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Abstract Learning in artificial neural networks is usually based on local minimiza­
tion methods which have no mechanism that allows them to escape the 
influence of an undesired local minimum. This chapter presents strate­
gies for developing globally convergent modifications of local search 
methods and investigates the use of popular global search methods in 
neural network learning. The proposed methods tend to lead to de­
sirable weight configurations and allow the network to learn the entire 
training set, and, in that sense, they improve the efficiency of the learn­
ing process. Simulation experiments on some notorious for their local 
minima learning problems are presented and an extensive comparison 
of several learning algorithms is provided. 
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Introduction 
Scientific interest in models of neuronal networks or artificial neural 

networks mainly arises from their potential ability to perform interesting 
computational tasks. Nodes, or artificial neurons, in neuronal network 
models are usually considered as simplified models of biological neu­
rons, i.e. real nerve cells, and the connection weights between nodes 
resemble to synapses between neurons. In fact, artificial neurons are 
much simpler than biological neurons. But, for the time being, it is far 
from clear how much of this simplicity is justified because, as yet, we 
have only poor understanding of neuronal functions in complex biolog­
ical networks. Artificial neural nets (ANNs) provide to computing an 
alternative algorithmic model, which is biologically motivated: the com­
putation is massively distributed and parallel and the learning replaces a 
priori program development, i.e. ANNs develop their functionality based 
on training (sampled) data 

In neural net learning the objective is usually to minimize a cost 
function defined as the multi-variable error function of the network. 
This perspective gives some advantage to the development of effective 
learning algorithms, because the problem of minimizing a function is well 
known in the field of numerical analysis. However, due to the special 
characteristics of the neural nets, learning algorithms can be trapped 
in an undesired local minimum of the error function: they are based on 
local search methods and have no mechanism that allows them to escape 
the influence of an undesired local minimum. 

This chapter is focused on the use of Global Optimization (GO) meth­
ods for improved learning of neural nets and presents global search 
strategies that aim to alleviate the problem of occasional convergence 
to local minima in supervised training. Global search methods are ex­
pected to lead to "optimal" or "near-optimal" weight configurations by 
allowing the network to escape local minima during training. 

In practical apphcations, GO methods can detect just sub-optimal 
solutions of the objective function. In many cases these sub-optimal 
solutions are acceptable but there are applications where the optimal 
solution is not only desirable but also indispensable. Therefore, the de­
velopment of robust and efficient GO methods is a subject of considerable 
ongoing research. 

It is worth noting that, in general, GO-based learning algorithms pos­
sess strong theoretical convergence properties, and, at least in principle, 
are straightforward to implement and apply. Issues related to their nu­
merical efficiency are considered by equipping GO algorithms with a 
"traditional" local minimization phase. Global convergence, however. 
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needs to be guaranteed by the global-scope algorithm component which, 
theoretically, should be used in a complete, "exhaustive" fashion. These 
remarks indicate the inherent computational demand of the GO algo­
rithms, which increases non-polynomially, as a function of problem-size, 
even in the simplest cases. 

The remaining of this chapter is organized as follows. Section 1 for­
mulates the learning problem in the optimization context. In section 
2, deterministic monotone and nonmonotone strategies for developing 
globally convergent modifications of learning algorithms are presented. 
Section 3 focuses on global search methods and error function transfor­
mations to alleviate convergence to undesired local minima. Section 4 
presents simulations and comparisons with commonly used learning al­
gorithms, and discusses the results. 

1. Learning in neural nets 
Let us consider an ANN whose /-th layer contains Â^ neurons (/ = 

1 , . . . , L). The neurons of the first layer receive inputs from the external 
world and propagate them to the neurons of the second layer (also called 
hidden layer) for further processing. The operation of the neurons for 
/ = 2 , . . . , L is usually based on the following equations: 

where net^j is for the j-th neuron in the /-th layer (/ = 2 , . . . , L ; j = 
1 , . . . , A /̂), the sum of its weighted inputs. The weights from the i-th 
neuron at the (/ — I) layer to the j - th neuron at the /-th layer are denoted 
by w^~ ' , y^- is the output of the j-th neuron that belongs to the /-th 
layer, and f{net^j) is the j - th 's neuron activation function. 

If there is a fixed, finite set of input-output pairs, the square error 
over the training set, which contains P representative cases, is: 

P NL P NL 

^H = E E f e - î.p)' = EE[-'(«4+^f) - hpT-
p=i j=i p=i j=i 

This equation formulates the error function to be minimized, in which 
tj^p specifies the desired response at the j - t h neuron of the output layer 
at the input pattern p and yj'p is the output at the j - t h neuron of 
the output layer L that depends on the weights of the network and 
cr is a nonlinear activation function, such as the well known sigmoid 
a{x) = (1 -f e~^)~ . The weights of the network can be expressed in a 
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vector notation: 

/ 1-1,1 1-1,1 1-1,1 nl l-l.l l-l.l \^ 
w 

where ^j denotes the bias of the j - t h neuron (j = 1 , . . . , A/'/) at the /-th 
layer (/ — 2, . . . , L ) . This formulation defines the weight vector as a 
point in the A/^-dimensional real Euclidean space M^, where N denotes 
the total number of weights and biases in the network. 

Minimization of E{w) is attempted by updating the weights using a 
learning algorithm. The weight update vector describes a direction in 
which the weight vector will move in order to reduce the network training 
error. The weights are modified using the iterative scheme: 

w ̂ +l = ^^ + A ^ ^ A : - 0 , 1 , . . . 

where w^'^^ is the new weight vector, w^ is the current weight vector 
and Atf;̂  the weight update vector. 

Various choices of the correction term At̂ ;̂  give rise to distinct learn­
ing algorithms, which are usually first-order or second-order methods 
depending on the derivative-related information they use to generate 
the correction term. Thus, first-order algorithms are based on the first 
derivative of the learning error with respect to the weights, while second-
order algorithms on the second derivative (see [5] for a review on first-
order and second-order training algorithms). 

