
Chapter 15

IMPROVED LEARNING OF NEURAL NETS
THROUGH GLOBAL SEARCH

V.P. Plagianakos
Department of Mathematics, University of Patras, University of Patras Artificial Intel­
ligence Research Center-UPAIRC, GR-26110 Patras, Greece
vpp@math.upatras.gr

G.D. Magoulas
School of Computer Science and Information Systems, Birkbeck College, University of
London, Malet Street, London WCIE 7HX, UK

gmagoulas@dcs.bbk.ac.uk

M.N. Vrahatis
Department of Mathematics, University of Patras, University of Patras Artificial Intel­
ligence Research Center-UPAIRC, GR-26110 Patras, Greece
vrahatis@math.upatras.gr

Abstract Learning in artificial neural networks is usually based on local minimiza­
tion methods which have no mechanism that allows them to escape the
influence of an undesired local minimum. This chapter presents strate­
gies for developing globally convergent modifications of local search
methods and investigates the use of popular global search methods in
neural network learning. The proposed methods tend to lead to de­
sirable weight configurations and allow the network to learn the entire
training set, and, in that sense, they improve the efficiency of the learn­
ing process. Simulation experiments on some notorious for their local
minima learning problems are presented and an extensive comparison
of several learning algorithms is provided.

Keywords: Global search, local minima, simulated annealing, genetic algorithms,
evolutionary algorithms, neural networks, supervised training, swarm
intelligence.

362 Global Optimization: Scientific and Engineering Case Studies

Introduction
Scientific interest in models of neuronal networks or artificial neural

networks mainly arises from their potential ability to perform interesting
computational tasks. Nodes, or artificial neurons, in neuronal network
models are usually considered as simplified models of biological neu­
rons, i.e. real nerve cells, and the connection weights between nodes
resemble to synapses between neurons. In fact, artificial neurons are
much simpler than biological neurons. But, for the time being, it is far
from clear how much of this simplicity is justified because, as yet, we
have only poor understanding of neuronal functions in complex biolog­
ical networks. Artificial neural nets (ANNs) provide to computing an
alternative algorithmic model, which is biologically motivated: the com­
putation is massively distributed and parallel and the learning replaces a
priori program development, i.e. ANNs develop their functionality based
on training (sampled) data

In neural net learning the objective is usually to minimize a cost
function defined as the multi-variable error function of the network.
This perspective gives some advantage to the development of effective
learning algorithms, because the problem of minimizing a function is well
known in the field of numerical analysis. However, due to the special
characteristics of the neural nets, learning algorithms can be trapped
in an undesired local minimum of the error function: they are based on
local search methods and have no mechanism that allows them to escape
the influence of an undesired local minimum.

This chapter is focused on the use of Global Optimization (GO) meth­
ods for improved learning of neural nets and presents global search
strategies that aim to alleviate the problem of occasional convergence
to local minima in supervised training. Global search methods are ex­
pected to lead to "optimal" or "near-optimal" weight configurations by
allowing the network to escape local minima during training.

In practical apphcations, GO methods can detect just sub-optimal
solutions of the objective function. In many cases these sub-optimal
solutions are acceptable but there are applications where the optimal
solution is not only desirable but also indispensable. Therefore, the de­
velopment of robust and efficient GO methods is a subject of considerable
ongoing research.

It is worth noting that, in general, GO-based learning algorithms pos­
sess strong theoretical convergence properties, and, at least in principle,
are straightforward to implement and apply. Issues related to their nu­
merical efficiency are considered by equipping GO algorithms with a
"traditional" local minimization phase. Global convergence, however.

Improved Learning of Neural Nets through Global Search 363

needs to be guaranteed by the global-scope algorithm component which,
theoretically, should be used in a complete, "exhaustive" fashion. These
remarks indicate the inherent computational demand of the GO algo­
rithms, which increases non-polynomially, as a function of problem-size,
even in the simplest cases.

The remaining of this chapter is organized as follows. Section 1 for­
mulates the learning problem in the optimization context. In section
2, deterministic monotone and nonmonotone strategies for developing
globally convergent modifications of learning algorithms are presented.
Section 3 focuses on global search methods and error function transfor­
mations to alleviate convergence to undesired local minima. Section 4
presents simulations and comparisons with commonly used learning al­
gorithms, and discusses the results.

1. Learning in neural nets
Let us consider an ANN whose /-th layer contains Â^ neurons (/ =

1 , . . . , L). The neurons of the first layer receive inputs from the external
world and propagate them to the neurons of the second layer (also called
hidden layer) for further processing. The operation of the neurons for
/ = 2 , . . . , L is usually based on the following equations:

where net^j is for the j-th neuron in the /-th layer (/ = 2 , . . . , L ; j =
1 , . . . , A /̂), the sum of its weighted inputs. The weights from the i-th
neuron at the (/ — I) layer to the j - th neuron at the /-th layer are denoted
by w^~ ' , y^- is the output of the j-th neuron that belongs to the /-th
layer, and f{net^j) is the j - th 's neuron activation function.

If there is a fixed, finite set of input-output pairs, the square error
over the training set, which contains P representative cases, is:

P NL P NL

^H = E E f e - î.p)' = EE[-'(«4+^f) - hpT-
p=i j=i p=i j=i

This equation formulates the error function to be minimized, in which
tj^p specifies the desired response at the j - t h neuron of the output layer
at the input pattern p and yj'p is the output at the j - t h neuron of
the output layer L that depends on the weights of the network and
cr is a nonlinear activation function, such as the well known sigmoid
a{x) = (1 -f e~^)~ . The weights of the network can be expressed in a

364 Global Optimization: Scientific and Engineering Case Studies

vector notation:

/ 1-1,1 1-1,1 1-1,1 nl l-l.l l-l.l \^
w

where ^j denotes the bias of the j - t h neuron (j = 1 , . . . , A/'/) at the /-th
layer (/ — 2, . . . , L) . This formulation defines the weight vector as a
point in the A/^-dimensional real Euclidean space M^, where N denotes
the total number of weights and biases in the network.

Minimization of E{w) is attempted by updating the weights using a
learning algorithm. The weight update vector describes a direction in
which the weight vector will move in order to reduce the network training
error. The weights are modified using the iterative scheme:

w ̂ +l = ^^ + A ^ ^ A : - 0 , 1 , . . .

where w^'^^ is the new weight vector, w^ is the current weight vector
and Atf;̂ the weight update vector.

Various choices of the correction term At̂ ;̂ give rise to distinct learn­
ing algorithms, which are usually first-order or second-order methods
depending on the derivative-related information they use to generate
the correction term. Thus, first-order algorithms are based on the first
derivative of the learning error with respect to the weights, while second-
order algorithms on the second derivative (see [5] for a review on first-
order and second-order training algorithms).

A broad class of first-order algorithms, which are considered much
simpler to implement than second-order methods, uses the correction
term —iiVE{w^)] // is a heuristically chosen constant that usually takes
values in the interval (0,1) (the optimal value of the stepsize JJL depends
on the shape of the A^-dimensional error function) and VE{w^) defines
the gradient vector of the ANN obtained by applying the chain rule on
the layers of the network [50].

