
Neural Networks 54 (2014) 17–37
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Solving the linear interval tolerance problem for weight initialization
of neural networks
S.P. Adam a,b,∗, D.A. Karras c, G.D. Magoulas d, M.N. Vrahatis a

a Computational Intelligence Laboratory, Department of Mathematics, University of Patras, GR-26110 Patras, Greece
b Department of Computer Engineering, Technological Educational Institute of Epirus, 47100 Arta, Greece
c Department of Automation, Technological Educational Institute of Sterea Hellas, 34400 Psahna, Evia, Greece
d Department of Computer Science and Information Systems, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

a r t i c l e i n f o

Article history:
Received 30 March 2013
Received in revised form 3 February 2014
Accepted 13 February 2014

Keywords:
Neural networks
Weight initialization
Interval analysis
Linear interval tolerance problem

a b s t r a c t

Determining good initial conditions for an algorithm used to train a neural network is considered
a parameter estimation problem dealing with uncertainty about the initial weights. Interval analysis
approaches model uncertainty in parameter estimation problems using intervals and formulating
tolerance problems. Solving a tolerance problem is defining lower and upper bounds of the intervals so
that the system functionality is guaranteed within predefined limits. The aim of this paper is to show
how the problem of determining the initial weight intervals of a neural network can be defined in terms
of solving a linear interval tolerance problem. The proposed linear interval tolerance approach copes
with uncertainty about the initial weights without any previous knowledge or specific assumptions on
the input data as required by approaches such as fuzzy sets or rough sets. The proposed method is
tested on a number of well known benchmarks for neural networks trained with the back-propagation
family of algorithms. Its efficiency is evaluated with regards to standard performance measures and the
results obtained are compared against results of a number of well known and established initialization
methods. These results provide credible evidence that the proposedmethod outperforms classical weight
initialization methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of Interval Analysis (IA) is to set upper and lower
bounds on the effect produced on some computed quantity by dif-
ferent types of mathematical computing errors (rounding, approx-
imation, uncertainty etc.) (Hansen &Walster, 2004; Moore, 1966).
Intervals are used to model uncertainty in parameter estimation
problems such as the noise associated with measured data. Such
problems arise in engineering design or mathematical modeling
where tolerances in the relevant parameters need to be defined in
terms of upper and lower bounds so that the desired functionality
is guaranteed within these bounds. The interval-based algorithms
are used to reliably approximate the set of consistent values of pa-
rameters by inner and outer intervals and thus take into account
all possible options in numerical constraint satisfaction problems.

∗ Corresponding author at: Computational Intelligence Laboratory, Depart-
ment of Mathematics, University of Patras, GR-26110 Patras, Greece. Tel.: +30
6970806559.

E-mail address: adamsp@upatras.gr (S.P. Adam).

http://dx.doi.org/10.1016/j.neunet.2014.02.006
0893-6080/© 2014 Elsevier Ltd. All rights reserved.
The promising features of IA motivated researchers from dif-
ferent disciplines to invest in the study and implementation of IA
methods whenever reliable numerical computations are required.
Currently, this research field is rapidly growing due to the increas-
ing computation power of modern hardware. Examples of applica-
tions range from finite element analysis (Degrauwe, Lombaert, &
Roeck, 2010) and data analysis (Garloff, Idriss, & Smith, 2007), to
stock market forecasting (Hu & He, 2007), reliability of mechanical
design (Penmetsa & Grandhi, 2002), and many more. Research in
the area of neural networks has also benefited from IA and a num-
ber of efforts utilizing concepts and methods from IA are reported
in the literature. Examples are those by de Weerdt, Chu, and Mul-
der (2009) on the use of IA for optimizing the neural network out-
put, Ishibuchi and Nii (1998) on the generalization ability of neural
networks, Xu, Lam, and Ho (2005) on robust stability criteria for
interval neural networks, Li, Li, and Du (2007) regarding training
of neural networks, and others.

An important problem encountered when training a neural
network is to determine appropriate initial values for the con-
nection weights. Effective weight initialization is associated to

http://dx.doi.org/10.1016/j.neunet.2014.02.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.02.006&domain=pdf
mailto:adamsp@upatras.gr
http://dx.doi.org/10.1016/j.neunet.2014.02.006

18 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
performance characteristics such as the time needed to success-
fully train the network and the generalization ability of the trained
network. Inappropriate weight initialization is very likely to in-
crease the training time or even to cause non convergence of the
training algorithm, while another unfortunate result may be to de-
crease the network’s ability to generalize well, especially when
trainingwith back-propagation (BP), a procedure suffering from lo-
cal minima, (Hassoun, 1995; Haykin, 1999; Lee, Oh, & Kim, 1991).
These are defaults and limitations for having successful practical
application of neural networks in real life processes.

The importance manifested by the research community for this
subject has been demonstrated by the number of research work
published in this area. The proposed approaches can be, roughly,
divided into two categories. Methods in the first category perform
input data clustering in order to extract significant information
(feature vectors or reference patterns) pertaining the pattern space
and initial connection weights are chosen to be near the centers
of these clusters. The main drawback of these methods is the
computational cost needed to preprocess the input data. Often this
cost may be prohibitive for these methods to be used in real world
applications. The second category includes those methods that are
based on random selection of initial weights from a subset of Rn,
which is an interval defined considering important properties of
the pattern space and/or the parameters of the training process.

The notion of the interval, underlying random weight selec-
tion methods, suggests the idea to use IA in order to deal with
uncertainty about the initial weights. Hence, the unknown initial
weights are considered to be intervals with unknown bounds. Un-
der generally adopted assumptions about the input to any node,
the resulting unknown interval quantity is then limited within
specific upper and lower bounds. Ensuring that scientific compu-
tations provide results within guaranteed limits is an issue men-
tioned by researchers in IA as a tolerance problem. In consequence,
the approach proposed herein gives rise to formulating a linear in-
terval tolerance problem which is solved to determine significant
intervals for the initial weights. Beaumont and Philippe (2001),
Pivkina and Kreinovich (2006), Shary (1995) and other researchers
propose differentmethods for solving a tolerance problem. Besides
formulating the problem of determining initial weights as a linear
interval tolerance problem, we also present here a new algorithm
for defining the required solution to the specific tolerance problem.

The proposed linear interval tolerance approach (LIT-Approach)
deals with uncertainty about the initial weights based exclusively
on numerical information of the patterns without any assumption
on the distribution of the input data. IA provides themeans of han-
dling uncertainty in parameters in much the same way this hap-
penswith other approaches such as the possibilistic approachwith
Fuzzy sets (Zadeh, 1978), Evidence theory (Shafer, 1976), Rough
sets (Pawlak, 1991) or methods combining properties of these ap-
proaches. However, methods using fuzzy sets require parameters
of themembership functions to be tuned and eventually some pre-
processing of the input data to be done if pertinent input variables
need to be identified. Moreover, when using rough sets one needs
to process the input data in order to deal with the indiscernibil-
ity relation and establish upper and lower approximations of the
concepts pertaining the problem, see Bello and Verdegay (2012).
Finally, application of the Dempster–Shafer (evidence) theory is a
matter of subjective estimation of uncertainty as it assumes that
values of belief (or plausibility) are given by an expert. Unlike all
these approaches, the interval computation used for LIT-Approach
needs only elementary statistics of the input data to be computed
such the sample mean, the sample standard deviation or the me-
dian and the quartiles of the sample.

It is worth noting here the approach formulated by Jamett and
Acuña (2006) as an interval approach for weight initialization.
The solution proposed ‘‘solves the network weight initialization
problem, performing an exhaustive search for minima by means
of interval arithmetic. Then, the global minimum is obtained once
the search has been limited to the region of convergence’’. For the
experimental evaluation proposed, interval weights are initially
defined as wide as necessary (with amplitudes up to 106). In
addition, the IA solution adopted by these researchers extends to
defining an interval version of the gradient descent procedure. On
the contrary, the method presented in this paper uses IA concepts
only for computing effective intervals for the initial weights and
therefore it is not computationally expensive.

The sections of this paper are organized as follows. Section 2
is devoted to a presentation of the IA concepts underpinning the
LIT-Approach. Section 3 presents the analysis of LIT-Approach
including both theoretical results and the weight initialization
algorithm. Section 4 is dedicated to the experimental evaluation
of our approach and its comparison with well known initialization
procedures. Finally, Section 5 summarizes the paper with some
concluding remarks.

2. Interval analysis and the tolerance problem

2.1. Interval arithmetic

The arithmetic defined on sets of intervals, rather than sets of
real numbers is called interval arithmetic. An interval or interval
number I is a closed interval [a, b] ⊂ R of all real numbers be-
tween (and including) the endpoints a and b, with a 6 b. The terms
interval number and interval are used interchangeably. Whenever
a = b the interval is said to be degenerate, thin or even point inter-
val. An intervalX maybe also denoted as


X, X


, [X] or even [XL, XU]

where subscripts L and U stand for lower and upper bounds respec-
tively. Interval variables may be uppercase or lowercase, (Alefeld
& Mayer, 2000). In this paper, identifiers for intervals and interval
objects (variables or vectors) will be denoted with boldface lower-
case such as x, y, z and boldface uppercase notation will be used
for matrices, e.g. X . Lowercase letters will be used for the square
bracketed notation of intervals [x, x], or the elements of an inter-
val as a set. An interval [x, x] where x = −x is called a symmetric
interval. Finally, if x = [x, x] then the following notation will be
used in this paper.

rad(x) = (x − x)/2, is the radius of the interval x
mid(x) = (x + x)/2, is themidpoint

(meanvalue) of the interval x
|x| = max{|x|, |x|}, is the absolute value

(magnitude) of the interval x
IR, denotes the set of real intervals
IRn, denotes the set of n-dimensional vectors of real intervals

Let � denote one of the elementary arithmetic operators {+, −, ×,
÷} for the simple arithmetic of real numbers x, y. If x, y denote real
intervals then the four elementary arithmetic operations are de-
fined by the rule

x � y = { x � y | x ∈ x, y ∈ y}. (1)

This definition guarantees that x�y ∈ x�y for any arithmetic oper-
ator and any values of x and y. In practical calculations each interval
arithmetic operation is reduced to operations between real num-
bers. If x = [x, x] and y = [y, y] then it can be shown that the above
definition produces the following intervals for each arithmetic op-
eration:

x + y = [x + y, x + y] (2a)

x − y = [x − y, x − y] (2b)

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 19
x × y =

min


xy, xy, xy, xy


,max


xy, xy, xy, xy


(2c)

x ÷ y = x ×
1
y
, with (2d)

1
y

=


1
y
,
1
y


, provided that 0 ∉


y, y


. (2e)

The usual algebraic laws of arithmetic operations applied to real
numbers need to be reconsidered regarding finite arithmetic on
intervals. For instance, a non-degenerate (thick) interval has no
inverse with respect to addition and multiplication. So, if x, y are
non-degenerate intervals then,

x + y = z ; x = z − y, (3a)

x × y = z ; x = z ×
1
y
. (3b)

The following sub-distributive law holds for non-degenerate inter-
vals x, y and z ,

x × (y + z) ⊆ x × y + x × z. (4)

One may easily verify that the usual distributive law holds if x is a
point interval or if both y and z are point intervals. Hereafter, the
multiplication operator × will be omitted as in usual algebraic ex-
pressions with real numbers. A very important property of interval
arithmetic operations is that,

if a, b, c, d ∈ IR and a ⊆ b, c ⊆ d (5)
then a � c ⊆ b � d, � ∈ {+, −, ×, ÷}.

This property is the inclusion isotony of interval arithmetic oper-
ations and it is considered to be the fundamental principle of IA.
More details on interval arithmetic and its extensions can be found
in Alefeld and Mayer (2000), Hansen andWalster (2004) and Neu-
maier (1990).

2.2. Interval linear systems

An interval linear system is a system of the form,

Ax = b (6)

where A ∈ IRm×n, also noted

A,A


, is an m-by-n matrix of real

intervals, b ∈ IRm, also noted

b, b


, is anm-dimensional vector of

real intervals and x is the n-dimensional vector of unknown inter-
val variables. Solving a system of linear interval equations has at-
tracted the interest of several researchers in the field of IA formore
than forty years. Initially, research focused on systemswith square
interval matrices (A ∈ IRn×n) and a number of different methods
for studying and solving such systems have been proposed.

To solve the above system of interval linear equations Ax = b,
generally, means to compute the solution set defined as

(A, b) = {x ∈ Rn
| Ãx = b̃ for real Ã ∈ A, b̃ ∈ b}. (7)

That is,


(A, b) is the set of all solutions for allmatrices Ã ∈ Awith
real elements and all vectors b̃ ∈ b having real number compo-
nents. This set is generally not an interval vector but a rather com-
plicated set that is usually impractical to define and use (Hansen
& Walster, 2004). In practice, defining this solution set resulted
in proposing methods such as the interval versions of Gaussian
elimination or the Gauss–Seidel method which compute vectors
that bound


(A, b). Note that these interval algorithms differ

significantly from corresponding point algorithms as they use pre-
conditioning with a point matrix for the algorithms to be effec-
tive (Hansen & Walster, 2004; Neumaier, 1990). Other frequently
used methods are those based on the Rump/Krawczyk iteration
(Krawczyk, 1969; Rump, 2001).
An important issue was to define the narrowest interval vector
containing the solution set


(A, b). This interval vector is called

the hull of the solution set. Determining the hull is a problem that is
NP-hard as shown by Heindl, Kreinovich, and Lakeyev (1998), and
so, in general, methods try to compute only outer bounds for the
hull. Other important research results include: the work by Rohn
(2003) on the solvability of systems of linear interval equations
with rectangular matrices, the algorithm proposed by Hansen
(2006), to solve over-determined systems and the work presented
by Kubica (2010) on interval methods for under-determined non-
linear systems.

For such methods one may refer to Alefeld and Herzberger
(1983), Hansen (1992), Hansen and Walster (2004), Kearfott
(1996), Kreinovich, Lakeyev, Rohn, and Kahl (1997), Neumaier
(1990). The number of different methods proposed to solve sys-
tems of linear interval equations underlines the importance of
the subject, especially regarding the difficulty to generally iden-
tify the hull of the solution set of such a system. Research effort
has been dedicated on the evaluation of different methods solving
systems of linear interval equations. Important works on this mat-
ter include Goldsztejn (2007), Neumaier (1984), Ning and Kearfott
(1997), Rohn (1993).

2.3. Tolerance problem and the tolerance solution set

The tolerance problem arises in engineering design and sys-
tem modeling and refers to the estimation of the tolerance of cer-
tain parameters of a system or a device so that its behavior i.e. its
output is guaranteed within specified bounds. In mathematical
terms, if F : Rn

→ Rm is the mapping relating variables x =

(x1, x2, . . . , xn)⊤ with output parameters y = (y1, y2, . . . , ym)⊤,
then the tolerance problem is associatedwith the computation of a
domain for the variables of F such that the corresponding y = F (x)
lie within some predefined range, (Neumaier, 1986, 1990).

In Shary (2002) the tolerance problem is described as a
particular problem related with the analysis of a system. Using
intervals and quantifier formalism to model uncertainty, about a
system’s parameters, Shary defines three types of solutions to the
general input-state-output equation describing a system. These
solutions are sets of values providing answers to different issues of
systems analysis. Hence, according to Shary (2002), for the interval
equation F (a, x) = b of a system with n unknown parameters
x ∈ Rn, there are three particular cases of the general AE-solution
set:

• the United solution set consisting of the solutions of all point
equation systems of the form F


ã, x


= b̃with ã ∈ a and b̃ ∈ b,

• the Controllable solution set containing all point vectors x such
that for any b̃ ∈ b one can find the right ã ∈ a such that
F

ã, x


= b̃, and finally,

• the Tolerable (or Tolerance) solution set formed by all point
vectors x such that for any ã ∈ a the image F


ã, x


∈ b.