A broad class of first-order algorithms, which are considered much 
simpler to implement than second-order methods, uses the correction 
term —iiVE{w^)] // is a heuristically chosen constant that usually takes 
values in the interval (0,1) (the optimal value of the stepsize JJL depends 
on the shape of the A^-dimensional error function) and VE{w^) defines 
the gradient vector of the ANN obtained by applying the chain rule on 
the layers of the network [50]. 

The most popular first-order algorithm is called Backpropagation 
(BP) and uses the steepest descent [36] with constant stepsize ^: 

w ̂ +1 = w^ - iiVE{w^), fc = 0 , 1 , . . . . 

It is well known that the BP algorithm leads to slow network learn­
ing and often yields suboptimal solutions [16]. Attempts to speed up 
back-propagation training have been made by dynamically adapting the 
stepsize fi during training [29, 55], or by using second derivative related 
information [32, 34, 54]. Adaptive stepsize algorithms are more popu­
lar due to their simplicity. The stepsize adaptation strategies that are 
usually suggested are: (i) start with a small stepsize and increase it ex­
ponentially, if successive iterations reduce the error, or rapidly decrease 
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it, if a significant error increase occurs [4, 55], (ii) start with a small small 
stepsize and increase it, if successive iterations keep gradient direction 
fairly constant, or rapidly decrease it, if the direction of the gradient 
varies greatly at each iteration [9], (iii) for each weight, an individual 
stepsize is given, which increases if the successive changes in the weights 
are in the same direction and decreases otherwise [21, 52], and (iv) use a 
closed formula to calculate a common stepsize for all the weights at each 
iteration [29, 46] or a different stepsize for each weight [14, 31]. Note 
that all the above-mentioned strategies employ heuristic parameters in 
an attempt to enforce the decrease of the learning error at each iteration 
and to secure the converge of the learning algorithm. 

Methods of nonlinear optimization have also been studied extensively 
in the context of NNs [32, 54, 56]. Various Levenberg-Marquardt, quasi-
Newton and trust-region algorithms have been proposed for small to 
medium size neural nets [18, 25]. Variations on the above methods, 
limited-memory quasi-Newton and double dogleg, have been also pro­
posed in an attempt to reduce the memory requirements of these meth­
ods [1, 6]. Nevertheless, first-order methods, such as variants of gradient 
descent [27, 41] and conjugate-gradient algorithms [34] appear to be more 
efhcient in training large size neural nets. 

At this point it is worth mentioning an important consideration for 
adopting an iterative scheme in practical learning tasks is its suscep­
tibility to ill-conditioning: the minimization of the network's learning 
error is often ill-conditioned, especially when there are many hidden 
units [51]. Although second-order methods are considered better for 
handling ill-conditioned problems [5, 32], it is not certain that the extra 
computational/memory cost these methods require leads to speed ups 
of the minimization process for nonconvex functions when far from a 
minimizer [35]; this is usually the case with the neural network train­
ing problems, [5], especially when the networks uses a large number of 
weights [27, 41]. 

Moreover, BP-like learning algorithms, as well as second-order al­
gorithms, occasionally converge to undesired local minima which affect 
the efficiency of the learning process. Intuitively, the existence of local 
minima is due to the fact that the error function is the superposition of 
nonlinear activation functions that may have minima at different points, 
which sometimes results in a nonconvex error function [16]. The insuffi­
cient number of hidden nodes as well as improper initial weight settings 
can cause convergence to an undesired local minimum, which prevents 
the network from learning the entire training set and results in inferior 
network performance. 
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Several researchers have presented conditions on the network archi­
tecture, the training set and the initial weight vector that allow BP to 
reach the optimal solution [26, 60]. However, conditions such as the 
linear separability of the patterns and the pyramidal structure of the 
ANN [16] as well as the need for a great number of hidden neurons (as 
many neurons as patterns to learn) make these interesting results not 
easily interpretable in practical situations even for simple problems. 

2. Globally Convergent Variants of Local Search 
Methods 

A local search learning algorithm can be made globally convergent by 
determining the stepsize in such a way that the error is exactly mini­
mized along the current search direction at each iteration, i.e. E{w^'^^) < 
E{w^). To this end, an iterative search, which is often expensive in 
terms of error function evaluations, is required. It must be noted that 
the above simple condition does not guarantee global convergence for 
general functions, i.e. converges to a local minimizer from any initial 
condition (see [11] for a general discussion of globally convergent meth­
ods). 

Monotone Learning Strategies 
In adaptive stepsize algorithms, monotone reduction of the error func­

tion at each iteration can be achieved by searching a local minimum with 
small weight steps. These steps are usually constrained by problem-
dependent heuristic learning parameters. 

The use of heuristic strategies enforces the monotone decrease of the 
learning error and secures the convergence of the training algorithm to a 
minimizer of E. However, the use of inappropriate values for the heuris­
tic learning parameters can considerably slow down the rate of training 
or even lead to divergence and to premature saturation [26, 49]; there 
is a trade-off between convergence speed and stability of the training 
algorithm. Additionally, the use of heuristics for bounding the stepsize 
prevents the development of efficient algorithms with the property that 
starting from any initial weight vector the weight updates will converge 
to a local minimum, i.e. globally convergent training algorithms. 

