolutionary approaches are presented in Section 13.5, which allow for intuitive in-
teraction with users, highlighting the importance of transparent feature modeling.
Finally, Section 13.6 gathers all the positive aspects of the aforementioned method,
in an attempt to present what recent advancements are more promising towards de-
veloping systems that allow intuitive user involvement in generating novel music that
interpolates learned styles or even extrapolates from them.

13.2 Information, abstraction, and music cognition

Music is a stream of information that can be comprehended by humans as having
structure in the form of parts with beginnings and endings, conveys feelings, and
presents meaning on different levels of abstraction, while the mechanisms that elicit
emotions and make music interesting to humans are related to expectation and its
fulfillment or violation (Huron, 2006). Several factors come into play when it comes
to how humans understand, process, and value musical elements, ranging from low-
level perceptual characteristics of the human anatomy (e.g., perception of harmonics
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due to the cochlear shape) to higher-level cognition that relates to memory capacity
and statistical learning (Huron, 20006).

The importance of statistical learning in music is supported by studies where per-
ception of music structures in Western listeners correlates with statistical findings in
corpora, e.g., tonal center and mode (Krumhansl, 2001; Temperley, 2004). Listeners
who are exposed to different musical environments have different norms of expecta-
tion to such an important extent as to allow scientists to support the cultural distance
hypothesis: “the degree to which the musics of any two cultures differ in the statistical
patterns of pitch and rhythm will predict how well a person from one of the cultures
can process the music of the other” (Demorest and Morrison, 2016). Statistical learn-
ing, however, is evident on higher levels of information where musical information
is abstracted from the “musical surface,” i.e., the layer of discrete notes, and their
vertical organization in chords and melodies.

In cognitive science, research has shown that humans employ some common ba-
sic mechanisms on an ultimately abstract level for understanding and categorizing
concepts in their environment; those mechanisms have been called “schemata” (Gick
and Holyoak, 1983; Hedblom et al., 2016). An example of a schema is the concept
of the “container,” where an object acts as a container to other objects, regardless
of what those objects are. In music, the idea of schemata is mainly associated with
tools that create abstractions from the musical surface and facilitate the acquisition
of a mental knowledge structure (Leman, 2012). Examples of such abstractions that
humans unconsciously extract when exposed to musical stimuli as studied, among
other works, in Leman (2012), are the concepts of tonal center and mode (Krumhansl,
2001). Those abstractions allow listeners to relate and compare musical excerpts on
more abstract levels, e.g., two pieces might be similar in that they sound “happy”
because they both utilize elements of a major scale similarly.

From an information perspective, it is important to note that on higher levels
of abstraction, the cognitive mechanisms function under geometric principles. For
instance, the tonality of a tonal piece can be accurately predicted through the corre-
lation of its pitch class profile with the pitch class profile templates extracted from
the empirical experiment conducted by Krumhansl (2001). This also means that on
abstract levels of information, the perception of similarity and therefore the notion of
categories in music can be approached accurately by geometric relations.

As an example that shows the powerful interpretations that are offered by geo-
metrical information reduction techniques, a set of 35 Bach chorales is considered,
obtained from the COINVENT harmonic training dataset.' In this datasets two steps
of abstraction are performed:

1. Pitch class abstraction: Each pitch in the Bach chorales is represented by its pitch
class, i.e., its value modulo 12.

2. Tonality abstraction: Each phrase in each Bach chorale, being annotated according
to its tonality, is shifted to a neutral tonality, making each pitch class from the

1 https://github.com/maximoskp/COINVENT_HTD.git.
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above mentioned step a relative pitch class rather than an absolute pitch class. For
instance, for a piece in C major, the note G corresponds to relative pitch class 7,
while for a piece in D major, the G pitch corresponds to relative pitch class 5.

The result of this process leads to the relative pitch class matrix representation, de-
noted as R, of a musical piece; an example where only note onsets (i.e., beginning
times) are considered is illustrated in Fig. 13.1.
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FIGURE 13.1
(A) A musical segment from a Bach chorale and its tonality annotation. (B) Illustration of its
abstract relative pitch class representation in the form of a matrix, R, considering only note

onsets and disregarding duration information. Colors in (B) correspond to occurrences,
where darker colors represent higher values.

Each column in R represents a time instance (corresponding to a 16th of a mea-
sure). Even from the small example in Fig. 13.1, it is obvious that information can be
compressed extensively and describe matrix R with its most often used components.
By defining R as a matrix in N'2%/_ where ¢ is the total number of 16th time steps
in all Bach chorales, we can apply nonnegative matrix factorization (NMF) (Lee and
Seung, 1999) and obtain a compressed representation of R, namely, R , defined as

R=W H, where W € R'2*3 and H ¢ R3*,

effectively reducing the dimension of R through a product of a basis vector (W) and
the activation of each basis vector in time (H). The patterns that come out as basis
vectors (columns of W) are shown in Fig. 13.2A, their activations (H) in (B), and the
achieved reconstruction of R (ﬁ) in (C).

Fig. 13.2A shows that when a geometry-based method (NMF) is used for com-
pressing the information in three bases for the abstract representations of a set of 35
Bach chorales, each base has important musical meaning. The first column of W has
large values in the locations {0, 3, 4, 7}, as indicated by the darker colors, the second
in {0, 2, 5, 9}, and the third in {2, 7, 11}. The musical explanation of each column is:



13.3 Composing music with nonadaptive Al 221

oM | of
R X 23 0 10 20 30 40
| ® H
41 -
[ |
6
0 W W =n
8 . | W
| | | | | | | | | |
O g -
10] s
10 1
0o 2 0 10 20 30 40
AW )R
FIGURE 13.2

(A) A musical segment from a Bach chorale. (B) lllustration of its abstract relative pitch
class representation in the form of a matrix, R, considering only note onsets and
disregarding duration information. Colors in (A), (B) and (C) correspond to occurrences,
where darker colors represent higher values.

1. {0, 3,4, 7} is the tonic scale degree, corresponding to either major ({0, 4, 7}) or
minor ({0, 3, 7});

2. {0,2,5,9} corresponds to the subdominant scale degree, either through I1Im
{2,5,9) or 1V ({5,9,0});

3. {2,7, 11} corresponds to the dominant ({7, 11, 2}).

Therefore, by simply representing the data after two steps of abstraction, a geometric
method can clearly infer the “Schenkerian” basis of tonal music (W) and perform
Schenkerian analysis (Cook, 1994) (H) on a set of Bach chorales.