In the case of a static linear system F has the form of the interval
linear system Ax = b and the solution set defined by (7) is the
United solution set. Using the notation introduced in Shary (1995)
the solution sets defined previously are:

United solution set:
∃∃

(A, b) = {x ∈ Rn
| (∃Ã ∈ A)(∃b̃ ∈ b)(Ãx = b̃)}. (8)

Controllable solution set:
∃∀

(A, b) = {x ∈ Rn
| (∀b̃ ∈ b)(∃Ã ∈ A)(Ãx = b̃)}. (9)

20 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Tolerance solution set:
∀∃

(A, b) = {x ∈ Rn
| (∀Ã ∈ A)(∃b̃ ∈ b)(Ãx = b̃)} (10)

⊆

(A, b) = {x ∈ Rn
| Ax ⊆ b}. (11)

Both the Controllable and the Tolerance solution sets are subsets
of the more general United solution set. The specific uncertainty
problem defines which of the above solution sets contains the
solution of the problem. With respect to the assumption that F
describes the input–output relation of a static linear system, the
tolerance solution set provides answers to the question whether
there are input signals x̃ to the system such that the output Ax
remainswithin specified limits b. Moreover, it is worth noting here
that the elements of the solution sets, as defined previously, are not
just points in Rn but they may be intervals in IRn as well (Pivkina
& Kreinovich, 2006; Shary, 1995).

3. Weight initialization with the LIT-Approach

3.1. Random selection of initial weights

Random initialization of connection weights seems to be the
most widely used approach for real world applications. A number
of approaches such as those presented in this section claim the
reputation to provide improvement in BP convergence speed and
avoidance of bad local minima, (Nguyen &Widrow, 1990; Wessels
& Barnard, 1992). Unless differently defined, hereafter din denotes
the number of inputs to a node.

Fahlman (1988) studies on random weight initialization
techniques resulted in the use of a uniform distribution over the
interval [−1.0, 1.0]. This seems to constitute a simplified approach
for use in any problem without further hypotheses.

Boers and Kuiper (1992) initialize the weights using a uniform
distribution over the interval


−3/

√
din, 3/

√
din

. This interval is

defined so that the stimulus of any node is located around the
origin of the axes where the sigmoid activation function has its
steepest slope. This interval is the same as the one defined by the
conventional method of Wessels and Barnard (1992). However,
in order to avoid false local minima detected when applying this
conventional method, Wessels and Barnard (1992) also propose a
more refined method adopting a different strategy for the input-
to-hidden layer connections and for the hidden-to-output layer
connections.

Bottou (1988) defines the interval

−a/

√
din, a/

√
din

, where a

is chosen so that the weight variance corresponds to the points of
the maximal curvature of the activation function. For the logistic
sigmoid activation function a is set to be approximately equal to
2.38 and 0.66 for the hyperbolic tangent. Criticismon this approach
concerns the fact that it was not compared against other methods.

Kim and Ra (1991) calculated a lower bound for the initial
length of the weight vector of a neuron to be

√
η/din where η is

the learning rate used by the training procedure.
Smieja (1991) based on the study of the hyperplanes dynamics,

proposes uniformly distributed weights normalized to the magni-
tude 2/

√
din for each node. The thresholds for the hidden units are

initialized to a random value in the interval

−

√
din/2,

√
din/2


and the thresholds of the output nodes are set to zero.

Drago and Ridella (1992) proposed a method aiming to avoid
flat regions in the error surface in an early stage of training.
Their method is called statistically controlled activation weight
initialization (SCAWI). They determine the maximum magnitude
of the weights through statistical analysis. They show that
the maximum magnitude of the weights is a function of the
paralyzed neuron percentage (PNP), which is in turn related to
the convergence rate. By determining the optimal range of PNP
through computer simulations, the maximum magnitude of the
weights can be obtained. The weights are uniformly distributed
over the interval [−r, r] with r = 1.3/


1 + niv2 for the hidden

layer nodes and r = 1.3/
√
1 + 0.3nh for the output layer nodes.

Here, ni denotes the number of inputs to the network and nh is
the number of nodes in the hidden layer. In addition v2 is the
mean of the expectation of the quadratic values of the inputs,
v2

= 1/ni
ni

i=1 E[I2i].
Nguyen and Widrow (1990) proposed a simple modification of

the widely used random initialization process of Fahlman (1988).
The weights connecting the output units to the hidden units are
initialized with small random values over the interval [−0.5, 0.5].
The initial weights at the first layer are designed to improve the
learning capabilities of the hidden units. Using the magnification
factor defined by the relation, ρ = 0.7H1/N whereH is the number
of hidden units and N is the number of inputs, the weights are
randomly selected in the interval [−1, 1] and then scaled by v =

ρv/ ∥ v ∥where v is the first layer weight vector. Results obtained
by Pavelka and Procházka (2004), provide significant experimental
evidence on the superiority of Nguyen–Widrow’s method against
typical random initialization techniques.

In addition to the above, a number of interesting methods
related to this context have been formulated by Chen and
Nutter (1991), LeCun (1993), Osowski (1993), Schmidhuber and
Hochreiter (1996), YamandChow (1995, 1997), aswell as by others
researchers.

Despite the availability of such an armory of weight initial-
ization methods, it seems that, there does not exist any, widely
accepted, assessment, regarding the effectiveness of these meth-
ods with some specific problem or a class of problems. Research
efforts concerning the comparison of different weight initializa-
tion techniques include those reported in Fernández-Redondo
and Hernández-Espinosa (2001), Thimm and Fiesler (1994).
Thimm and Fiesler compared several randomweight initialization
schemes using a very large number of computer experiments. They
concluded that the best initial weight variance is determined by
the dataset, but differences for small deviations are not signifi-
cant and weights in the range [−0.77, 0.77] seem to give the best
mean performance. Fernández-Redondo and Hernández-Espinosa
(2001) presented an extensive experimental comparison of seven
weight initializationmethods; those reported by Drago and Ridella
(1992), Kim and Ra (1991), Li, Alnuweiri, and Wu (1993), Palu-
binskas (1994), Shimodaira (1994), Yoon, Bae, and Min (1995).
Researchers claim that methods described in Palubinskas (1994),
Shimodaira (1994) above proved to give the better results from all
methods tested. However, they argue that the method presented
in Shimodaira (1994) suffers from the need of preprocessing.

3.2. Analysis of the LIT-Approach

Let us consider a multi-layer perceptron (MLP) with 3 layers,
input, hidden and output. Let N,H and O denote the number of
nodes of the three layers, respectively. The analysis presented
hereafter refers to any node, say j (1 6 j 6 H), in the hidden layer
and so the results apply without any further assumption to every
node in the hidden layer. Nodes in the hidden and the output layers
are considered to have a sigmoid activation functionwhich is either
the logistic function or the hyperbolic tangent. In consequence, the
output of any node, say the jth, is given by

yj = sig


N
i=1

wjixi + wjb


, 1 6 j 6 H, (12)

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 21
while output of a node in the output layer is given by

zk = sig


H
j=1

wkjyj + wkb


, 1 6 k 6 O. (13)

Note that wji is the weight of the connection from the ith input
node to the jth hidden one. Moreover, wjb and wkb denote the
weights of the bias connections to the jth hidden and the kth output
nodes respectively.

Sigmoid functions (sig) are able to effectively discriminate
between inputs when these inputs lie in the so-called active region
of their domain, that is the input range where the derivative
of the activation function has a large value. When training the
network, in order to avoid problems such as premature saturation,
a realistic hypothesis is to start training with such weight values
that the node input would be in the active region of the sigmoid
function, (Boers & Kuiper, 1992; Yam & Chow, 1997). Then,
the training algorithm is responsible to explore the domain of
definition of the sigmoid function, in order to determine those
values of the weights that minimize the error of the network
output. For any node, say the jth, in the hidden layer having its
input in the active region of the sigmoid means that:

− a 6


i

wjixi + wjb 6 a, (14)

where −a and a are the lower and the upper bounds of the active
region of the sigmoid activation function.

Suppose that p patterns are available for training and each pat-
tern is represented by an N-dimensional vector x = (x1, x2, . . . ,
xN)⊤. Then expression (14) yields the following linear system of p
inequalities with N + 1 unknown variables wj1, wj2, . . . , wjN , wjb.

−a 6


i

wjix1i + wjb 6 +a

−a 6


i

wjix2i + wjb 6 +a

· ·

−a 6


i

wjix
p
i + wjb 6 +a.

(S1)

Note that in general, p > N + 1 and so this system is over-
determined and has a solution only if p − (N + 1) pattern vectors
are linearly dependent. Problems where the number of features
is higher than the number of patterns are known as High Dimen-
sion Low Sample Size (HDLSS) problems and constitute a special
research topic, (Ahn, Marron, Muller, & Chi, 2007; Yata & Aoshima,
2010).

Weight initialization methods define symmetric intervals for
selecting values of the initial weights. Hence, it is legitimate to
assume that each unknownweightwji is a real number taken from
a symmetric interval [wji] = [−wji, wji], 1 6 i 6 N and [wjb] =

[−wjb, wjb] is the symmetric interval for the unknown thresholds.
If [a] = [−a, a] denotes the interval for the active range of the
activation function of the jth node, then expression (14) may be
written in interval form as,

i

[wji]xi + [wjb] ⊆ [a]. (15)

In accordance to Section 2.3 this relation defines wji as a solution
to the tolerance problem associated with the equation

i

[wji]xi + [wjb] = [a]. (16)

Fromanother point of view, if one considers the p input patterns
available for training then this equation expands to the following
interval system of linear equations,
[wj1]x11 + [wj2]x12 + · · · + [wjN]x1N + [wjb] = [a]

[wj1]x21 + [wj2]x22 + · · · + [wjN]x2N + [wjb] = [a]
· ·

[wj1]x
p
1 + [wj2]x

p
2 + · · · + [wjN]xpN + [wjb] = [a].

(S2)

Let us denote this system Xwj = a, with X being the p ×

(N + 1) matrix formed by the p × N matrix of the pattern values
augmented with the p-dimensional vector (1, 1, . . . , 1)⊤ for the
threshold, wj = ([wj1], [wj2], . . . , [wjN], [wjb])

⊤ is the (N + 1)-
dimensional vector of the unknown weight intervals and a =

([a], [a], . . . , [a])⊤ the p-dimensional vector of the right hand side.
Note that the elements of X are real numbers which are here
considered as point intervals in order to comply with notation of
Section 2.3.

From an algebraic point of view a solution to this interval lin-
ear system is an interval vectorwa such that substituting it to (S2)
and executing all interval arithmetic operations yields the valid
equality Xwa = a. All the interval vectors that are algebraic so-
lutions to some interval linear equation or a system of equations
formanon-empty set. So, speaking about the solution of an interval
equation (system of equations, inequalities, etc.) on its own is ir-
relevant with respect to the specific uncertainty problemmodeled
by the interval equation (system of equations etc.) at hand (Shary,
2002). The right thingwould be to refer to the solution of some spe-
cific problem statement relating to the interval equation (systemof
equations, inequalities, etc.). Hence, what really matters with the
solution of the latter interval system is to obtain an interval vector,
say w∗

j = ([w∗

j1], [w
∗

j2], . . . , [w
∗

jN], [w∗

jb])
⊤, such that for all given

patterns xk ∈ RN , 1 6 k 6 p the following relation is valid,

N
i=1

[w∗

ji]x
k
i + [w∗

jb] ⊆ [a]. (17)

This statement clearly identifies the system (S2) as the formulation
of an interval linear tolerance problem for the initialization of the
connection weights to any node in the hidden layer of an MLP.

Different algorithms have been proposed to construct interval
solutions to the linear tolerance problem in terms of its inner
interval approximations, (Beaumont & Philippe, 2001; Shary, 1995).
Prior to discussing the existence of an algorithm for deriving a
solution for this linear interval tolerance problem we need to
discuss the non emptiness of the tolerance solution set of the
system (S2).

Lemma 1. Consider the interval linear system Ax = b, where A ∈

IRm×n is an m-by-n matrix of real intervals, b ∈ IRm is an m-
dimensional vector of real intervals b = {b1, b2, . . . , bm} and x is
the n-dimensional vector of unknown interval variables. If 0 ∈ bk for
all k ∈ {1, 2, . . . ,m} then the tolerance solution of this system is not
empty.

Proof. It is straightforward to see that the trivial m-dimensional
vector t0 = (0, 0, . . . , 0) is such that At0 ⊆ b. Thus the tolerance
solution set of this system is not empty. �

However, the trivial solution may not be adequate for the
problem at hand. To further advance with this issue one may
prove the algebraic solvability of the given system (S2) then
solve the system and finally select the solutions that are in the
tolerance solution set (Shary, 1995). Another way to proceed is a
constructive approach which consists in proposing an algorithm
for constructing tolerance solutions. A number of approaches are
presented in Shary (1995). The proposed LIT-Approach is also a
constructive one.

22 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Here let us present the algorithm of Shaidurov using the same
notation as given in Shary (1995). Let an intervalm×nmatrix A =

(aij) and an interval right-hand sidem dimensional vector b = (bi)
and let


∀∃

(X, b) denote the solution set to the associated linear
interval tolerance problem.

Algorithm. For some given t ∈


∀∃
(X, b), t = (t1, t2, . . . , tn)⊤

calculate the intervals

ri =

rad(bi) −

mid(bi) −

n
j=1

aijtj


n

j=1
|aij|

, (18)

i = 1, 2, . . . ,m, and then put ρ = min16i6m ri. The vector (t + ρe)
is a solution to the linear tolerance problem. Note that e is the
interval vector ([−1, 1], [−1, 1], . . . , [−1, 1])⊤.

Regarding the tolerance problem for weight initialization the
hypothesis of having an initial solution to start with this algorithm
can be satisfied by taking the initial vector t to be the trivial vector
(0, 0, . . . , 0). A similar method proposed by Neumaier (1986) as
well as other approaches can be found in Shary (1995). Moreover,
a discussion regarding various aspects andoptimality criteria of the
different algorithms can be found in Pivkina and Kreinovich (2006)
and Shary (1995). The question concerning the best approachwhen
solving theweight initialization tolerance problem depends on the
performance parameters set for the weight initialization problem
itself. We consider that this question has both theoretical and
practical importance and needs to be separately addressed outside
this paper.

3.2.1. Theoretical results
Hereafter, we present our approach to constructing a solution

to the tolerance problem for the initialization of weights. We take
advantage of the fact that the intervals are symmetric and build
the proposedmethod based on the followingmathematical results
omitting the hypothesis of disposing an initial solution vector
t . Without loss of generality and for the sake of readability the
notation used is the same as above for Eqs. (15)–(17).

Lemma 2. For any symmetric intervals w1 and w2 such that w1 ⊆

w2 and any real numbers x1 and x2 such that x1 6 x2 then, the relation
x1w1 ⊆ x2w2 is satisfied.

Proof. The relation x1 6 x2 implies that [x1, x1] ⊆ [x2, x2] holds
true for the point intervals corresponding to x1 and x2. Hence, given
that the interval multiplication is inclusion isotonic the relation
x1w1 ⊆ x2w2 is satisfied. �

Lemma 3. Consider the interval equation [x][w] = [a], where [a] is
a symmetric interval, [a] = [−a, a], and [x] = [xL, xU] with 0 <
xL 6 xU . Then, the solution of the equation is [−w, w] = [−a, a]/xU .