A monotone learning strategy, which does not apply heuristics to 
bound the length of the minimization step, consists in accepting a posi­
tive stepsize r]^ along the search direction (p^ ̂  0, if it satisfies the Wolje 
conditions: 

E{w^ + ryV^) - E{w^) < CJIT]^ (VE^W^), / ) , (1.1) 
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(yE{w^ + r]^ip^), / ) ^ (72 (V£^(^^), / ) , (1.2) 

where 0 < ai < (72 < 1 and (•, •) stands for the usual inner product in 
R^. The first inequality ensures that the error is reduced sufficiently, and 
the second prevents the stepsize from being too small. It can be shown 
that if (fi^ is a descent direction and E is continuously differentiable and 
bounded below along the ray {w^ + r](fi^ | r/ > 0}, then there always 
exists a stepsize satisfying (1.1)-(1.2) [11, 35]. Relation (1.2) can be 
replaced by: 

E{w^ + r/V^) - Eiw^) ^ a2V^ (^E{w^), / \ , (1.3) 

where (72 G (cri, 1) (see [11]). The strategy based on Wolfe's conditions 
provides an efficient and effective way to ensure that the error function 
is globally reduced sufficiently. In practice, conditions (1.2) or (1.3) are 
generally not needed because the use of a backtracking strategy avoids 
very small learning rates [31, 57]. 

An alternative strategy has been proposed in [47]. It is applicable to 
any descent direction Lp^ and uses two parameters a^jS E (0,1). Follow­
ing this approach the stepsize is rf = /?^^, where rrik G Z is any integer 
such that: 

E{w^ + / ? ^ ^ / ) - E{w^) ^ /3^^a lvE{w^), ^^) , (1.4) 

E{w^ + /?^^-V^) - E{w^) > p'^^-^a (VE{W^), / ) . (1.5) 

To ensure global convergence, monotone strategies that employ con­
ditions (1.1)-(1.2) or (1.4)-(1.5) must be combined with stepsize tun­
ing subprocedures. For example, a simple subprocedure for tuning the 
length of the minimization step is to decrease the stepsize by a reduction 
factor g"-̂ , where q > 1 [36], so that it satisfies conditions (1.1)~(1.2) at 
each iteration. This backtracking strategy has the effect that the stepsize 
is decreased by the largest number in the sequence {q~^}^=i^ so that 
condition (1.1) is satisfied. When seeking to satisfy (1.1) it is important 
to ensure that the stepsize is not reduced unnecessarily so that condi­
tion (1.2) is not satisfied. Since in training, the gradient vector is known 
only at the beginning of the iterative search for a new weight vector, 
condition (1.2) cannot be checked directly (this task requires additional 
gradient evaluations at each iteration), but is enforced simply by plac­
ing a lower bound on the acceptable values of the stepsize. This bound 
on the stepsize has the same theoretical effect as condition (1.2), and 
ensures global convergence [11]. 
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Nonmonotone Learning Strategies 
Although monotone learning strategies provide an efficient and effec­

tive way to ensure that the error function is reduced sufficiently, they 
have the disadvantage that no information, which might accelerate con­
vergence, is stored and used [15]. To alleviate this situation we propose 
a nonmonotone learning strategy that exploits the accumulated infor­
mation with regard to the M most recent values of the error function. 
The following condition is used to formulate the new approach and to 
define a criterion of acceptance of any weight iterate: 

E (w^ - rj^VEiw^)) - max E{w^-^) ^ 7 7 / ^ (vE{w^), c/)^) , (1.6) 
\ / 0^jf<M \ / 

where M is a nonnegative integer, named nonmonotone learning horizon^ 
0 < 7 < 1, 77̂  indicates the learning rate and cf)^ is the search direction 
at the kth iteration. The above condition allows for an increase in the 
function values without affecting the global convergence properties, as 
it has been proved theoretically in [17, 48], 

Furthermore, it can be shown that the nonmonotone learning strategy 
generates a globally convergent sequence for any algorithm that follows 
a search direction ip^ ^ 0, provided that two positive numbers ci,C2 
exist, such that: 

V£ ; (^ '= ) , / ) ^ -c i | |VE(^*=) | | , (1.7) 

\\^'\\^C2\\VE{w')\\. (1.8) 

This follows directly from the convergence theorem in [17]. 
Next, we summarize the basic steps of the nonmonotone learning 

strategy at the fcth iteration: 

1: Update the weights w^'^^ =^ w^ + rj^ip^, 

2: If E{w^-^^) - max E(w^-^) ^ 7 7 / ^ (vE(w^),(^^), store w^-^\ 

set k = k + 1 and go to Step 1; otherwise go to the next step. 

3: Use a tuning technique for TJ^ and return to Step 2. 

Experimental results indicate that the choice of the parameter M is 
critical for the implementation and depends on the nature of the prob­
lem [42, 46]. Therefore, instead of using a user-defined value for the 
nonmonotone learning horizon M, an adaptive procedure can be applied 
to dynamically evaluate M. 
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To this end, the following procedure, based on the notion of the Lips-
chitz constant, dynamically adapts the value of the nonmonotone learn­
ing horizon M at each iteration: 

r M^-i + 1, A^ < A^-^ < A^-^, 
M^ = I M^-i - 1, A^> A^-^ > yl^-2, (1.9) 

[ M^~^ , otherwise, 

where A^ is the local estimation of the Lipschitz constant at the kth 
iteration [29]: 

llv^j-vEy--)!! 
which can be obtained without additional error function or gradient eval­
uations. If A^ is increased for two consecutive iterations, the sequence of 
the weight vectors approaches a steep region and the value of M has to 
be decreased in order to avoid overshooting a possible minimum point. 
On the other hand, when A^ is decreased for two consecutive iterations, 
the method possibly enters a valley in the weight space, so the value of 
M has to be increased. This allows the method to accept larger step-
sizes and move faster out of the flat region. Finally, when the value of 
A^ has a rather random behavior (increasing or decreasing for only one 
iteration), the value of M remains unchanged. It is evident that M has 
to be positive. Thus, if Relation (1.9) gives a non positive value in M, 
the nonmonotone learning horizon is set equal to 1 in order to ensure 
that the error function is sufficiently reduced at the current iteration. 