The most popular first-order algorithm is called Backpropagation
(BP) and uses the steepest descent [36] with constant stepsize ^:

w ̂ +1 = w^ - iiVE{w^), fc = 0 , 1 ,

It is well known that the BP algorithm leads to slow network learn­
ing and often yields suboptimal solutions [16]. Attempts to speed up
back-propagation training have been made by dynamically adapting the
stepsize fi during training [29, 55], or by using second derivative related
information [32, 34, 54]. Adaptive stepsize algorithms are more popu­
lar due to their simplicity. The stepsize adaptation strategies that are
usually suggested are: (i) start with a small stepsize and increase it ex­
ponentially, if successive iterations reduce the error, or rapidly decrease

Improved Learning of Neural Nets through Global Search 365

it, if a significant error increase occurs [4, 55], (ii) start with a small small
stepsize and increase it, if successive iterations keep gradient direction
fairly constant, or rapidly decrease it, if the direction of the gradient
varies greatly at each iteration [9], (iii) for each weight, an individual
stepsize is given, which increases if the successive changes in the weights
are in the same direction and decreases otherwise [21, 52], and (iv) use a
closed formula to calculate a common stepsize for all the weights at each
iteration [29, 46] or a different stepsize for each weight [14, 31]. Note
that all the above-mentioned strategies employ heuristic parameters in
an attempt to enforce the decrease of the learning error at each iteration
and to secure the converge of the learning algorithm.

Methods of nonlinear optimization have also been studied extensively
in the context of NNs [32, 54, 56]. Various Levenberg-Marquardt, quasi-
Newton and trust-region algorithms have been proposed for small to
medium size neural nets [18, 25]. Variations on the above methods,
limited-memory quasi-Newton and double dogleg, have been also pro­
posed in an attempt to reduce the memory requirements of these meth­
ods [1, 6]. Nevertheless, first-order methods, such as variants of gradient
descent [27, 41] and conjugate-gradient algorithms [34] appear to be more
efhcient in training large size neural nets.

At this point it is worth mentioning an important consideration for
adopting an iterative scheme in practical learning tasks is its suscep­
tibility to ill-conditioning: the minimization of the network's learning
error is often ill-conditioned, especially when there are many hidden
units [51]. Although second-order methods are considered better for
handling ill-conditioned problems [5, 32], it is not certain that the extra
computational/memory cost these methods require leads to speed ups
of the minimization process for nonconvex functions when far from a
minimizer [35]; this is usually the case with the neural network train­
ing problems, [5], especially when the networks uses a large number of
weights [27, 41].

Moreover, BP-like learning algorithms, as well as second-order al­
gorithms, occasionally converge to undesired local minima which affect
the efficiency of the learning process. Intuitively, the existence of local
minima is due to the fact that the error function is the superposition of
nonlinear activation functions that may have minima at different points,
which sometimes results in a nonconvex error function [16]. The insuffi­
cient number of hidden nodes as well as improper initial weight settings
can cause convergence to an undesired local minimum, which prevents
the network from learning the entire training set and results in inferior
network performance.

366 Global Optimization: Scientific and Engineering Case Studies

Several researchers have presented conditions on the network archi­
tecture, the training set and the initial weight vector that allow BP to
reach the optimal solution [26, 60]. However, conditions such as the
linear separability of the patterns and the pyramidal structure of the
ANN [16] as well as the need for a great number of hidden neurons (as
many neurons as patterns to learn) make these interesting results not
easily interpretable in practical situations even for simple problems.

2. Globally Convergent Variants of Local Search
Methods

A local search learning algorithm can be made globally convergent by
determining the stepsize in such a way that the error is exactly mini­
mized along the current search direction at each iteration, i.e. E{w^'^^) <
E{w^). To this end, an iterative search, which is often expensive in
terms of error function evaluations, is required. It must be noted that
the above simple condition does not guarantee global convergence for
general functions, i.e. converges to a local minimizer from any initial
condition (see [11] for a general discussion of globally convergent meth­
ods).

Monotone Learning Strategies
In adaptive stepsize algorithms, monotone reduction of the error func­

tion at each iteration can be achieved by searching a local minimum with
small weight steps. These steps are usually constrained by problem-
dependent heuristic learning parameters.

The use of heuristic strategies enforces the monotone decrease of the
learning error and secures the convergence of the training algorithm to a
minimizer of E. However, the use of inappropriate values for the heuris­
tic learning parameters can considerably slow down the rate of training
or even lead to divergence and to premature saturation [26, 49]; there
is a trade-off between convergence speed and stability of the training
algorithm. Additionally, the use of heuristics for bounding the stepsize
prevents the development of efficient algorithms with the property that
starting from any initial weight vector the weight updates will converge
to a local minimum, i.e. globally convergent training algorithms.

A monotone learning strategy, which does not apply heuristics to
bound the length of the minimization step, consists in accepting a posi­
tive stepsize r]^ along the search direction (p^ ̂ 0, if it satisfies the Wolje
conditions:

E{w^ + ryV^) - E{w^) < CJIT]^ (VE^W^), /) , (1.1)

Improved Learning of Neural Nets through Global Search 367

(yE{w^ + r]^ip^), /) ^ (72 (V£^(^^), /) , (1.2)

where 0 < ai < (72 < 1 and (•, •) stands for the usual inner product in
R^. The first inequality ensures that the error is reduced sufficiently, and
the second prevents the stepsize from being too small. It can be shown
that if (fi^ is a descent direction and E is continuously differentiable and
bounded below along the ray {w^ + r](fi^ | r/ > 0}, then there always
exists a stepsize satisfying (1.1)-(1.2) [11, 35]. Relation (1.2) can be
replaced by:

E{w^ + r/V^) - Eiw^) ^ a2V^ (^E{w^), / \ , (1.3)

where (72 G (cri, 1) (see [11]). The strategy based on Wolfe's conditions
provides an efficient and effective way to ensure that the error function
is globally reduced sufficiently. In practice, conditions (1.2) or (1.3) are
generally not needed because the use of a backtracking strategy avoids
very small learning rates [31, 57].

An alternative strategy has been proposed in [47]. It is applicable to
any descent direction Lp^ and uses two parameters a^jS E (0,1). Follow­
ing this approach the stepsize is rf = /?^^, where rrik G Z is any integer
such that:

E{w^ + / ? ^ ^ /) - E{w^) ^ /3^^a lvE{w^), ^^) , (1.4)

E{w^ + /?^^-V^) - E{w^) > p'^^-^a (VE{W^), /) . (1.5)

To ensure global convergence, monotone strategies that employ con­
ditions (1.1)-(1.2) or (1.4)-(1.5) must be combined with stepsize tun­
ing subprocedures. For example, a simple subprocedure for tuning the
length of the minimization step is to decrease the stepsize by a reduction
factor g"-̂ , where q > 1 [36], so that it satisfies conditions (1.1)~(1.2) at
each iteration. This backtracking strategy has the effect that the stepsize
is decreased by the largest number in the sequence {q~^}^=i^ so that
condition (1.1) is satisfied. When seeking to satisfy (1.1) it is important
to ensure that the stepsize is not reduced unnecessarily so that condi­
tion (1.2) is not satisfied. Since in training, the gradient vector is known
only at the beginning of the iterative search for a new weight vector,
condition (1.2) cannot be checked directly (this task requires additional
gradient evaluations at each iteration), but is enforced simply by plac­
ing a lower bound on the acceptable values of the stepsize. This bound
on the stepsize has the same theoretical effect as condition (1.2), and
ensures global convergence [11].

