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Abstract
Typically, measuring the generalization ability of a neural network relies on the well-known method of cross-validation

which statistically estimates the classification error of a network architecture thus assessing its generalization ability.

However, for a number of reasons, cross-validation does not constitute an efficient and unbiased estimator of generalization

and cannot be used to assess generalization of neural network after training. In this paper, we introduce a new method for

evaluating generalization based on a deterministic approach revealing and exploiting the network’s domain of validity.

This is the area of the input space containing all the points for which a class-specific network output provides values higher

than a certainty threshold. The proposed approach is a set membership technique which defines the network’s domain of

validity by inverting its output activity on the input space. For a trained neural network, the result of this inversion is a set

of hyper-boxes which constitute a reliable and e-accurate computation of the domain of validity. Suitably defined metrics

on the volume of the domain of validity provide a deterministic estimation of the generalization ability of the trained

network not affected by random test set selection as with cross-validation. The effectiveness of the proposed generalization

measures is demonstrated on illustrative examples using artificial and real datasets using swallow feed-forward neural

networks such as Multi-layer perceptrons.
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Abbreviations
HPD Highest posterior density

INTLAB INTerval LABoratory

IA Interval analysis

MLP Multi-layer perceptron

OTS Off training set

PDF Probability density function

SCS Set computations with subpavings

SIVIA Set inversion via interval analysis

1 Introduction

The classification performance of some network architec-

ture is measured by estimating the error of classification on

previously unseen data [4]. This error is also identified as

generalization error and defines the ability of a network to

generalize. For some specific network architecture gener-

alization depends on the efficiency of the training algo-

rithm as well as on the degree the available training data

represent the true probability distribution of the underlying

problem.

Due to lack of a concise mathematical definition of

generalization, which would permit a deterministic evalu-

ation, the dominant approach for evaluating generalization

is a statistical method, the well-known cross-validation.

This is a hold-out technique relying on a suitable division

of the dataset into two subsets that are the training set and

the test set. Measuring the generalization error, succes-

sively, on several test sets (called folds) and averaging the
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resulting measurements gives an estimation of the network

generalization ability.

However, despite the fact that attempts have been made

to prove that cross-validation results in a consistent esti-

mator of the learning algorithm’s generalization, it seems

that this approach does not sufficiently define generaliza-

tion. Several causes are identified by Wolpert [34] for this

problem which are, mainly, related to the difference of the

distribution generating test patterns during cross-validation

from the distribution of the OTS defined by real-world

processes.

Another reason for questioning the efficiency and

unbiasedness of cross-validation is the stochastic splitting

into folds, while, to a lesser extent, one may consider that

cross-validation is computationally intensive since it

requires the training process to be repeated several times.

Finally, to the best of our knowledge, there is not any work

suggesting that cross-validation can be used to assess the

difference in terms of generalization between two networks

that are already trained and, possibly, featuring similar

classification performance.

In this paper, we look at the problem of assessing the

generalization ability of neural networks aiming to show

that it is possible to avoid deficiencies of cross-validation

using a deterministic approach. To this end, we propose a

set membership approach consisting in the definition of the

area of the input space, i.e., the set of all patterns, driving

the network output activity to values which are higher than

some predefined threshold. This threshold defines the cer-

tainty level above which the values of some class-specific

output clearly vote for this class against the others. The

area of the input space satisfying these requirements is

called the domain of validity of the neural network [1, 5].

The proposed approach derives verified results regarding

the domain of validity in the sense that for each class it

contains exactly the area whose patterns are guaranteed to

activate the correct network output. This validity domain

can be reliably computed through IA-based inversion of a

network, as proposed in [1]. Having reliably computed this

area one is certain that there are not any other parts in the

input space affecting generalization.

More precisely, estimation of the generalization ability

using the proposed method focuses on MLP networks

trained to perform some pattern classification task. For

such a task with M classes, we assume an MLP with

M logistic outputs and 1-of-M target encoding. Thus, each

output corresponds to a specific class and the network is

trained (using the available dataset) to provide high values

(ideally equal to 1) for patterns of the corresponding class

only. Once the network training has been completed, we

aim to evaluate the generalization ability of the final net-

work by performing network inversion and focusing on the

parts of the input space forming the network validity

domain. MLP inversion refers to computing the inverse

mapping of a given MLP, i.e., a mapping from the output

domain to the input space. Note that the employed IA-

based inversion technique is reliable in the sense that it

provides verified results in a guaranteed way, as the

interval computations permit to automatically verify the

results obtained [3, 16].

A very convenient characteristic of the interval-based

MLP inversion approach is that it provides a partitioning of

the validity domain as a set of non-overlapping hyper-

boxes with varying size and density. Such a partition pro-

vides important information on what the network has

learned, that we exploit to define (in conjunction with the

available dataset) measures of generalization performance

taking into account issues such as under-training and over-

training. In order to validate the proposed measures, we

carried out a number of illustrative experiments using

artificial and real datasets. The experimental results pro-

vide significant evidence on the potential of the derived

measures to assess the quality of trained MLP classifiers.

The approach presented in this paper constitutes a

deterministic method which can be used to assess the

generalization of a network after training without having to

apply cross-validation on various instances of its archi-

tecture. Thus, the entire dataset can be used for training,

there is no need for separate testing and so, two different

network architectures can be compared in terms of gener-

alization in a deterministic way by considering the area of

the input space effectively seen by each architecture.

The paper is organized as following. Section 2 defines

the problem background and related literature. In Sect. 2.1,

we examine the problems that lead to the introduction of a

new approach, while in Sect. 2.2 we analyze the consid-

erations on which the proposed approach is built. The

application inclined reader may omit this section. Section 3

is dedicated to the description of the basic interval arith-

metic concepts and the inversion procedure based on IA

along with related references. In Sect. 4, we describe and

explain the proposed generalization measures. Section 5 is

devoted to the experimental evaluation and the discussion

of the results obtained. Finally, Sect. 6 provides conclu-

sions and directions of future work.

2 Problem background and literature
review

2.1 Generalization assessment in a classification
context

For the elaboration of the proposed approach, we consider

MLP neural classifiers trained on a classification problem

with M classes, C1;C2; . . .;CM . The problem is defined as a
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set D ¼ ðX;YÞ of P examples of N-dimensional patterns

X ¼ fx1; x2; . . .; xPg, where each one is known to belong to
one of the M classes. The P examples instantiate the ran-

dom variable X , and the desired outputs Y ¼
fy1; y2; . . .; yPg the random variable Y. Moreover, it is

assumed that the joint pdf pðX ;YÞ constitutes a faithful

representation of the original distribution function of the

classification problem space.

When training a neural network one expects that it will

be able to correctly approximate/predict output at unseen

observations of input. This property known as generaliza-

tion is affected by two contradictory issues as nicely stated

in the well-known bias/variance dilemma which refers to

the decomposition of the expected generalization error into

two components: the bias and the variance. Under-training

refers to the errors produced by the inefficiency of the

network to correctly approximate the decision boundaries.

Usually, this is due to the lack of an appropriate network

model or poor training. Over-training refers to the fact that

a large network usually learns specific details of the

training examples (and perhaps the noise in the dataset) and

disregards the regions in the vicinity of the examples which

are very likely to be correctly classified. Both under-

training and over-training contribute to the generalization

error and constitute the two sources of the estimation error

one needs to consider when designing and training a neural

network and more specifically an MLP.

Concerning generalization several studies are reported

in the literature with rather interesting results. For instance,

Wolpert in [31, 32] attempted to derive a mathematical

theory on generalization and many of the results were used

in subsequent works [33–35] where generalization and

cross-validation were closely investigated regarding the

ability to evaluate the performance of learning algorithms.