At this point it is useful to remark that a simple technique to tune 
77̂  at Step 3 is to decrease the stepsize by a reduction factor 1/g, where 
g > 1, as mentioned in the previous subsection. The selection of q is 
not crucial for successful learning, however, it has an influence on the 
number of error function evaluations required to obtain an acceptable 
weight vector. Thus, some training problems respond well to one or 
two reductions in the stepsize by modest amounts (such as 1/2), while 
others require many such reductions, but might respond well to a more 
aggressive stepsize reduction (for example by factors of 1/10, or even 
1/20). On the other hand, reducing 77̂  too much can be costly since the 
total number of iterations will be increased. The value q = 2 is usually 
suggested in the literature [2] and, indeed, it was found to work effec­
tively and efficiently in the experiments [41, 46]. The above procedure 
constitutes an efficient method of determining an appropriate stepsize 
without additional gradient evaluations. As a consequence, the num­
ber of gradient evaluations is, in general, less than the number of error 
function evaluations. 
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The nonmonotone learning strategy can be used as a subprocedure 
that secures and accelerates the convergence of a learning algorithm by 
providing the ability to handle arbitrary large stepsizes, and, in this way, 
learning by neural nets becomes feasible on a first-time basis for a given 
problem. Additionally, it alleviates problems generated by poor selection 
of the user-defined learning parameters, such as decreased rate of con­
vergence, or even divergence and convergence to undesired local minima 
due to premature saturation [26]. It is worth noting that any stepsize 
adaptation strategy can be incorporated in Step 1 of the above algorithm 
model. For example, in [41, 46] the nonmonotone Backpropagation with 
variable stepsize (NMBPVS) and the nonmonotone Barzilai-Borwein 
Backpropagation (NMBBP) have been proposed. 

The NMBPVS is the nonmonotone version of the Backpropagation 
with Variable Stepsize (BPVS) [29], which exploits the local shape of the 
error surface to obtain a local estimate the Lipschitz constant at each 
iteration and uses this estimate to adapt the stepsize 77̂ . The nonmono­
tone strategy helps to eliminate the possibihty of using an unsuitable 
local estimation of the Lipschitz constant. 

With regards to the NMBBP, the nonmonotone strategy helps to se­
cure the convergence of the BBP method [42], even when the Barzilai-
Borwein formula [3] gives an unsuitable stepsize. Experimental results 
show that the NMBBP retains the ability of BBP to escape from unde­
sirable regions in the weight space, i.e. undesired local minima and flat 
valleys, whereas other methods are trapped within these regions [41, 46]. 

Furthermore, alternative weight adaptation rules can be used in Step 2 
of the above algorithm model to develop their nonmonotone version. For 
example, in [21, 50] a simple, heuristic strategy for accelerating the BP 
algorithm has been proposed based on the use of a momentum term. The 
momentum term can been incorporated in the steepest descent method 
as follows: 

^k+i ^ f̂c _ (̂2̂  _ rn)ri\/E{w^) + m{w^ - w^~^), 

where m is the momentum constant. A drawback with the above scheme 
is that, if m is set to a comparatively large value, gradient information 
from previous iterations is more influential than the current gradient 
information in updating the weights. A solution is to increase the step-
size, however, in practice, this approach frequently proves ineff'ective 
and leads to instability or saturation. Thus, if m is increased, it may be 
necessary to make a compensatory reduction in 77 to maintain network 
stabihty. Combining the BP with Momentum (BPM) with the non­
monotone learning strategy (this is named NMBPM) helps to alleviate 
this problem. 
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3. Learning Through Global Search Methods 
In this section we focus on global search methods for neural network 

learning and we propose objective function transformation techniques 
that can be combined with any search method (either local or global) 
to alleviate the problem of occasional convergence to undesired local 
minima. 

Adaptive stochastic search algorithms 
Adaptive stochastic search algorithms include, simulated annealing [8, 

24], genetic and evolutionary algorithms [33], as well as swarm intelli­
gence [13, 22, 23]. Next, the fundamentals of those methods are re­
viewed. 

The method of simulated annealing. Simulated Annealing (SA) 
refers to the process in which random noise in a system is systemati­
cally decreased at a constant rate so as to enhance the response of the 
system [24]. 

In the numerical optimization framework, SA is a procedure that has 
the capabihty to move out of regions near local minima [10]. SA is 
based on random evaluations of the objective function, in such a way 
that transitions out of a local minimum are possible. It does not guar­
antee, of course, to find the global minimum, but if the function has 
many good near-optimal solutions, it should find one. In particular, 
SA is able to discriminate between "gross behavior" of the function and 
finer "wrinkles". First, it reaches an area in the function domain space 
where a global minimizer should be present, following the gross behavior 
irrespectively of small local minima found on the way. It then develops 
finer details, finding a good, near-optimal local minimizer, if not the 
global minimum itself. 

In the context of neural network learning the performance of the clas­
sical SA is not the appropriate one: the method needs a greater number 
of function evaluations than that usually required for a single run of 
first-order learning algorithms and does not exploit derivative related 
information. Notice that the problem with minimizing the neural net­
work error function is not the well defined local minima but the broad 
regions that are nearly fiat. In this case, the so-called Metropolis move 
is not strong enough to move the algorithm out of these regions [59]. 

In [8], it has been suggested to incorporate SA in the BP algorithm: 

^^+1 =:w^- fiVE{w^) + nc2-^\ 
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where n is a constant controlling the initial intensity of the noise, c E 
(—0.5,+0.5) is a random number and d is the noise decay constant. 
In the experiments reported below we have applied this technique for 
updating the weights from the beginning of the training as proposed by 
Burton et al [8]. Alternatively, we update the weights using plain BP 
until convergence to an undesired local minimum is obtained, then we 
switch to SA. This combined BP with SA is named BPSA. 