368 Global Optimization: Scientific and Engineering Case Studies

Nonmonotone Learning Strategies
Although monotone learning strategies provide an efficient and effec­

tive way to ensure that the error function is reduced sufficiently, they
have the disadvantage that no information, which might accelerate con­
vergence, is stored and used [15]. To alleviate this situation we propose
a nonmonotone learning strategy that exploits the accumulated infor­
mation with regard to the M most recent values of the error function.
The following condition is used to formulate the new approach and to
define a criterion of acceptance of any weight iterate:

E (w^ - rj^VEiw^)) - max E{w^-^) ^ 7 7 / ^ (vE{w^), c/)^) , (1.6)
\ / 0^jf<M \ /

where M is a nonnegative integer, named nonmonotone learning horizon^
0 < 7 < 1, 77̂ indicates the learning rate and cf)^ is the search direction
at the kth iteration. The above condition allows for an increase in the
function values without affecting the global convergence properties, as
it has been proved theoretically in [17, 48],

Furthermore, it can be shown that the nonmonotone learning strategy
generates a globally convergent sequence for any algorithm that follows
a search direction ip^ ^ 0, provided that two positive numbers ci,C2
exist, such that:

V£ ; (^ '=) , /) ^ -c i | |VE(^*=) | | , (1.7)

\\^'\\^C2\\VE{w')\\. (1.8)

This follows directly from the convergence theorem in [17].
Next, we summarize the basic steps of the nonmonotone learning

strategy at the fcth iteration:

1: Update the weights w^'^^ =^ w^ + rj^ip^,

2: If E{w^-^^) - max E(w^-^) ^ 7 7 / ^ (vE(w^),(^^), store w^-^\

set k = k + 1 and go to Step 1; otherwise go to the next step.

3: Use a tuning technique for TJ^ and return to Step 2.

Experimental results indicate that the choice of the parameter M is
critical for the implementation and depends on the nature of the prob­
lem [42, 46]. Therefore, instead of using a user-defined value for the
nonmonotone learning horizon M, an adaptive procedure can be applied
to dynamically evaluate M.

Improved Learning of Neural Nets through Global Search 369

To this end, the following procedure, based on the notion of the Lips-
chitz constant, dynamically adapts the value of the nonmonotone learn­
ing horizon M at each iteration:

r M^-i + 1, A^ < A^-^ < A^-^,
M^ = I M^-i - 1, A^> A^-^ > yl^-2, (1.9)

[M^~^ , otherwise,

where A^ is the local estimation of the Lipschitz constant at the kth
iteration [29]:

llv^j-vEy--)!!
which can be obtained without additional error function or gradient eval­
uations. If A^ is increased for two consecutive iterations, the sequence of
the weight vectors approaches a steep region and the value of M has to
be decreased in order to avoid overshooting a possible minimum point.
On the other hand, when A^ is decreased for two consecutive iterations,
the method possibly enters a valley in the weight space, so the value of
M has to be increased. This allows the method to accept larger step-
sizes and move faster out of the flat region. Finally, when the value of
A^ has a rather random behavior (increasing or decreasing for only one
iteration), the value of M remains unchanged. It is evident that M has
to be positive. Thus, if Relation (1.9) gives a non positive value in M,
the nonmonotone learning horizon is set equal to 1 in order to ensure
that the error function is sufficiently reduced at the current iteration.

At this point it is useful to remark that a simple technique to tune
77̂ at Step 3 is to decrease the stepsize by a reduction factor 1/g, where
g > 1, as mentioned in the previous subsection. The selection of q is
not crucial for successful learning, however, it has an influence on the
number of error function evaluations required to obtain an acceptable
weight vector. Thus, some training problems respond well to one or
two reductions in the stepsize by modest amounts (such as 1/2), while
others require many such reductions, but might respond well to a more
aggressive stepsize reduction (for example by factors of 1/10, or even
1/20). On the other hand, reducing 77̂ too much can be costly since the
total number of iterations will be increased. The value q = 2 is usually
suggested in the literature [2] and, indeed, it was found to work effec­
tively and efficiently in the experiments [41, 46]. The above procedure
constitutes an efficient method of determining an appropriate stepsize
without additional gradient evaluations. As a consequence, the num­
ber of gradient evaluations is, in general, less than the number of error
function evaluations.

370 Global Optimization: Scientific and Engineering Case Studies

The nonmonotone learning strategy can be used as a subprocedure
that secures and accelerates the convergence of a learning algorithm by
providing the ability to handle arbitrary large stepsizes, and, in this way,
learning by neural nets becomes feasible on a first-time basis for a given
problem. Additionally, it alleviates problems generated by poor selection
of the user-defined learning parameters, such as decreased rate of con­
vergence, or even divergence and convergence to undesired local minima
due to premature saturation [26]. It is worth noting that any stepsize
adaptation strategy can be incorporated in Step 1 of the above algorithm
model. For example, in [41, 46] the nonmonotone Backpropagation with
variable stepsize (NMBPVS) and the nonmonotone Barzilai-Borwein
Backpropagation (NMBBP) have been proposed.

The NMBPVS is the nonmonotone version of the Backpropagation
with Variable Stepsize (BPVS) [29], which exploits the local shape of the
error surface to obtain a local estimate the Lipschitz constant at each
iteration and uses this estimate to adapt the stepsize 77̂ . The nonmono­
tone strategy helps to eliminate the possibihty of using an unsuitable
local estimation of the Lipschitz constant.

With regards to the NMBBP, the nonmonotone strategy helps to se­
cure the convergence of the BBP method [42], even when the Barzilai-
Borwein formula [3] gives an unsuitable stepsize. Experimental results
show that the NMBBP retains the ability of BBP to escape from unde­
sirable regions in the weight space, i.e. undesired local minima and flat
valleys, whereas other methods are trapped within these regions [41, 46].

Furthermore, alternative weight adaptation rules can be used in Step 2
of the above algorithm model to develop their nonmonotone version. For
example, in [21, 50] a simple, heuristic strategy for accelerating the BP
algorithm has been proposed based on the use of a momentum term. The
momentum term can been incorporated in the steepest descent method
as follows:

^k+i ^ f̂c _ (̂2̂ _ rn)ri\/E{w^) + m{w^ - w^~^),

where m is the momentum constant. A drawback with the above scheme
is that, if m is set to a comparatively large value, gradient information
from previous iterations is more influential than the current gradient
information in updating the weights. A solution is to increase the step-
size, however, in practice, this approach frequently proves ineff'ective
and leads to instability or saturation. Thus, if m is increased, it may be
necessary to make a compensatory reduction in 77 to maintain network
stabihty. Combining the BP with Momentum (BPM) with the non­
monotone learning strategy (this is named NMBPM) helps to alleviate
this problem.

Improved Learning of Neural Nets through Global Search 371

3. Learning Through Global Search Methods
In this section we focus on global search methods for neural network

learning and we propose objective function transformation techniques
that can be combined with any search method (either local or global)
to alleviate the problem of occasional convergence to undesired local
minima.

Adaptive stochastic search algorithms
Adaptive stochastic search algorithms include, simulated annealing [8,

24], genetic and evolutionary algorithms [33], as well as swarm intelli­
gence [13, 22, 23]. Next, the fundamentals of those methods are re­
viewed.

The method of simulated annealing. Simulated Annealing (SA)
refers to the process in which random noise in a system is systemati­
cally decreased at a constant rate so as to enhance the response of the
system [24].