Proof. Let us assume that [w] is an interval of the form [wL, wU].
Then the multiplication operation of intervals implies for [−a, a]
that −a = min{xLwL, xLwU , xUwL, xUwU } and a = max{xLwL, xL
wU , xUwL, xUwU }. Moreover, the inequality 0 < xL 6 xU implies
that wL < 0 < wU and so −a = xUwL and a = xUwU . Thus, the
solution of the interval equation is [−w, w] = [−a, a]/xU . �

When the coefficient of [w] is not an interval [x] but a finite set
of p real numbers x1, x2, . . . , xp then one may consider this as an
interval linear system of p equations of the variable [w]. Then, the
following Lemma 4 gives a solution to this interval linear system.
Lemma 4. Consider the interval system of p linear equations with
one variable [w] of the form, x[w] = [a], where [a] is a symmetric
interval, [a] = [−a, a], and x is a real number from a set with
finite number of elements, x ∈ X = {x1, x2, . . . , xp}. Suppose that
xm = maxxk∈X |xk|. Then, the interval [wm

] which is a solution of the
interval equation xm[w] = [a], is such that, ∀xk ∈ X, xk[wm

] ⊆ [a],
and hence, [wm

] is a member of the tolerance solution set for this
interval system.
Proof. One may observe that, [wm

] = [−a, a]/xm, according to
Lemma 3 and considering xm = [xm, xm] to be a point interval.
Given that, |xk| 6 xm, for any xk ∈ X, it follows that, xk 6 xm,
and xk/xm 6 1. In consequence, xk[wm

] = [−a, a]xk/xm ⊆ [−a, a].
Hence [wm

] is a solution in the tolerance solution set. �

The following proposition is a generalization of the previous
Lemma 4 for an interval system of p linear equations with n
unknown variables and symmetric right-hand side intervals.

Proposition 1. Consider the interval system of linear equations of
the form, x1[w1] + x2[w2] + · · · + xn[wn] = [a], with [a] being
a symmetric interval, [a] = [−a, a], and each xi a real number
from a set with finite number of elements, that is, xi ∈ Xi =

{x1i , x
2
i , . . . , x

p
i } ⊂ R, 1 6 i 6 n. In addition, for 1 6 i 6 n let xmi =

maxxl∈Xi |xl|, and [w∗
] be the interval defined by the relation [w∗

] =

[−a, a]/


i x
m
i . Then the vector w∗

= ([w∗

1], [w
∗

2], . . . , [w
∗
n]) with

[w∗

i] = [w∗
], 1 6 i 6 n constitutes a solution in the tolerance

solution set for this interval system.

Proof. For every xki ∈ Xi, 1 6 k 6 p, it stands that xki 6 xmi . Then,
according to Lemma2, the relation xki [w

∗

i] ⊆ xmi [w∗

i] is valid. So, for
any combination of elements of the sets X1,X2, . . . ,Xn, we have:

xk11 [w∗

1] ⊆ xm1 [w∗

1]

xk22 [w∗

2] ⊆ xm2 [w∗

2]

...

xknn [w∗

n] ⊆ xmn [w∗

n].

Adding the above relations and given that interval addition is
inclusion isotonic we have that,

xk11 [w∗

1] + xk22 [w∗

2] + · · · + xknn [w∗

n]

⊆ xm1 [w∗

1] + xm2 [w∗

2] + · · · + xmn [w∗

n]

⊆ xm1 [−a, a]
1

i
xmi

+ xm2 [−a, a]
1

i
xmi

+ · · · + xmn [−a, a]
1

i
xmi

= (xm1 + xm2 + · · · + xmn)[−a, a]
1

i
xmi

= [−a, a].

This proves the proposition. �

This proposition applies directly to the interval linear sys-
tem (S2) above or to Xwj = a. Notice that each of the sets
Xi corresponds to a column vector of X and the interval vector
([w1], [w2], . . . , [wn])

⊤ stands for the interval vector wj of the
weights to any node j. So the following relation defines a solution
to the system (S2), considering also the bias column.

[w∗

ji] = [−a, a]/(U + 1), (19)

with, U =
N

i=1 u(i), and u(i) = max16k6p(|xki |), where |xki | de-
notes the absolute value of xki .

These intervals stand for any weight interval [wji] as well as for
the bias [wjb] and verify relation (17). So, this solution is a member
of the tolerance solution set.

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 23
3.2.2. Refining the method
The above approach effectively tackles the problem of neural

saturation by decoupling the weights from the patterns. This
problem has already been addressed by other researchers using
mathematically questionable hypotheses (Yam&Chow, 2000). The
solution provided by this approach takes into account the outliers
for each component of the input sample. However, in practice the
random selection of weights reduces the impact of the input to the
hidden node yj induced by outliers with large values. Recalling the
arguments of Wessels and Barnard (1992), the standard deviation
of the input yj to a hidden node is given by σyj = (w

√
din)/3

where din is the number of inputs to the node and w defines the
interval [−w, w] where the weights are randomly selected from.
It is easy to verify that if w is computed using our approach then
even for small values of din (e.g. 5) the value of σyj is very small
(0.53) and tends to become smaller (→ 0.13) as din increases.
This means that the intervals computed by the proposed method
can be widened while still satisfying the tolerance conditions.
Hence, the idea is to ‘‘modulate’’ each interval with respect to
the effective range of the input sample and thus differentiate the
weight intervals corresponding to different features of the input
data. This is achieved by taking into account some statistics of the
input data (e.g. the variance).

Let us denote sxi a statistic providing summary information
about the ith input data component xi such as the third quartile
(Q3) or any q-quantilemarking the boundary of approximately 4/5
of the input data. These statistics provide important information
about the location of the majority of the input data regardless
the distribution of the sample. If the input data display normal
distribution then some multiple of the sample standard deviation
can be used instead. Given this hypothesis and following
definitions of Proposition 1 above wemay conclude that [w∗

ji]sxi ⊆

[w∗

ji]x
m
i . Equating the two sides of this relation and solving permits

to derive the interval

[W ∗

ji] = [w∗

ji]x
m
i /sxi , (20)

which effectively satisfies the previous assumptions. Moreover,
this relation widens the weight intervals with respect to the
majority of the input data and as argued previously it complies
‘‘statistically’’ with the tolerance problem solution.

In the above heuristic using some suitably chosen sxi , such as
Q3, to divide the right-hand side of (20) is done in order ensure
enlargement of the weight intervals with respect to the majority
of the input data. In descriptive statistics, outliers are expected to
lie outside the interval [Q1 − k(Q3 − Q1),Q3 + k(Q3 − Q1)]
for some nonnegative constant k and Q3 − Q1 being the Inter
Quartile Range (IQR) (Agresti & Franklin, 2009). Note that typically,
for statistical packages such as Minitab and SPSS, k = 1.5 (Meyers,
Gamst, & Guarino, 2013). So, if the value of an outlier, say xli, is used
instead of sxi , then this outlier should be carefully chosen otherwise
depending on this value the fraction xmi /xli in Eq. (20) tends to
one. In consequence, depending on the input data distribution and
the outlier used this heuristic will probably result in unnoticeable
(i.e. insignificant from practical point of view) enlargement of the
weight intervals.

Furthermore, the use of the above heuristic results in defining
interval weights whose ranges are inversely proportional to the
variance of the corresponding input data components. So, for an
input data component, say xi, with a high variance value, defining
a shorter weight interval implies that it is likely to select smaller
weight values for this input. In consequence, for some given wjb
the intercept−wjb/wji of the hyperplane defined by a hidden node
with the xi axis (see Fig. 1) ismore likely to cover the range of values
of xi being positioned inside the majority of the values of the input
data distribution, rather than an intercept that passes through the
axes origin, or one that lies far away from the values of xi. On
Fig. 1. Hyperplane position in the augmented pattern space. The intercepts with
the axes and the decision boundary are shown too.
Source: Adapted fromWessels and Barnard (1992).

the contrary when the values of xi have a small variance then
the initial weight interval should be larger. This implies that the
initial weights are likely to have large values so that the intercept
−wjb/wji is more likely to be in the range of values of xi, see Fig. 1.
Moreover, the other benefit expected by defining intervals with
variable ranges is to diversify as much as possible the sets of initial
weights selected for the hidden nodes. Hence, different nodes tend
to define initial hyperplanes whose distance from the origin of the
axes given by |wjb|/

N
i=1 w2

ji is as diversified as possible.
Concerning the initial distance of any hyperplane from the ori-

gin of the axes we need to note that 0 6 |wjb|/
N

i=1 w2
ji . The

effect of widening produced by (20) on the weight intervals tends
tomove the hyperplanes towards the beginning of the pattern axes
as it tends to increase the denominator in the distance formula. On
the other hand, theoretically there is no upper bound for this dis-
tance. This is a common issue to all weight initialization techniques
that randomly select initial weights from some interval defined
around 0 with very small real values. In our approach this may oc-
cur if all weights are selected from extremely narrow symmetric
intervals which in their turn are computed if the interval [−a, a] is
divided by a big number corresponding to the quantityU+1,when
the problem at hand has a huge number of features. However, as
wewill show later in Section 4 even in the case of a real life problem
such as theMNIST dataset (LeCun, Cortes, & Burges, 2004)with 784
features the algorithm demonstrates a very interesting behavior
outperforming other weight initialization techniques. A thorough
study of the UCI repository of machine learning database (Frank
& Asuncion, 2010) shows that problems with a very big number
of features are treated as dimensionality reduction or feature ex-
traction ones before being considered as classification or regres-
sion problems.

The above considerations and the results obtained are valid for
continuous valued input patterns. For some input xi which is binary
or a constant value then sxi = 0. This constitutes a major inconve-
nience as it results in a division by 0 for the fraction xmi /sxi in Eq.
(20). To avoid this problemwe choose to leave the interval [w∗

ji]un-
changed by imposing sxi = 1. For thiswe requireβ 6 sxi where this
lower bound is defined as β = 0.1. Whenever sxi < β we impose
sxi = 1. The following formula summarizes the rule for computing
sxi and applies whenever this quantity is used in this paper.

1
2


sgn


sxi − β


+ 1


sxi −

1
2


sgn


sxi − β


− 1


(21)

where sgn denotes the sign function. This choice introduces a kind
of ‘‘discontinuity’’ which can be avoided if one chooses sxi = β .
However, even this option is still a heuristic one. In a future corre-
spondencewe could investigate the possibility to adaptively define
β as an interval derived by the data and discuss the impact of such

24 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
a formulae on specific experiments. In the present research the
benchmarks and realworld problems tackled provide no hints as to
which is the optimum formula for sxi definition in this specific case.

Typically, normalization or scaling is applied (Bishop, 1995) so
that the input samples are in the interval [−1, 1],mainly in order to
facilitate training (LeCun, 1993). These operations normally do not
alter the status of the input data. So, the previous considerations
remain valid and the use of the term sxi for properly modulating
the original weight intervals [w∗

ji] still applies after normalization
or scaling of the input data. For the rest of this paper, we assume
that the values of the input patterns are normalized to be in the
interval [−1, 1] or the interval [0, 1]. Under these hypotheses we
may state that the relation [w∗

ji]sxi ⊆ [w∗

ji]1 is valid and suggests
that solving the following equations:
Wji

sxi = [w∗

ji], 1 6 i 6 N (22)

permits to define the intervals,
W ∗

ji


= [w∗

ji]
1
sxi

, 1 6 i 6 N (23)

that obviously satisfy the relation,

[W ∗

j1]sx1 + [W ∗

j2]sx2 + · · · + [W ∗

jN]sxN + [w∗

jb]1

= [w∗

j1] + [w∗

j2] + · · · + [w∗

jN] + [w∗

jb]

= [a]. (24)

Hence, the interval vector W∗
j = ([W ∗

j1], [W
∗

j2], . . . , [W
∗

jN], [w∗

jb])
⊤

is a solution in the tolerance solution set of the interval system (S2).
Recall that sxi is computed using formula (21).

3.2.3. Initializing hidden-to-hidden and hidden-to-output layer con-
nection weights

The analysis presented above focuses on effective initialization
of weights of the input-to-hidden layer connections. Earlier im-
plementations of a complete algorithm were based on minimal
assumptions regarding the initial values of weights for hidden-
to-hidden and hidden-to-output layer connections, that is, ran-
dom selection of values in the interval [−1, 1]. This choice gave
rather satisfactory results in the case of small sized networks and
datasets, see Section 4, Suites 1 and 2 of experiments. In order to
define a full scale algorithm for initializing weights of anyMLP two
issues are considered here. The first deals with saturation of the
nodes in any hidden layer, while the second defines an order of
magnitude for the weights of connections leading to output layer
nodes.

In order to avoid saturation of any node in the kth hidden layer
we adopt the hypotheses of the previous analysis. This means that
weights of connections linking a node in the hidden layer k with
the outputs of nodes in the layer k − 1 are randomly selected in
the interval [−ak/(Hk−1 + 1), ak/(Hk−1 + 1)], where Hk−1 is the
number of nodes of the layer k− 1 and ak is the active range of the
activation function of the node in the hidden layer k. The previous
formula for nodes in the hidden layer k is derived considering that
the outputs of the layer k− 1 have a maximum value equal to 1. In
practice, instead of (Hk−1+1) the value ofHk−1 can be usedwithout
any difference regarding the training performance.

For the weights of the hidden-to-output connections different
approaches are proposed by different researchers (Section 3.1). In
order to optimize the choice of these weights we used the formula
[−3A/

√
din, 3A/

√
din] introduced in Wessels and Barnard (1992)

where instead of din we setH for the number of hidden layer nodes.
The authors in that paper determined the value of the scale fac-
tor A = 1 through experiments with small sized networks. We
adopted the same approach but we also experimented with net-
works with a higher number of nodes in the hidden layer. For
these networks when A = 1 the fraction 3A/
√
H becomes too

small yielding extremely narrow weight intervals for the hidden-
to-output layer connections which slow the training process. By
gradually increasing the value of A we observed that the network
performance improved and so we came up with the following rule
of thump.

The value of A = 1 is valid for networks with a relatively small
number of nodes in the hidden layer i.e. H / 30. For medium to
larger sized networks i.e. H > 30 the best network performance
was observed when A > 1. Experimented with H = 36 we found
that A ≈ 1.2 and A ≈ 3 for H = 300. Finally, for H = 650 we no-
ticed thatA should be set to 4 for nodeswith the logistic sigmoid ac-
tivation function while for nodes with the hyperbolic tangent this
value should be A ≈ 2. We cannot guarantee that these results are
optimal for every considered dataset. However, the resulting inter-
vals roughly confirm the findings for the weight intervals reported
in Nguyen and Widrow (1990) and Thimm and Fiesler (1994). To
the best of our knowledge there is no specific study on this matter
in the literature and in light of these results this should constitute
an interesting point for deeper investigation.

3.3. Algorithm and discussion

3.3.1. Algorithm description
The algorithm implementing the above approach computes one

specific interval [W ∗

ji] for each component i of the input data as
well as the interval [w∗

jb] for the threshold. Thus, n+1 intervals are
computed once and they are used for selecting the weights of any
node in the hidden layer.

Input data coding

1. Continuous input data are scaled to be in the interval [−1, 1]
(or [0, 1]). Binary variables are set to {−1, 1} (or {0, 1}).

2. For each continuous valued input data variable xi compute
the third quartile Q3 and set sxi = Q3. If xi displays normal
distribution compute the sample standard deviation σxi and set
sxi = 2σxi . If xi can be approximated by the normal distribution
then sxi = kσxi for some suitably chosen k. If xi is not continuous
then Apply rule (21) above.

3. Define the value of the parameter a for the bounds of the active
region interval [−a, a] depending on the type of the activation
function of the jth node, see Section 3.3.2 hereafter.

Computing weights of input to hidden layer connections

4. For each node j in the hidden layer and any input connection i
the weight wji is randomly selected with uniform distribution
from the interval [W ∗

ji] defined using relation (23) above.
5. For each node j in the hidden layer the weight wjb of the bias is

randomly selected with uniform distribution from the interval
[w∗

jb] defined using relation (19) above.