This simple example shows the immense impact of proper abstractions from the
musical surface; the NMF-inferred Schenkerian analysis simply demonstrated that
there is a geometric/mathematical basis of music when considering proper abstrac-
tions. For generating music, however, abstractions on many levels and under many
perspectives need to be taken into account. How can rhythmic abstractions be made?
How about harmony/chords, melodies, or textural patterns (i.e., concerning voicing
layouts)? The following sections, and especially Sections 13.4 and 13.5, focus on
how methods decode, encode, and leverage abstractions obtained from data and/or
inherited to generated musical surfaces.

13.3 Composing music with nonadaptive Al

In a “classical” Al approach, algorithms can be used that employ rules for defining the
appropriateness of the output. As with Schenkerian analysis itself, musicologists have
devised several abstract rules for defining musical style and for expressing what is “al-
lowed” in specific types of compositions. These rules, however, are not sufficiently
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clear for producing new compositions. In fact, those rules describe very specific con-
straints that need to be satisfied while allowing absolute freedom on other aspects.
For instance, harmonic motion (i.e., what chords are employed) and bass voice lead-
ing (i.e., how the bass voice is moving) are very strictly defined in cadences (i.e.,
phrase or piece endings), while they are more loosely defined in all other parts of
a piece, allowing for many alternative approaches to be considered as valid for the
Western tonal idiom. Examples of approaches to encoding musical knowledge of the
Bach chorale style through expert-designed rules have been presented by Ebcioglu
(1988) and Phon-Amnuaisuk et al. (2006), while the interested reader is referred to
Pachet and Roy (2001) for a review of such methods.

Generative Al methods that are not adaptive incorporate proper mappings from
the data they process to musical surfaces for music generation. Examples of such
methods that are discussed in this section are cellular automata (CA), L-systems, and
nonadaptive/autonomous swarm intelligence. The musical rules of expert systems
mentioned in the previous paragraph are parts of the mapping, i.e., the numeri-
cal output of the generative algorithms was explicitly mapped to a musical entity
(pitch, rhythm, intensity value, and/or information related with structure). The de-
sign and development of the mapping is what actually makes the musical output
of such methods musically meaningful. In terms of the creativity reflected by such
systems, the important task of the human designer/programmer in coming up with
proper mappings plays an important role. Therefore, in a possible implementation
of the FACE/IDEA (Colton et al., 201 1) models, aiming to evaluate the creativity of
such systems, the contribution of the human agent would be crucial to the creativity
capabilities of the system.

Cellular automata

In CA, simple rules of interactions between neighboring units result in complex emer-
gent behavior with structural characteristics that extend well beyond the radius of
interaction between neighbors. CA can be implemented in any number of dimensions,
but since their visual materialization is interesting and informative about the evolu-
tion of the CA society, one-, two-, and three-dimensional CA have been employed
for music generation. The general setup of CA includes values for each unit, usu-
ally discrete or binary, that update iteratively in each “generation” according to rules
that employ information about the values of neighboring units. The rules typically
simulate physical phenomena as “extinction,” “domination,” or alternations between
those extremes of units with specific values within the “universe” of the CA. The
emergent behavior may have the following characteristics: (i) patterns disappear and
units with a fixed value dominate; (ii) patterns repeat periodically, creating units that
periodically change values; and (iii) patterns evolve chaotically/nonperiodically.

The diversity in the behavior of such systems has attracted the interest of many
artists and researchers; detailed reviews of several approaches and mappings can be
found in Burraston and Edmonds (2005), Burraston and Martin (2006), and Miranda
and Al Biles (2007). Symbolic music mapping from CA to notes has been attempted
in many contexts, with some diverse and notable examples including the piece Horos
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by Iannis Xanakis Solomos (2005), where areas of a CA universe were mapped to
notes on a musical score; an application that employs similar principles for map-
ping to MIDI notes was presented in Millen (2005). CA have also been used for
synthesizing audio through granular synthesis (Miranda, 2001), where the location
of each active unit indicated which granule of sound would be active at any given
time, or from given spectrograms (Serquera and Miranda, 2010) where each unit was
acting as an amplitude envelope for the respective frequency area of an input spec-
trogram.

L-systems

L-systems generate fractal structures that resemble plants in their visual appear-
ance (Prusinkiewicz and Lindenmayer, 2012). L-systems generate string sequences
of symbols belonging to a given alphabet, based on substitution rules over an ini-
tial sequence. The typical and simplest form of L-systems belongs to the category
of deterministic context-free grammars (DOL-systems), even though there are non-
deterministic variants. As a form of formal presentation, L-systems incorporate an
alphabet V of all possible symbols, a set of rules P that associate symbols in the al-
phabet with a string. Starting from an initial sequence of symbols w € V*,? denoted
as xo, the rules are applied for each symbol in x¢, resulting in a new sequence of sym-
bols, denoted as x;. Recursively, the sequence x,,4 is formed by applying the rules
in P on each symbol in x,,. After a number of k steps, the sequence x; will constitute
a symbol sequence that potentially exhibits interesting structural characteristics on
many levels, i.e., not only neighboring but also remote symbols.

As with CA, the visual interpretation of L-systems makes it evident that the
higher-level structures that emerge can potentially provide a sense of structural hierar-
chy when properly mapped to sound/music. The first study of transforming L-systems
to music via direct interpretation of generated symbols to notes was presented by
Prusinkiewicz (1986); later, McCormack (1996) presented probabilistic L-systems
that include probabilities about several possible rules associated with a symbol,
mapping the resulting symbols to melodic notes. Further exploration of mappings
between various forms of L-systems and musical notes can be found in Worth and
Stepney (2005), while approaches to generating sound with the output of L-systems
can be found in Manousakis (2006). A variation of the L-systems, namely, the finite
L-systems (FL-systems), has been proposed by Kaliakatsos-Papakostas et al. (2012b),
where the produced strings at each next step were truncated to a fixed length, produc-
ing strings that had quasiperiodic characteristics at different levels. Methodologies
that evolve the rules of musical L-systems (de la Puente et al., 2002a; Lourenc and
Brand, 2009) and FL-systems (Kaliakatsos-Papakostas et al., 2012d) through gram-
matical evolution have been also explored, which offer gradual alterations of the
output, and adaptive behavior.