In the numerical optimization framework, SA is a procedure that has
the capabihty to move out of regions near local minima [10]. SA is
based on random evaluations of the objective function, in such a way
that transitions out of a local minimum are possible. It does not guar­
antee, of course, to find the global minimum, but if the function has
many good near-optimal solutions, it should find one. In particular,
SA is able to discriminate between "gross behavior" of the function and
finer "wrinkles". First, it reaches an area in the function domain space
where a global minimizer should be present, following the gross behavior
irrespectively of small local minima found on the way. It then develops
finer details, finding a good, near-optimal local minimizer, if not the
global minimum itself.

In the context of neural network learning the performance of the clas­
sical SA is not the appropriate one: the method needs a greater number
of function evaluations than that usually required for a single run of
first-order learning algorithms and does not exploit derivative related
information. Notice that the problem with minimizing the neural net­
work error function is not the well defined local minima but the broad
regions that are nearly fiat. In this case, the so-called Metropolis move
is not strong enough to move the algorithm out of these regions [59].

In [8], it has been suggested to incorporate SA in the BP algorithm:

^^+1 =:w^- fiVE{w^) + nc2-^\

372 Global Optimization: Scientific and Engineering Case Studies

where n is a constant controlling the initial intensity of the noise, c E
(—0.5,+0.5) is a random number and d is the noise decay constant.
In the experiments reported below we have applied this technique for
updating the weights from the beginning of the training as proposed by
Burton et al [8]. Alternatively, we update the weights using plain BP
until convergence to an undesired local minimum is obtained, then we
switch to SA. This combined BP with SA is named BPSA.

Genetic Algorithms. Genetic Algorithms (GA) are simple and ro­
bust search algorithms based on the mechanics of natural selection and
natural genetics. The mathematical framework of GAs was developed in
the 1960s and is presented in Holland's pioneering book [19]. GAs have
been used primarily in optimization and machine learning problems and
their operation is briefly described as follows. At each generation of a
GA, a new set of approximations is created by the process of selecting
individuals according to their level of fitness in the problem domain and
breeding them together using operators borrowed from natural genetics.
This process leads to the evolution of populations of individuals that
are better suited to their environment than their progenitors, just as in
natural adaptation. For a high level description of the simple GA see
Figure 1.1.

More specifically, a simple GA processes a finite population of fixed
length binary strings called genes, GAs have two basic operators, namely:
crossover of genes and mutation for random change of genes. The
crossover operator explores different structures by exchanging genes be­
tween two strings at a crossover position and the mutation operator is
primarily used to escape the local minima in the weight space by alter­
ing a bit position of the selected string; thus introducing diversity in
the population. The combined action of crossover and mutation is re­
sponsible for much of the effectiveness of GA's search. Another operator
associated with each of these operators is the selection operator, which
produces survival of the fittest in the GA.

The parallel noise-tolerant nature of GAs, as well as their hill-climbing
capability, make GAs eminently suitable for training neural networks, as
they seem to search the weight space efficiently. The "Genetic Algorithm
for Optimization Toolbox (GAOT)" [20] has been used for the experi­
ments reported here. GAOT's default crossover and mutation schemes,
and a real-valued encoding of the ANN's weights have been employed.

Evolutionary Algorithms. Evolutionary algorithms (EA) are adap­
tive stochastic search methods which mimic the metaphor of natural

Improved Learning of Neural Nets through Global Search 373

STANDARD GENETIC ALGORITHM MODEL

{
/ / i n i t i a l i s e the time counter
t := 0;
//initialise the population of individuals

InitPopulation(P(t));

//evaluate fitness of all individuals

Evaluate(P(t));

//test for termination criterion (time, fitness, etc.)

while not done do

t := t + 1;

//select a sub-population for offspring production

Q(t) := SelectParents(P(t));

//recombine the "genes" of selected parents

Recombine(Q(t));

//perturb the mated population stochastically

Mutate(Q(t));

//evaluate the new fitness

Evaluate(Q(t));

//select the survivors for the next generation

P(t + 1) := Survive(P(t), Q(t));

end

}

Figure 1.1. A high level description of the simple GA Algorithm

biological evolution. Differently from other adaptive stochastic search
algorithms, evolutionary computation techniques operate on a set of po­
tential solutions, which is called population^ applying the principle of
survival of the fittest to produce better and better approximations to
a solution, and, through cooperation and competition among the po­
tential solutions, they find the optimal one. This approach often helps
finding optima in complicated optimization problems more quickly than
traditional optimization methods.

To demonstrate the efficiency of the EA in alleviating the local minima
problem, we have used the Differential Evolution (DE) strategies [53].
DE strategies have been designed as stochastic parallel direct search
methods that can efficiently handle non differentiable, nonlinear and
multimodal objective functions, and require few, easily chosen control
parameters. Experimental results [28] have shown that DE algorithms
have good convergence properties and outperform other evolutionary
methods [44, 45]. To apply DE algorithms to neural network learning
we start with a specific number {NP) of A/^-dimensional weight vectors,
as an initial weight population, and evolve them over time. The num­
ber of individuals NP is kept fixed throughout the learning process and
the weight vectors population is initialized randomly following a uniform

374 Global Optimization: Scientific and Engineering Case Studies

probability distribution. As in GAs, at each iteration of the DE algo­
rithm, called generation^ new weight vectors are generated by the com­
bination of weight vectors randomly chosen from the population, which
is called mutation. The outcoming weight vectors are then mixed with
another predetermined weight vector, the target weight vector. This op­
eration is called crossover diiid it yields the so-called trial weight vector.
This vector is accepted for the next generation if and only if it reduces
the value of the error function E. This last operation is called selection.

Below, we briefly review the two basic DE operators used for ANN
learning. The first DE operator, we consider, is mutation. Specifically,
for each weight vector Wg^ i = 1 , . . . ,7VP, where g denotes the current
generation, a new vector Vg-^i (mutant vector) is generated according to
one of the following relations:

Alg. DEi

Alg. DE2

Alg. DE3

Alg. DE4

Alg. DE5

Alg. DEe

4+1--
^9+1--

4+1 =

4+1=

4+1 =
4+1=

= < + e K -
=<̂ * + e «
=<+eK"-
=^ + e(<^^
=<̂ * + e «
=«^?+eK=-

o>
- 0 .
O -
- H) + ̂ {<' -
-o+e«
0 + e«-

-o>
-0^
0 >

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

where w^^^^ is the best member of the previous generation, ^ > 0 is a real
parameter, called mutation constant, which controls the amplification of
the difference between two weight vectors, and

r i , r2, r3, r4, r5 E {1, 2 , . . . , 2 - 1, i + 1 , . . . , NP}

are random integers mutually different and different from the running
index i.

Relation (1.11) has been introduced as crossover operator for GAs [33]
and is similar to Relations (1.12) and (1.13). The remaining relations
are modifications which can be obtained by the combination of (l .H),
(1.12) and (1.13). It is clear that many more relations of this type
can be generated using the above ones as building blocks. In recent
works [44, 45], we have shown that the above relations can efficiently be
used to train ANNs with arbitrary integer weights as well.

The second DE operator, i.e. the crossover, is applied to increase the
diversity of the mutant weight vector. Specifically, for each component j
(j = 1, 2 , . . . , A/') of the mutant weight vector v^^i^ we randomly choose
a real number r in the interval [0,1]. Then, this number is compared
with the crossover constant p; if r ^ p we replace the j - th component

Improved Learning of Neural Nets through Global Search 375

of the trial vector u't_^i with the j - th component of the mutant vector
vi^i] otherwise, we pick the j - th component of the target vector t̂;̂ .