Computingweights of connections from hidden layer (k−1) to hidden
layer (k)

6. These weights are random numbers selected to be uniformly
distributed in the interval [−ak/Hk−1, ak/Hk−1] as defined in the
previous subsection.

Computing weights of hidden to output layer connections

7. Weights of the hidden to the output layer connections are
random numbers selected to be uniformly distributed in the
interval


−3A/

√
N, 3A/

√
N

where the scale factor A is defined

in the previous subsection.

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 25
3.3.2. Discussion
Step3 of the algorithm requires setting the bounds of [−a, a] for

the active region of the sigmoid activation function. This interval
is assumed to be the region where the derivative of the sigmoid
activation function is greater than or equal to 0.04Dmax or 0.05Dmax
where Dmax denotes the maximum magnitude of the derivative
of the sigmoid, (Yam & Chow, 2000, 2001). For example in case a
logistic sigmoid activation function is used then a = 4.59 or a =

4.34. For the experiments shown in this paper the values adopted
are those defined by the Neural Network Toolbox of MATLAB, that
is, a = 4 for the logistic sigmoid and a = 2 for the hyperbolic
tangent. These values are computed for λ = 1 where λ is the slope
parameter of the sigmoid activation function.

Most of the issues pertaining the formulation of the LIT-
Approach were analyzed and resolved in earlier subsections. Here
we will briefly refer to the ability of the proposed method to cope
with prematurely saturated units and symmetry breaking. These
matters are reported in the literature (Hassoun, 1995; Haykin,
1999) as troubles of neural network training that need to be
addressed by weight initialization. Regarding premature saturation
of the units the proposed method by default defines initial weights
which prevent saturation of the hidden nodes at an early stage of
training. In addition, symmetry breaking that is preventing nodes
from adopting similar functions is addressed using randomweight
selection from intervals with different bounds.

Besides these matters, Wessels and Barnard (1992) note that
another problem is what they call false local minima for which they
name three possible causes. These are the following: Stray hidden
nodes, that is nodes defining initial decision boundarieswhich have
beenmoved out of the region of the sample patterns. Hidden nodes
having duplicating function are the nodes that define separating
hyperplanes having the same initial position and orientation. Fi-
nally, dead regions in the pattern space are created when in these
regions the hidden nodes are arranged so that they all happen to
be inactive, that is, there are no hyperplanes defined by the hidden
nodes inside these regions. The LIT-Approach tackles these issues
based on theway it defines theweight intervals. The issues regard-
ing stray hidden nodes and dead regions are sufficiently addressed
based on the way the LIT-Approach defines the initial weight in-
tervals and then on the way the hidden nodes define the initial
hyperplanes to be in the heart of the pattern data, see Section 3.2.2.
Moreover, hidden nodes are not likely to have duplicating function
due to the random weight selection. The LIT-Approach, while not
specifically designed to tackle these specific problems, it, however,
addresses them efficiently as shown by the results of the exper-
iments hereafter. Based on the advantages of distributions such
as those proposed in Sonoda and Murata (2013) there might be
improvements concerning how the LIT-Approach tackles random
weight selection, now defined by uniform distribution.

Finally, we need to note that the proposed approach does not
intend to deal with the problem of structural local minima in
the weight space. This issue concerns the training phase of an
MLP and it has effectively been tackled in Magoulas, Vrahatis, and
Androulakis (1997).

4. Experimental evaluation

In order to assess the effectiveness of the proposed method
we designed and conducted three different suites of experiments.
The first suite deals with the comparison of the performance of
the proposed method against six different weight initialization
methods which are based on random selection of initial weights
from predefined intervals. The benchmarks used for this first suite
mainly concern classification problems, while one of them deals
with regression and a secondwith prediction of a highly non-linear
phenomenon. Moreover, a number of experiments were executed
on function approximation and they are presented in a separate
subsection. The second suite constitutes a thorough comparison
of the proposed LIT-Approach with the well known initialization
procedure proposed by Nguyen and Widrow (1990).

The performance measures considered for all experiments are:
the convergence success of the training algorithm, the conver-
gence rate and the generalization performance achieved for the
test patterns. The convergence success of the training algorithm
is the number of initial weight sets for which the training algo-
rithm reached the predefined convergence criteria. The conver-
gence rate is the number of epochs needed for the training to
converge. For benchmarks with continuous valued output, gener-
alization performance is computed using the mean absolute error
of the output of the network and the target output, and for classifi-
cation benchmarks, generalization is defined as the percentage of
successfully classified previously unknown test patterns. The anal-
ysis of the experimental resultswas carried out using the statistical
analysis package SPSS v17.0 (Green & Salkind, 2003), STATService
2.0 (Parejo, García, Ruiz-Cortés, & Riquelme, 2012) and the R sta-
tistical computing environment.

Hereafter, training a network for some specific benchmarkwith
initial weights selected using some weight initialization method is
called a trial. A training experiment is a set of trials corresponding
to training the network for some specific benchmark using a set of
initial weights selected by the same weight initialization method.

4.1. Suite 1 of experiments

4.1.1. Experimental setup
This suite of experiments was set up in order to investigate the

efficiency of the proposed approach on a relatively broad spectrum
of real world problems. Comparison is done against the follow-
ing (in alphabetical order of the abbreviations used) well known
weight initialization methods; BoersK, (Boers & Kuiper, 1992),
Bottou, (Bottou, 1988), Kim–Ra, (Kim & Ra, 1991), NW, (Nguyen
& Widrow, 1990), SCAWI, (Drago & Ridella, 1992), and Smieja,
(Smieja, 1991).

The real world problems adopted for the experiments are
benchmarks reported in various research papers used to compare
performance of different weight initialization methods, as for
example Fernández-Redondo and Hernández-Espinosa (2001),
Thimm and Fiesler (1997), Yam and Chow (2000, 2001). These real
world problems are briefly described in the following paragraph.
Detailed description andmore information can de found in the UCI
repository of machine learning database (Frank & Asuncion, 2010)
and references cited therein.

1. Auto-MPG prediction (inputs:7, outputs:1). This dataset con-
cerns city-cycle fuel consumption inmiles per gallon, to be pre-
dicted in terms of 3 multi-valued discrete and 4 continuous
attributes. The number of instances is 398. Six patterns with
missing values have been removed.

2. British language vowels recognition (inputs:10, outputs:11).
As stated in the benchmark summary, this is a speaker inde-
pendent recognition problem of the eleven steady state vow-
els of British English using a specified training set of 10 linear
prediction coefficients derived log area ratios. The original
dataset comprises 991 instances pronounced by different
speakers. A subset containing the first 330 instances were re-
tained for training and testing.

3. Glass identification (inputs:9, outputs:1). Based on 9 attributes,
this classification of types of glass was motivated by crimino-
logical investigation. The dataset used is the glass2 download-
able from PROBEN1 (1994) ftp site. It consists of 214 instances
already preprocessed and so there are no missing values.

26 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Table 1
Architectures of networks and training parameters used for Suite 1 of the experiments.

Benchmark Network architecture Activation functiona Learning rate Convergence criterion Max cycles Input data scale

Auto-MPG 7-3-1 logsig 0.3 0.01 500 [−1, 1]
British vowels 10-20-11 tansig 0.05 90% 800 [−1, 1]

Glass 9-10-8-6 logsig 0.6 0.04 800 [0, 1]
Servo 12-3-1 logsig 0.1 0.008 500 [−1, 1]
Solar 12-5-1 logsig 0.3 0.005 500 [0, 1]
Wine 13-6-3 tansig 0.2 95% 500 [−1, 1]

a logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent.
Table 2
Convergence success results in 100 trials for Suite 1 of the experiments.

Benchmark Initialization algorithms
BoersK Bottou Kim–Ra LIT-A NW SCAWI Smieja

Auto-MPG 100 100 100 100 100 100 100
British vowels 91 100 100 100 91 100 100

Glass 22 21 0 72 12 0 0
Servo 100 100 100 100 99 100 100
Solar 100 100 100 100 92 100 100
Wine 100 100 100 100 100 100 100
4. Servo prediction (inputs:12, outputs:1). Originally this bench-
mark was created by Karl Ulrich (MIT) in 1986 and refers to a
highly non-linear phenomenon that is predicting the rise time
of a servomechanism in terms of two (continuous) gain settings
and two (discrete) choices of mechanical linkages. The dataset
consists of 167 patterns and has no missing values.

5. Solar sunspot prediction (inputs:12, outputs:1). The dataset
contains the sunspot activity for the years 1700 to 1990. The
task is to predict the sun spot activity for one of those years
given the activity of the preceding twelve years. A total of 279
different patterns are derived from the raw data.

6. Wine classification (inputs:13, outputs:3). These data are the
results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of
the three types ofwines. The dataset contains 178 instances and
has no missing values.

The original datasets were preprocessed to eliminate duplicate
patterns and values were scaled to match requirements set by the
weight selection procedures. These operationswere performed ac-
cording to PROBEN1 guidelines, (Prechelt, 1994). Unless otherwise
stated, the datasetswere partitioned to training sets using approxi-
mately 75% of the patterns and to test sets using the remaining 25%.
For the Servo prediction benchmark the training set was made us-
ing 84 patterns and the test set using 83 patterns. The training and
the test sets are defined once and used for all experiments. During
network training the patterns of the training set are presented in
the same order using the trains i.e. the online sequential training
procedure of MATLAB.

A total number of 42 experiments were set up for these 6 prob-
lems and the 7weight initializationmethods. Each experimentwas
carried out using a set of 100 initial weight vectors, selected by
the corresponding method. The same network architecture was
initialized with these vectors and trained using online BP. The
network architecture and the training parameters, used in this
arrangement, are reported in Table 1. These parameters are sim-
ilar to those found by Thimm and Fiesler (1994).
(a) Learning rate is the rate used by the vanilla BP online algorithm.
(b) Convergence criterion is either the goal set for the minimiza-

tion of the error function or the minimum percentage of the
training patterns correctly classified by the network.

(c) Max cycles denote the maximum number of BP cycles. During
a cycle all training patterns are presented to the network in
random order and weights are updated after every training
pattern. Training stops when Max cycles number is reached.
(d) Input data scale indicates the interval used by all weight ini-
tialization algorithms except the Nguyen–Widrow algorithm,
which scales input data values in the interval [−1, 1].

4.1.2. Analysis of the results
Tables 2–4 report the experimental results on the benchmarks

considered for the aforementioned performancemeasures. A quick
look at these results shows that the proposed approach improves
network performance for all parameters.

The comparison of the efficiency of the different initialization
methods is based on the statistical analysis of the results obtained.
In order to evaluate the statistical significance of the observed per-
formance one-way ANOVA (Green & Salkind, 2003) was used to
test equality of means. ANOVA relies on three assumptions: inde-
pendence, normality and homogeneity of variances of the samples.
This procedure is robustwith respect to violations of these assump-
tions except in the case of unequal variances with unequal sample
sizes, which is true for the Glass benchmark as the larger group size
is more than 1.5 times the size of the smaller group.

The validity of the normality assumption is omitted and Lev-
ene’s test for testing equality of variances is conducted, (Ra-
machandran & Tsokos, 2009). Homogeneity of variances is rejected
for all cases by Levene’s test and so Tamhane’s post-hoc proce-
dure, Ramachandran and Tsokos (2009), is applied to performmul-
tiple comparisons analysis of the samples. The significance level
set for these tests is α = 0.05. The p-value (Sig.) indicated for
each initialization method, concerns comparison with the pro-
posed method and the mean value is marked with an ∗ when
equality of means is rejected p-value <0.05. The analysis of the
Glass benchmark results was performed pairwise between suc-
cessful initialization methods using the Mann–Whitney test.

Table 5 reports for each initialization method how many
times a method delivers superior, equal or inferior performance
when compared (pairwise comparisons) with all other methods
regarding convergence rate and generalization. The advantage
offered by the proposed method to achieve better convergence
rate is manifested by these results. So, performance of a neural
networkwhenweights are initializedwith the proposedmethod is
superior in 42% of the cases. In 50% of the cases performance is the
same with all other methods and only in 6% the proposed method
delivers inferior performance to the training algorithm.

In terms of generalization the proposed method though having
amarginally better scorewhen compared to themethodof Kimand
Raproves to be better than all the othermethods in all benchmarks,

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 27
Table 3
Convergence rate results for Suite 1 of the experiments.

Benchmarks Initialization algorithms
LIT-A BoersK Bottou Kim–Ra NW SCAWI Smieja

Auto-MPG
Mean 2.19 2.51 2.38 2.97* 4.73* 2.34 2.26
St.D. 0.46 1.03 0.86 0.39 2.88 0.59 0.52
Sig. 0.106 0.690 0.000 0.000 0.638 1.000

British vowels
Mean 471.29 521.88* 476.99 487.96 517.77* 468.83 476.58
St.D. 41.59 94.16 46.15 36.50 79.28 54.82 53.82
Sig. 0.000 1.000 0.060 0.000 1.000 1.000

Servo
Mean 88.07 87.31 86.37 124.07* 77.17 96.02* 86.88
St.D. 8.66 14.75 12.87 3.14 35.29 9.02 8.96
Sig. 1.000 0.999 0.000 0.071 0.000 1.000

Solar
Mean 142.67 150.26 159.74* 169.88* 233.05* 160.15* 158.08*

St.D. 30.73 28.66 30.90 18.33 91.24 29.87 29.74
Sig. 0.794 0.003 0.000 0.000 0.001 0.008

Wine
Mean 11.42 10.57* 10.73* 11.65 10.50 11.08 11.26
St.D. 1.10 1.68 1.42 0.98 5.49 1.32 1.52
Sig. 0.001 0.004 0.932 0.899 0.658 1.000

Glass

Min 600 616 660 a 563 a a

Max 799 785 795 a 789 a a

Median 721.00 730.50 759.00* a 718.00 a a

Sig. 0.214 0.001 a 0.975 a a

* denotes that the mean value of the initialization method is significantly different from the mean value of LIT-A using the indicated p-values (Sig.) computed by the
post-hoc analysis of the ANOVA results.

a The initialization method failed to meet the convergence criteria exceeding the maximum number of cycles in all trials.
Table 4
Generalization performance results for Suite 1 of the experiments.

Benchmarks Initialization algorithms
LIT-A BoersK Bottou Kim–Ra NW SCAWI Smieja

Auto-MPG
Mean 0.0743 0.0750 0.0748 0.0738 0.0778* 0.0739 0.0741
St.D. 0.0041 0.0052 0.0047 0.0018 0.0073 0.0043 0.0041
Sig. 0.999 1.000 1.000 0.001 1.000 1.000

British vowels
Mean 96.23% 93.72%* 96.29% 96.27% 94.52%* 95.86% 96.18%
St.D. 1.60% 2.85% 1.37% 1.18% 2.70% 1.81% 1.45%
Sig. 0.000 1.000 1.000 0.000 0.933 1.000

Servo
Mean 0.0792 0.0854* 0.0839* 0.0797* 0.0969* 0.0842* 0.0801*

St.D. 0.0010 0.0055 0.0045 0.0002 0.0145 0.0049 0.0020
Sig. 0.000 0.000 0.000 0.000 0.000 0.002

Solar
Mean 0.0924 0.0924 0.0919 0.0876* 0.1025* 0.0911 0.0917
St.D. 0.0040 0.0030 0.0030 0.0019 0.0107 0.0029 0.0034
Sig. 1.000 0.999 0.000 0.000 0.160 0.980

Wine
Mean 99.84% 98.98%* 99.38%* 99.80% 98.69%* 99.58% 99.40%*

St.D. 0.57% 1.20% 1.05% 0.64% 1.48% 0.93% 1.22%
Sig. 0.000 0.003 1.000 0.000 0.282 0.025

Glass

Min 59.62% 67.31% 65.38% a 65.38% a a

Max 71.15% 75.00% 75.00% a 75.00% a a

Median 65.38% 71.15%* 69.32%* a 69.23%* a a

Sig. 0.000 0.000 a 0.000 a a

* denotes that the mean value of the initialization method is significantly different from the mean value of LIT-A using the indicated p-values (Sig.) computed by the
post-hoc analysis of the ANOVA results.

a The initialization method failed to meet the convergence criteria exceeding the maximum number of cycles in all trials.
Table 5
Summary of pairwise comparisons score for each method for Suite 1 of the experiments.