Knowledge of the distribution of the input data and the

prior of the classes of the problem constitute important

prerequisites for accurately assessing generalization. Other

important factors include, the confidence that the distri-

bution of the training patterns is a good approximation of

the distribution of the input space, the effectiveness of the

training algorithm or even the fitness of the network

architecture with the problem at hand, see [8] and refer-

ences therein. Finally, one should note that the study of

generalization is still an active subject of research [14, 22].

In its origin, cross-validation is a statistical technique for

estimating generalization [20]. However, in practice, it is

K-fold cross-validation that seems to be the standard for

evaluating generalization of a neural network architecture.

On the other hand, generalization performance of a learn-

ing algorithm is defined in terms of its OTS error, Wolpert

[34]. Given that no actual test data exist, K-fold cross-

validation divides the available dataset in K parts of equal

size, which are the folds. Then, the K � 1 folds form the

training set and the K-th fold is left aside for testing. This

process is repeated K times and the final test error is the

average of the K test errors corresponding to the test sets

extracted from the available dataset. There are several

reasons for which K-fold cross-validation is disputed that it

is an efficient and unbiased estimator of the generalization

error.

– In real-world problems, usually the training set is not

produced by the same process as the one giving the test

data. So, in these situations, the use for testing of data

extracted from the training set, especially when these

two sets overlap, is not justified to be unbiased, Wolpert

[34].

– In order to achieve statistically significant results,

cross-validation needs to perform several independent

data splits with test error monitoring. These data splits

result in significant waste of data, inefficient training

and yet a potentially biased estimation of the general-

ization error.

– For real-life applications, only a limited amount of

training examples is available while according to the

theory of stochastic approximation [17, 25] a good

network design should rely on a big number of input

data. In practice, this leads to techniques trying to

increase the available dataset by some sort of data

recycling at the expense of assigning excessive prob-

ability mass on the exact points of the training set

examples. As a result, neural network design is

restricted on excessively weighted examples which

entails over-fitting and poor generalization ability for

the resulting network [15].

– Training a neural network using gradient descent with

random initial weights is not deterministic. This issue

affects cross-validation error which is very likely to be

different from generalization error. So, similarity

between the distributions governing these two errors

is a rough hypothesis.

– Finally, cross-validation is used for determining,

through experiments, among several competing neural

network architectures the most suitable for solving a

specific problem. Hence, this statistical method is not

suitable for determining among two already trained

neural networks which one performs better in terms of

generalization.

2.2 Considerations supporting the new approach

Typically, in problems involving MLP classifiers, an input

example x is classified according to the maximum output

rule: ‘‘x is assigned to class Cj if the jth component of the

network output is greater than all the other components’’
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[9]. In addition, for output values in the interval [0, 1], the

MLP outputs are considered to be equivalent to Bayesian

posterior probabilities of the corresponding classes [24]. As

shown in [7] by Hampshire and Pearlmutter, when the

conditions: (a) perfect training, (b) sufficiently large dataset

and (c) complex network, are met then the relation between

the a posteriori class probabilities and the network output

values is linear and so Pðx ¼ xjjxÞ is mapped to the

interval [0, 1]. However, in practice, due to various per-

turbations, the actual output values are non binary and so

the conditional probability Pðx ¼ xjjxÞ, while still being

linear, it is mapped to the interval ½�; 1� �� for some

appropriate value of � (e.g., � ¼ 0:2). Note that similar

conclusions were, also, provided by Richard and Lippmann

in [24] regarding the degradation of the network estimation

accuracy.

For the majority of the classification tasks, it is com-

monplace when assigning the input pattern to the jth class

to consider the value of the jth output to be in the interval

½1� b; 1�, defined for some suitably chosen value of b
(e.g., 0\b 6 0:4). This provision constitutes an intuitive,

yet practical and efficient way, to deal with uncertainty of

the network decision due to various reasons. On the other

hand, for the same classification rule, an output node is

considered to be inactive if its activation is in the interval

½0; b�. Assuming that b is chosen so that � 6 b, for � as

defined in [7] then it is legitimate to argue that ‘‘this

interval heuristic complies with the aforementioned theo-

retical results.’’

As a consequence, if ½1� b; 1� is the interval of valid

network decisions, it is straightforward to think of the input

data providing valid network decisions. The area of the

input space consisting of those data for which the network

provides a valid output is called the domain of validity of

the network for this output. So, for any class, say Cj, of the

classification problem and a specific network trained on

this problem, there exists a domain of validity defined by

the interval ½1� bj; 1� for the jth output node. For sim-

plicity, here we will assume that for all classes we have

b1 ¼ b2 ¼ � � � bM ¼ b. Finally, the domain of validity of

the network is the union of the domains of validity of the

individual classes. Note that the area of the input space

which does not belong to any of the M domains of validity

corresponds to unclassified input data and corresponds to

output values in the interval ½b; 1� b�. The domain of

validity of the network taken as a union of disjoint domains

together with the area corresponding to the unclassified

input data forms a partition of the input space.

The answer to the natural question of how one can

calculate the domain of validity of a neural network and

more specifically of an MLP has been addressed by the

subject known as neural network inversion. Inversion of a

trained MLP has been the objective of several research

efforts with the aim to show that it permits to define the

area in the input space effectively covered by the network

function [5, 21]. As a consequence, one should be able to

sketch the decision boundaries learned by the network and

to formulate rules governing the relation of the classifica-

tion decision with specific values of the data features.

Hence, neural network inversion has been used either to

provide qualitative conclusions of the neural classification

function [13, 18, 23] or to extract provably correct IF-

THEN rules [6, 27, 29] which explain operation of the

MLP.

The majority of research on neural network inversion

provides only rough estimates of the domain of validity of

an MLP. This is due to the complexity of the inversion

procedure itself, as the whole input space needs to be

investigated. Another reason can be attributed to the fact

that a very fine grained, level of explanation of the neural

network operation would result in the formulation of a very

large number of IF-THEN production rules which would be

inefficient to be exploited by some decision support

mechanism. On the contrary, effective determination of

such rules results in less detailed definition of the validity

domain [10].

In [1], the use of the SIVIA approach [11] has been

proposed for inverting an MLP and defining its domain of

validity. Actually, this method of MLP inversion consti-

tutes a set membership technique based on IA which, given

some interval of the MLP output activity, uniquely deter-

mines a consistent and guaranteed domain in the input

space. Hence, given the interval of the valid network out-

puts, the use of SIVIA provides a reliable estimation of the

domain of validity as it permits to define the regions of

validity in a guaranteed way, while at the same time it

permits to obtain a quantitative estimation of the domain of

validity of the neural network. As we show in the following

section the interval-based inversion method approximates

the domain of validity producing a set of n-dimensional

hyper-boxes that can be exploited to define measures of the

generalization ability of the network.

3 Interval-based inversion and SIVIA

3.1 Basic interval analysis concepts

Interval arithmetic was introduced as a means to perform

numerical computations with guaranteed accuracy and

bounding the ranges of the quantities, used in the compu-

tations. An interval or interval number I is a closed interval

a; b½ � � R of all real numbers between (and including) the

endpoints a and b, with a 6 b. The arithmetic defined on

intervals, rather than real numbers, is called interval
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arithmetic. Whenever a ¼ b the interval is said to be

degenerate, thin or even point interval. Regarding notation,

an interval is usually denoted ½x; x� or [x]. Usually, an

interval object (variable, vector, matrix, etc) is denoted by

x to differentiate it from the explicit bracketed notation

½x; x�. An interval ½x; x� where x ¼ �x is called a symmetric

interval. An n-dimensional interval vector V is a vector

having n components ðv1; v2; . . .; vnÞ such that every

component vi; 1 6 i 6 n is a real interval ½vi; vi�. We need

to note that IRn denotes the set on n-dimensional vectors of

real intervals. The definition of interval objects such as

vectors, matrices, functions, etc. and their subsequent study

resulted in the establishment of IA.