The part icle swarm opt imizat ion m^ethod. In Particle Swarm
Optimization (PSO) algorithm the population dynamics simulates a "bird
flock's" behavior where social sharing of information takes place and in­
dividuals can profit from the discoveries and previous experience of all
other companions during the search for food. Thus, each companion,
called particle^ in the population, which is now called swarm^ is assumed
to "fly" over the search space in order to flnd promising regions of the
landscape. For example, in the minimization case, such regions possess
lower functional values than other visited previously. In this context,
each particle is treated as a point in a A^-dimensional space which ad­
justs its own "flying" according to its flying experience as well as the
flying experience of other particles (companions).

There are many variants of the PSO proposed so far, after Eberhart
and Kennedy introduced this technique [13, 22]. In our experiments
we have used a version of this algorithm, which is derived by adding a
new inertia weight to the original PSO dynamics [12]. This version is
described in the following paragraphs.

First let us define the notation used: the i-th particle of the swarm
is represented by the A^-dimensional vector Xi = (x^i, 0:̂ 2̂ • - • ^ ^IN) and
the best particle in the swarm, i.e. the particle with the smallest function
value, is denoted index g. The best previous position (the position giving
the best function value) of the i-th particle is recorded and represented
as Pi = {pii',Pi2i • • • -IVIN)^ and the position change (velocity) of the z-th
particle is Vi = {vii,Vi2,..., VIN)-

The particles are manipulated according to the equations

Vin ^WVin + Ciri{pin - Xin) + C2r2{Pgn " ^ m) , (1.17)

Xin =^ Xin I Vint \^'^^)

where n = 1,2,..., Â ; i = 1, 2 , . . . ,7VP and NP is the size of population;
w is the inertia weight; ci and C2 are two positive constants; ri and r2
are two random values in the range [0,1].

The first equation is used to calculate i-th particle's new velocity by
taking into consideration three terms: the particle's previous velocity,
the distance between the particle's best previous and current position,
and, finally, the distance between swarm's best experience (the position
of the best particle in the swarm) and i-th particle's current position.
Then, following the second equation, the i-th particle files toward a
new position. In general, the performance of each particle is measured
according to a predefined fitness function, which is problem-dependent.

376 Global Optimization: Scientific and Engineering Case Studies

The role of the inertia weight w is considered very important in PSO
convergence behavior. The inertia weight is employed to control the
impact of the previous history of velocities on the current velocity. In
this way, the parameter w regulates the trade-off between the global
(wide-ranging) and local (nearby) exploration abilities of the swarm. A
large inertia weight facilitates global exploration (searching new areas),
while a small one tends to facihtate local exploration, i.e. fine-tuning
the current search area. A suitable value for the inertia weight w usu­
ally provides balance between global and local exploration abilities and
consequently a reduction on the number of iterations required to locate
the optimum solution. A general rule of thumb suggests that it is better
to initially set the inertia to a large value, in order to make better global
exploration of the search space, and gradually decrease it to get more
refined solutions, thus a time decreasing inertia weight value is used.

From the above discussion it is obvious that PSO, to some extent, re­
sembles EAs. However, in PSO, instead of using genetic operators, each
individual (particle) updates its own position based on its own search ex­
perience and other individuals (companions) experience and discoveries.
Adding the velocity term to the current position, in order to gener­
ate the next position, resembles the mutation operation in evolutionary
programming. Note that in PSO, however, the "mutation" operator is
guided by particle's own "flying" experience and benefits by the swarm's
"flying" experience. In another words, PSO is considered as performing
mutation with a "conscience", as pointed out by Eberhart and Shi [12].

In general, PSO has been proved very efficient in a plethora of appli­
cation in science and engineering [23, 38-40]

Transforming the objective function
Let a point w such that there exists a neighborhood B oi w with

E{w)^E{w), yweB, (1.19)

This point is a local minimizer of the error function and, as already
mentioned above, many methods get stuck in such undesired local min­
ima. The main idea of applying a transformation to the error function
is to make some undesired local minima disappear, while keeping the
location of the global minimizer unchanged. The techniques that will be
described below aim at transforming the error function in such a way
that convergence to a global minimizer is enhanced for any learning al­
gorithm that is equipped with them. Two methods are described: the
deflection procedure and the function stretching technique.

Improved Learning of Neural Nets through Global Search 377

The deflection procedure. Following the deflection procedure pro­
posed in [30], when the sequence of weight vectors {W^}Q^ converges to
a local minimum w G M^ the error function E{w) is reformulated as
follows:

F{w) = S{w]w,X)-^E{w),

where S{w; w^ A) is a function depending on a weight vector w and on the
local minimizer tD of £'; A is a relaxation parameter. In case there exist
m local minima tDi,. . . , Wm € K^, the above relation is reformulated as:

F{w) = S{w] iDi, Ai)~-̂ • • • S{w] Wm, \m)~^E{w),

The deflection procedure suggests to find a "proper" 5(-) such that F{w)
will not have a minimum at Wi^i = l , . . . ,7ri, while keeping all other
minima of E locally "unchanged". In other words, we have to con­
struct functions S that provide F with the property that any sequence
of weights converging to Wi (a local minimizer of E) will not produce a
minimum oi F dit w =^ Wi. In addition, this function F will retain all
other minima of E, This is the deflection property [30]. For example,
the function:

S{w;Wi,Xi) = tanh(Ai||t(; - Wi\\),

provides F with this property, as it will be explained below.
Let us assume that a local minimum Wi has been determined, then

lini ^ (^) ^ ^
w-^wi tanh {X\\w — Wi\\)

which means that Wi is no longer a local minimizer of F. Moreover, it is
easily verified that for ||K; —iD̂H ^ e, where £ is a small positive constant,
it holds that:

lim F{w)= lim T-TTT^ i^ = E(w), (1.20)
A->+oo A-̂ +oo tanh(A||t(; - K;f||)

since the denominator tends to unity. This means that the error function
remains unchanged in the whole weight space.

It is worth noticing that the eflFect of the deflection procedure is
problem-dependent and is related to the value of A. For an arbitrary
value of A there is a small neighborhood 7?,(iD, p) with center w and radius
p, with p oc A~\ that for any x G TZ{w^p) it holds that F{w) > E{w),
To be more specific, when the value of A is small (say A < 1) the de­
nominator in the above relation becomes one for w "far" from w. Thus,
the deflection procedure affects a large neighborhood around w in the
weight space. On the other hand, when the value of A is large, new local

378 Global Optimization: Scientific and Engineering Case Studies

Error Contour Plot

Figure 1.2. Applying deflection to a simple learning task

minima is possible to be created near the computed minimum tD, like a
"Mexican hat". These minima have function values greater than F{iD)
and can be easily avoided by taking a proper stepsize or by changing the
value of A.

To better visualize the effect of the deflection procedure, we provide
an application example. It concerns training a single neuron using the
BP algorithm to associate 8 input-output pairs. The error surface of
the problem is shown in Fig. 1.2 (top-left). The desired minimum is
located at the center and there are two valleys that lead to undesired
local minima. In Fig. 1.2 (bottom-left) we illustrate the weight trajec­
tory when the initial conditions lead the learning algorithm to converge
to an undesired local minimum. In Fig. 1.2 (top-right) and in Fig. 1.2
(bottom-right) we present the deflected trajectory of weights drawn on
the contour lines of the original and the error function subject to deflec­
tion, respectively.