Initialization method Convergence rate Generalization
Superior Equal Inferior Superior Equal Inferior

BoersK 12 19 5 6 17 13
Bottou 12 20 4 10 20 6
Kim–Ra 4 12 20 16 15 5
LIT-A 15 19 2 17 15 4
NW 6 13 17 4 5 27

SCAWI 7 20 9 8 20 8
Smieja 8 24 4 9 20 7
except in the case of the Glass benchmark, see Table 4. For the Glass
benchmark the generalization performance seems to be better
for the methods of Boers–Kuiper, Bottou and Nguyen–Widrow
compared to our LIT-Amethod. However, one should also take into
account the number of successful experiments for each method.
Generalization ‘‘achieved’’ by the proposed method is superior in
47% of the cases, while in 42% of the cases performance is the same
with other methods and only in 11% of the cases the proposed

28 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Table 6
Average ranking achieved by the Friedman test (Suite 1 of the experiments).

Initialization method Convergence rate Generalization

BoersK 3.75 4.69
Bottou 3.71 4.02
Kim–Ra 5.15 3.33
LIT-A 3.15 2.81
NW 4.40 5.26

SCAWI 4.03 4.08
Smieja 3.82 3.82

Statistic 305.76 511.50
p-value 0.12e−09 0.23e−09

method delivered inferior performance to the training algorithm.
Only the method of Kim and Ra seems to give similar performance
with the proposed LIT-Approach.

4.1.3. Non-parametric statistical analysis and post-hoc procedures
In order to complywith reported best practice in the evaluation

of the performance of neural networks, (Derrac, García, Molina, &
Herrera, 2011;García, Fernández, Luengo, &Herrera, 2010; Luengo,
García, &Herrera, 2009),we evaluated the statistical significance of
the observed performance results applying the Friedman test. This
test ranks the performance of a set of k algorithms and can detect a
significant difference in the performance of at least two algorithms.
More specifically, the Friedman test is a non-parametric statistical
procedure similar to the parametric two-way ANOVA used to
test if at least two of the k samples represent populations with
differentmedians. The null hypothesisH0 for Friedman‘s test states
equality of medians between the populations while the alternative
hypothesis H1 is defined as the negation of the null hypothesis.

Table 6 uses two subtables to depict the average rankings com-
puted through the above statistical test for the convergence rate
and the generalization performance. At the bottom of each sub-
tablewe give the statistic of each test alongwith the corresponding
p-value. The p-values computed strongly suggest rejection of the
null hypothesis at the α = 0.05 level of significance. This means
that the initialization algorithms have some pattern of larger and
smaller scores (medians) among them i.e. there exist significant
differences among the considered algorithms.

The significant differences detected by the above test procedure
concern the overall comparison of the algorithms as a set entailing
that the performance of at least one initialization algorithm dif-
fers from the others. However, the Friedman test cannot provide
information onwhich algorithms are different from the others and
so a multiple comparison analysis needs to be conducted. For the
sake of our evaluation we need to carry out a multiple compar-
isons analysis between performance of the LIT-Approach and per-
formance of each one of the other initialization methods. This is a
multiple comparisons (pairwise) analysis (Derrac et al., 2011) with
a control algorithm which results in formulating k − 1 hypotheses
one for each of the k − 1 comparisons, where in our case k = 7. A
better performance for the convergence rate of an algorithm trans-
lates here to a smaller number of epochs and a better performance
for generalization is taken to be a smaller classification or approx-
imation error. So, the objective of the tests is minimization and in
consequence the control procedure is automatically selected to be
the algorithmwith the lowest ranking score. This algorithm is LIT-
Approach for both performance measures, see Table 6.

For the non-parametric test (Friedman) used we consider the
ranking scores computed for each algorithm. Then the post-
hoc analysis aims in determining if the difference between the
ranking score of the proposed LIT-Approach and the ranking score
of each of the other algorithms are significantly different. The
test statistic z and the corresponding p-value for comparing LIT-
Approach and each of the other algorithms are computed using
Table 7
p-values of multiple comparisons (Suite 1 of the experiments).

Initialization
algorithm

Unadjusted Adjusted

Bonferroni–Holm Benjamini–Hochberg

Convergence rate (control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000
Bottou 0.0000 0.0000 0.0000
Kim–Ra 0.0000 0.0000 0.0000
NW 0.0000 0.0000 0.0000

SCAWI 0.0000 0.0000 0.0000
Smieja 0.0000 0.0000 0.0000

Generalization (control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000
Bottou 0.0000 0.0000 0.0000
Kim–Ra 0.0000 0.0000 0.0000
NW 0.0000 0.0000 0.0000

SCAWI 0.0000 0.0000 0.0000
Smieja 0.0000 0.0000 0.0000

the online STATService (Parejo et al., 2012) environment. The p-
value (2-tailed) corresponding to the z-statistic of each comparison
is determined using normal approximation and can be compared
with some appropriate level of significance α.

However, these p-values are not suitable for multiple compar-
isons as they do not account for the Family-Wise Error Rate (FWER)
produced by accumulation of Type I error in the case of a family of
hypotheses associated with the multiple comparisons tests (Der-
rac et al., 2011). To copewith this matter, instead of using post-hoc
procedures to adjust the level of significance α, we choose to com-
pute the adjusted p-values (APVs) corresponding to theHolm (Bon-
ferroni–Holm) and the Benjamini–Hochberg adjustment methods.
Information on these adjustment methods can be found in R-
Documentation (2013) and references cited therein. These APVs
can be used to test the corresponding hypotheses i.e. to compare
corresponding algorithms directly with any significance level α
and give a ‘‘metric’’ of how different these algorithms are (Luengo
et al., 2009).

The unadjusted and the adjusted p-values for the pairwise
comparison of the proposed algorithm with each one of the other
methods are presented in Table 7 for both convergence rate and
generalization. Note that the precision retained for the p-values
given in this Table and all similar Tables hereafter is up to the
fourth decimal digit. The adjusted p-values for the Friedman test
in this Table show significant difference between the ranking of
the LIT-Approach and the othermethods for both convergence rate
and generalization. This translates to an improvement of the LIT-
Approach over all the other weight initialization algorithms.

The computations necessary for Table 6 as well as for all
similar Tables hereafter in this paper were carried out using
STATService (Parejo et al., 2012). Computations for Table 7 as
well as for all similar Tables hereafter were executed using the R
environment for Statistical Data Analysis. Finally, it is worth noting
that the results obtained using the non-parametric statistical
analysis confirm those provided by ANOVA.

4.1.4. Comments and remarks
Despite the stochastic nature of the training scheme adopted

for this suite we may argue that the results obtained are sugges-
tive of the potential offered by the proposed method. In terms of
convergence success (Table 2) the proposedmethod seems to con-
tribute to the best score for the training algorithm. Moreover, the
advantage offered by the proposed method to achieve better con-
vergence rate is manifested by the results given in Tables 3 and 5.
Lastly, one may easily notice that in terms of generalization per-
formance the proposed method though marginally superior when

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 29
Table 8
Convergence success results for the function approximation benchmarks.

Benchmarks Initialization methods
BoersK Bottou Kim–Ra LIT-A NW SCAWI Smieja

Function 1 73 91 82 92 74 85 82
Function 2 100 100 100 100 76 100 100
Function 3 81 100 100 84 81 91 47
Table 9
Convergence rate results for the function approximation benchmarks.

Benchmarks Initialization algorithms
BoersK Bottou Kim–Ra LIT-A NW SCAWI Smieja

Function 1 Mean 379.79 504.70 538.73 337.05 275.70 333.72 401.71
St.D. 217.57 177.66 164.74 198.95 212.12 184.73 225.23

Function 2 Mean 6.89 6.87 8.93 6.49 69 7.23 7.36
St.D. 1.61 1.54 2.25 1.40 191.28 1.95 2.34

Function 3 Mean 60.89 16.74 23.48 18.57 46.68 30.16 208.40
St.D. 159.11 58.83 11.01 46.94 105.11 91.91 273.50
compared, using ANOVA, to the Kim–Ra it proves to be better than
all the other methods in all benchmarks, except the Glass bench-
mark, see Tables 4 and 5. These conclusions are strongly supported
by the non-parametric statistical analysis with the Friedman test.
Though these results are indicative and for comparison purposes,
they provide significant evidence regarding the efficiency of the
proposed method.

4.2. Function approximation

4.2.1. Setup of the experiments
In order to cover the whole range of problems for which MLPs

are used, one needs to consider the problem of approximating
analytically defined non-linear functions. This constitutes a
necessary prerequisite for a ‘‘fair’’ comparison first and foremost
with the method of Nguyen and Widrow, as these researchers
initially demonstrated their method on a function approximation
problem. The functions used as benchmarks are defined in the
following paragraphs.
Function 1. The function for this benchmark is the one reported in
the original paper of Nguyen and Widrow (1990),

y = 0.5 sin

πx21


sin(2πx2).

The network used here, is a 3-layer (2-21-1) architecture with the
hyperbolic tangent activation function for the hidden layer nodes
as well as for the output node. A total of 625 (=25 × 25) points
are randomly selected, using uniform distribution, in the interval
[−1, 1] × [−1, 1]. Among these points 450 are used for training
and 175 for testing the network.
Function 2. The function considered here is a variant of the function
considered in Yam and Chow (2000, 2001). This function is a
mapping of eight input variables, taken in the interval [0, 1], into
three output ones defined by the following three equations:

y1 = (x1x2 + x3x4 + x5x6 + x7x8) /4

y2 =


(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)/8

y3 = (1 − y1)1/3.

For this benchmark, a 8-12-3 network architecture was used with
logistic activation functions for nodes of the hidden and the output
layer. A set of 75 patterns is formed by randomly sampling, with
uniform distribution, values for the input variables and calculating
output values. Among these input–output patterns, 50 are used for
training the network and25 for testing, as in YamandChow (2001).
Function 3. The function used here is a real-valued non-linear
function of two variables, taken in the interval [−1, 1], defined by
the formula:

y = sin(2πx1x2)/(2πx1x2).

A 3-layer network architecture with 30 nodes in the hidden layer
was adopted for this benchmark. All nodes in the hidden layer
as well as the output node have a hyperbolic tangent activation
function. The training set is formed by taking 320 patterns of the
total 400 (=20 × 20) that are randomly selected using uniform
distribution. The rest 80 patterns constitute the test set.

A total of 21 training experiments were executed for the above
3 functions and the 7 (LIT-A plus other six) weight initialization
methods considered in this section. Each training experiment
is made up of a hundred (100) initial weight vectors derived
using one of the weight initialization methods. Networks in all
experiments are trained using the Levenberg–Marquardt method
(LM), (Hagan, Demuth, & Beale, 1996; Hagan & Menhaj, 1994;
Marquardt, 1963). The performance goal for the network output
error is set to 1.0e−04 for Functions 1 and 2, and 1.0e−03 for
Function 3. If the performance goal is not met when a maximum
number of 1000 epochs is reached then the training stops. The
learning rate for all experiments of Function 1 is set to 0.1 and 0.5
for the other two benchmarks. Results of the training experiments
are reported in Tables 8–10 hereafter.

For the benchmarks Functions 1 and 3 LIT-A was applied us-
ing 1.5σxi for the term sxi . This choice is based on the assumption
that the input data are approximately normally distributed, and
therefore sxi in the LIT-Approach was ‘‘roughly’’ approximated us-
ing 1.5σxi instead of the third quartile Q3.

4.2.2. Analysis of the results
The results obtained regarding the performance measures set

are shown in Tables 8–10. A rough observation of these results
shows that the proposed LIT-Approach remains on top of the
other methods as in the previous Suite 1 concerning convergence
rate (Table 9) while being among the best methods regarding
convergence success (Table 8) and generalization (Table 10).

Comparison between the performance of the different initial-
ization methods, for the function mapping experiments, is carried
out using the non-parametric Friedman test. The average rankings
computed are reported in Table 11. The hypotheses of the Fried-
man test and the post-hoc procedures performed are the same as
those for Suite 1 of the experiments. The unadjusted and the ad-
justed p-values of the post-hoc procedures are given in Table 12.
The fact that the control procedure for the convergence rate is LIT-
Approach together with the p-values in Table 12underline the su-

30 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Table 10
Generalization performance results for the function approximation benchmarks.

Benchmarks Initialization algorithms
BoersK Bottou Kim–Ra LIT-A NW SCAWI Smieja

Function 1 Mean 0.0090 0.0090 0.0091 0.0089 0.1595 0.0090 0.0090
St.D. 0.0007 0.0006 0.0006 0.0007 0.0000 0.0007 0.0007

Function 2 Mean 0.0130 0.0134 0.0144 0.0131 0.4686 0.0133 0.0141
St.D. 0.0020 0.0024 0.0019 0.0025 0.0000 0.0019 0.0024

Function 3 Mean 0.0210 0.0221 0.0222 0.0211 0.6704 0.0218 0.0211
St.D. 0.0043 0.0009 0.0009 0.0032 0.0000 0.0023 0.0048
Table 11
Average ranking achieved by the Friedman test (function approximation bench-
marks).

Initialization method Convergence rate Generalization

BoersK 3.87 3.60
Bottou 3.59 3.24
Kim–Ra 4.91 3.80
LIT-A 2.99 3.25
NW 4.57 6.43

SCAWI 3.45 3.48
Smieja 4.61 4.20

Statistic 195.05 486.06
p-value 0.10e−09 0.21e−09

Table 12
p-values of multiple comparisons (function approximation benchmarks).

Initialization
algorithm

Unadjusted Adjusted

Bonferroni–Holm Benjamini–Hochberg

Convergence rate (control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000
Bottou 0.0007 0.0020 0.0009
Kim–Ra 0.0000 0.0000 0.0000
NW 0.0000 0.0000 0.0000

SCAWI 0.0091 0.0182 0.0106
Smieja 0.0000 0.0000 0.0000

Generalization (control algorithm is Bottou)

BoersK 0.0394 0.1586 0.0690
Kim–Ra 0.0015 0.0073 0.0034
LIT-A 0.9397 1.0000 1.0000
NW 0.0000 0.0000 0.0000

SCAWI 0.1706 0.5119 0.2389
Smieja 0.0000 0.0000 0.0000

periority of the proposedmethod. On the other hand the algorithm
of Bottou is considered to be the control procedure for the general-
ization. This does not prove that Bottou’s method performs better
than LIT-Approach as the corresponding unadjusted and adjusted
p-values denote that the performance of these algorithms is the
same.