In practical calculations, interval arithmetic operations

are reduced to operations between real numbers [11]. For

the intervals ½x; x�; ½y; y� it can be shown that the following

intervals are produced for each arithmetic operation:

½x; x� þ ½y; y� ¼ ½xþ y; xþ y� ð1aÞ

½x; x� � ½y; y� ¼ ½x� y; x� y� ð1bÞ

½x; x� � ½y; y� ¼ min xy; xy; xy; xy
� �

;max xy; xy; xy; xy
� �h i

ð1cÞ

½x; x� � ½y; y� ¼ ½x; x� � 1

½y; y� ; with ð1dÞ

1

½y; y� ¼
1

y
;
1

y

" #
; provided that 0 62 y; y

h i
ð1eÞ

If ½x� � D is an interval in the domain of a real function

f : D � R ! R then f([x]) is used to denote the range of

values of f over [x]. Computing such a range, f([x]), using

IA tools means to enclose it by an interval which is as

narrow as possible. This constitutes an important matter in

IA as it is used in various problems: localization and

enclosure of global minimizers of f on [x], verification of

f ð½x�Þ � ½y� for given [y], nonexistence of a zero of f in

[x] etc.

In order to enclose f([x]), one needs to define a suit-

able interval function ½f � : IR ! IR such that

8½x� 2 IR; f ð½x�Þ � ½f �ð½x�Þ, see Fig. 1. The interval func-

tion [f], which is called an inclusion function of f, makes it

possible to compute a box [f]([x]) which is guaranteed to

contain f([x]), whatever the shape of f([x]), [11]. If f ðxÞ; x 2
D is computed as a finite composition of elementary

arithmetic operators fþ;�;�;�g and standard functions

such as {exp,sqr,cos,sin,..}, then the inclusion function,

which is obtained by replacing in f the real variable x by an

interval variable ½x� � D and each operator or standard

function by its interval counterpart, is called a natural

inclusion function of f. As noted in [11] the natural inclu-

sion function has important properties such as being

inclusion monotonic, and if f is defined using only con-

tinuous operators and continuous standard functions the

natural inclusion function is convergent.

3.2 The SIVIA approach

SIVIA is a set membership method introduced by Jaulin

and Walter [12] in order to allow for the guaranteed esti-

mation of nonlinear parameters from bounded error data.

The method relies on IA and its application results in

defining an axis-aligned box or a union of axis-aligned

boxes approximating a set of interest. Hence, given a

function f : X ! Y , where X � Rn, Y � Rm and an interval

vector, i.e., a box, ½y� � Y , the objective is to define the set

of unknown vectors x 2 X such that f ðxÞ 2 ½y�. This set can
be defined as S ¼ fx 2 X � Rnjf ðxÞ 2 ½y�g ¼ f�1ð½y�Þ \ X,

where X is the search space containing the set of interest S;

[y] is known in advance to enclose the image of the set f(S)

and S denotes the unknown set of interest. Note that, here,

f�1 denotes the reciprocal image of f, as f may not be

invertible in the classical sense.

The solution proposed by SIVIA for this problem con-

sists in computing boxes and unions of boxes S� and Sþ ¼
S� [ DS which form guaranteed inner and outer approxi-

mations of S as they satisfy the relation S� � S � Sþ, [11].
SIVIA is a branch-and-bound approach which computes

enclosures by recursively exploring the whole search

space. During computation, a box ½x� 2 Rn is designated as,

– feasible if ½x� � S and f ð½x�Þ � ½y�,
– infeasible if ½f �ð½x�Þ \ ½y� ¼ ; and,

– in all other cases, [x] is said to be indeterminate which

means that [x] may be feasible, unfeasible or

ambiguous.

The condition ½x� � S and f ð½x�Þ � ½y� is necessary and

sufficient for [x] to be feasible. Feasible boxes are added to

S� and infeasible become members of the complement of

Sþ denoted N. Finally, any indeterminate box is bisected

and the method recursively examines the two resulting sub-

Fig. 1 A function f, an inclusion function [f] and the images of [x]
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boxes. Bisection is possible up to some limit, which is

preset for the problem and defines its resolution. Boxes that

are indeterminate and cannot be further bisected are added

to the union DS. The method described above is more

formally given by the algorithm 1.

For a more detailed description of the algorithm

implementing SIVIA the reader should refer to [11]. It is

worth noting here that SIVIA applies to any function f for

which an inclusion function [f] can be computed.

Algorithm 1 SIVIA(in: [f ], [y], ε, [x] ; inout: S−, ΔS, N)

Require: Before calling SIVIA initialize [f ], [y], ε;
and set S− := ∅; ΔS := ∅; N := ∅;

1: if [f ]([x]) ⊂ [y] then
2: S− := S− ∪ [x];
3: return;
4: end if
5: if [f ]([x]) ∩ [y] = ∅ then
6: N := N ∪ [x];
7: return;
8: end if
9: if width([x]) < ε then

10: ΔS := ΔS ∪ [x];
11: return;
12: end if
13: bisect [x] getting left and right sub-boxes [x]1 and [x]2
14: SIVIA(f , [y], ε, [x]1, S−, ΔS, N);
15: SIVIA(f , [y], ε, [x]2, S−, ΔS, N);

An example of the application of SIVIA approximating

the interior of a circle having its center at the beginning of

the axes and radius equal to 1 is shown in Fig. 2. In this

Figure, the red area is defined by SIVIA and corresponds to

the points ðx1; x2Þ in the input area ½�2; 2� � ½�2; 2� for
which f ðx1; x2Þ 2 ½0; 1� i.e., the interior of the circle. Note

that this approximation was computed with e ¼ 0:05 for the

approximation threshold used by SIVIA which corresponds

to the yellow area. What is important to note in this Fig-

ure is that application of SIVIA forms boxes that become

smaller and smaller as they approach the circumference of

the circle, while it forms larger boxes to cover areas that

are away from the boundaries.

Finally, let us remind, here, that to the extent the MLP

model constitutes a successful implementation of the

classification function, the different classes are successfully

discriminated and so SIVIA successfully defines the cor-

responding domains of validity as disjoint areas in the input

space. The domain of validity for an MLP network trained

on a classification problem with M classes is defined as the

union of M domains of validity one for each class [1].

4 Detailed description of the proposed
approach

As noted in the previous sections, the aim of the proposed

approach is to repudiate the uncertainty introduced by

cross-validation, when evaluating generalization, by

adopting a deterministic computing scheme based on the

exact level of classification decision, which is consistently

projected on the input space in order to reliably define the

area promoting the chosen level of classification decision.

For a detailed description of the proposed approach, first

we need to introduce and analyze the key concepts on

which this deterministic method is built. There are three

interrelated concepts which constitute the foundation of the

proposed method. These concepts are:

– the level of the classification decision of the neural

network,

– the classification error taken into account by the

previous level, and,

– the domain of validity corresponding to the level of

classification decision.

These concepts and their relation are analyzed in the fol-

lowing subsection.

4.1 Key concepts of the proposed approach

The level of the classification decision The maximum

output rule [9], typically, used for classification decisions

as well as for computing confusion matrices introduces

uncertainty in the classification decision which may vary

from one training-testing experiment to the other, espe-

cially, when patterns are infected with noise. This is clearly

true when classes have largely overlapping distributions.

To avoid this burden, we introduce a clear cut to the

classification decision using what we call a b-cut

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2 The interior of a circle approximated by SIVIA
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classification decision. So, we define the interval ½1� b; 1�
which delimits the output activity of the network to a range

of values for which we are confident that it contains valid

classification decisions. This affects both the classification

error but, also, the area of the input space activating this

classification decision. In ‘‘Appendix A’’, we provide a

number of experiments in order to illustrate this argument.

The value of b should be carefully selected in order to

reflect the right level of classification decision. The right

choice of b makes it possible for the interval ½1� b; 1� to
enclose the majority of the output values. A realistic way to

select the value of b relies on the histogram of the MLP

output values. The value of b, so considered, is the one

which delimits the interval with the HPD for the MLP

output. This choice reveals the relation of the b-cut clas-
sification decision with the credible region of the corre-

sponding class variable x. We consider that this point

merits to be carefully studied and so it is left outside the

work of this paper, where the value of b is manually

specified, by simple observation of the output values

histogram.