Notice that the deflection procedure can be incorporated in any learn­
ing algorithm to help escaping the influence of local minima. In the ex­
periments reported below, the classical BP method has been equipped
with the deflection procedure. The resulting scheme is named BP with
deflection (BPD).

The function "stretching" technique. The function '^stretching''
technique [37] consists of a two-stage transformation in the form of the

Improved Learning of Neural Nets through Global Search 379

original error function E{w) and can be applied soon after a local mini­
mum w of the function E has been detected:

G{w) = E{w) + y 11̂ - w\\ {sign(E(w) - E{w)) + 1), (1.21)

u(\ r(\j. s i g n (^ H - £ ^ (^)) + l

where 71,72 and /i are arbitrary chosen positive constants, and sign(-)
defines the well known three valued sign function. Note that the sign
function can be approximated by the well known logistic function:

sign(^.) ^ logsig(«;) = ^ ^ ^ ^ p ^ _ ^ ^) - 1 = tanh (^ w

for a large value of u. This sigmoid function is continuously differentiable
and is widely used as a transfer function in artificial neurons.

It is worth noticing that the first transformation stage elevates E{w)
and makes disappear all the local minima located above w. The second
stage stretches the neighborhood of w upwards, since it assigns higher
function values to those points. Both stages do not alter the local minima
located below tD; thus, the global minimizer is left unchanged.

At this point it is useful to provide an application example of this
technique in order to illustrate its effect. The problem considered is a
notorious two dimensional test function, called the Levy No. 5:

5 5

/ (^) "̂ X] ^ ^̂ t̂*̂ ^ + l)xi+i]x^j cos[(j + l)x2 + j] +

+ {xi + 1.42513)^ + {X2 + 0.80032)2, (1.23)

where —10 ^ Xi ^ lO^i = 1,2. There are about 760 local minima and
one global minimum with function value /* = —176.1375 located at
X* = (—1.3068,-1.4248). The large number of local optimizers makes
extremely difficult for any method to locate the global minimizer. In
Fig. 1.3, the original plot of the Levy No. 5 into the cube [—2, 2]^ is
shown.

After applying the transformation of Eq. 1.21 (first stage of function
"stretching") to the Levy No. 5, the new form of the function is shown in
Fig. 1.4 (left). As one can see, local minima with higher functional values
than the "stretched" local minimum disappeared, while lower minima as
well as the global one have been left unaffected. In Fig. 1.4 (right), the
final landscape, derived after applying the second transformation stage
to the Levy No. 5, is presented. It is clearly shown how the whole neigh­
borhood of the local minimum has been elevated; thus, the former local

380 Global Optimization: Scientific and Engineering Case Studies

Figure 1.3. The original plot of the function Levy No. 5.

Figure 1.4- Plot of the Levy No. 5 after the first stage (left) and after the second
stage (right) of the function "stretching" technique.

minimum has now turned to be a local maximum of the function. Details
on the performance of the PSO algorithm combined with the function
"stretching" technique (SPSO) on two well known test problems, as well
as suggestions for selecting parameter values, are presented in the next
section.

4* Experiments and discussion
Experiments have been performed to evaluate the learning methods

mentioned in the previous sections and compare their performance. Be­
low, we exhibit results on two notorious for their local minima problems.
The algorithms have been tested using initial weights chosen from the

Improved Learning of Neural Nets through Global Search 381

uniform distribution in the interval (—1,1). Note that BPSA and BPD
update the weights using BP until convergence to a global or local min­
imum is obtained: the weight vector w^ is considered as a global mini-
mizer when E{w^) ^ 0.04. Convergence to a local minimizer is related
to the magnitude of the gradient vector, i.e. when the stopping condi­
tion ||V£^(?i;^)|| ^ 10"^ is met, w^ is taken as a local minimizer Wi of
the error function E.

No effort has been made to tune the mutation and crossover param­
eters, ^ and p respectively. We have used the fixed values (̂ = 0.5 and
p =: 0.7, instead. The weight population size NP has been chosen to be
twice the dimension of the problem, i.e. NP— 2N^ for all the simulations
considered. Some experimental results have shown that a good choice
for NP is 2N ^ NP ^ AN. It is obvious that the exploitation of the
weight space is more effective for large values of NP^ but sometimes more
error function evaluations are required. On the other hand, small values
of NP make the algorithm inefficient and more generations are required
in order to converge to the minimum.

In all the PSO simulations reported, the values of 71,72 and /i were
fixed: 71 = 10000,72 = 1 and /i = 10"-^^. The balance between the
global and local exploration abihties of the SPSO is mainly controlled by
the inertia weights, since the particles' positions are updated according
to the classical PSO strategy. A time decreasing inertia weight value,
i.e. start from 1 and gradually decrease towards 0.4, has been found to
work better than using a constant value. This is because large inertia
weights help to find good seeds at the beginning of the search, while,
later, small inertia weights facilitate a finer search.

Notice that for the BP, BPM, BBP, SA, BPSA and BPD methods each
iteration corresponds to one gradient and one error function evaluation,
differently from the BPVS, NMBPM, NMBBP and NMBPVS where, in
general, the number of error Function Evaluations (FE) is larger than
the number of Gradient Evaluations (GE), due to the use of the hne
search. In the table below, there are two rows for these algorithms; the
first one indicates the statistics for the FE and the second for the GE.
On the other hand, a key feature of GA, DE, PSO and SPSO algorithms
is that only error function values are needed.

1) The XOR classification problem: classification of the four XOR pat­
terns in one of two classes, {0,1}, using a 2-2-1 ANN is a classical test
problem [50, 54]. The XOR problem is sensitive to initial weights and
presents a multitude of local minima [7]. The stepsize is taken equal
to 1.5 and the heuristics for SA, BPSA and PSO are tuned to n = 0.3,
d — 0.002 and ci == C2 = 0.5. In all instances, 100 simulations have been
run and the results are summarized in Table 1.1.

382 Global Optimization: Scientific and Engineering Case Studies

2) The three bit parity problem [50]; a 3-3-1 ANN receives eight, 3 -
dimensional binary input patterns and must output an "1" if the inputs
have an odd number of ones and "0" if the inputs have an even number of
ones. This is a very difficult problem for an ANN because the network
must determine the proper parity (the value at the output) for input
patterns which differ only by Hamming distance 1. It is well known that
the network's weight space contains "bad" local minima. The stepsize
has been taken equal to 0.5 and the heuristics for SA, BPSA and PSO
have been tuned to n == 0.1, d = 0.00025, ci = 0.1 and C2 = 1. In all
instances, the results of 100 simulations are summarized in Table 1.1.

The results suggest that combination of local and global search meth­
ods like BPSA and BPD provide a better probability of success than
the BP. Note that the performance of BPSA is not the appropriate one
although derivative related information has been used. On the other
hand, BPD escapes local minima and converges to the global minimum
in all cases, A consideration that is worth mentioning is that the number
of function evaluations in BPSA and BPD contains the additional eval­
uations required for BP to satisfy the local minima stopping condition.
The results also indicate that the GA and the DE are promising and
effective, even when compared with other methods that require the gra­
dient of the error function, in addition to the error function values. For
example, GAs as well as DE^ and DE4 have exhibited very good perfor­
mance for the test problems considered. On the other hand, there have
been cases where a discrepancy has been found in DE's behavior; see for
example DE^ and DEQ. For a discussion on the generalization capabili­
ties of the networks generated by the DE algorithms see [43, 45]. Finally,
the PSO algorithm combined with the function "stretching" technique
(SPSO) has exhibited improved success rate, although it needed addi­
tional iterations to converge.