4.2.3. Comments and remarks
In termsof convergence success (Table 8) all initializationmeth-

ods seem to have similar performance while the method of Bottou
gives the best results as the networks initialized with this method
are trapped in local minima for only 9 trials (2% of the total num-
ber of trials). The results reported in Table 9 support the improve-
ment in convergence rate offered by the proposed method, when
compared with other weight initialization methods in the context
of these function approximation problems. Concerning generaliza-
tion, results in Table 10 indicate that the performance observed for
the LIT-Approach seems to be among the best of all methods. These
remarks are confirmed by the results of the Friedman test in Ta-
ble 11 and the post-hoc procedures in 12, especially regarding the
convergence rate.
On the other hand generalization performance of the LIT-
Approach is found to be marginally weaker than the performance
of Bottou’s method. Compared with the results of Suite 1 perfor-
mance of the LIT-Approach in terms of generalization is considered
here suboptimal. Various reasons may account for this. One reason
is the fact that the distribution of the input data for benchmarks
Functions 1 and 3 was considered to be the normal and there-
fore it was ‘‘roughly’’ approximated using the term 1.5σxi . Actu-
ally, it seems that defining weight intervals with different ranges
for the input variables seemsmeaningless for function approxima-
tion problems as these are different from classification ones. More-
over, speaking about outliers and extreme input data in the case of
a function approximation benchmark is useless. However, in the
context of the LIT-Approach we have not considered that function
approximation should be treated as a special case. So, it remains as
an open issue for further investigation, in the case of function ap-
proximation, the estimation of the optimal value k for the term kσxi ,
given a specific function approximation problem. However, these
claims, as well as others, need to be further investigatedwithmore
benchmarks together with taking into account the whole input set
of training patterns.

What is noteworthy here is the poor generalization per-
formance achieved by the network when initialized with the
Nguyen–Widrowmethod; in this case, it is very likely that the net-
work gets trapped in local minima. One should note that, seem-
ingly, the Nguyen–Widrow method showed notable performance
in convergence ratewhen experimentingwith the non-linear Func-
tion 1, which is reported in the original paper by Nguyen and
Widrow (Nguyen &Widrow, 1990).

4.3. Suite 2 of experiments

4.3.1. Experimental setup
Setting up this suite is motivated by the importance the re-

search community has devoted to theweight initializationmethod
of Nguyen and Widrow. In addition, popular neural network
packages, such as the Neural Network Toolbox of MATLAB and
the Encog Neural Network Framework (2013), use this technique
as the default initialization algorithm for neural networks.

The datasets used for these experiments and basic features
of the problems are briefly outlined here. More details on these
benchmarks can be found in theUCI repository ofmachine learning
database (Frank & Asuncion, 2010) and references cited therein.

1. Iris classification benchmark (inputs:4, outputs:3). This bench-
mark is known as Fisher’s Iris problem. Based on the values of
sepal length and width, petal length and width, the class of iris
plant needs to be predicted. The dataset contains 3 classes of 50
instances each, where each class refers to a type of iris plant.
The training set used consists of 120 examples and the test set
of 30 examples.

2. Pima Indians Diabetes problem (inputs:8, outputs:2). The aim
of this real world-classification task is to decide when a Pima
Indian individual is diabetes positive or not. The values of

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 31
Table 13
Architectures of networks and training parameters used for Suite 2 of experiments.

Benchmark Network architecture Activation functiona Total weights Learning rateb Max epochsc Goal for MSEc Min gradientc

Iris 4-2-3 logsig 19 0.90 5000 0.01 1.0e−09
Diabetes 8-2-2-2 logsig 30 0.50 2000 0.14 1.0e−09
Thyroid 21-4-3 logsig 103 0.50 2000 0.035 1.0e−09
Yeast 8-16-10 logsig 314 0.50 5000 0.05 1.0e−09
Gene2 120-4-2-3 tansig 503 0.50 5000 0.0075 1.0e−09

a logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent.
b Learning rate is the initial learning rate used for training.
c Training stops when at least one of the following conditions is satisfied, Max epochs is reached, Error of the network output becomes lower than or equal to Goal for

MSE, Min gradient is reached during training.
Table 14
Convergence success results for Suite 2 of experiments.

Benchmark Training algorithms
AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A
Iris 18.2 100.0 11.5 46.3 42.8 96.0 76.1 99.9 46.9 98.5

Diabetes 12.2 77.2 21.5 73.9 40.3 63.4 39.1 77.3 40.5 70.2
Thyroid 19.0 99.1 58.1 73.9 85.2 99.9 100.0 100.0 93.6 91.3
Yeast 94.5 100.0 35.3 98.3 68.1 94.4 100.0 100.0 84.7 100.0
Gene2 20.1 86.5 1.8 6.7 32.5 43.9 6.9 35.2 26 75.7

All numbers indicated are in the range 0 · · · 100 to denote the percentage of successful training trials.
the input attributes represent personal data and result from
a medical examination. The dataset consists of a total of 768
patterns. The training set used consists of 576 patterns and the
test set of the 192 remaining patterns.

3. Thyroid classification problem (inputs:21, outputs:3). Based on
patient query data and patient examination data the task is to
decide whether the patient’s thyroid has over function, normal
function, or under function. Using the original thyroid1 dataset
the training set is made from 5400 patterns while the test set is
made from 1800 patterns.

4. Yeast classification problem (inputs:8, outputs:10). Yeast is
a relatively complicated organism possessing different types
of proteins, related to the cytoskeletal structure of the
cell, the nucleus organization, membrane transporters and
metabolic related proteins (as mitochondrial proteins). After
the necessary preprocessing, Yeast data is found to include 1453
patterns, that is, there are 1453 proteins labeled according to
10 sites. As the dataset is radically imbalanced, the training set
was generated by randomly selecting approximately the 70% of
patterns from each of the 10 sites, giving a total of 1019 training
patterns. The rest of the patterns, i.e. 434, were included in the
test set.

5. Gene2 classification (inputs:120, outputs:3). This is a binary
problem with 120 input attributes and 3 output classes. The
goal of this classification task is to decide, from a window of
60 DNA sequence elements (nucleotides), whether the middle
is either an intron/exon boundary (a donor), or an exon/intron
boundary (an acceptor), or none of them. The dataset for
this problem was created based on the Splice-junction Gene
Sequences dataset from the UCI repository, (Frank & Asuncion,
2010). It consists of 2990 patterns (duplicates are excluded) and
it is partitioned to form the training set (2243 patterns) and the
test set (747 patterns).

The original datasets were preprocessed to eliminate duplicate
patterns and values were scaled to match requirements set
by the weight selection procedures. These operations were
performed according to PROBEN1 guidelines, (Prechelt, 1994).
Unless otherwise stated, the training sets used are made with 75%
of the patterns of the initial dataset and the test sets with the rest
25% of the patterns.

For each benchmark a neural network architecture was de-
fined. Batch processing was used for training with five well known
training algorithms, namely, the Adaptive gradient descent with
momentum (AGDM) (Hagan et al., 1996; Vogl, Mangis, Rigler,
Zink, & Alkon, 1988), Resilient back-propagation (RBP) (Ried-
miller &Braun, 1993), the Levenberg–Marquardtmethod (LM) (Ha-
gan et al., 1996; Hagan & Menhaj, 1994; Marquardt, 1963),
Scaled conjugate gradient (SCG) (Moller, 1993) and the Broy-
den–Fletcher–Goldfarb–Shanno method (BFGS) (Gill, Murray, &
Wright, 1981). For each benchmark a set of a thousand (1000)
initial weight vectors was created by each one of the two initializa-
tionmethods and used in all experiments. A total of 50 (=5 bench-
marks × 5 training algorithms × 2 initialization methods) exper-
iments were carried out, giving a total of 25000 weights for each
initialization method. Architectures of the networks and training
parameters used are those reported in the literature (Anastasiadis,
2005) to be the most appropriate for each problem; see Table 13.
Note that the value of themomentum coefficientwas set to 0.5 and
all networks are fully connected without intra-layer or supra-layer
connections.

4.3.2. Analysis of the results
The results obtained regarding the performance measures set

are shown in Tables 14–16. A rough observation of these results
shows that the proposed LIT-Approach delivers successful network
performance for all parameters.

The statistical analysis, applied on results in Tables 15 and 16,
concerns the comparison of the two initialization techniques us-
ing t-test for independent unpaired samples data. However, while
the samples are independent by default, application of the t-test
assumes that these samples are drawn from normally distributed
populations with equal variances. The Shapiro–Wilk test (Shapiro
& Wilk, 1965) was used to test the normality assumption, with
α = 0.05, while SPSS automatically uses Levene’s test for equal-
ity of variances, (Green & Salkind, 2003). In all experiments, ex-
cept one (training Gene2 benchmark with the BFGS algorithm for
generalization performance) the hypothesis of normality is re-
jected (p-value <0.05) for the results of both weight initialization
methods and so the non-parametric Mann–Whitney test for inde-
pendent samples is used to compare equality of medians. The sta-
tistical significance of the comparison, that is the p-value (Sig.) in-
dicated underneath the results for every pair of experiments, is the
one calculated by the Mann–Whitney test (or the t-test, when the
normality assumption is validated), (Green & Salkind, 2003).

32 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Table 15
Convergence rate results for Suite 2 of experiments.

Training algorithms
AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A
Iris

Min 174 111 9 21 4 3 91 33 15 14
Max 4927 143 1076 3272 3532 621 4027 1381 4508 205

Median 981 117 59 51 13 7 512 67 167 26
Sig. 0.000 0.863 0.000 0.000 0.000

Diabetes
Min 254 366 63 56 6 5 67 74 59 48
Max 1996 1999 1935 1835 1925 1903 1977 1996 1993 1971

Median 1021 1436 250 123 27 18 465 681 390 166
Sig. 0.000 0.000 0.000 0.000 0.000

Thyroid
Min 282 211 186 176 10 10 92 84 570 329
Max 1992 528 1976 1971 1999 1659 1455 687 1991 1980

Median 402 319 788.5 575 45 25 268 103 1229 732.5
Sig. 0.000 0.000 0.000 0.000 0.000

Yeast
Min 729 906 168 187 7 7 74 73 102 103
Max 4753 1594 4636 4348 4560 4432 280 197 4701 800

Median 1553 1148.5 403 423 20 12 130 112.5 196 145
Sig. 0.000 0.534 0.000 0.000 0.000

Gene2
Min 489 283 110 57 12 11 436 222 129 61
Max 4971 4956 4757 4990 4976 4675 4946 4654 4974 4962

Median 2426 720 1936 794 31 24 2281 697.5 1118 155
Sig. 0.000 0.016 0.000 0.000 0.000
Table 16
Generalization performance resultsa for Suite 2 of experiments.

Training algorithms
AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A
Iris

Min 95.56 95.56 91.11 91.11 91.11 91.11 93.33 93.33 91.11 93.33
Max 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78

Median 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 97.78
Sig. 0.000 0.000 0.000 0.351 0.000

Diabetes
Min 70.83 69.27 68.23 65.63 68.75 67.71 68.23 68.23 68.75 68.23
Max 78.65 78.65 80.73 79.17 79.69 79.17 79.17 79.17 79.69 80.21

Median 75.52 76.04 75.52 75.52 75.52 75.00 75.00 75.52 75.52 75.52
Sig. 0.000 0.029 0.011 0.000 0.234

Thyroid
Min 92.28 93.78 92.22 92.50 92.10 92.18 92.25 93.05 97.11 96.67
Max 94.22 94.17 98.28 98.50 99.00 99.00 98.30 98.75 98.33 98.44

Median 93.67 94.06 97.44 97.78 98.28 98.33 97.07 97.90 97.83 97.86
Sig. 0.000 0.000 0.000 0.000 0.788

Yeast
Min 55.07 58.53 44.47 43.55 38.82 45.39 58.29 58.53 43.55 51.15
Max 64.06 64.06 62.44 61.29 62.90 63.82 64.52 64.29 63.59 63.36

Median 60.83 61.52 55.99 52.77 57.14 60.60 61.52 61.52 59.45 60.37
Sig. 0.000 0.000 0.000 0.081 0.000

Gene2
Min 78.18 79.38 82.33 82.06 79.38 78.31 79.79 79.79 79.12 76.04
Max 90.76 91.43 89.83 89.29 90.36 90.50 89.70 90.76 90.50 90.63

Median 85.68 87.15 85.54b 85.82b 86.61 85.54 86.75 86.08 85.81 86.75
Sig. 0.000 0.541b 0.000 0.098 0.000

a All numbers in this table denote percentage.
b denotes that with the BFGS algorithm, mean values are used instead of medians, as the Shapiro–Wilk test approved the normality of populations which allowed us to

use the t-test.
Results in Table 15, are indicative that in all cases, except in
two of them, the proposedmethod produced initial weight vectors
which permitted faster convergence of the training algorithm in
use. In the other two cases, the Iris and the Yeast benchmarks,
the two weight initialization methods seem to allow for the same
performance of the BFGS training algorithm.
With regards to generalization, results are presented in Table 16
and denote the percentage of successfully classified unknown
patterns. In the case of Gene2 benchmark for networks trained
with the BFGS algorithm, mean values (marked with ∗) are
used instead of medians, as the Shapiro–Wilk test approved the
normality of populations which allowed us to use the t-test.

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 33
Results, in Table 16, show that the proposed initialization
method led to networks that generalize better in about 50% of the
cases (12 out of the 25 comparisons) while the Nguyen–Widrow
initialization technique was superior in only 3 cases. One may
notice inconsistency between the p-values indicating significant
difference between the medians, while these medians appear, for
the Iris problem and some training algorithms, to be the same.
Indeed, the values of the medians suggest that the two methods
display the sameperformance in terms of generalization. However,
for the NW algorithm the score of 95.56% is taken over 18.2% of
successful trials, while for the LIT-Approach 95.56% corresponds to
100% of successful trials.

4.3.3. Comments and remarks
The proposed method demonstrates better performance than

the one proposed by Nguyen and Widrow in all cases. However,
despite the fact that these benchmarks concern classification
problems while the method of Nguyen andWidrowwas originally
demonstrated for a function approximation problem, we believe
that, what really affects performance of this method is the neural
networks architecture itself and not the type of the problem at
hand. The magnification factor multiplying the randomly selected
input-to-hidden layer weights for a (2-21-1) network is given by
the formula 0.7H1/N

= 211/2
≃ 4.5 where H denotes the number

of hidden layer nodes.Weights of this magnitude seem to define in
theweight space a starting point which accelerates convergence of
the training algorithm.

On the other hand, it is easy to notice thatwhen the network has
a differently shaped architecture, that is, the number of input nodes
is higher than the number of hidden nodes, the factor H1/N tends
to reduce to 1. In consequence the initialization method tends
to degenerate to the commonly used random weight selection in
the interval [−1, 1]. Hence, performance of the Nguyen–Widrow
method strongly depends on the number of nodes of the input
and the hidden layers. This argument may be experimentally
confirmed by progressively training a network while gradually
increasing the number of hidden layer nodes. Some training trials
we performed on the Iris problem showed that convergence rate
of the Nguyen–Widrow method increases when increasing the
hidden layer units. Nevertheless, the price to pay for this is the
decrease in generalization performance.

4.4. Suite 3 of experiments

4.4.1. Experimental setup
The objective of this suite is twofold. Firstly, it was set up in

order to test the ability of the LIT-Approach to deal with problems
having a big number of features and thus see if the assumptions
underlying the method remain valid when the method addresses
large real life problems. The second objective is to test the
performance of the LIT-Approach against more recent competitors
that do not belong to the ‘‘family’’ of methods which randomly
select initial weights from some predefined interval. Among such
methods we retained the following:
Linear-Least-Squares initialization of MLPs through backpropagation
of the desired response (LLSQ). The method uses a technique for
back-propagating the desired response of an MLP through its non-
linear layers. This permits to train each layer by solving a linear
system of equations per layer which is the solution to a linear least
squares problem. The authors claim that besides initialization the
method can be used for training the network (Erdogmus, Fontenla-
Romero, Principe, Alonso-Betanzos, & Castillo, 2005).
Computing Linear-Least-Squares layer by layer in forward direction
(FLLS). The outputs of the first hidden layer are assigned with
random numbers in the active region of the activation function
of the nodes. The inverses of these output values are computed
and a linear least squares problem is solved to define the weights
of the input to the hidden layer. Using these weights and the
input patterns, actual outputs are computed and used to repeat the
process towards the next layer until the output layer. The method
determines the initial weights by successively solving one linear
least squares problem per layer in a feed forward way (Yam &
Chow, 1997).
Particle Swarm Optimization based weight initialization (PSOI). The
method was initially proposed in van den Bergh (1999). Particle
Swarm Optimization is used to define the most pertinent initial
weights which are then used for subsequent training by BP.
Actually, PSO performs pretraining of the MLP for some iterations
before activating BP. The method is an evolutionary approach
to weight initialization which, however, suffers itself from the
initialization problem. In our experiments PSO is activated for 20
iterations and theweights computed are used, in the sequel, by the
online BP.