Genetic Algorithms. Genetic Algorithms (GA) are simple and ro­
bust search algorithms based on the mechanics of natural selection and 
natural genetics. The mathematical framework of GAs was developed in 
the 1960s and is presented in Holland's pioneering book [19]. GAs have 
been used primarily in optimization and machine learning problems and 
their operation is briefly described as follows. At each generation of a 
GA, a new set of approximations is created by the process of selecting 
individuals according to their level of fitness in the problem domain and 
breeding them together using operators borrowed from natural genetics. 
This process leads to the evolution of populations of individuals that 
are better suited to their environment than their progenitors, just as in 
natural adaptation. For a high level description of the simple GA see 
Figure 1.1. 

More specifically, a simple GA processes a finite population of fixed 
length binary strings called genes, GAs have two basic operators, namely: 
crossover of genes and mutation for random change of genes. The 
crossover operator explores different structures by exchanging genes be­
tween two strings at a crossover position and the mutation operator is 
primarily used to escape the local minima in the weight space by alter­
ing a bit position of the selected string; thus introducing diversity in 
the population. The combined action of crossover and mutation is re­
sponsible for much of the effectiveness of GA's search. Another operator 
associated with each of these operators is the selection operator, which 
produces survival of the fittest in the GA. 

The parallel noise-tolerant nature of GAs, as well as their hill-climbing 
capability, make GAs eminently suitable for training neural networks, as 
they seem to search the weight space efficiently. The "Genetic Algorithm 
for Optimization Toolbox (GAOT)" [20] has been used for the experi­
ments reported here. GAOT's default crossover and mutation schemes, 
and a real-valued encoding of the ANN's weights have been employed. 

Evolutionary Algorithms. Evolutionary algorithms (EA) are adap­
tive stochastic search methods which mimic the metaphor of natural 
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STANDARD GENETIC ALGORITHM MODEL 

{ 
/ / i n i t i a l i s e the time counter 
t := 0; 
//initialise the population of individuals 

InitPopulation(P(t)); 

//evaluate fitness of all individuals 

Evaluate(P(t)); 

//test for termination criterion (time, fitness, etc.) 

while not done do 

t := t + 1; 

//select a sub-population for offspring production 

Q(t) := SelectParents(P(t)); 

//recombine the "genes" of selected parents 

Recombine(Q(t)); 

//perturb the mated population stochastically 

Mutate(Q(t)); 

//evaluate the new fitness 

Evaluate(Q(t)); 

//select the survivors for the next generation 

P(t + 1) := Survive(P(t), Q(t)); 

end 

} 

Figure 1.1. A high level description of the simple GA Algorithm 

biological evolution. Differently from other adaptive stochastic search 
algorithms, evolutionary computation techniques operate on a set of po­
tential solutions, which is called population^ applying the principle of 
survival of the fittest to produce better and better approximations to 
a solution, and, through cooperation and competition among the po­
tential solutions, they find the optimal one. This approach often helps 
finding optima in complicated optimization problems more quickly than 
traditional optimization methods. 

To demonstrate the efficiency of the EA in alleviating the local minima 
problem, we have used the Differential Evolution (DE) strategies [53]. 
DE strategies have been designed as stochastic parallel direct search 
methods that can efficiently handle non differentiable, nonlinear and 
multimodal objective functions, and require few, easily chosen control 
parameters. Experimental results [28] have shown that DE algorithms 
have good convergence properties and outperform other evolutionary 
methods [44, 45]. To apply DE algorithms to neural network learning 
we start with a specific number {NP) of A/^-dimensional weight vectors, 
as an initial weight population, and evolve them over time. The num­
ber of individuals NP is kept fixed throughout the learning process and 
the weight vectors population is initialized randomly following a uniform 
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probability distribution. As in GAs, at each iteration of the DE algo­
rithm, called generation^ new weight vectors are generated by the com­
bination of weight vectors randomly chosen from the population, which 
is called mutation. The outcoming weight vectors are then mixed with 
another predetermined weight vector, the target weight vector. This op­
eration is called crossover diiid it yields the so-called trial weight vector. 
This vector is accepted for the next generation if and only if it reduces 
the value of the error function E. This last operation is called selection. 

Below, we briefly review the two basic DE operators used for ANN 
learning. The first DE operator, we consider, is mutation. Specifically, 
for each weight vector Wg^ i = 1 , . . . ,7VP, where g denotes the current 
generation, a new vector Vg-^i (mutant vector) is generated according to 
one of the following relations: 
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where w^^^^ is the best member of the previous generation, ^ > 0 is a real 
parameter, called mutation constant, which controls the amplification of 
the difference between two weight vectors, and 

r i , r2, r3, r4, r5 E {1, 2 , . . . , 2 - 1, i + 1 , . . . , NP} 

are random integers mutually different and different from the running 
index i. 

Relation (1.11) has been introduced as crossover operator for GAs [33] 
and is similar to Relations (1.12) and (1.13). The remaining relations 
are modifications which can be obtained by the combination of ( l .H), 
(1.12) and (1.13). It is clear that many more relations of this type 
can be generated using the above ones as building blocks. In recent 
works [44, 45], we have shown that the above relations can efficiently be 
used to train ANNs with arbitrary integer weights as well. 

The second DE operator, i.e. the crossover, is applied to increase the 
diversity of the mutant weight vector. Specifically, for each component j 
(j = 1, 2 , . . . , A/') of the mutant weight vector v^^i^ we randomly choose 
a real number r in the interval [0,1]. Then, this number is compared 
with the crossover constant p; if r ^ p we replace the j - th component 
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of the trial vector u't_^i with the j - th component of the mutant vector 
vi^i] otherwise, we pick the j - th component of the target vector t̂;̂ . 

The part icle swarm opt imizat ion m^ethod. In Particle Swarm 
Optimization (PSO) algorithm the population dynamics simulates a "bird 
flock's" behavior where social sharing of information takes place and in­
dividuals can profit from the discoveries and previous experience of all 
other companions during the search for food. Thus, each companion, 
called particle^ in the population, which is now called swarm^ is assumed 
to "fly" over the search space in order to flnd promising regions of the 
landscape. For example, in the minimization case, such regions possess 
lower functional values than other visited previously. In this context, 
each particle is treated as a point in a A^-dimensional space which ad­
justs its own "flying" according to its flying experience as well as the 
flying experience of other particles (companions). 