2 y+ s the set of nonempty words in V, i.e., nonempty symbol sequences comprising symbols of V.
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Swarm intelligence

Swarm intelligence leads to the emergence of collective spatial behavior through the
individual readjustment of the location of unique individuals, based on the application
of simple rules that update the velocity of each agent according to the location and ve-
locity of other neighboring agents. Variations of such emerging behavior have proved
successful in optimization, through particle swarm optimization (Kennedy, 2010).
Artistic expression has been examined in a specific setting of swarm intelligence that
simulates the flocking behavior of real-world animals. The algorithm introduced by
Reynolds (1987) has gained attention in computer and game graphics for simulating
the motion of swarms, herds, and flocks (e.g., in the Batman Returns movie from
1992). This algorithm defines the motion of agent based on three components: shoal-
ing, where each agent moves towards the center of mass of its neighboring agents,
collision avoidance, where each agent moves away from the agents that are too close,
and schooling, where the velocity of each agent gets aligned with the mean velocity
of the neighboring agents.

Several parts of the aforementioned social characteristics have been embodied
to interactive agents, leading to music and sound output. A swarm that was able to
improvise with symbolic music output with the guidance of a human singing voice
was presented by Blackwell and Bentley (2002b). The latter work was also enhanced
with the addition of collision avoidance skills to the agents (Blackwell and Bentley,
2002a). Symbolic music has also been composed by agents that were specialized in
certain musical tasks (Blackwell, 2003). A thorough review of these systems can be
found in Blackwell (2007). Such intelligent societies have also been used for additive
synthesis (Apergis et al., 2018) and granular synthesis (Blackwell and Young, 2004;
Blackwell, 2008) as well as granular synthesis with spatial characteristics (Wilson,
2008). Finally, an interactive system has been proposed that receives feedback from
the user to create audio and visual material using swarm intelligence and genetic algo-
rithms (Jones, 2008). The sonification of the swarm intelligence agents behavior has
been integrated into the “Swarmlake” (Kaliakatsos-Papakostas et al., 2014a) game,
which expanded the social behavior with user-controlled commands and attributed
different agents with different sound properties, according to specific conditions of
the game.

Section summary

This section presented Al methods for music generation that are not adaptive and thus
rely on human expertise in generating structured output. The creativity of such meth-
ods relies heavily on the creativity of the developer and thus the generative strengths
of such models rely heavily on musical abstractions in the human agent’s mind and
how well the human agent can communicate those abstractions to method-related
variables.
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13.4 Learning from data

Trying to generate music in a specific style with nonadaptive systems is a diffi-
cult task. This is evident even for the structured style of Western tonal music, not
to mention the most structured subset of this style, the Bach chorales. Regarding
rule-based modeling of the tonal harmony, leaving aside voicing layout and rhythm,
grammatical structures have been proposed by Rohrmeier (2011) and Koops et al.
(2013), while attempts have been made to expand tonal grammars to the jazz style
by Granroth-Wilding and Steedman (2014). This modeling is, however, incomplete,
since it disregards all other aspects except harmony, which is by itself already com-
plex to describe formally. In contrast to nonadaptive Al methods, methods that sta-
tistically adapt to given data have been proposed. Such methods either capture the
statistical behavior of “explicitly” defined features (e.g., chord transition probabili-
ties) or learn “implicit” representations from the musical surface into latent feature
spaces. This section presents work on explicit and implicit AI modeling for music
generation.

13.4.1 Explicit modeling

Probabilistic generative models can capture probabilities of occurrence of specific
elements in a dataset. Regarding music, probabilities of explicitly defined features
from a musical score can be captured, e.g., note or chord occurrences, note or chord
transitions, and conditional probabilities of chords over given notes. Capturing such
statistical information allows the development of trained models that reflect specific
characteristics of the musical style in the training data. In contrast to rule-based, non-
adaptive modeling, sampling from such models can potentially generate new music
that reflects the characteristics of a given style.

Capturing combined and conditional probabilities of elements on a musical sur-
face allows for the generation of new music under different settings. For methods
that learn explicit representations, the review will focus on two specific test cases
common to Western compositional practice, namely, four-part harmonization and
melodic harmonization. In four-part harmonization, the goal is to compose a piece
with a soprano, alto, tenor, and bass voice layout, where those voices are combined
properly to form both concise harmonic, i.e., proper vertical positioning, and melodic
streams, i.e., each voice should be a well-formed melodic part. Melodic harmoniza-
tion is the composition of concise harmony over a given melody, without necessarily
implementing compositions with specific voicing layout, i.e., some studies go as far
as to simply assign proper chord symbols without any voicing information.

The most popular probabilistic Al techniques employed for solving such prob-
lems include hidden Markov models (HMMs) and more generalized Bayesian net-
works (BNs). Such models are suitable for modeling and generating music that
incorporates relations between various elements, since these models allow the for-
mulation of conditional probabilities across various aspects. For instance, the typical
probability conditions for HMMs that model and generate melodic harmonizations
learn two aspects of the musical surface from data: (i) chord transition (hidden state)
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relations through probabilities of the form P (ct|c;—1 = C), i.e., the probability den-
sity function of the current chord/state given the previous, and (ii) P(c;|m; = M ),
i.e., the probability of the current chord given the current observed note sequence.

Regarding four-part harmonization, an approach that employed a dual HMM was
proposed by Allan and Williams (2004). The role of the first HMM was to define a
coarse harmonic layout given a melodic (soprano) line, modeling chords as unified
symbols rather than independent voices. The second HMM was generating ornamen-
tations, given the selected chords from the first HMM. A BN has been proposed in
Suzuki et al. (2013) for four-part harmonization, which incorporated different nodes
for each voice. Specifically, each voice was hierarchically conditioned on its higher
voice, i.e., alto was conditioned on the soprano voice, tenor on alto, etc., while for
each voice, current notes were conditioned on their previous ones. This method was
able to generate the ATB voices given a melody/soprano voice. The employment of
an additional node for conditioning chord symbols on the ATB voices was also ex-
amined, and the results were compared, showing the importance of the chord symbol
for generating harmonically concise four-part harmonizations.

HMMs have been extensively studied for melodic harmonization, where the hid-
den states are chord symbols and observations are melodic notes. Microsoft has
presented the then-called MySong (Simon et al., 2008) application, which allowed
users to sing melodies, and after the melodic note fundamentals were extracted with
digital signal processing, an HMM composed chord sequences on the given melody.
The system was trained in two harmonic styles, classical and jazz. The study by
Raczyniski et al. (2013) examined the idea of incorporating additional information as
the local tonality of the piece, therefore conditioning chord selection on tonality as
well.