Hereafter we will refer to these methods using their acronyms.
In addition to the above in this suite we used the method of
Bottou. Hence we form a complete test of comparisons between
fivemethods; the previous three and the twomethods that had the
best performance in the other test suites. It is important to note
that in this suite the algorithm implementing LIT-Approach uses
the third quartile of the input data Q3 instead of some multiple
of the standard deviation. Moreover, the weights of the hidden-
to-output nodes are computed using assumptions introduced in
Section 3.3. The benchmarks used for this test suite are defined
hereafter in alphabetical order.

1. Far-infrared Laser (FIL) (inputs:50, outputs:1). This is an
extension of the DataSet A from the Santa Fe Competition
Data (Weigend & Gershenfeld, 2001) consisting of sampled
values from the emission intensity of far-infrared laser (NH3-
FIR) (Hüebner, Abraham, & Weiss, 1989). It is a time series
forecasting problem and the aim is to predict the intensity of
a far infrared laser at a particular moment from past samples.
In our tests we choose to predict the value of the quantity x
at time k + 1 given the past 50 samples xk, xk−1, . . . , xk−49 as
in YamandChow (2001). The total number of patterns is 10043.
The training set wasmadewith 8000 patterns and the rest 2043
were used for the test set.

2. Landsat Satellite Data (LSAT) (inputs:36, outputs:6). This
dataset was generated taking a small section (82 rows and 100
columns) from the original Landsat data. The dataset consists
of the multi-spectral values of pixels in 3 × 3 neighborhoods
in a satellite image. The aim is to predict the classification
associated with the central pixel in each neighborhood. Each
line in the data contains 36 values, that is, the pixel values
in the four spectral bands times the 9 pixels in the 3 × 3
neighborhood. The classification label of the central pixel is a
number corresponding to one of the seven classes. Note that
class 6 has no examples in this dataset. The total number of 6435
patterns available was partitioned in the training set composed
of 4435 patterns and the test set having 2000 patterns.

3. Multiple Features DataSet (MFEAT) (inputs:649, outputs:10).
This dataset was created by Robert P.W. Duin, Dept. of Applied
Physics, Univ. of Delft. It consists of features of handwritten
digits (‘0’–‘9’) extracted from a collection of Dutch utility maps.
A number of 200 patterns per class, that is a total of 2000
patterns have been digitized in binary images. These digits are
represented in terms of the following six feature sets given in
separate files:
- mfeat-fou: 76 Fourier coefficients of the character shapes
- mfeat-fac: 216 profile correlations
- mfeat-kar: 64 Karhunen–Loève coefficients

34 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Table 17
Architectures of networks and training parameters used for Suite 3 of the experiments.

Benchmark Network architecture Activation functiona Learning rate Convergence criterion Max cycles Input data scale

LSAT 36-36-6 tansigb 0.9 90% 250 [−1, 1]
FIL 50-20-1 logsig 0.9 0.001 100 [0, 1]

MFEAT 649-649-10 logsig 0.15 97.5% 500 [−1, 1]
MNIST 784-300-10 logsig 0.15 95% 500 [−1, 1]

a logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent.
b Landsat benchmark uses the hyperbolic tangent for the hidden layer nodes and the logistic sigmoid for nodes in the output layer. All other networks use the same

activation function for all nodes.
- mfeat-pix: 240 pixel averages in 2 × 3 windows
- mfeat-zer: 47 Zernike moments
- mfeat-mor: 6 morphological features.
The 2000 patterns, contained in each file, are stored in ASCII
on 2000 lines. The first 200 patterns correspond to class ‘0’, the
next 200 to class ‘1’, that is, sets of 200 patterns for each of the
classes ‘0’–‘9’. The training set for our experiments consists of
1500 patterns and the test set has 500 patterns.

4. The MNIST database of handwritten digits (inputs:784, out-
puts:10). TheMNIST databasewas constructed fromNIST’s Spe-
cial Database 1 (SD-1) and Special Database 3 (SD-3), which
contain binary images of handwritten digits (LeCun et al., 2004).
The MNIST training set has a total of 60000 patterns, that is,
30 000 patterns from SD-1 and 30000 patterns from SD-3. The
test set is composed of 5000 patterns from SD-1 and 5000 pat-
terns from SD-3 that is a total of 10000 patterns. The sets of
writers of the training set and test set were disjoint. For per-
formance reasons of our experiments we formed a training set
consisting of 10% of the patterns of the original training set and
a test set with 10% of the patterns of the original test set. For
every class in the database we selected the first 10% of the pat-
terns belonging to this class thus forming a balanced sample of
the original dataset. So the training set for our experiments con-
sists of 6000 patterns and the test set has 1000 patterns.

A total of 18 (16+2) training experimentswere executed for the
above 4 benchmarks and the 4 (LIT-A, Bottou, FLLS, PSOI) weight
initialization methods considered in this subsection. The other
2 experiments concern the LLSQ method which was tested only
against the FIL and LSAT benchmarks. Each training experiment
is made up of a hundred (100) initial weight vectors derived
using one of the weight initialization methods. The same network
architecture was initialized with these vectors and trained using
online BP. The network architecture and the training parameters,
used in this arrangement, are reported in Table 17. Benchmarks
are listed in increasing order of the number of features using their
acronyms.

4.4.2. Analysis of the results
Tables 18–20 report the experimental results on the bench-

marks for the performance measures considered. The symbol – is
used in these Tables to denote that the corresponding initialization
method failed tomeet the convergence criteria exceeding themax-
imum number of cycles in all trials. A quick look at these results
shows that the three newly introduced initializationmethods have
very poor performance especially in the case of the benchmarks
with a big number of features. We need to note that regarding the
method LLSQ these tables report the results only for the first two
benchmarks that is LSAT and FIL.

The comparison between the performance of the initialization
methods was carried out using ANOVA for the LSAT and FIL
benchmarks. The difference between the proposed LIT-Approach
and the other methods is indicated with a ∗ and supported by
the corresponding p-value (Sig.). In addition comparison of the
initialization methods in these benchmarks is carried out using
the non-parametric test of Friedman and the post-hoc procedures
Table 18
Convergence success results in 100 trials for Suite 3 of the experiments.

Benchmark Initialization algorithms
Bottou FLLS LIT-A LLSQ PSOI

LSAT 100 0 100 72 68
FIL 100 0 100 0 100

MFEAT 100 0 100 a 0
MNIST 100 0 100 a 0

a The initialization method was not tested for these benchmarks.

Table 19
Convergence rate results for Suite 3 of the experiments.

Benchmarks Initialization algorithms
LIT-A Bottou FLLS LLSQ PSOI

LSAT
Mean 110 120.46 251* 143.32* 150.95*

St.D. 40.96 31.36 0.00 78.08 75.92
Sig. 0.363 0.000 0.000 0.000

FIL
Mean 7.51 7.15 0.00* 0.00* 9.6*

St.D. 0.67 0.69 0.00 0.00 3.25
Sig. 0.589 0.000 0.000 0.000

MFEAT
Mean 5.39 12.97* a b a

St.D. 4.36 1.02 a b a

Sig. a a b a

MNIST
Mean 7.66 11.66* a b a

St.D. 0.61 0.48 a b a

Sig. a a b a

* denotes that the mean value of the initialization method is significantly
different from themean value of LIT-A using the indicated p-values (Sig.) computed
by the post-hoc analysis of the ANOVA results.

a The initialization method failed to meet the convergence criteria exceeding the
maximum number of cycles in all trials.

b The initialization method was not tested for this benchmark.

of Bonferroni–Holm and Benjamini–Hochberg in the same context
as for Suite 1 of the experiments. The average rankings computed
are reported in Table 21. These rankings roughly confirm the
results observed regarding the mean values of the performance
parameters. Pairwise comparison results reported in Table 22
reward the performance of LIT-Approach in terms of convergence
rate while they reveal that the proposed method has the same
performance with Bottou’s method regarding generalization.

4.4.3. Comments and remarks
The results of these experiments coincide with those already

obtained in the previous suites. As seen above the LIT-Approach is
dominant in terms of convergence speed and seems to be equal,
or at most slightly weaker, in terms of generalization compared
with Bottou’s method. The method of Bottou is generally powerful
while it seems to be weaker when addressing problems with big
number of features such as MFEAT and MNIST. These remarks
are also supported by the non-parametric statistical analysis tests,
Tables 21 and 22, for both performance characteristics. What is
disarming is the seemingly bad performance of the other methods.
We need to note here that in these experiments we do take into
account the resources needed in terms of time and memory for
an initialization procedure to run. The reason is that the weight
initialization methods based on random weight selection need

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 35
Table 20
Generalization performance results for Suite 3 of the experiments (FIL in mean absolute error).

Benchmarks Initialization algorithms
LIT-A Bottou FLLS LLSQ PSOI

LSAT
Mean 88.27% 88.33% 45.19%* 85.42%* 83.56%*

St.D. 0.42% 0.44% 13.73% 6.39% 9.05%
Sig. 0.972 0.000 0.000 0.000

FIL
Mean 0.0155 0.0158 0.2765* 0.0668* 0.0176*

St.D. 0.0007 00010 0.1451 0.0282 0.0017
Sig. 0.157 0.000 0.000 0.000

MFEAT
Mean 98.52% 98.69% a b a

St.D. 0.23% 0.24% a b a

Sig. a a b a

MNIST
Mean 89.69% 89.57% a b a

St.D. 0.41% 0.26% a b a

Sig. a a b a

* denotes that the mean value of the initialization method is significantly different from the mean value of LIT-A using the indicated p-values (Sig.) computed by the
post-hoc analysis of the ANOVA results.

a The initialization method failed to meet the convergence criteria exceeding the maximum number of cycles in all trials.
b The initialization method was not tested for this benchmark.
Table 21
Average ranking achieved by the Friedman test (Suite 3 of the experiments).

Initialization method Convergence rate Generalization

Bottou 2.01 1.63
LIT-A 1.54 1.64
FLLS 4.30 4.50
LLSQ 3.80 3.87
PSOI 3.35 3.36

Statistic 890.44 1094.19
p-value 0.25e−09 0.0

very little memory to run and they preprocess the input patterns
only in order to extract simple statistics of the sample. On the
other hand the memory and time requirements set by methods
not based on random weight selection constitute a serious barrier
for their application in real life problems. Finally, besides the
limitations analyzed in Section 3.2, LIT-Approach seems to perform
verywell even in the case of the selected real life problemswith big
number of patterns. It is worth noting that we have not considered
benchmarks with even higher number of features as these are
normally treated with feature selection and/or dimensionality
reduction methods before applying a classification method that
requires parameter initialization.

5. Conclusion

In this paper we studied an interval analysis approach for neu-
ral network weight initialization with the aim to deal with uncer-
tainty about the initial weights. Instead of algebraically solving a
linear interval system we formulated and solved a linear interval
tolerance problem. Hence, a self contained standalone algorithm
is proposed that inherently includes major concepts such as: the
number of inputs to a node in the first hidden layer, the statisti-
cal information of the input data, effective positioning of the hy-
perplanes in the pattern space and full utilization of the dynamic
range of the activation function. Both the theoretical analysis and
the experimental results suggest that the proposed LIT-Approach
successfully tackles the problem of neural saturation while avoid-
ing false local minima.

The proposed LIT-Approach has been compared against other
well known random weight initialization techniques on a number
ofwell known realworld benchmarks. The experiments carried out
cover a broad range of problems using networkswith architectures
of increasing complexity. The results obtained are suggestive
of the efficiency of the proposed method while providing an
overall classification framework for some of the most well known
weight initialization methods. For all performance characteristics
Table 22
p-values of multiple comparisons (Suite 3 of the experiments).

Initialization
algorithm

Unadjusted Adjusted

Bonferroni–Holm Benjamini–Hochberg

Convergence rate (control algorithm is LIT-A)

Bottou 0.0000 0.0001 0.0000
FLLS 0.0000 0.0000 0.0000
LLSQ 0.0000 0.0000 0.0000
PSOI 0.0000 0.0000 0.0000

Generalization (control algorithm is Bottou)

LIT-A 0.9554 1.0000 1.0000
FLLS 0.0000 0.0000 0.0000
LLSQ 0.0000 0.0000 0.0000
PSOI 0.0000 0.0000 0.0000

set, the proposed method is either on top of other initialization
methods or at least exhibits similar performance with the other
methods. Moreover, it is easy to notice that the proposed method
demonstrates stable inter-problem performance behavior. We
believe that all these featuresmake the proposedmethod a reliable
algorithm for use in real life problems.

Solving the linear interval tolerance problem seems to success-
fully address the problem of weight initialization. However, some
important questions need to be investigated in future research.
These questions concern the possibility to define among all so-
lutions in the Tolerance solution set, the optimal one, if any, for
the weight initialization problem; the evaluation of different al-
gorithms solving the linear interval tolerance problem for weight
initialization, and others, such as the potential offered by such an
approach to other types of neural networks.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable suggestions and comments on earlier draft of the
manuscript, that helped to significantly improve the paper at hand.
Special thanks are due to Prof. Erdogmus for kindly offering the
software implementing the method LLSQ, as well as to Mr. George
Dimakopoulos, statistical analyst at the Technological Educational
Institute of Epirus, for his helpful comments regarding ANOVA.

References

Agresti, A., & Franklin, C. (2009). Statistics: the art and science of learning from data
(3rd ed.). Boston, MA: Pearson Education.

Ahn, J., Marron, J., Muller, K. M., & Chi, Y.-Y. (2007). The high-dimension, low-
sample-size geometric representation holds undermild conditions. Biometrika,
94, 760–766.

http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref1
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref2

36 S.P. Adam et al. / Neural Networks 54 (2014) 17–37
Alefeld, G., & Herzberger, J. (1983). Introduction to interval computations. New York,
NY: Academic Press.

Alefeld, G., & Mayer, G. (2000). Interval analysis: theory and applications. Journal of
Computational and Applied Mathematics, 121, 421–464.

Anastasiadis, A.D. (2005). Neural networks training and applications using
biological data, Ph.D. thesis, Birkbeck College, University of London.

Beaumont, O., & Philippe, B. (2001). Linear interval tolerance problem and linear
programming techniques. Reliable Computing , 7, 433–447.

Bello, R., & Verdegay, J. L. (2012). Rough sets in the soft computing environment.
Information Sciences, 212, 1–14.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY, USA:
Oxford University Press, Inc.

Boers, E.G.W., & Kuiper, H. (1992). Biological metaphors and the design of modular
artificial neural networks. Master’s thesis, Leiden University Netherlands.

Bottou, L.Y. (1988). Reconnaissance de la parole par reseaux multi-couches. In
Proceedings of the international workshop neural networks applications, Neuro-
Nimes’88, Nimes, France, (pp. 197–217).

Chen, C.L., & Nutter, R.S. (1991). Improving the training speed of three-layer
feedforward neural nets by optimal estimation of the initial weights. In
Proceedings of the international joint conference on neural networks, IJCNN’91,
Seattle, WA, vol. 3, (pp. 2063–2068).