The classification error Defining a b-cut classification
decision affects the classification error considered for the

neural classifier. Depending on the quality of the training

process, small values of b reduce the uncertainty of the

classification decision but increase the classification error,

while on the contrary, large values of b tend to diminish the

classification error but hide the uncertainty induced by the

classification decision due to incomplete training or other

reasons.

Assumptions of the previous paragraph on the choice of

b with regard to the HPD of the network seems to be a

realistic solution. However, such a choice of b is not

suitable when one compares two trained networks as it

promotes the idiosyncrasies of each network. We believe

that a more realistic and objective solution is to choose the

smallest value among all the b0s exhibited by different

outputs of the networks.

The domain of validity corresponding to the level of

classification decision Defining the domain of validity of a

network classifier corresponding to a level for the classi-

fication decision, results in determining the area of the

input space producing output values of the network clas-

sifier above the level of classification decision. For some

specific class, this area includes all the parts of the input

space attributed by the network to this class. This area

comprises, also, the parts corresponding to both interpo-

lation and extrapolation as performed by the network

classification function.

4.2 Generalization evaluation based
on the domain of validity

In the context of the proposed approach, an MLP classifies

correctly a pattern into class, say Cj, if the value of the jth

output is in the interval ½1� b; 1�. In other words, the

pattern at hand is correctly classified if it lies within the

area of the domain of validity corresponding to the

respective class. Therefore, the classification rule applied

is: the network classifies those patterns that fall into the

area of the input space learned by the network during

training. This area is, precisely, the domain of validity of

the network as defined by the IA-based inversion of the

network. The above statement covers, also, classification of

previously unseen patterns.

So, the extent to which the domain of validity covers the

input space defines the area effectively classified by some

neural classifier no matter if this contains known or as yet

unknown patterns. In conclusion, we may state that gen-

eralization can be estimated by a quantity which is pro-

portionally related to the size, i.e., the volume, of the

domain of validity of a trained network.

With the proposed approach, the domain of validity is

defined as a set of axis-aligned boxes of varying size and

density. These characteristics reflect the quality of the input

data (noise and class distribution), and the outcome of the

training process affected by under-training, over-training

and the ability to separate the classes. In ‘‘Appendix B’’,

we discuss these aspects providing a number of experi-

ments together with Figures illustrating these

considerations.

A detailed qualification of each part of the domain of

validity is not within the scope of the proposed method and

to the best of our knowledge, in the literature no method is

reported for performing such a qualification. However,

when computing the volume of the domain of validity, for

each class, we take into account for each hyper-box the

number of patterns correctly classified or misclassified in

the hyper-box. Such a consideration gives an idea of

whether a hyper-box is part of a class area properly

speaking or it is the result of interpolation or extrapolation

of the network. These aspects are discussed in more details

in the following subsection.

4.3 The new measures for evaluating
generalization

Based on the above, we put forward the conclusion that the

larger the domain of validity, the bigger its volume and so

the higher the probability for some unknown pattern to be

in this area and be classified. Hence, the necessary condi-

tion for some unknown pattern to be classified by the
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network is to lie within the domain of validity of its

respective class.

For any output node, given the interval ½1� b; 1�, the
inversion using the SIVIA method produces an inner

approximation of the domain of validity as a union of axis-

aligned boxes. The sum of the volumes of these boxes

gives the volume of the domain of validity of each class Cj

which is denoted here by Vj. Hence, if V1;V2; . . .;VM are

the volumes computed for the M classes, the total volume

of the domain of validity of the network is given by

Vnet ¼
PM

i¼1 Vi. If Vinput denotes the finite volume of the

input space, then the ratio Vnet

Vinput
, can be considered as the

probability for some arbitrary pattern to be classified by the

network.

Note that this probability can be maximized by the

trivial solution where the output is valid (i.e., in the interval

½1� b; 1�) for the whole input domain. In this case, one

should take into account that a large percentage of the

training patterns would be misclassified. Despite the fact

that this is the result of poor training and, normally, should

not happen, in the proposed method we address this issue

even in more usual cases of inexact training. Actually, what

we expect is that the network has both a large domain of

validity and minimum percentage of misclassified or

unclassified patterns. If l denotes the number of misclas-

sified or unclassified training patterns and P is the total

number of training patterns, we define the following

measure of network performance that quantifies these two

requirements:

Gnet ¼
Vnet

Vinput

� l

P
: ð2Þ

Hence, Gnet is maximized when the domain of validity Vnet

is large and the network correctly classifies most of the

training patterns. On the contrary, it attains low values

when the validity domain Vnet is small and/or the network

either classifies incorrectly or does not classify several

patterns.

Based on the discussion on under-training and over-

training, in ‘‘Appendix A’’, we claim that low values of

Gnet are indications of network under-training, i.e., either

the network is not trained sufficiently or its architecture is

smaller than required. Moreover, low values for Gnet may

indicate over-fitting. This happens when then network

architecture is oversized for some problem and many of the

hidden nodes are used to form small regions around iso-

lated training patterns or to shape details of the classes.

These cases cannot be effectively addressed by Gnet which

is considered as a macroscopic measure in the sense that it

is based on the whole volume of the validity domain and

the total number misclassified/unclassified patterns,

without focusing on the local details in various regions of

the validity domain.

While under-training can be easily identified during

training, over-training needs to be more carefully consid-

ered especially in the case of large networks. For this issue,

we need to characterize the ability of the network to cope

with the classes and patterns at a local level which means

that each box should be taken into account to the extent it

contains correctly classified patterns. So, we propose a

second measure, called Enet, which takes into account local

information of the domain of validity, as it considers for

each valid box both its volume and its performance (i.e.,

whether the training patterns inside a box are correctly

classified or not). More specifically, Enet is computed as

follows:

– for each pattern xn in the training set X let CðxnÞ denote
the class of this pattern,

– if Ck, 1 6 k 6 M, is the kth class then the following set

of boxes is defined by IA-based inversion of the kth

output node of the MLP: Bk ¼ Bk
1;B

k
2; . . .;B

k
Nk

n o
,

– let Vk
i denote the volume of Bk

i ,

– let Xk
i be the set of patterns xn found to be inside the

box Bk
i .

For each box Bk
i we compute the local measure Ek

i :

Ek
i ¼

X
xn2Xk

i

1C CðxnÞ ¼ Ckð Þ � 1C CðxnÞ 6¼ Ckð Þð Þ

2
4

3
5Vk

i ;

ð3Þ

where 1C is a suitable indicator function. Then the measure

Enet is obtained by summing all Ek
i :

Enet ¼
XM
k¼1

XNk

i¼1

Ek
i : ð4Þ

This measure tends to consider hyper-boxes based on the

number (density) of correctly classified patterns. This has

the following effects:

– It deals with overlapping between classes. Actually,

hyper-boxes covering areas where classes happen to

overlap are included in some class to the extent they

contain patterns of this class. Otherwise, they are not

counted.

– It rejects regions of the domain of validity that do not

contain any pattern at all. These areas of interpolation–

extrapolation are taken into account by Gnet but they do

not contribute to the local behavior of the decision

surface between classes.
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– It favors the volume of hyper-boxes with high classi-

fication performance, i.e., containing many correctly

classified training patterns.

A side effect of the last property is that the Enet measure

provides lower values in the case of over-training. Actu-

ally, in the case of over-training, due to the existence of

several small regions, the validity domain contains a higher

number of low volume hyper-boxes. Therefore, even if the

number of wrongly classified patterns is small, usually

these patterns are included in low volume hyper-boxes. In

such a case, each hyper-box contains a small number of

patterns. Consequently, for a network that has been over-

trained, the value of Enet is expected to be lower compared

with the case a well-trained network. In general, it can be

considered that Enet acts as a complementary metric to the

first measure Gnet.