Among the main weaknesses of Markov-based models is their inability to capture
structures on a larger timescale, since they are able to capture statistical informa-
tion only to the extent that their order allows. Human-composed music incorporates
meaning on many structural levels, with intermediate phrases and repetitions of large
harmonic segments that cannot be captured by low-order HMMs. On the other hand,
using high-order Markov models for modeling harmony leads to extremely special-
ized models that cannot capture style, but rather capture unaltered segments of pieces
in the training dataset. Hierarchical Markov models have been proposed for captur-
ing long-term structure (Thornton, 2009), preserving the generalization capabilities
of lower-order Markov models. Those models rely on modeling repeating parts of
hidden states in new hidden states, building hierarchically Markov models on top of
each other for consecutively capturing patterns on different levels of time granular-
ity. Graphical models for modeling chord progressions (Paiement et al., 2005) and
melodic harmonization (Paiement et al., 2006) have been proposed, which are capa-
ble of capturing long-term relationships between chords through tree-like nodes that
model conditional probabilities from top to bottom. Such methods, however, model
only a fixed number of chords in a sequence — 16 chords in both aforementioned
examples.
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Higher-level structure in human composition is to a great extent evident in the
presence cadences, both intermediate and final, which are parts of a piece that con-
vey a feeling of closure, i.e., that a section closes or ends and a new section begins
— in the case of a final cadence, that the entire piece ends. This fact has led many
researchers to develop variations of Markov-based models that focus on generating
proper cadences. For instance, Borrel-Jensen and Hjortgaard Danielsen (2010) and Yi
and Goldsmith (2007) evaluated entire melodic harmonizations based on a cadence
score that rated higher more typical cadential schemes of Western harmony. Other
methods implemented a backwards propagation of the harmonization process (Allan
and Williams, 2004; Hanlon and Ledlie, 2002), beginning from the end (cadence) to
ensure that the ending part will be as concise as possible. Given the importance of
cadences, a study presented by Yogev and Lerch (2008) studied the identification of
possible intermediate cadence locations. If the positions of cadences are known, then
Markov models with constraints (Pachet et al., 2011) could be employed, forcing the
harmonization system to apply intermediate cadences at proper locations, therefore
reflecting longer time structures. A first trivial approach towards this direction was
presented by Kaliakatsos-Papakostas and Cambouropoulos (2014), where constraints
were merely straightforwardly added in the trellis diagram, for selecting chord pro-
gressions that belong to learned cadential schemes. This method was incorporated
in the CHAMELEON® melodic harmonization assistant (Kaliakatsos-Papakostas et
al., 2017), but this method requires the user to annotate the location of intermediate
cadences.

13.4.2 Implicit learning

The features to be captured by the methods in the previous paragraphs are defined
“explicitly,” meaning that their definition is transparent and they encompass concrete
meaning; e.g., “the probability of appearance of a chord over a set of given melodic
notes.” Features can also be extracted “implicitly.” A popular example for implicit
feature computation is artificial neural networks (ANNs), which, in the case of music,
process information from the musical surface and produce more abstract representa-
tions in each layer. Those representations, however, are not transparent, in the sense
that there is no distinction on which aspects of the musical surface are represented
at each computational unit of the ANN. Recently, deep learning has increased the
attention of the research community on methods that incorporate vast amounts of
computational units (i.e., neurons) organized in multiple layers, which learn implic-
itly from large amounts of data. Implicit learning with deep ANNs offers important
possibilities for categorization and prediction, without still giving clear information
about what aspects of the data are more important for taking decisions. There is sig-
nificant research on alleviating this “trade-off” (lack of transparency in what the latent
abstract features represent) with which those powerful methods come, towards mak-

3 http://ccm.web.auth.gr/chameleonmain.html.
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ELINT3

ing ANNSs that are “explainable,” “intuitive,” or “interpretable”; Section 13.6 refers
to such studies.

Early approaches on using ANNs for composing music employed basic recurrent
neural network (RNN) architectures, where a hidden layer was used in between in-
put and output layer. The hidden layer, also called “states” of the network, included
recurrent connections from each unit to all other units of this layer, which reinjected
a weighted sum of the states values in the previous step to each unit in the states
layer. The recurrent connections allow such networks to learn local dynamics of data,
developing a local memory. Even from the first implementations of such networks
(Todd, 1989), research was focused not only on making RNNs that reproduce music
in a specific style, but also allow the network to switch styles according to an in-
put “plan,” which was actually a separate input vector to the system with the binary
code that corresponded to the piece name (plan) that was currently incorporated in
training. This allowed the experimentation on interpolating and extrapolating from
learned melodies, by properly manipulating the “plan” part of the input.

During the early days of studying RNNs for melodic generation, the effect of psy-
choacoustical modeling of the inputs was examined by Mozer and Soukup (1991).
According to this approach, the representation of inputs and outputs was not a simple
one-hot encoding of the note currently played, but a vector of coordinates that com-
bined pitch height (one dimension), the (x, y) coordinates on the chromatic circle,
and the (x, y) coordinates on the circle of fifths. The aforementioned method exhib-
ited the ability to learn scales, the form of interspersed random walks, and to generate
melodies in the style of Bach chorales. The authors have validated, however, that such
architectures were poor in capturing long-term structure of the learned melodies. To
this end, the system was improved by incorporating a blurred “bird’s eye” view as an
additional input, for getting information from further back in the past (Mozer, 1994).
Even though the results were better, significant improvements on adaptation to long-
term structure was exhibited by using the long short-term memory (LSTM) networks
proposed by Eck and Schmidhuber (2002). Those networks include trainable gates
that selectively forget information from the past or recall information from arbitrarily
back in time. The first study on how those networks learned on musical data (Eck
and Schmidhuber, 2002) showed that they are capable of learning long time depen-
dencies that allowed them to learn and generate structures belonging to the style of
12-bar blues.

A more recent approach to using LSTM RNNs for generating melodies was pre-
sented by Sturm et al. (2015, 2016), where folk tunes (monophonic melodies) were
modeled in the ABC format, a text and character-based representation that includes
metadata, overview of musical setup (e.g., tempo and time signature), metric infor-
mation (i.e., measure boundaries), and the music surface. In contrast to the directly
numerical format of musical data representation, elements of characters and strings
corresponding to elements of a melody were extracted into a one-hot dictionary rep-
resentation (binary array with a single unit).