There are many variants of the PSO proposed so far, after Eberhart 
and Kennedy introduced this technique [13, 22]. In our experiments 
we have used a version of this algorithm, which is derived by adding a 
new inertia weight to the original PSO dynamics [12]. This version is 
described in the following paragraphs. 

First let us define the notation used: the i-th particle of the swarm 
is represented by the A^-dimensional vector Xi = (x^i, 0:̂ 2̂  • - • ^ ^IN) and 
the best particle in the swarm, i.e. the particle with the smallest function 
value, is denoted index g. The best previous position (the position giving 
the best function value) of the i-th particle is recorded and represented 
as Pi = {pii',Pi2i • • • -IVIN)^ and the position change (velocity) of the z-th 
particle is Vi = {vii,Vi2,..., VIN)-

The particles are manipulated according to the equations 

Vin ^WVin + Ciri{pin - Xin) + C2r2{Pgn " ^ m ) , (1.17) 

Xin =^ Xin I Vint \^'^^) 

where n = 1,2,..., Â ; i = 1, 2 , . . . ,7VP and NP is the size of population; 
w is the inertia weight; ci and C2 are two positive constants; ri and r2 
are two random values in the range [0,1]. 

The first equation is used to calculate i-th particle's new velocity by 
taking into consideration three terms: the particle's previous velocity, 
the distance between the particle's best previous and current position, 
and, finally, the distance between swarm's best experience (the position 
of the best particle in the swarm) and i-th particle's current position. 
Then, following the second equation, the i-th particle files toward a 
new position. In general, the performance of each particle is measured 
according to a predefined fitness function, which is problem-dependent. 
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The role of the inertia weight w is considered very important in PSO 
convergence behavior. The inertia weight is employed to control the 
impact of the previous history of velocities on the current velocity. In 
this way, the parameter w regulates the trade-off between the global 
(wide-ranging) and local (nearby) exploration abilities of the swarm. A 
large inertia weight facilitates global exploration (searching new areas), 
while a small one tends to facihtate local exploration, i.e. fine-tuning 
the current search area. A suitable value for the inertia weight w usu­
ally provides balance between global and local exploration abilities and 
consequently a reduction on the number of iterations required to locate 
the optimum solution. A general rule of thumb suggests that it is better 
to initially set the inertia to a large value, in order to make better global 
exploration of the search space, and gradually decrease it to get more 
refined solutions, thus a time decreasing inertia weight value is used. 

From the above discussion it is obvious that PSO, to some extent, re­
sembles EAs. However, in PSO, instead of using genetic operators, each 
individual (particle) updates its own position based on its own search ex­
perience and other individuals (companions) experience and discoveries. 
Adding the velocity term to the current position, in order to gener­
ate the next position, resembles the mutation operation in evolutionary 
programming. Note that in PSO, however, the "mutation" operator is 
guided by particle's own "flying" experience and benefits by the swarm's 
"flying" experience. In another words, PSO is considered as performing 
mutation with a "conscience", as pointed out by Eberhart and Shi [12]. 

In general, PSO has been proved very efficient in a plethora of appli­
cation in science and engineering [23, 38-40] 

Transforming the objective function 
Let a point w such that there exists a neighborhood B oi w with 

E{w)^E{w), yweB, (1.19) 

This point is a local minimizer of the error function and, as already 
mentioned above, many methods get stuck in such undesired local min­
ima. The main idea of applying a transformation to the error function 
is to make some undesired local minima disappear, while keeping the 
location of the global minimizer unchanged. The techniques that will be 
described below aim at transforming the error function in such a way 
that convergence to a global minimizer is enhanced for any learning al­
gorithm that is equipped with them. Two methods are described: the 
deflection procedure and the function stretching technique. 
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The deflection procedure. Following the deflection procedure pro­
posed in [30], when the sequence of weight vectors {W^}Q^ converges to 
a local minimum w G M^ the error function E{w) is reformulated as 
follows: 

F{w) = S{w]w,X)-^E{w), 

where S{w; w^ A) is a function depending on a weight vector w and on the 
local minimizer tD of £'; A is a relaxation parameter. In case there exist 
m local minima tDi,. . . , Wm € K^, the above relation is reformulated as: 

F{w) = S{w] iDi, Ai)~-̂  • • • S{w] Wm, \m)~^E{w), 

The deflection procedure suggests to find a "proper" 5(-) such that F{w) 
will not have a minimum at Wi^i = l , . . . ,7ri, while keeping all other 
minima of E locally "unchanged". In other words, we have to con­
struct functions S that provide F with the property that any sequence 
of weights converging to Wi (a local minimizer of E) will not produce a 
minimum oi F dit w =^ Wi. In addition, this function F will retain all 
other minima of E, This is the deflection property [30]. For example, 
the function: 

S{w;Wi,Xi) = tanh(Ai||t(; - Wi\\), 

provides F with this property, as it will be explained below. 
Let us assume that a local minimum Wi has been determined, then 

lini ^ ( ^ ) ^ ^ 
w-^wi tanh {X\\w — Wi\\) 

which means that Wi is no longer a local minimizer of F. Moreover, it is 
easily verified that for ||K; —iD̂H ^ e, where £ is a small positive constant, 
it holds that: 

lim F{w)= lim T-TTT^ i^ = E(w), (1.20) 
A->+oo A-̂ +oo tanh(A||t(; - K;f||) 

since the denominator tends to unity. This means that the error function 
remains unchanged in the whole weight space. 