In order to make the above arguments clear, we propose

to observe the values of Gnet and Enet related to Figs. 9 and

10 in ‘‘Appendix B’’. Figure 9 illustrates the domain of

validity for the networks 2–4–2, 2–2–2 and 2–25–2. By

simple visual inspection, one is able to verify that the

network 2–2–2 cannot tackle this problem. Visual com-

parison of the networks 2–4–2 and 2–25–2 shows that the

first one exhibits higher generalization as it is able to

classify a larger area of the input space. Respective values

for these figures are those found in Table 1. Moreover, one

is able to compare the values of the measures Gnet and Enet

found in Table 1 and the values of the same network

architectures trained on the same dataset, affected with

noise, as they are displayed in Table 3.

In order to provide a unique metric of the generalization

ability of a trained MLP, we propose to combine the two

metrics Gnet and Enet into a single one. The formula for

computing this new metric needs to comply with the fol-

lowing arguments:

‘‘According to its derivation rule, Enet is a quantity

which takes values in the interval ½�Vnet;Vnet�, where Vnet

denotes the total volume of the domain of validity. It is

obvious that a zero or negative values of Enet denote that

the network fails to correctly classify the input patterns,

while positive values indicate that the majority of volumes

of the hyper-boxes considered by Enet contain correctly

classified patterns. While the role of Enet is to quantify

these qualitative characteristics of the network classifica-

tion function Gnet is totally unaware of these subtleties and

so it needs to be modified to reflect this situation as it is

depicted by Enet.’’

In Eq. 5, we propose a formula for effectively combin-

ing Gnet and Enet defining a new measure, called Mnet as the

product of Gnet with the hyperbolic tangent (tanh) of Enet.

The function ‘tanh’ is used to transform the Enet values

(which could be either positive or negative) in the interval

½�1; 1�, so that they are of the same scale as the Gnet values.

Note that Mnet can take values between �1 and 1. In the

case where Enet is negative, wrong classifications are

expected to be higher than correct ones, thus the network is

poorly trained. In this case the value of Mnet is also nega-

tive indicating an unacceptable network. In the case where

Enet is positive, tanh(Enet) is also positive, thusMnet value is

greater than zero and its value is high when both Gnet and

Enet measures are high. The results obtained in the exper-

iments indicate that Mnet constitutes an effective single

measure for assessing generalization.

Mnet ¼ Gnet tanhðEnetÞ: ð5Þ

5 Experimental evaluation and discussion

In this section, we describe a number of experiments car-

ried out on artificial and real-world datasets in order to

support the statements elaborated in the previous sec-

tion. Then, we discuss the results obtained pointing out the

characteristics supporting our hypotheses as well as some

issues needed to be further considered in future work.

5.1 Experimental setup and evaluation

For the experimental evaluation of the proposed approach,

six different datasets were used; two of them are artificial

and the rest are real-world datasets found in the Machine

Learning Repository of the University of California Irvine.

The experiments with the two artificial and the Fisher-Iris

datasets were executed using the SCS Toolbox [30] a

package developed by Tornil-Sin and Puig at the Technical

University of Catalonia in order to implement in Matlab the

functionality related to SIVIA. For the interval

Table 1 Results for the two-dimensional artificial dataset (Higher

values indicate better generalization)

Network model Training error Gnet Enet Mnet

2–2–2 0.0892 0.1904 6.4110 0.1904

2–3–2 0.0294 0.7574 13.8841 0.7574

2–4–2 0.0100 0.9700 11.4154 0.9700

2–5–2 9.9767e-05 0.9284 7.6616 0.9284

2–6–2 6.8297e-05 0.9226 10.4967 0.9226

2–8–2 9.9382e-05 0.8661 7.6610 0.8661

2–10–2 4.6347e-05 0.8960 11.6237 0.8960

2–15–2 5.3992e-05 0.8611 10.1423 0.8611

2–20–2 7.9098e-05 0.8823 7.2959 0.8823

2–25–2 4.9104e-05 0.8693 6.8902 0.8693
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computations, the SCS Toolbox relies on INTLAB, the

Matlab library of S. Rump [26] for interval computations.

The experiments with the other three datasets, namely,

Bank Note Authentication, Vertebral Column (2 classes

dataset) and Seeds, which are real-world problem, were

carried out using IBEX, the C?? Library for interval com-

putations, developed by Gilles Chabert et al. and released

under the GNU Lesser General Public Licence (http://www.

ibex-lib.org/). For all experiment results are shown in

respective Tables 1, 2, 3, 4, 5, 6, 7, 8, where the best network

architecture and related results are noted with boldface.

For all the experiments, the following disposition was

retained: for each MLP used in the experiments, after

training, a suitable natural inclusion function was written as

a Matlab script function, or a C?? one. These functions

were used by the specific SCS and the IBEX implemen-

tations of SIVIA, respectively. Moreover, for all experi-

ments, the volume of the input space is the volume of the

axis-aligned hyper-box defined by the size of each feature

in the training data i.e.,

Vinput ¼
YN
i

jxmax
i � xmin

i j: ð6Þ

The first dataset is an artificial dataset for the classification

of 200 patterns belonging to one of two classes, originally

defined in [28]. The distribution of each class is a mixture

of Gaussian designed in order to increase the difficulty in

separability between the clusters formed by the patterns.

The obtained dataset, presented in Fig. 3, is perfectly bal-

anced as it accounts 100 patterns per class.

5.1.1 First experiment

For this experiment, we used the above dataset together with

10 MLPs having an architecture 2–H–2 withH taking on the

values 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, and using the

hyperbolic tangent for all nodes in the hidden layer and the

logistic sigmoid for the output nodes. The MLP networks

were trained on the whole dataset using the Levenberg–

Marquardt algorithm, and the proposedmetrics were applied

on the trainedMLPs. The values of the metrics computed are

shown in Table 1. In this experiment, the domain of validity

is defined for each network for the interval [0.9, 1] meaning

that the more appropriate value for having valid output val-

ues from the network was estimated to be b ¼ 0:1.

According to the results presented in Table 1, it seems

that the MLP having the best generalization for the two-

dimensional Artificial Dataset is the one with architecture

2–4–2. However, by performing a second round of training

of the same MLP networks on the same problem using a

different training algorithm, that is the scaled conjugate

gradient (SCG), we see that it is not the same network

having the best generalization performance.

More precisely, in Table 2, we present the training error

obtained for this second training round and the values for the

proposed metrics. The valid output interval for computing

the validity domains was, here, set to [0.9, 1] and the

bisection threshold parameter of the SIVIA algorithm used is

the same as in the previous trial. Notice that in this case the

MLPwith the best generalization performance is the network

2–5–2 which proves to be slightly better than the network

2–10–2. Another point that needs to be commented is that the

comparison of respective values in Tables 1 and 2 shows that

even for the same networks, depending on the training

algorithm the domains of validity can have different size and,

so, the networks have different generalization ability.

5.1.2 Second experiment

This experiment was executed with the same dataset, as

previously, which was tampered with in order to introduce

noise in the form of badly placed patterns. This was done

by changing the class label of 18 randomly selected

Table 2 More results for the two-dimensional Artificial Dataset

(Higher values indicate better generalization)

Network model Training error Gnet Enet Mnet

2–2–2 0.1136 0.0587 6.3334 0.0587

2–3–2 0.0345 0.7477 12.1897 0.7477

2–4–2 0.0227 0.7923 10.7593 0.7923

2–5–2 0.0055 0.9066 15.0557 0.9066

2–6–2 9.9001e-05 0.8984 11.5352 0.8984

2–8–2 9.9409e-05 0.8660 12.6804 0.8660

2–10–2 9.9635e-05 0.9257 11.6573 0.9257

2–15–2 8.8107e-05 0.8846 8.9206 0.8846

2–20–2 9.1273s-05 0.8547 7.9647 0.8547

2–25–2 9.0279e-05 0.8636 7.7780 0.8636

Fig. 3 The 2 dimensional artificial dataset
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patterns over the 200 of both classes and resulted in the

dataset shown in Fig. 4. Again, a set of MLPs of the same

architecture 2–H–2, as previously, with H taking on the

values 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40 were

trained on the whole dataset and the metrics Gnet, Enet as

well as the compound one Mnet were computed. The results

obtained are presented in Table 3. The value of b for this

experiment was set to 0.1 and so the domain of validity for

each network was computed for the interval [0.9, 1].