Many alternatives have been proposed in representing polyphonic music for effi-
cient processing by ANNs. Many studies have examined the efficiency of proposed
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representations and how ANNs process them by learning and generating pieces in
the style of Bach chorales, since this style of music has a very strictly defined form.
A “quasimonophonic” approach to modeling polyphonic data was presented by Liang
et al. (2017), where note symbols, bar limits, and fermata symbols are learned and
generated sequentially, from top to bottom and from left to right. A similar represen-
tation approach was followed by Colombo et al. (2018) with more refined information
about the duration and offset time of notes. In these approaches, the ANN was fed
with a sequence of single notes, where simultaneous notes simply had the same onset
(beginning) time. Both aforementioned studies incorporated learning and generating
polyphonic music in the style of Bach chorales; in addition to the partly different
representations they used, another difference was that Liang et al. (2017) used LSTM
units while Colombo et al. (2018) used gated recurrent units (GRUs) for polyphonic
symbolic music generation. GRUs, like LSTMs, include a gating mechanism, but
only for selectively resetting and updating the content of information in the recur-
sive connections. The GRU architecture is simpler than the LSMT architecture, thus
GRUs are less computationally expensive, while at the same time being approxi-
mately equally efficient to the LSTMs (Chung et al., 2014).

An important concern in generative RNNs is not only to enable them to capture
longer-time dependencies, which LSTMs and GRUs achieve quite efficiently, but also
enable them to capture different modes of structures for long-time relations, e.g., to
compose a piece in 4/4 or 7/8 time signature. To this end, constraints have been intro-
duced in Hadjeres et al. (2017) which allow the networks representing each voice to
have a more robust understanding about the overall metric structure and the activity
in each voice. Typical bidirectional LSTM layers in the architecture were responsible
for learning the motion in single voices, while other parts of the network were im-
posing constraints for the metric structure, allowing the network to learn to generate
four-part harmonizations in specific time signatures defined in the input. Addition-
ally, the network was generating music through sampling and therefore any voice
could have any set of notes fixed as a priori constraints, allowing the network to fill
in the remaining notes for completing a composition. A similar approach to imposing
constraints was presented for drum rhythm generation by Makris et al. (2017, 2019).
In the latter studies, indications were given that proper representation of the metric
constraints could allow the network to compose rhythms in time signatures that were
not encountered during training. For instance, the network was trained in pieces in
4/4 and 7/8 time signatures of a given style and could compose consistent rhythms in
5/4,9/8 and 17/16 that were compatible with such rhythms in the learned style.

Except for RNNs, other types of networks have been explored for generating
music. Convolutional neural networks (CNNs) are able to capture patterns in data
through the employment of filters that adapt to specific regularities that appear of-
ten. In a study by Yang et al. (2017) a generative adversarial neural network (GAN)
setting was presented that employed a generator and a discriminator based on CNNs
for generating monophonic melodies. In GANs there are two networks “competing”
with each other: the generator produces data that the discriminator tries to identify
as “artificial” in comparison with given ground-truth data. The generator, therefore,
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gradually learns to generate data that more persuasively appear as being part of a
given dataset, while the discriminator gradually becomes more sensitive in identify-
ing artificial data produced by the generator, leading to a feedback loop that makes
both parts of the network more effective in their task. The interesting aspect of GANs
is that the generator is not necessarily straightforwardly trained from data, since it can
start from generating random material with initially randomized internal parameters,
that are gradually refined during training. Additionally, a lead-sheet music setting
was employed where chord symbols were given and the network learned to generate
musical surface that corresponded to a rhythmic and a melodic part (Liu et al., 2018).
The aforementioned methodology has also expanded to incorporate multiple tracks
(Dong et al., 2018). More studies on ANNs are discussed in Section 13.6, along with
their potential to offer new possibilities.

Section summary

This section presented models for learning music, based on adaptation to training
data. Explicit learning methods were first analyzed that have the advantage of being
“transparent,” i.e., it is clear what features the network learns. Next, implicit learning
methods were discussed, which create abstractions from data that are not transparent,
but can describe deep structures on many levels of information. Especially regarding
deep implicit learning methods, some studies were discussed that allowed some form
of control over the generated output, e.g., by defining the key signature. More work
on ANNS is mentioned in Section 13.6, when discussing future perspectives of Al in
generative music.

13.5 Evolutionary approaches

Evolutionary algorithms evolve generations of individuals by selecting and breeding
individuals based on their fitness value, which interprets numerically some criteria
for the goal to be achieved. Each individual is represented by a genotype (the ge-
netic material that can be modified during the breeding stage) and a phenotype (the
materialization of the genotype); the genotypes and phenotypes of individuals may
coincide, depending on the formulation of the problem. Evolutionary algorithms have
been studied for music generation under various setups regarding how the musical
surface is represented (in terms of phenotype and genotype) and how a good mu-
sical surface should be formally described, i.e., what the fitness criteria should be.
Especially regarding the fitness criteria, cognitive-based features extracted from data
play an important role, making abstraction a necessary step towards assessing the
fitness of musical individuals during evolution. This section focuses on two music
generation approaches where evolutionary algorithms have given interesting results:
feature-based composition and interactive composition.
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13.5.1 Feature-based composition

Humans create abstractions from the musical surface that allow them to do con-
tent categorization and measure similarity (Cambouropoulos, 2001). As mentioned
in Section 13.2, an example of this process is the categorization of a musical piece
in the category of tonal music: if a piece employs some standard tonal harmonic de-
vices, e.g., diatonic scales and cadences that resolve from highly dissonant to highly
consonant harmonies (Huron, 2006), then this piece is included in the tonal category.
Research has shown that such high-level features, e.g., how strong the presence of
a diatonic scale in a musical excerpt is, can be directly computed from the musical
surface, as with the pitch class profile of the excerpt, and can accurately predict the
diatonicity of an excerpt based on the templates extracted by Krumhansl (2001). Nu-
merous such examples have been shown in the literature, where features computed
from the musical surface can indicate qualitative aspects of the data. Another exam-
ple concerns the perception of rhythm, where empirical studies presented by Madison
and Sioros (2014) and Sioros et al. (2014) have shown that there are strong correla-
tions between the feature of syncopation and the sensation of groove in rhythms.

Widely used methodologies and software have been proposed and developed
extracting symbolic music features (Eerola and Toiviainen, 2004; McKay and Fu-
jinaga, 2006). A fact that makes the efficiency of such features more evident is that
they are producing accurate results in various content categorization tasks, such as
composer identification (Purwins et al., 2004; Wolkowicz et al., 2008; Kaliakatsos-
Papakostas et al., 2010, 2011) and the style and genre classification (Kranenburg and
Backer, 2004; Mckay and Fujinaga, 2004; Hillewaere et al., 2009b; Hillewaere and
M, 2009a; Herremans et al., 2015a; Zheng et al., 2017). Furthermore, features that
generate information-theoretic abstractions of data, e.g., Shannon information en-
tropy or fractal dimension, have been studied for the characterization of “esthetic”
quality in music, leading to models that examine relations between complexity and
human perception in music (Shmulevich et al., 2001; Madsen and Widmer, 2007) and
also to models of subjective preference (Manaris et al., 2002; Machado et al., 2003;
Manaris et al., 2005; Hughes and Manaris, 2012).