It is worth noticing that the eflFect of the deflection procedure is 
problem-dependent and is related to the value of A. For an arbitrary 
value of A there is a small neighborhood 7?,(iD, p) with center w and radius 
p, with p oc A~\ that for any x G TZ{w^p) it holds that F{w) > E{w), 
To be more specific, when the value of A is small (say A < 1) the de­
nominator in the above relation becomes one for w "far" from w. Thus, 
the deflection procedure affects a large neighborhood around w in the 
weight space. On the other hand, when the value of A is large, new local 
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Error Contour Plot 

Figure 1.2. Applying deflection to a simple learning task 

minima is possible to be created near the computed minimum tD, like a 
"Mexican hat". These minima have function values greater than F{iD) 
and can be easily avoided by taking a proper stepsize or by changing the 
value of A. 

To better visualize the effect of the deflection procedure, we provide 
an application example. It concerns training a single neuron using the 
BP algorithm to associate 8 input-output pairs. The error surface of 
the problem is shown in Fig. 1.2 (top-left). The desired minimum is 
located at the center and there are two valleys that lead to undesired 
local minima. In Fig. 1.2 (bottom-left) we illustrate the weight trajec­
tory when the initial conditions lead the learning algorithm to converge 
to an undesired local minimum. In Fig. 1.2 (top-right) and in Fig. 1.2 
(bottom-right) we present the deflected trajectory of weights drawn on 
the contour lines of the original and the error function subject to deflec­
tion, respectively. 

Notice that the deflection procedure can be incorporated in any learn­
ing algorithm to help escaping the influence of local minima. In the ex­
periments reported below, the classical BP method has been equipped 
with the deflection procedure. The resulting scheme is named BP with 
deflection (BPD). 

The function "stretching" technique. The function '^stretching'' 
technique [37] consists of a two-stage transformation in the form of the 
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original error function E{w) and can be applied soon after a local mini­
mum w of the function E has been detected: 

G{w) = E{w) + y 11̂  - w\\ {sign(E(w) - E{w)) + 1), (1.21) 

u( \ r( \j. s i g n ( ^ H - £ ^ ( ^ ) ) + l .. . . . 

where 71,72 and /i are arbitrary chosen positive constants, and sign(-) 
defines the well known three valued sign function. Note that the sign 
function can be approximated by the well known logistic function: 

sign(^.) ^ logsig(«;) = ^ ^ ^ ^ p ^ _ ^ ^ ) - 1 = tanh (^ w 

for a large value of u. This sigmoid function is continuously differentiable 
and is widely used as a transfer function in artificial neurons. 

It is worth noticing that the first transformation stage elevates E{w) 
and makes disappear all the local minima located above w. The second 
stage stretches the neighborhood of w upwards, since it assigns higher 
function values to those points. Both stages do not alter the local minima 
located below tD; thus, the global minimizer is left unchanged. 

At this point it is useful to provide an application example of this 
technique in order to illustrate its effect. The problem considered is a 
notorious two dimensional test function, called the Levy No. 5: 

5 5 

/ (^) "̂  X ] ^ ^̂ t̂*̂ ^ + l)xi+i]x^j cos[(j + l)x2 + j] + 

+ {xi + 1.42513)^ + {X2 + 0.80032)2, (1.23) 

where —10 ^ Xi ^ lO^i = 1,2. There are about 760 local minima and 
one global minimum with function value /* = —176.1375 located at 
X* = (—1.3068,-1.4248). The large number of local optimizers makes 
extremely difficult for any method to locate the global minimizer. In 
Fig. 1.3, the original plot of the Levy No. 5 into the cube [—2, 2]^ is 
shown. 

After applying the transformation of Eq. 1.21 (first stage of function 
"stretching") to the Levy No. 5, the new form of the function is shown in 
Fig. 1.4 (left). As one can see, local minima with higher functional values 
than the "stretched" local minimum disappeared, while lower minima as 
well as the global one have been left unaffected. In Fig. 1.4 (right), the 
final landscape, derived after applying the second transformation stage 
to the Levy No. 5, is presented. It is clearly shown how the whole neigh­
borhood of the local minimum has been elevated; thus, the former local 
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Figure 1.3. The original plot of the function Levy No. 5. 

Figure 1.4- Plot of the Levy No. 5 after the first stage (left) and after the second 
stage (right) of the function "stretching" technique. 

minimum has now turned to be a local maximum of the function. Details 
on the performance of the PSO algorithm combined with the function 
"stretching" technique (SPSO) on two well known test problems, as well 
as suggestions for selecting parameter values, are presented in the next 
section. 

4* Experiments and discussion 
Experiments have been performed to evaluate the learning methods 

mentioned in the previous sections and compare their performance. Be­
low, we exhibit results on two notorious for their local minima problems. 
The algorithms have been tested using initial weights chosen from the 



Improved Learning of Neural Nets through Global Search 381 

uniform distribution in the interval (—1,1). Note that BPSA and BPD 
update the weights using BP until convergence to a global or local min­
imum is obtained: the weight vector w^ is considered as a global mini-
mizer when E{w^) ^ 0.04. Convergence to a local minimizer is related 
to the magnitude of the gradient vector, i.e. when the stopping condi­
tion ||V£^(?i;^)|| ^ 10"^ is met, w^ is taken as a local minimizer Wi of 
the error function E. 

No effort has been made to tune the mutation and crossover param­
eters, ^ and p respectively. We have used the fixed values (̂  = 0.5 and 
p =: 0.7, instead. The weight population size NP has been chosen to be 
twice the dimension of the problem, i.e. NP— 2N^ for all the simulations 
considered. Some experimental results have shown that a good choice 
for NP is 2N ^ NP ^ AN. It is obvious that the exploitation of the 
weight space is more effective for large values of NP^ but sometimes more 
error function evaluations are required. On the other hand, small values 
of NP make the algorithm inefficient and more generations are required 
in order to converge to the minimum. 