Degrauwe, D., Lombaert, G., & Roeck, G. D. (2010). Improving interval analysis
in finite element calculations by means of affine arithmetic. Computers and
Structures, 88, 247–254.

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use
of nonparametric statistical tests as amethodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1,
3–18.

Drago, G. P., & Ridella, S. (1992). Statistically controlled activation weight
initialization (SCAWI). IEEE Transactions on Neural Networks, 3, 627–631.

deWeerdt, E., Chu, Q. P., &Mulder, J. A. (2009). Neural network output optimization
using interval analysis. IEEE Transactions on Neural Networks, 20, 638–653.

Encog Neural Network Framework. 2013. URL: http://www.heatonresearch.com/
encog/articles/nguyen-widrow-neural-network-weight.html.

Erdogmus, D., Fontenla-Romero, O., Principe, J., Alonso-Betanzos, A., & Castillo, E.
(2005). Linear-least-squares initialization of multilayer perceptrons through
backpropagation of the desired response. IEEE Transactions on Neural Networks,
16, 325–337.

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation
networks. Technical Report CMU–CS–88–162. School of Computer Science,
Carnegie Mellon University Pittsburg.

Fernández-Redondo, M., & Hernández-Espinosa, C. (2001). Weight initialization
methods for multilayer feedforward. In Proceedings of the European symposium
on artificial neural networks, ESANN’2001. (pp. 119–124). Bruges, Belgium: D-
Facto.

Frank, A., & Asuncion, A. (2010). UCI machine learning repository. URL:
http://archive.ics.uci.edu/ml.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric
tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: experimental analysis of power. Information
Sciences, 180, 2044–2064.

Garloff, J., Idriss, I., & Smith, A. (2007). Guaranteed parameter set estimation for
exponential sums: the three-terms case. Reliable Computing , 13, 351–359.

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. New York, NY:
Academic Press.

Goldsztejn, A. (2007). Comparison of the Hansen–Sengupta and the From-
mer–Lang–Schnurr. Computing , 79, 53–60.

Green, S. B., & Salkind, N. J. (2003). Using SPSS for windows and macintosh: analyzing
and understanding data (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston,
MA: PWS Publishing.

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the
Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.

Hansen, E. R. (1992). Bounding the solution of interval linear equations. SIAM Journal
on Numerical Analysis, 29, 1493–1503.

Hansen, E. (2006). Solving over-determined systems of interval linear equations.
Reliable Computing , 12, 239–243.

Hansen, E., & Walster, G. W. (2004). Global optimization using interval analysis (2nd
ed.). New York, NY: Marcel Dekker.

Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge, MA:
MIT Press.

Haykin, S. (1999). Neural networks a comprehensive foundation (2nd ed.). Upper
Saddle River, NJ: Prentice-Hall.

Heindl, G., Kreinovich, V., & Lakeyev, A. (1998). Solving linear interval systems is
NP-hard even if we exclude overflow and underflow. Reliable Computing , 4,
383–388.

Hu, C., & He, L. (2007). An application of interval methods to stock market
forecasting. Reliable Computing , 13, 423–434.

Hüebner, U., Abraham, N. B., & Weiss, C. O. (1989). Dimensions and entropies of
chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Physics
Review A, 40, 6354.

Ishibuchi, H., & Nii, M. (1998). Improving the generalization ability of neural
networks by interval arithmetic. In L. C. Jain, & R. K. Jain (Eds.), Proc. 2nd int.
conf. knowledge-based intelligent electronic systems, KES 1998. IEEE.

Jamett, M., & Acuña, G. (2006). An interval approach for weight’s initialization of
feedforward neural networks. In LNCS: vol. 4293. Proceedings of the 5th Mexican
international conference on artificial intelligence, MICAI 2006 (pp. 305–315).
Springer-Verlag.
Kearfott, R. B. (1996). Interval computations: introduction, uses, and resources.
Euromath Bulletin, 2, 95–112.

Kim, Y.K., & Ra, J.B. (1991). Weight value initialization for improving training
speed in the back-propagation network. In Proceedings of the international joint
conference on neural networks, IJCNN’91 Seattle, WA, vol. 3 (pp. 2396–2401).

Krawczyk, R. (1969). Newton-algorithmen zur bestimmung von nullstellen mit
fehlerschranken. Computing , 4, 187–201.

Kreinovich, V., Lakeyev, A., Rohn, J., & Kahl, P. (1997). Computational complexity and
feasibility of data processing and interval computations. Dordrecht, Netherland:
Kluwer Academic.

Kubica, B. J. (2010). Interval methods for solving underdetermined nonlinear
systems. Reliable Computing , 15, 207–217.

LeCun, Y. (1993). Efficient learning and second-order methods. Tutorial at neural
information processing systems conference, NIPS.

LeCun, Y., Cortes, C., & Burges, C.J. (2004). TheMNIST database of handwritten digits.
URL: http://yann.lecun.com/exdb/mnist/.

Lee, Y., Oh, S.H., & Kim, M.W. (1991). The effect of initial weights on premature
saturation in back-propagation learning. In Proceedings of the international joint
conference on neural networks, IJCNN’91, Seattle, WA, vol. I (pp. 765–770).

Li, G., Alnuweiri, H., & Wu, Y. (1993). Acceleration of back-propagation through
initialweight pre-trainingwith delta rule. In Proceedings of the international joint
conference on neural networks, IJCNN’93, San Francisco, CA, vol. 1 (pp. 580–5858).

Li, H., Li, H., & Du, Y. (2007). A global optimization algorithm based on novel
interval analysis for training neural networks. In Proc. 2nd int. conf. advances
in computation and intelligence, ISICA’07. (pp. 286–295). Berlin, Heidelberg:
Springer-Verlag.

Luengo, J., García, S., & Herrera, F. (2009). A study on the use of statistical tests for
experimentation with neural networks: analysis of parametric test conditions
and non-parametric tests. Expert Systems with Applications, 36, 7798–7808.

Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1997). Effective back-
propagation training with variable stepsize. Neural Networks, 10, 69–82.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

Meyers, L. S., Gamst, G. C., & Guarino, A. J. (2013). Performing data analysis using IBM
SPSS (1st ed.). Hoboken, NJ: John Wiley.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6, 525–533.

Moore, R. E. (1966). Interval analysis. Englewood Cliffs, NJ: Prentice-Hall.
Neumaier, A. (1984). New techniques for the analysis of linear interval equations.

Linear Algebra and its Applications, 58, 273–325.
Neumaier, A. (1986). Tolerance analysis with interval arithmetic. In Freiburger

intervall-berichte 86(9). Freiburg: Albert-Ludwigs-Universität.
Neumaier, A. (1990). Interval methods for systems of equations. New York, NY:

Cambridge University Press.
Nguyen, D., & Widrow, B. (1990). Improving the learning speed of two-layer neural

networks by choosing initial values of the adaptive weights. In Proceedings of
the international joint conference on neural networks, IJCNN’90, Ann Arbor, MI,
vol. 3 (pp. 21–26).

Ning, S., & Kearfott, R. B. (1997). A comparison of some methods for solving linear
interval equations. SIAM Journal on Numerical Analysis, 34, 1289–1305.

Osowski, S. (1993). New approach to selection of initial values of weights in neural
function approximation. Electronics Letters, 29, 313–315.

Palubinskas, G. (1994). Data-driven weight initialization of back-propagation for
pattern recognition. In Proceedings of the international conference on artificial
neural networks, ICANN’94, London, vol. 2 (pp. 851–854).

Parejo, J. A., García, J., Ruiz-Cortés, A., & Riquelme, J. C. (2012). Statservice:
Herramienta de análisis estadístico como soporte para la investigación con
metaheurísticas. In Actas del VIII Congreso Expañol sobre Metaheurísticas,
Algoritmos Evolutivos y Bio-inspirados.

Pavelka, A., & Procházka, A. (2004). Algorithms for initialization of neural network
weights. In Sborník príspevku 12 rocníku konference MATLAB 2004, Prague, vol. 2
(pp. 453–459).

Pawlak, Z. (1991). Rough sets—theoretical aspects of reasoning about data. Dordrecht,
Netherlands: Kluwer Academic Publishers.

Penmetsa, R. C., & Grandhi, R. V. (2002). Efficient estimation of structural
reliability for problems with uncertain intervals. Computers and Structures, 80,
1103–1112.

Pivkina, I., & Kreinovich, V. (2006). Finding least expensive tolerance solutions and
least expensive tolerance revisions: algorithms and computational complexity.
Technical Report UTEP–CS–06–37. Department of Computer Science, University
of Texas at El Paso El Paso.

Prechelt, L. (1994). PROBEN1, A set of benchmarks and benchmarking rules for neural
network training algorithms. Technical Report 21/94, Fakultät für Informatik.
Universität Karlsruhe Germany.

PROBEN1. (1994) Anonymous ftp site. URL: ftp://ftp.ira.uka.de/pub/neuron/.
R-Documentation. (2013) Adjust P-values for multiple comparisons. URL: http://

stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html. Package
stats version 2.15.2.

Ramachandran, K. M., & Tsokos, C. P. (2009). Mathematical statistics with
applications. London, UK: Elsvier.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster back-
propagation learning: the RPROP algorithm. In Proceedings of the international
conference on neural networks, ICNN 1993, San Francisco, CA, (pp. 586–591).

Rohn, J. (1993). Cheap and tight bounds: the recent result by E. Hansen can bemade
more efficient. Interval Computations, 4, 13–21.

Rohn, J. (2003). Solvability of systems of linear equations. SIAM Journal on Matrix
Analysis and Applications, 25, 237–245.

http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref3
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref4
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref6
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref7
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref8
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref12
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref13
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref14
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref15
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://www.heatonresearch.com/encog/articles/nguyen-widrow-neural-network-weight.html
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref17
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref18
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref19
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref21
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref22
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref23
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref24
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref25
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref26
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref27
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref28
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref29
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref30
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref31
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref32
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref33
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref34
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref35
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref36
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref37
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref38
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref40
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref41
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref42
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref47
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref48
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref49
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref50
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref51
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref52
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref53
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref54
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref55
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref56
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref58
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref59
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref61
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref63
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref64
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref65
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref66
ftp://ftp.ira.uka.de/pub/neuron/
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref69
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref71
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref72

S.P. Adam et al. / Neural Networks 54 (2014) 17–37 37
Rump, S. M. (2001). Self-validatingmethods. Linear Algebra and its Applications, 324,
3–13.

Schmidhuber, J., & Hochreiter, S. (1996). Guessing can outperform many long time
lag algorithms. Technical Note IDSIA–19–96. Manno–Lugano, Switzerland: Dalle
Molle Institute for Artificial Intelligence.

Shafer, G. A. (1976). Mathematical theory of evidence. Princeton, NJ: Princeton
University Press.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality
(complete samples). Biometrika, 52, 591–611.

Shary, S. P. (1995). Solving the linear interval tolerance problem. Mathematics and
Computers in Simulation, 839, 53–85.

Shary, S. P. (2002). A new technique in systems analysis under interval uncertainty
and ambiguity. Reliable Computing , 8, 321–418.

Shimodaira, H. (1994). A weight value initialization method for improved learning
performance of the back-propagation algorithm in neural networks. In
Proceedings of the 6th international conference on tools with artificial intelligence,
ICTAI’94, New Orleans, (pp. 672–675).

Smieja, F.J. (1991). Hyperplane spin dynamics, network plasticity and back-
propagation learning. GMD Report National Resesearch Centre for Information
Science (GMD) Bonn (St. Augustine), Germany.

Sonoda, S., & Murata, N. (2013). Nonparametric weight initialization of neural
networks via integral representation, URL: http://arxiv.org/abs/1312.6461.

Thimm, G., & Fiesler, E. (1994). High-order and multilayer perceptron initialization.
Technical Report 94–07. Martigny, Switzerland: IDIAP Research Institute.

Thimm, G., & Fiesler, E. (1997). High-order andmultilayer perceptron initialization.
IEEE Transactions on Neural Networks, 8, 349–359.

van den Bergh, F. (1999). Particle swarm weight initialization in multi-layer
perceptron artificial neural networks. In Proceedings of the ICAI, development and
practice of artificial intelligence techniques, Durban, South Africa, (pp. 41–45).
Vogl, T. P., Mangis, J. K., Rigler, J. K., Zink, W. T., & Alkon, D. L. (1988). Accelerating
the convergence of the back-propagation method. Biological Cybernetics, 59,
257–263.

Weigend, A.S., & Gershenfeld, N. (2001). The Santa Fe time series competition data.
http://www-psych.stanford.edu/~andreas/Time-Series/.

Wessels, L. F. A., & Barnard, E. (1992). Avoiding false local minima by proper
initialization of connections. IEEE Transactions on Neural Networks, 5, 899–905.

Xu, S., Lam, J., & Ho, D. W. (2005). Novel global robust stability criteria for interval
neural networks with multiple time-varying delays. Physics Letters A, 342,
322–330.

Yam, Y. F., & Chow, T. W. S. (1995). Determining initial weights of feedforward
neural networks based on least squares method. Neural Processing Letters, 2,
13–17.

Yam, Y. F., & Chow, T.W. S. (1997). A newmethod in determining the initial weights
of feedforward neural networks for training enhancement.Neurocomputing , 16,
23–32.

Yam, Y. F., & Chow, T. W. S. (2000). A weight initialization method for improving
training speed in feedforward neural networks. Neurocomputing , 30, 219–232.

Yam, J. Y. F., & Chow, T. W. S. (2001). Feedforward networks training speed
enhancement by optimal initialization of the synaptic coefficients. IEEE
Transactions on Neural Networks, 12, 430–434.

Yata, K., & Aoshima, M. (2010). Intrinsic dimensionality estimation of high-
dimension, low sample size data with D-asymptotics. Communications in
Statistics - Theory and Methods, 39, 1511–1521.

Yoon, H.-S., Bae, C.-S., & Min, B.-W. (1995). Neural networks using modified initial
connection strengths by the importance of feature elements. In Proceedings of
the 1995 IEEE international conference systems, man and cybernetics, Vancouver,
BC, vol. 1, (pp. 458–461).

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems, 1, 3–28.

http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref73
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref74
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref75
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref76
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref77
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref78
http://arxiv.org//abs/1312.6461
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref82
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref83
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref85
http://www-psych.stanford.edu/~andreas/Time-Series/
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref87
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref88
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref89
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref90
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref91
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref92
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref93
http://refhub.elsevier.com/S0893-6080(14)00045-8/sbref95

	Solving the linear interval tolerance problem for weight initialization of neural networks
	Introduction
	Interval analysis and the tolerance problem
	Interval arithmetic
	Interval linear systems
	Tolerance problem and the tolerance solution set

	Weight initialization with the LIT-Approach
	Random selection of initial weights
	Analysis of the LIT-Approach
	Theoretical results
	Refining the method
	Initializing hidden-to-hidden and hidden-to-output layer connection weights

	Algorithm and discussion
	Algorithm description
	Discussion

	Experimental evaluation
	Suite 1 of experiments
	Experimental setup
	Analysis of the results
	Non-parametric statistical analysis and post-hoc procedures
	Comments and remarks

	Function approximation
	Setup of the experiments
	Analysis of the results
	Comments and remarks

	Suite 2 of experiments
	Experimental setup
	Analysis of the results
	Comments and remarks

	Suite 3 of experiments
	Experimental setup
	Analysis of the results
	Comments and remarks

	Conclusion
	Acknowledgments
	References