On the one hand, such features can indicate the category, mood, or complexity of
composed pieces. On the other hand, evolutionary methods can be used to generate
novel excerpts that belong to a certain category, mood, or complexity, given proper
fitness functions and representations of musical surfaces — mappings from “geno-
types” to “phenotypes.” The feature extraction methods discussed above are again
“explicit,” in the sense that their computation from the musical surface is transparent.
Such features can be used in evolutionary generative methods during fitness eval-
uation to examine whether the generated material meets the criteria set from those
features. Even from the early days of generative music systems, there were some
exceptional studies on the evolutionary generation of melodies that employed “im-
plicit” feature extraction methods, implemented with ANNs. The work of Spector
and Alpern (1995) and the work of Pearce (2000) are such examples of using fitness
functions in evolutionary methods for music generation that are based on implicit
learning. Those so-called “artificial critics” are trained to give positive feedback to
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collected melodies that incorporate desired characteristics (e.g., Charlie Parker so-
los) and negative feedback to either random or empty melodies. They are therefore
capable of providing “implicitly computed” fitness evaluation to melodies generated
through evolutionary processes.

Other than the aforementioned approaches that employed implicit fitness evalua-
tion through ANN critics, fitness evaluation by means of distance from targeted/de-
sired explicit features has been the most usual approach with evolutionary music
generation methods. Such methodologies incorporate a set of target features that
either incorporate information-related target features or features related to music cog-
nition and theory; the evolutionary component of those methods generates music that
adapts to the target features as generations progress. Regarding information-related
metrics, features that compute the fractal dimension in distributions of several diverse
elements obtained from the musical surface (e.g., pitch, interval, or rhythm-related
distributions) were presented in Manaris et al. (2007); similarly, the normalized com-
pression distance in Alfonseca et al. (2007) was employed for generating music
with specific complexity characteristics. Cognitive and music-theoretic target fea-
tures have been developed in other studies that quantified approaches to describe
rules for counterpoint (Herremans and Sorensen, 2012), four-part harmonizations
theory (Donnelly and Sheppard, 2011; Phon-Amnuaisuk and Wiggins, 1999), and
melodic harmonization (Phon-Amnuaisuk et al., 2006), or quantities related to how
humans perceive and process music (Wiggins and Papadopoulos, 1998; Ozcan and
Ercal, 2008; Matic, 2010; Hofmann, 2015; Herremans et al., 2015b). It should be
noted that some approaches employed ANNSs as “artificial critics” (Manaris et al.,
2007; Machado et al., 2003), but therein, ANNs actually evaluated the similarity of
the explicitly defined features related with fractal dimension and transition probabil-
ities between the generated and a set of training data. The neural networks in this
context receive many such features as input and their goal is to create abstract/latent
representations of these features (instead of the musical surface, as discussed in the
previous paragraph).

Another point of distinction between methods that have been employed for music
generation is the genotypical and phenotypical representation. The methods men-
tioned so far evolve individuals that directly represent musical surface, i.e., the
genotype comprises representations of notes. Other methodologies attempt to lever-
age the structural coherence that nonadaptive Al methods (discussed in Section 13.3)
present. Examples of such methods include grammatical evolution (de la Puente et al.,
2002b) and genetic evolution of CA rules (Lo, 2012) and of FL-systems (Kaliakatsos-
Papakostas et al., 2012d). Additionally, the evolution of parameters of dynamical
systems that present chaotic behavior was examined in Kaliakatsos-Papakostas et al.
(2013a), where the parameters were tuned using differential evolution (Price et al.,
2006).

13.5.2 Interactive composition

Evolutionary processes offer ways for human users to affect the generative process
in different ways. In evolutionary schemes that employ interactive evolution, fitness
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evaluation is given directly by the human user and, therefore, the results are directly
guided by the human agent. Due to the interpretable nature of explicitly defined fea-
tures, it is possible for evolutionary processes to involve the human user in processes
that “indirectly” affect the outcome. In this chapter two such methods are identified:
“dissimilarity-based interaction” and “active musical interaction”; all approaches are
discussed in the remainder of this section.

“Interactive evolution” comprises methods that require human evaluation for as-
signing fitness values for the evolved individuals in the population in the form of rat-
ing, ranking, or selection. Several studies have focused on music generation through
interactive evolution with individual selection based on ratings (Unehara et al., 2005;
Fortier and Van Dyne, 2011; Kaliakatsos-Papakostas et al., 2012a; MacCallum et
al., 2012) or direct selection for reproduction (Sanchez et al., 2007). Rhythm gen-
eration (Horowitz, 1994; Johanson and Poli, 1998) was the first field of application
and subsequently more musical aspects were included, where interactive evaluation
incorporated partial rating of different aspects of music, e.g., thythm, tonality, and
style (Fortier and Van Dyne, 2011; Moroni et al., 2000). Such methodologies for
music generation have the theoretical advantage that fitness evaluation is absolutely
adaptive to the human user and that esthetic convergence is possible, given sufficient
time; however, additional problems are practically introduced in comparison with
methods that are noninteractive. The main problem of interactive evolution methods
for music generation is the practical infeasibility to combine and alter large numbers
of individuals within the course of many generations. Human users are not able to un-
dergo vast amounts of listening and rating (or selecting) sessions, since user fatigue
occurs during the very few first minutes of rating/selective sessions. As an even more
negative result, the uncertainty in user ratings or selections is also increased, leading
to inconsistent ratings that eventually “detune” the evolutionary effectiveness. Early
approaches (Tokui, 2000) involved intermediate steps in between generations, where
many individuals were generated and only a small part of them were shown to the
user, based on an intermediate evaluation offered by an ANN.

“Dissimilarity-based interaction” accepts a user-given musical segment and a
user-defined dissimilarity value; genetically modified musical segments are then
evolved towards generating segments that are desirably dissimilar to the user-given
segment. The dissimilarity value is computed according to some features that offer
a layer of human—machine communications, where information is interpretable both
by human and machine. Some studies have focused on generating novel rhythms
based on an input rhythm provided by the user and a value of dissimilarity for the
new rhythms (Kaliakatsos-Papakostas et al., 2013b; Nuandin et al., 2015; Vogl et al.,
2016).