In all the PSO simulations reported, the values of 71,72 and /i were 
fixed: 71 = 10000,72 = 1 and /i = 10"-^^. The balance between the 
global and local exploration abihties of the SPSO is mainly controlled by 
the inertia weights, since the particles' positions are updated according 
to the classical PSO strategy. A time decreasing inertia weight value, 
i.e. start from 1 and gradually decrease towards 0.4, has been found to 
work better than using a constant value. This is because large inertia 
weights help to find good seeds at the beginning of the search, while, 
later, small inertia weights facilitate a finer search. 

Notice that for the BP, BPM, BBP, SA, BPSA and BPD methods each 
iteration corresponds to one gradient and one error function evaluation, 
differently from the BPVS, NMBPM, NMBBP and NMBPVS where, in 
general, the number of error Function Evaluations (FE) is larger than 
the number of Gradient Evaluations (GE), due to the use of the hne 
search. In the table below, there are two rows for these algorithms; the 
first one indicates the statistics for the FE and the second for the GE. 
On the other hand, a key feature of GA, DE, PSO and SPSO algorithms 
is that only error function values are needed. 

1) The XOR classification problem: classification of the four XOR pat­
terns in one of two classes, {0,1}, using a 2-2-1 ANN is a classical test 
problem [50, 54]. The XOR problem is sensitive to initial weights and 
presents a multitude of local minima [7]. The stepsize is taken equal 
to 1.5 and the heuristics for SA, BPSA and PSO are tuned to n = 0.3, 
d — 0.002 and ci == C2 = 0.5. In all instances, 100 simulations have been 
run and the results are summarized in Table 1.1. 
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2) The three bit parity problem [50]; a 3-3-1 ANN receives eight, 3 -
dimensional binary input patterns and must output an "1" if the inputs 
have an odd number of ones and "0" if the inputs have an even number of 
ones. This is a very difficult problem for an ANN because the network 
must determine the proper parity (the value at the output) for input 
patterns which differ only by Hamming distance 1. It is well known that 
the network's weight space contains "bad" local minima. The stepsize 
has been taken equal to 0.5 and the heuristics for SA, BPSA and PSO 
have been tuned to n == 0.1, d = 0.00025, ci = 0.1 and C2 = 1. In all 
instances, the results of 100 simulations are summarized in Table 1.1. 

The results suggest that combination of local and global search meth­
ods like BPSA and BPD provide a better probability of success than 
the BP. Note that the performance of BPSA is not the appropriate one 
although derivative related information has been used. On the other 
hand, BPD escapes local minima and converges to the global minimum 
in all cases, A consideration that is worth mentioning is that the number 
of function evaluations in BPSA and BPD contains the additional eval­
uations required for BP to satisfy the local minima stopping condition. 
The results also indicate that the GA and the DE are promising and 
effective, even when compared with other methods that require the gra­
dient of the error function, in addition to the error function values. For 
example, GAs as well as DE^ and DE4 have exhibited very good perfor­
mance for the test problems considered. On the other hand, there have 
been cases where a discrepancy has been found in DE's behavior; see for 
example DE^ and DEQ. For a discussion on the generalization capabili­
ties of the networks generated by the DE algorithms see [43, 45]. Finally, 
the PSO algorithm combined with the function "stretching" technique 
(SPSO) has exhibited improved success rate, although it needed addi­
tional iterations to converge. 

In conclusion, global search methods provide techniques that alleviate 
the problem of occasional convergence to local minima in neural network 
learning. Escaping from local minima is not always possible, however 
these methods exhibit a better chance in locating appropriate solutions 
and, in that sense, they improve the efficiency of the learning process. 
Experiments indicate that learning algorithms equipped with the pro­
posed error function transformation techniques are capable to escape 
from undesired local minima and locate a desired one effectively. The 
deflection procedure and the function "stretching" technique provide sta­
ble convergence and thus a better probability of success for a learning 
algorithm. In general, the results exhibited by the proposed methods on 
two notorious for their local minima problems are promising. 
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Training 
Method 

BP 
BPM 
BBP 

NMBPM 

NMBBP 

BPVS 

NMBPVS 

SA 
BPSA 
GA 
DEi 
DE2 
DE3 
DE4 
DE5 
DEe 
PSO 
SPSO 
BPD 

(FE) 

(GE) 

(FE) 

(GE) 

(FE) 
(GE) 

(FE) 

(GE) 

XOR Problem 
Mean 
144.1 
249.7 
93.3 

260.4 
254.4 
191.6 
102.1 
199.1 
185.2 
208.4 
201.3 
424.2 

1661.9 
422.3 
192.9 
284.9 
583.9 
706.1 
300.5 
482.9 

1459.7 
7869.6 

575.1 

s.d. 
112.6 
322.1 
201.5 
287.8 
287.3 
328.9 
173.4 
373.1 
343.3 
395.2 
378.8 
420.8 

2775.7 
397.5 
124.7 
216.2 
256.3 
343.7 
250.2 
264.9 

1143.1 
13905.4 

387.3 

Succ. 
42% 
49% 
71% 

68% 

80% 

78% 

80% 

43% 
65% 
95% 
75% 
80% 
97% 
98% 
85% 
93% 
77% 
100% 
100% 

Parity Problem 
Mean 
9 3 2 X 
219.9 
150.3 
244.3 
235.1 
106.6 
99.2 

105.8 
100.4 
102.1 
95.3 

805.4 
2634.0 
1091.5 
622.6 

1994.1 
896.3 

1060.2 
2112.0 
2062.5 
6422.4 
9803.6 

760.0 

s.d. 
1320.8 

198.9 
137.3 
205.9 
204.4 
123.1 
164.5 
186.9 
171.6 
109.9 
183.5 

2103.1 
6866.8 

766.2 
522.1 
657.6 
450.6 
716.6 
644.9 
794.8 

2992.1 
5436.6 

696.4 

Succ. 
" " 9 1 ^ 

93% 
94% 

99% 

99% 

98% 

99% 

22% 
66% 
73% 
91% 
61% 
99% 
98% 
26% 
44% 
42% 
95% 
100% 

Table 1.1. Comparative results 
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