One may notice, here, that the network 2–20–2 seems to

dispose the largest validity domain and, hence, it seems to

give the better generalization performance. This conclusion

is further supported by the value of Enet giving the best

value for Mnet. It is important to note, here, that given this

‘‘weird’’ dataset, in order to study over-training all net-

works were trained without precaution of early stopping.

This explains, somehow, why the network with the best

performance is the one with 20 nodes and not the network

with 8 nodes which demonstrates better behavior con-

cerning over-training but covers significantly less part of

the input space.

5.1.3 Third experiment

This experiment was carried out using a three-dimensional

artificial dataset consisting of 3 classes. The distribution of

each class is a Gaussian and the dataset consists of 500

patterns which is unbalanced as 200 belong to class 1, 100

belong to class 2 and the last 200 are taken from class 3.

Figure 5 displays the dataset in a three-dimensional plot.

The networks used in this experiment are also MLPs

having an architecture 3–H–3 with H taking on the values

3, 4, 5, 6, 8, 10, 15, 20, 25, and using the hyperbolic tan-

gent for all nodes in the hidden layer and the logistic sig-

moid for the output nodes. The networks were trained with

the Levenberg–Marquardt algorithm until reaching a

training error set to 0.001 or for a maximum number of

2000 epochs. By simple inspection of the histogram of the

output values for these networks, we concluded that the

interval [0.9, 1] should be used by SIVIA in order to define

the validity domains. The values of the metrics Gnet, Enet

and Mnet computed for this experiment are shown in

Table 4 below. In this experiment, we notice that the net-

work 3–5–3 gives the best score for both measures Gnet and

Enet and therefore its value for Mnet is the best among the

networks in this experiment. So, we may conclude that this

network gives the best generalization for this training

dataset.

Table 3 Results for the Noisy two-dimensional Artificial Dataset

(Higher values indicate better generalization)

Network model Training error Gnet Enet Mnet

2–2–2 0.1502 0.0172 2.3285 0.0169

2–3–2 0.0972 0.3285 4.4934 0.3284

2–4–2 0.0744 0.5732 9.7774 0.5732

2–5–2 0.0601 0.7986 8.5169 0.7986

2–6–2 0.0550 0.8187 3.4648 0.8171

2–8–2 0.0400 0.9031 14.5668 0.9031

2–10–2 0.0273 0.7644 4.0001 0.7639

2–15–2 0.0130 0.8724 11.1084 0.8724

2–20–2 0.0100 0.9628 6.5710 0.9628

2–25–2 8.2230e-05 0.9227 5.1409 0.9226

2–30–2 6.8882e-05 0.9326 3.9244 0.9319

2–35–2 4.2505e-05 0.9473 4.4260 0.9470

2–40–2 9.2041e-05 0.9283 3.2069 0.9253

Fig. 4 The two-dimensional dataset tampered with by noise on the

class labels

Fig. 5 The three-dimensional dataset with three classes
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5.1.4 Fourth experiment

The dataset used in this experiment is the well-known

Fisher-Iris problem. A number of 6 MLPs were trained on

this dataset. These networks all have an architecture 4–H–3

with H taking on the values 2, 3, 5, 8, 10, 15, and they use

the hyperbolic tangent for all nodes in the hidden layer and

the logistic sigmoid for the output nodes. Each MLP was

trained with the Levenberg–Marquardt algorithm until

reaching an MSE of 0.001 or for a maximum number of

5000 epochs. The value retained for b is 0.2 and, so, the

interval [0.8, 1] was used by SIVIA for the definition of the

validity domains of the trained MLP networks. The results

obtained for the proposed measures and the different MLP

networks are summarized in Table 5.

5.1.5 Fifth experiment

For this experiment, we used the dataset of the Vertebral

Column problem. In this problem, the biomedical data of

310 patients are used for two possible classification tasks.

We retained the second task, where the categories Disk

Hernia and Spondylolisthesis of the first task are merged

into a single category labeled as ’abnormal’. So, this task

consists in classifying patients as belonging to class Nor-

mal (100 patients) or Abnormal (210 patients). We used 10

different MLPs with one hidden layer, that is the archi-

tecture 6–H–2 with H taking on the values

3, 4, 5, 6, 8, 10, 15, 20, 25, 30 and using the hyperbolic

tangent for all nodes in the hidden layer and the logistic

sigmoid for the output nodes. Each MLP was trained with

the Levenberg–Marquardt algorithm in two different ways

one using a validation set with early stopping to avoid

over-training and a second one without any precaution for

over-training that is until the output error reaches an MSE

of 0.001 or for a maximum number of 5000 epochs. The

value retained for b is 0.2 and, so, the interval [0.8, 1] was

used by SIVIA for the definition of the validity domains of

the trained MLP networks.

The results obtained for the proposed measures and the

different MLP networks are summarized in Table 6. Based

on these results, the following remarks can be done

regarding the measures of the proposed approach:

– The measures clearly derive the best architecture for

this classification problem. The difference in the choice

of the network between the two training methods i.e., 3

or 4 nodes in the hidden layer is negligible.

– The values of Enet indicate that this measure takes into

account the over-training effect for both training

methods. This is especially true for the training without

early stopping where over-training almost surely

happens.

– The evolution of the values of Mnet for the case of

training with validation set complies with the well-

known rule (Occam’s razor), for sufficiently trained

network, the most suitable architecture in terms of

generalization is that one with less nodes in the hidden

layer.

– It is obvious that he previous remark is not valid when

training of a network is done without over-training

precautions.

5.1.6 Sixth experiment

For this experiment, we used the dataset of the Bank Note

Authentication problem. This dataset contains the features

of image data taken from ‘‘genuine and forged banknote-

like specimens’’. The digitally processed images have

400� 400 pixels, and the features are extracted using

wavelet transform. The features are: variance, skewness,

kurtosis and entropy of the wavelet transformed image.

Based on the values of these feature, each image is clas-

sified as belonging to a genuine or a forged banknote-like

specimen. The classes have 762 and 610 patterns. We

trained 10 different MLPs on this dataset. These networks

Table 4 Results for the three-dimensional Artificial Dataset (higher

values indicate better generalization)

Network model Training error Gnet Enet Mnet

3–3–3 0.0093 0.8646 17.8032 0.8646

3–4–3 0.0080 0.9000 29.1629 0.9000

3–5–3 0.0067 0.9248 56.1068 0.9248

3–6–3 0.0020 0.8561 33.1453 0.8561

3–8–3 0.0027 0.8444 9.9164 0.8444

3–10–3 0.0040 0.8864 40.0438 0.8864

3–15–3 0.0027 0.8925 6.5828 0.8925

3–20–3 0.0013 0.8900 6.1050 0.8900

3–25–3 0.0020 0.8863 4.7675 0.8862

Table 5 Results for the Fisher-Iris Dataset (Higher values indicate

better generalization)

Network model Training error Gnet Enet Mnet

4–2–3 0.0040 0.4492 0.3303 0.1432

4–3–3 2.2820e204 0.7216 3.5389 0.7204

4–5–3 5.0900e-04 0.5483 1.2730 0.4686

4–8–3 3.1881e-04 0.6072 0.8468 0.4186

4–10–3 1.1542e-04 0.3781 0.5105 0.1778

4–15–3 2.7132e-04 0.4407 0.4828 0.1976
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all have an architecture 4–H–2 with H taking on the values

2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and they use the hyperbolic

tangent for all nodes in the hidden layer and the logistic

sigmoid for the output nodes. Each MLP was trained with

the Levenberg–Marquardt algorithm with early stopping to

avoid over-training setting for the output error an MSE of

0.001 and a maximum number of 5000 epochs. The value

retained for b is 0.2 and, so, the interval [0.8, 1] was used

by SIVIA for the definition of the validity domains of the

trained MLP networks.