During “active musical interaction,” the user generates musical objects and ex-
pects relevant musical responses from the system. Therefore, the human performance
affects the Al performance and vice versa, leading to a “creative loop” between the
human and the artificial agent. The first approaches that employed evolutionary algo-
rithms for active musical interaction were presented by Biles (2002), Thom (2001),
and, more recently, Manaris et al. (2011), where the human and the artificial agents
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were exchanging phrases, i.e., the artificial agent needed to record and encode the
human phrase, analyze its features, and playback a proper response; such an imple-
mentation was presented by Weinberg et al. (2008), but the responses of the artificial
agent were performed by a hardware robotic musician. In Kaliakatsos-Papakostas et
al. (2012c), another approach was presented, which incorporated concurrent perfor-
mance from the human and the artificial agent in the form of intelligent accompa-
niment. Therein, however, the system was able only to identify the current playing
status of the human musician, failing to predict possible structures and therefore lead-
ing to “constraint-free” improvisation.

Section summary

Evolutionary computation methods for music generation have been mainly studied as
methods that evolve musical individuals to capture explicitly defined feature. Having
interpretable/explicit features, on the one hand, allows such methods to model and
reproduce specific aspects of musical styles and, on the other hand, allows interactive
applications, where human and artificial agents interact towards formulating a result
that is interesting to the user. Even though there are inherent limitations in interactive
evolutionary systems (i.e., user fatigue), other modes of interaction (dissimilarity-
based and active musical interaction) potentially allow for better human—machine
collaboration results.

13.6 Towards intuitive musical extrapolation with Al

Section 13.4 discussed the importance of capturing deep structures in music implic-
itly, without the necessity to employ human expertise for describing all the necessary
information for representing an entire musical style. Section 13.5 presented evolu-
tionary algorithms, which are based on feature design for capturing desired charac-
teristics of generated pieces. Describing style can be achieved either by explicit or by
implicit feature extraction methods. The questions that this paragraph tries to answer
are the following:

1. How is it possible to cross the borders of musical style?
2. How can methods provide an intuitive, interpretable layer, for how stylistic cross-
ing is perceived?

Answers to these questions are sought by examining recent work in three generative
Al methods: (i) evolutionary computation, (ii) conceptual blending, and (iii) deep
learning.

Evolutionary computation

Regarding evolutionary algorithms, an approach to interactively extrapolating and
crossing stylistic boarders in a consistent way was presented by Kaliakatsos-
Papakostas et al. (2016). In this approach, a human user was listening to quadruples
of generated polyphonic melodies according to rhythmic and pitch characteristics.
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Based on those ratings, two evolutionary processes were utilized: an “upper-level”
evolution of rhythmic and pitch features using the particle swarm optimization (PSO)
algorithm (Kennedy, 2010) and a “lower-level” evolution of melodies with genetic
algorithms with fitness evaluation targeting the features generated on the upper level.
The goal of the upper level is to converge to rhythm and pitch features that the user
prefers, while the goal of the lower level is to materialize those features to actual
musical excerpts.

Even though this study incorporates some assumptions that need to be examined
more thoroughly, it nonetheless offers a possible way to exploring generatively new
musical areas by traversing potentially unforeseen areas of musical feature spaces.
The cognitive advantage of this study, in comparison with studies that simply apply
interactive evolution on musical excepts, is that evolution and user ratings concern the
cognitively informed layer of musical features rather than the musical surface. Even
though human evaluation of this method has not been implemented, the idea behind it
is that evolving features towards directions given by the PSO algorithm encompasses
a cognitive coherence, making the evolutionary process more meaningful. Contrarily,
traditional methods for evolving musical excerpts by mere mutation and crossover of
their parts do not guarantee to generate new excerpts that also combine high-level
features.

Conceptual blending

The conceptual blending (CB) theory (Fauconnier and Turner, 2003) describes the
cognitive processes that humans undergo when generating new concepts, based on
the experiences of already known conceptual spaces. In CB theory, two input con-
ceptual spaces are considered, which incorporate properties and relations between
elements, and a blended space is generated by consistently combining properties and
elements of the inputs. Initially, CB theory was used as a theoretic tool for interpret-
ing creative artifacts created by humans, i.e., the blended space of a creative outcome
was considered (e.g., a musical piece) and the task was to identify the constituent
parts as independent input spaces (e.g., the musical/conceptual tool combined by the
artist). Algorithmic approaches that use CB theory generatively have more recently
been developed, i.e., two input spaces are given and a blended space is algorithmi-
cally constructed that consistently and creatively combines properties and relations
in the input. This approach to computational creativity is related with combinational
creativity, which Boden (2004) maintains is the most difficult to describe formally.
In music, generative formulations of generative CB have produced interesting re-
sults. In Eppe et al. (2015), it was shown that proper encoding of conceptual spaces
describing cadences (defined as the last pair of chords in a chord sequence) can lead
to the generation of interesting cadences. An interesting example presented therein
was the algorithmic construction of the tritone substitution cadence, which is om-
nipresent in jazz music after the 20th century, by using two input cadences that were
employed in music centuries earlier, namely, the perfect and the Phrygian cadences.
The algorithmic materialization of this example agrees with music-theoretic perspec-
tives that indeed relate the characteristics of the tritone substitution with the most
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salient characteristics of the perfect and the Phrygian cadences. Describing the char-
acteristics of cadences and weighing them by importance (in order to be included
in blends that are rated as more successful) is, however, a task that requires exten-
sive musical expertise. Therefore, the algorithmic backbone of generative CB by
itself is not sufficient for describing what are the most important characteristics of
the inputs that should be included in the blends; depending on the domain of applica-
tion, extensive human expertise and knowledge engineering are required for acquiring
meaningful results. There have been attempts for automating the process of comput-
ing the salience/importance of features in the inputs through statistical approaches
(Kaliakatsos-Papakostas and Cambouropoulos, 2019), but further examination is nec-
essary before verifying that salience computation can be achieved effectively directly
from data.

In practical terms, the employment of generative CB can prove useful for de-
veloping systems that generate entire melodic harmonizations. The CHAMELEON
melodic harmonization assistant (Kaliakatsos-Papakostas et al., 2017) is such an ex-
ample. This system expands on the ideas developed for the example of cadence
blending for blending chord progressions between the Markov transition tables of
two learned musical styles and generates blended transition matrices of two learned
idioms. The blended styles integrate the most salient, in terms of statistical frequency,
characteristics of the inputs, a fact that leads to results that not only interpolate be-
tween the two input styles but also extrapolate from them. An evaluation study with
students in a music department, who were well aware of tonal and jazz music, indi-
cated that they would categorize blended harmonizations either as “in between” tonal
and jazz, or oftentimes as belonging to altogether “other” styles (Zacharakis et al.,
2018).