In conclusion, global search methods provide techniques that alleviate
the problem of occasional convergence to local minima in neural network
learning. Escaping from local minima is not always possible, however
these methods exhibit a better chance in locating appropriate solutions
and, in that sense, they improve the efficiency of the learning process.
Experiments indicate that learning algorithms equipped with the pro­
posed error function transformation techniques are capable to escape
from undesired local minima and locate a desired one effectively. The
deflection procedure and the function "stretching" technique provide sta­
ble convergence and thus a better probability of success for a learning
algorithm. In general, the results exhibited by the proposed methods on
two notorious for their local minima problems are promising.

Improved Learning of Neural Nets through Global Search 383

Training
Method

BP
BPM
BBP

NMBPM

NMBBP

BPVS

NMBPVS

SA
BPSA
GA
DEi
DE2
DE3
DE4
DE5
DEe
PSO
SPSO
BPD

(FE)

(GE)

(FE)

(GE)

(FE)
(GE)

(FE)

(GE)

XOR Problem
Mean
144.1
249.7
93.3

260.4
254.4
191.6
102.1
199.1
185.2
208.4
201.3
424.2

1661.9
422.3
192.9
284.9
583.9
706.1
300.5
482.9

1459.7
7869.6

575.1

s.d.
112.6
322.1
201.5
287.8
287.3
328.9
173.4
373.1
343.3
395.2
378.8
420.8

2775.7
397.5
124.7
216.2
256.3
343.7
250.2
264.9

1143.1
13905.4

387.3

Succ.
42%
49%
71%

68%

80%

78%

80%

43%
65%
95%
75%
80%
97%
98%
85%
93%
77%
100%
100%

Parity Problem
Mean
9 3 2 X
219.9
150.3
244.3
235.1
106.6
99.2

105.8
100.4
102.1
95.3

805.4
2634.0
1091.5
622.6

1994.1
896.3

1060.2
2112.0
2062.5
6422.4
9803.6

760.0

s.d.
1320.8

198.9
137.3
205.9
204.4
123.1
164.5
186.9
171.6
109.9
183.5

2103.1
6866.8

766.2
522.1
657.6
450.6
716.6
644.9
794.8

2992.1
5436.6

696.4

Succ.
" " 9 1 ^

93%
94%

99%

99%

98%

99%

22%
66%
73%
91%
61%
99%
98%
26%
44%
42%
95%
100%

Table 1.1. Comparative results

Acknowledgments
The authors would Hke to thank the European Social Fund, Opera­

tional Program for Educational and Vocational Training II (EPEAEK
II), and particularly the Program PYTHAGORAS for funding the above
work. Dr V.P. Plagianakos and Prof. M.N. Vrahatis also acknowledge
the financial support of the University of Patras Research Committee
through a "Karatheodoris" research grant.

References

[1] N. Ampazis and S.J. Perantonis, (2002). Two Highly Efficient Sec­
ond Order Algorithms for Training Feedforward Networks, IEEE
Transactions on Neural Networks^ 13, 1064-1074.

[2] L. Armijo, (1966), Minimization of Functions Having Lipschitz-
continuous First Partial Derivatives, Pacific Journal of Mathemat­
ics^ 16, 1-3.

[3] J. Barzilai and J.M. Borwein, (1988). Two Point Step Size Gradient
Methods, IMA Journal of Numerical Analysis^ 8, 141-148.

384 Global Optimization: Scientific and Engineering Case Studies

[4] R. Battiti, (1989). Accelerated Backpropagation Learning: Two Op­
timization Methods, Complex Systems^ 3, 331-342.

[5] R. Battiti, (1992). First- and Second-order Methods for Learning:
Between Steepest Descent and Newton's Method, Neural Compu­
tation^ 4, 141-166.

[6] D.P. Bertsekas, (1995). Nonhnear Programming, Belmont, MA:
Athena Scientific.

[7] E.K. Blum, (1989). Approximation of Boolean Functions by Sig-
moidal Networks: Part L XOR and Other Two Variable Functions,
Neural Computation^ 1, 532-540.

[8] M. Burton Jr. and G.J. Mpitsos, (1992). Event Dependent Control
of Noise Enhances Learning in Neural Networks, Neural Networks^
5, 627-637.

[9] L.W. Chan and F. Fallside, (1987). An Adaptive Training Algorithm
for Back-propagation Networks, Computers Speech and Language^
2, 205-218.

[10] A. Corana, M. Marchesi, C. Martini, and S. Rideha, (1987). Mini­
mizing Multimodal Functions of Continuous Variables with the Sim­
ulated Annealing Algorithm, ACM Transactions on Mathematical
Software, 13, 262-280.

[11] J.E. Dennis and R.B. Schnabel, (1983). Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Englewood
Cliffs, Prentice-Hall.

[12] R.C. Eberhart and Y.H. Shi, (1998). Evolving Artificial Neural Net­
works, Proceedings International Conference on Neural Networks
and Brain, Beijing, P.R. China.

[13] R.C. Eberhart, P.K. Simpson and R.W. Dobbins (1996). Computa­
tional Intelligence PC Tools, Academic Press Professional, Boston,
MA.

[14] S.E. Fahlman (1988). Faster-learning Variations on Back-
propagation: An Empirical Study, D.S. Touretzky, G.E. Hinton and
T.J. Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models
Summer School, 38-51, San Mateo, Morgan Koufmann.

[15] A.V. Fiacco and G.P. McCormick (1990). Nonlinear Programming:
Sequential Unconstrained Minimization Techniques, Philadelphia,
SIAM.

[16] M. Gori and A. Tesi, (1992). On the Problem of Local Minima
in Backpropagation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14, 76-85.

Improved Learning of Neural Nets through Global Search 385

[17] L. Grippo, F. Lampariello, and S. Lucidi, (1986). A Nonmonotone
Line Search Technique for Newton's Method, SIAM Journal on Nu­
merical Analysis^ 23, 707-716.

[18] M.T. Hagan and M. Menhaj, (1994). Training Feedforward Net­
works with the Marquardt Algorithm, IEEE Transactions on Neu­
ral Networks, 5, 989-993.

[19] J.H. Holland, (1975). Adaptation in Neural and Artificial Systems,
University of Michigan Press.

[20] C. Houck, J. Joines, and M. Kay, (1995). A Genetic Algorithm for
Function Optimization: A Matlab Implementation, NCSU-IE TR,
95-09.

[21] R.A. Jacobs, (1988). Increased Rates of Convergence Through
Learning Rate Adaptation, Neural Networks, 1, 295-307.

[22] J. Kennedy and R.C. Eberhart, (1995). Particle Swarm Optimiza­
tion, Proceedings IEEE International Conference on Neural Net­
works, Piscataway, NJ, IV:1942-1948.

[23] J. Kennedy and R.C. Eberhart, (2001). Swarm Intelligence, Morgan
Kaufmann Publishers.

[24] S. Kirkpatrick, CD. Gelatt Jr., and M.P. Vecchi, (1983). Optimiza­
tion by Simulated Anneahng, Science, 220, 671-680.

[25] S. Kollias and D. Anastassiou, (1989). An Adaptive Least Squares
Algorithm for the Efficient Training of Multilayered Networks,
IEEE Transactions on Circuits Systems, 36, 1092-1101.