The results obtained for the proposed measures and the

different MLP networks are summarized in Table 7. Based

on these results, we deduce that the network 4–4–2 is the

most efficient in terms of generalization for this specific

problem with the classification decision level set to

b ¼ 0:2. Both inefficient and overqualified network archi-

tectures are revealed by the values of the proposed mea-

sures. As in the previous experiment, the evolution of the

values of Mnet complies with the well-known rule (Oc-

cam’s razor), for sufficiently trained network the most

suitable architecture in terms of generalization is that one

with less nodes in the hidden layer.

5.1.7 Seventh experiment

For this experiment, we used the dataset of the Seeds

problem. This dataset concerns the classification of kernels

belonging to three different varieties of wheat: Kama, Rosa

and Canadian. The dataset consists of 70 elements of each

class. Seven geometric parameters of wheat kernels were

measured and are the features of each pattern. These geo-

metric parameters are: area (A), perimeter (P), compactness

(C ¼ 4 	 pi 	 A=P2), length of kernel, width of kernel,

asymmetry coefficient and length of kernel groove.

We trained 8 different MLPs on this dataset. These

networks all have an architecture 7–H–3 with H taking on

the values 2, 3, 4, 5, 6, 7, 8, 10 and they use the hyper-

bolic tangent for all nodes in the hidden layer and the

logistic sigmoid for the output nodes. Each MLP was

trained with the Levenberg–Marquardt algorithm with

early stopping to avoid over-training setting for the output

error an MSE of 0.001 and a maximum number of 5000

epochs. The value retained for b is 0.2 and, so, the interval

[0.8, 1] was used by SIVIA for the definition of the validity

domains of the trained MLP networks.

The results obtained for the proposed measures and the

different MLP networks are summarized in Table 8. Based

on these results, we deduce that the network 7–5–3 is the

most efficient in terms of generalization for this specific

problem with the classification decision level set to

b ¼ 0:2. The most impressive in these results concerns the

very small values of Enet for all networks. The explanation

we may give is that this is a sparse dataset with only 210

patterns dispersed in three classes. However, the values of

Mnet are representative of the behavior of the networks for

this classification problem. Again the values of Mnet seem

to comply with the rule that for sufficiently trained network

the most suitable architecture in terms of generalization is

that one with less nodes in the hidden layer.

Table 6 Results for the Vertebral Column 2-classes Dataset

Network model Results of training with validation set (early stopping) Results of training without validation set (no early stopping)

Gnet Enet Mnet Gnet Enet Mnet

6–3–2 0.7346 0.1676 0.1220 0.7049 1.1717 0.5814

6–4–2 0.7450 1.1260 0.6032 0.6068 0.0000 0.0000

6–5–2 0.7608 0.5441 0.3774 0.6203 0.0007 0.0004

6–6–2 0.6724 0.5106 0.3163 0.6191 0.0157 0.0097

6–8–2 0.7345 0.1760 0.1279 0.6159 1.1370 0.5010

6–10–2 0.6257 0.0639 0.0399 0.6983 0.2054 0.1415

6–15–2 0.6659 0.0089 0.0059 0.6746 0.0391 0.0264

6–20–2 0.6686 0.0200 0.0134 0.6400 0.0279 0.0179

6–25–2 0.7094 0.0222 0.0157 0.6012 0.0298 0.0179

6–30–2 0.6467 0.0289 0.0187 0.5538 0.0039 0.0022

Table 7 Results for the Bank Note Authentication Dataset

Network model Gnet Enet Mnet

4–2–2 0.5710 9.0786 0.5710

4–3–2 0.7106 2.4860 0.7008

4–4–2 0.7943 34.2739 0.7943

4–5–2 0.6470 13.2994 0.6470

4–6–2 0.7354 9.2867 0.7354

4–7–2 0.7225 11.4105 0.7225

4–8–2 0.6033 18.9183 0.6033

4–9–2 0.6095 2.2829 0.5970

4–10–2 0.6087 0.5761 0.3164

4–15–2 0.6070 0.6485 0.3464
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5.2 Comparison with K-fold cross-validation

Though a comparison of the proposed approach with cross-

validation is not relevant in the sense that these two

approaches aim to assess generalization of neural networks

from completely different points of view and stages of

development, here we present the results on two experi-

ments we designed and carried for our previous work [2] in

a specific context. In this context, the proposed approach is

applied to every fold set for cross-validation and the final

values of the measures are averaged over the values

obtained on the different folds. These results were verified

and minor corrections were made. Hereafter, we offer a

more detailed analysis of the results.

The first experiment concerning the comparison of the

proposed approach against K-fold cross-validation uses the

two-dimensional artificial dataset with 200 patterns as in

Sect. 5.1, above. K-fold cross-validation was applied to this

dataset with K ¼ 20, thus, giving a number of 20 training

trials with 19 subsets while holding out one and using it as

test subset. A set of 8 MLPs was used having an archi-

tecture 2–H–2 with H being successively

4, 5, 6, 8, 10, 15, 20, 25, and having the hyperbolic tan-

gent for all nodes in the hidden layer and the logistic sig-

moid for the output nodes. Each MLP was trained with the

Levenberg–Marquardt algorithm until reaching a MSE of

0.001 or for a maximum number of 5000 epochs thus

giving a total number of ð20 trials� 8modelsÞ ¼ 160

training trials.

It is worth noting here that for each trial (a network

architecture trained on 20 folds) the generalization was

computed as the average of the correctly classified test

patterns for the cross-validation method. Moreover, the

values of the proposed measures, Gnet and Enet, were

computed with respect to the K-fold splitting. This means

that for each network after training it with K � 1 folds the

trained network was inverted in order to determine its

validity domain. As a result, we obtained 20 different

domain of validity and we computed the corresponding

values for the measures Gnet and Enet, while the final values

for these measures are computed by averaging the 20

values of the folds. The interval of the network output

values inverted using SIVIA was [0.8, 1]. Note, that in this

experiment, only the test patterns were used for deter-

mining whether a hyper-box should take part in the Enet

sum. This was done in order to be inline with cross-vali-

dation and the K-fold splitting of the dataset.

Table 9 outlines the results of this experiment. In order

to facilitate comparison with the values computed by K-

fold cross-validation, the values of Gnet are multiplied by a

factor of 100 and they are reported in the form of per-

centage. One may notice that the generalization measures

provided by the proposed approach are consistent with

theory i.e that generalization degrades as the number of

hidden units, i.e., the complexity of the MLP increases.

Obviously, this is not the case with the values computed by

K-fold cross-validation.

The second experiment presented, here, for the com-

parison of the proposed approach with K-fold cross-vali-

dation, using the Fisher-Iris dataset. This experiment, also,

was designed and presented in [2] and the verification of

the result did not reveal any difference with initial ones.

The dataset was divided in ten subsets in order to compare

the results obtained by the proposed approach with the

multifold (10-fold) cross-validation. A set of 6 MLPs were

used and they all have the same architecture 4–H–3 with

H being successively 2, 3, 5, 8, 10, 15. All MLPs use the

hyperbolic tangent for the nodes in their hidden layers and

the logistic sigmoid for their output nodes. They are trained

with the Levenberg–Marquardt algorithm until reaching an

MSE of 0.001 or for a maximum number of 5000 epochs.