Deep learning

Even though both evolutionary and blending approaches potentially offer the mecha-
nisms to cross stylistic boundaries and interpolate between or even extrapolate from
known styles, they require explicit knowledge description and extensive knowledge
engineering. These requirements are not by themselves necessarily a drawback; there
is extensive, however, continuous extensive research on how to allow computational
methods do by themselves implicit feature extraction that is adaptive to the style of
the training data. As discussed in Section 13.4.2, implicit learning methods do not
require extensive human knowledge, which is very time consuming, tedious, prone
to errors, and nonadaptive, in the sense that not all styles behave under comparable
statistical rules. For instance, the polyphonic songs of Epirus present a “horizontal”
rather than “vertical” interpretation of harmony, i.e., streams of voices move rather
independently from each other, forming hard dissonances that cannot be accurately
captured by the consonant organization of Western harmony (Kaliakatsos-Papakostas
et al., 2014b). Therefore, modeling polyphonic songs from Epirus with statistical
learning (e.g., through Markovian processes) on explicitly defined chord structures is
problematic in generating persuasive results.
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The implicit learning methods discussed in Section 13.4.2 can effectively learn
latent representations of features directly from musical surfaces, alleviating the ne-
cessity for extensive human engineering. Such methods are therefore effective in
learning a style though deep representations; are they, however, capable of meaning-
fully interpolating between or extrapolating from learned styles? Examples in image
generation have shown that leveraging the spatially interpretational capabilities of the
latent space in the variational autoencoder (VAE) (Kingma and Welling, 2013) can
lead to generating new images that combine characteristics of existing images (Gul-
rajani et al., 2016). This is possible due to the sampling process that occurs during
training, in combination with the fact that the latent space is trained not only to re-
construct faithful representations of the input data (e.g., of a given image) but also to
follow a Gaussian distribution. Sampling from (initially “detuned”) Gaussian distri-
butions at each training epoch leads to latent representations that interpret meaningful
information throughout the entire extent of the Gaussian distribution — given enough
data.

In music, interesting results have been presented with the utilization of VAE for
music generation (Roberts et al., 2018). Learning the latent space of various musi-
cal excerpts allowed the system to both interpolate and extrapolate from two given
excerpts in a meaningful way. For instance, if two melodies were given that were
primarily different in one feature, e.g., one was polyphonic and the other mono-
phonic, sampling from interpolated points between the latent representations of the
inputs generated new melodies with intermediate characteristics. Specifically, sam-
pling from latent points that were closer to, e.g., the polyphonic excerpt generated
more polyphonic output than sampling closer to the monophonic end. This creates
a “morphing continuum” between any two points in the latent space, which is musi-
cally meaningful, in the sense that the different features that are implicitly captured in
the latent space are consistently mapped to the musical output, creating excerpts that
morph between two extremes. Furthermore, extrapolating from the line that connects
the latent representations of two input excerpts would generate excerpts that “ex-
aggerate” the feature differences towards the extrapolation end. For instance, in the
example of the polyphonic and monophonic input excerpts, extrapolating towards
the end of the polyphonic excerpt would produce an excerpt that has even more
polyphony than the input excerpt in the polyphonic extreme.

Section summary and discussion

This section discussed methods that potentially allow music generation that intu-
itively and meaningfully interpolates and extrapolates from learned styles. Such
methods were presented that either follow explicit approaches to representing fea-
tures or implicit learning from data. The intuitiveness offered by methods that employ
explicit feature representations comes at the cost of extensive human design, which
is not only inaccurate and tedious but also style-specific and error-prone.

Regarding implicit learning, VAEs constitute a promising example of how ma-
chines can learn interconnected and meaningful latent representations that not only
homogeneously connect areas that represent samples of the training data, but are also
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able to infer connections with latent points that represent data beyond the borders of
what has been learned. The typical VAE, even though effective, incorporates a la-
tent space that has “entangled” representations of features, i.e., a single feature (e.g.,
polyphony) might be expressed by more than one latent variable with complex re-
lations. A modification of the typical VAE has been proposed recently, namely, the
beta-VAE (Higgins et al., 2017), which generates disentangled representations of the
latent features, in the sense that unique features are represented by the fewest pos-
sible latent variables. For example, the polyphony feature can be represented only
by a single latent feature; therefore, changing the value of this feature could simply
change the polyphony of an excerpt without necessarily having to provide a second
excerpt for computing the interpolation/extrapolation direction in the latent space for
achieving the desired result in polyphony.

13.7 Conclusion

This chapter has presented a review on Al methods for music generation. Initially,
the important role of abstraction in music was highlighted, giving an example with
the application of NMF on abstracted information obtained from the music surface of
a set of Bach chorales, leading to an information-based extraction of the Schenkerian
analysis. Subsequently, Al methods for music generation were presented in three cat-
egories, according to how they implement abstraction from the musical surface: (i)
nonadaptive, (i) probabilistic, and (iii) evolutionary methods. The role of a human
design was highlighted in nonadaptive systems, where abstractions are taking the
form of rules designed by the artist/researcher who creates the method. Probabilistic
methods, in contrast to nonadaptive that employ fixed rules, adapt to data by learning
statistical relations between musical elements. In probabilistic methods, two cate-
gories were defined according to what knowledge they acquire: explicit modeling
of knowledge involves learning specific features/abstractions defined in a way that
is computationally transparent to the human user, and implicit modeling allows the
model itself to create proper abstractions and learn their statistical behavior. Finally,
evolutionary methods were analyzed, which are based on explicit modeling but also
allow interactive interventions by users, based on the intuitive modeling they offer.

The chapter then focused on work that will expectedly open new possibilities
for the involvement of Al in music generation. Specifically, methods based on evo-
lutionary computation, conceptual blending, and deep learning are analyzed, based
on the fact that they attempt to offer genuinely new/creative results that cross stylis-
tic borders, allowing interpolations between and extrapolations from musical styles.
Especially for deep learning methods, it seems possible that recent advantages will
allow intuitive interpretations on what they produce, allowing them to be employed in
more interactive and useful settings in real-world applications. Those developments
appear to be significant since deep learning methods learn by themselves abstractions
that cover multiple aspects of the learned styles, covering deep relations that a human
designer might fail to properly describe with explicit feature design.
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