[26] Y. Lee, S.H. Oh, and M. Kim, (1993). An Analysis of Premature
Saturation in Backpropagation Learning, Neural Networks, 6, 719-
728.

[27] C D . Magoulas, V.P. Plagianakos, and M.N. Vrahatis, (2002).
Globally Convergent Algorithms with Local Learning Rates, IEEE
Transactions Neural Networks, 13, 774-779.

[28] C D . Magoulas, V.P. Plagianakos, and M.N. Vrahatis, (2004). Neu­
ral Network-based Colonoscopic Diagnosis Using On-line Learning
and Differential Evolution, Applied Soft Computing, 4, 369-379.

[29] C D . Magoulas, M.N. Vrahatis, and C S . Androulakis, (1997). Ef­
fective Back-propagation with Variable Stepsize, Neural Networks,
10, 69-82.

[30] C D . Magoulas, M.N. Vrahatis, and C S . Androulakis, (1997). On
the Alleviation of Local Minima in Backpropagation, Nonlinear
Analysis^ Theory, Methods and Applications, 30, 4545-4550.

386 Global Optimization: Scientific and Engineering Case Studies

[31] G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis, (1999). Im­
proving the Convergence of the Back-propagation Algorithm Us­
ing Learning Rate Adaptation Methods, Neural Computation^ 11,
1769-1796.

[32] G.D. Magoulas, M.N. Vrahatis, T.N. Grapsa, and G.S. An­
droulakis, (1997). Neural Network Supervised Training Based on
a Dimension Reducing Method, Mathematics of Neural Networks,
Models, Algorithms and Applications^ S.W. Ellacott, J.C. Mason,
I.J. Anderson Eds., Kluwer Academic Publishers, Boston, 245-249.

[33] Z. Michalewicz, (1996). Genetic Algorithms -f Data Structures =
Evolution Programs^ Springer.

[34] M.F. Moller, (1993). A Scaled Conjugate Gradient Algorithm for
Fast Supervised Learning, Neural Networks^ 6, 525-533.

[35] J. Nocedal, (1992). Theory of Algorithms for Unconstrained Opti­
mization, Acta Numerica^ 1, 199-242.

[36] J.M. Ortega and W.C. Rheinboldt, (1970). Iterative Solution of
Nonlinear Equations in Several Variables^ Academic Press, New
York.

[37] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas and M.N. Vra­
hatis, (2001). Objective Function "Stretching" to Alleviate Conver­
gence to Local Minima, Nonlinear Analysis, Theory, Methods and
Applications, 47, 3419-3424.

[38] K.E. Parsopoulos and M.N. Vrahatis, (2002). Recent Approaches to
Global Optimization Problems Through Particle Swarm Optimiza­
tion, Natural Computing, 1, 235-306.

[39] K.E. Parsopoulos and M.N. Vrahatis, (2004). On the Computation
of All Global Minimizers Through Particle Swarm Optimization,
IEEE Transactions on Evolutionary Computation, 8, 211-224.

[40] N.G. Pavhdis, K.E. Parsopoulos and M.N. Vrahatis, (2004). Com­
puting Nash Equilibria Through Computational Intelligence Meth­
ods, Journal of Computational and Applied Mathematics, in press.

[41] V.P. Plagianakos, G.D. Magoulas and M.N. Vrahatis, (2002). De­
terministic Nonmonotone Strategies for Effective Training of Multi-
Layer Perceptrons, IEEE Transactions on Neural Networks, 13,
1268-1284.

[42] V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis, (1998).
Automatic Adaptation of Learning Rate for Backpropagation Neu­
ral Networks, N.E. Mastorakis, (Ed.), Recent Advances in Circuits
and Systems 337-341, Singapore, World Scientific.

Improved Learning of Neural Nets through Global Search 387

[43] V.P. Plagianakos and M.N. Vrahatis, (1999). Neural Network Train­
ing with Constrained Integer Weights, Proceedings of Congress on
Evolutionary Computation (CEC'99), 2007-2013, Washington D.C.

[44] V.P. Plagianakos and M.N. Vrahatis, (2000). Training Neural Net­
works with Threshold Activation Functions and Constrained Integer
Weights, Proceedings of the IEEE International Joint Conference on
Neural Networks (IJCNN'2000), Vol. 5, pp.161-166, Como, Italy.

[45] V.P. Plagianakos and M.N. Vrahatis, (2002). Parallel Evolution­
ary Training Algorithms for "Hardware-Friendly" Neural Networks,
Natural Computing^ 1, 307-322.

[46] V.P. Plagianakos, M.N. Vrahatis, and C D , Magoulas (1999). Non-
monotone Methods for Backpropagation Training with Adaptive
Learning Rate, Proceedings of the IEEE International Joint Confer­
ence on Neural Networks (IJCNN'99), Vol. 3, pp. 1762-1767, Wash­
ington D.C.

[47] E. Polak, (1997). Optimization: Algorithms and Consistent Approx­
imations, New York, Springer-Verlag.

[48] M. Raydan, (1997). The Barzilai and Borwein Gradient Method
for the Large Scale Unconstrained Minimization Problem, SIAM
Journal on Optimization, 7, 26-33.

[49] A.K. Rigler, J.M. Irvine, and T.P. Vogl, (1991). Rescaling of Vari­
ables in Backpropagation Learning, Neural Networks, 4, 225-229.

[50] D.E. Rumelhart, G.E. Hinton, and R.J. Wilhams, (1986). Learn­
ing Internal Representations by Error Propagation, Parallel Dis­
tributed Processing: Explorations in the Micro structure of Cognition
1, D.E. Rumelhart, J.L. McClelland Eds., MIT Press, 318-362.

[51] S. Saarinen, R. Bramley, and G. Cybenko, (1993). Ill-conditioning
in Neural Network Training Problems, SIAM Journal on Scientific
Computing, 14, 693-714.

[52] F. Silva and L. Almeida, (1990). Acceleration Techniques for the
Back-propagation Algorithm, Lecture Notes in Computer Science,
412, 110-119, Berlin, Springer-Verlag.

[53] R. Storn and K. Price, (1997). Differential Evolution - A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces,
Journal of Global Optimization, 11, 341-359.

[54] P.P. Van der Smagt, (1994). Minimisation Methods for Training
Feedforward Neural Networks, Neural Networks, 7, 1-11.

[55] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon,
(1988). Accelerating the Convergence of the Back-propagation
Method, Biological Cybernetics, 59, 257-263.

388 Global Optimization: Scientific and Engineering Case Studies

[56] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and
G.D. Magoulas, (2000). A Class of Gradient Unconstrained
Minimization Algorithms with Adaptive Stepsize, Journal of
Computational and Applied Mathematics^ 114, 367-386.

[57] M.N. Vrahatis, G.D. Magoulas and V.P. Plagianakos, (2000). Glob­
ally Convergent Modification of the Quickprop Method, Neural Pro­
cessing Letters^ 12, 159-169.

[58] M.N. Vrahatis, G.D. Magoulas and V.P. Plagianakos, (2003). Prom
Linear to Nonhnear Iterative Methods, Applied Numerical Mathe­
matics^ 45, 59-77.

[59] S.T. Weslstead, (1994). Neural Network and Fuzzy Logic Applica­
tions in C/C-h-h^ Wiley.

[60] X.-H. Yu, G.-A. Chen, (1995). On the Local Minima Free Condi­
tion of Backpropagation Learning, IEEE Transactions on Neural
Networks, 6, 1300-1303.