Concerning cross-validation, for each fold the general-

ization performance is computed as the rate of the correctly

classified test patterns and the total of 10 values are aver-

aged to provide a mean value for the generalization of the

corresponding network. Regarding the proposed approach,

the measures Gnet and Enet were computed following the

same computing scheme as in the previous experiment.

This turned out to give for each trained network 10 dif-

ferent domains of validity and respective values for the

measures which are averaged to obtain the final ones

shown in Table 10. The interval of the network output

values inverted using SIVIA was [0.8, 1]. Again, in order

to facilitate comparison with the values computed by K-

fold cross-validation, Gnet is here multiplied by a factor of

100 and its values are given in the form of percentage.

Note, that as in the previous experiment only the test pat-

terns were used for determining whether a hyper-box

should take part in the Enet sum. This was done in order to

be inline with cross-validation and the K-fold splitting of

the dataset.

Table 8 Results for the Seeds Dataset

Network model Gnet Enet Mnet

7–2–3 0.5465 0.0001 0.0001

7–3–3 0.4727 0.0538 0.0254

7–4–3 0.8795 0.0168 0.0148

7–5–3 0.8954 0.0346 0.0310

7–6–3 0.9102 0.0144 0.0131

7–7–3 0.8434 0.0101 0.0085

7–8–3 0.8648 0.0077 0.0066

7–10–3 0.8287 0.0072 0.0060
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5.3 Discussion

Following the previous experiments, a number of issues

can be discussed concerning the analysis and the assump-

tions in this paper. First, one should note that the values of

Gnet, Enet and Mnet provide relevant indicators concerning

the generalization ability of the networks used in the

experiments as they reflect the quality of the trained net-

works in terms of generalization. This is true, especially,

concerning the values of the measures in the cases of

under-training and over-training as well as the compliance

of the values observed with the rule relating the general-

ization ability of a network with its complexity.

The values obtained in all experiments clearly depend

on the level of classification decision ðbÞ set but also on the

complexity of the network and the outcome of its training.

As noted in Sect. 4.1, choosing the right value for b is

important in defining the domain of validity corresponding

to a classification decision with minimal uncertainty. A

choice based on the HPD of the network output (any out-

put) constitutes a reasonable choice which merits to be

further investigated in future work under the assumption

that the resulting domain of validity corresponds to a

credible set defined for the value of b. However, for any
choice of b its value extends or retracts the corresponding

domain of validity affecting mainly Gnet and to a much

lesser extent Enet which depends on local information of the

domain of validity. Finally, it goes without saying that if

one needs to compare generalization of two network

architectures on the same problem then one has to choose

the same value of b for both networks.

When comparing the proposed approach with K-fold

cross-validation, we need to note that, in contrast with this

widespread technique, the proposed approach needs no test

set for assessing generalization and takes into account the

whole dataset. Even in the case of networks trained on

parts of the dataset as in the case of the experiments

comparing the proposed approach with K-fold cross-vali-

dation Tables 9 and 10 show that the values of the metrics

Gnet, Enet and Mnet are more representative of the gener-

alization ability of the networks. Actually, ‘‘small’’ MLPs

give lower values for these measures, thus, indicating

under-training, until some ‘‘critical’’ architecture for which

the values of the metrics are higher and take peak values,

meaning that this architecture best fits the problem at hand.

Then, for networks with greater number of hidden units,

the values of these metrics, despite local fluctuations,

decrease, thus, permitting to conclude that they are con-

sistent with the theoretic statement that ‘‘large’’ networks

are prone to over-training.

A close look of the results presented in Tables 1 and 2

shows that the same network architecture may give dif-

ferent validity domains for different training algorithms.

Hence, by simply calculating the classification error at the

end of training, one is not able to draw consistent con-

clusions about the generalization ability of a network. The

proposed measures can tackle this important issue since

they permit to compare, in terms of generalization, the

performance of networks having the same architecture, but

trained with different algorithms for the same problem.

Note that this kind of comparison is outside the scope of K-

fold cross-validation.

Table 9 Comparison of the

proposed approach with K-fold

cross-validation for the two-

dimensional artificial dataset

Network model Cross-validation mean (std) Gnet mean (std) Enet mean (std)

2–4–2 90.50% (9.45%) 96.45% (2.81%) 15.80 (16.65)

2–5–2 91.50% (8.75%) 94.50% (2.76%) 10.44 (7.69)

2–6–2 91.00% (9.68%) 91.35% (1.72%) 9.98 (4.36)

2–8–2 93.00% (8.65%) 90.63% (2.64%) 11.28 (4.62)

2–10–2 93.50% (6.71%) 88.84% (1.54%) 9.51 (1.76)

2–15–2 92.00% (8.34%) 89.08% (2.10%) 9.87 (1.23)

2–20–2 93.00% (8.65%) 88.38% (1.35%) 8.45 (0.76)

2–25–2 93.00% (7.33%) 87.65% (1.07%) 7.49 (0.80)

Table 10 Comparison of the

proposed approach and K-fold

cross-validation for the Fisher-

Iris Dataset

Network model Cross-validation mean (std) Gnet mean (std) Enet mean (std)

4–2–3 94.67% (6.13%) 80.42% (10.58%) 2.14 (4.09)

4–3–3 94.00% (6.63%) 79.66% (7.0%) 1.69 (1.28)

4–5–3 93.33% (7.70%) 73.59% (6.08%) 1.15 (1.05)

4–8–3 91.33% (8.92%) 67.67% (6.68%) 1.01 (0.74)

4–10–3 94.67% (10.33%) 66.98% (10.04%) 0.84 (0.75)

4–15–3 92.67% (7.98%) 63.91% (8.49%) 0.51 (0.51)
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Another issue to be discussed is related to the value of

the parameter e used by SIVIA during network inversion

for controlling bisection of the hyper-boxes. In our exper-

iments the typical value used for this parameter is e ¼ 0:01.

This specific value seems to be the most suitable for the

experiments carried out as it provides significant results

with respect to the minimal distance between patterns in

the input space. For some problems, if a smaller value

seems to fit better, one should take into account the

increase of the computation cost this implies given that the

exact determination of the domain of validity requires an

exhaustive analysis of the input space. The tradeoff

between the value of e and the computational cost of the

approach is another issue requiring further investigation

and certainly deals with the well-known class separability

measures in Machine Learning [28]. Obviously, this issue

constitutes an open question for future study.

Finally, a matter that needs to be pointed out here and

certainly constitutes a task for future investigation is the

definition of a concise mathematical model supporting the

proposed approach and the results obtained. For the time

being, we underline that the estimation of generalization, as

proposed herein, is a reliable result of a deterministic

approach.

6 Conclusion

In this paper, we proposed a new approach for estimating

the ability of a neural network to generalize on a classifi-

cation problem it was trained. Based on a concrete classi-

fication decision for the network outputs, the approach

defines the domain of validity of the trained network. The

domain of validity is defined to be the part of the input

space providing confident network outputs, i.e., outputs in a

interval whose lower bound is the level of the classification

decision. The domain of validity is computed by inverting

the network output applying an IA-based inversion method

which guarantees the accuracy of the size and the position

of this area in the input space. Given these consistent

characteristics, one is able to derive empirical metrics of

the network classification performance in terms of gener-

alization which comply with theoretical considerations.

The proposed approach contributes to the estimation of

neural network generalization by considering its domain of

validity and without recourse to any kind of test set. Thus,

the entire dataset can be used for training, there is no need

for separate testing and so, two different network archi-

tectures can be compared in terms of generalization in a

deterministic way by considering the area of the input

space, effectively seen by each architecture. On the con-

trary, the widespread K-fold cross validation is not able to

derive such an assessment of generalization and it is used

to statistically estimate the generalization ability of some

network architecture after having performed a significant

number of training experiments. The validity of the

assumptions, formulated in this paper, and the reliability of

the techniques used support our confidence regarding the

potential of the proposed approach. The measures derived

are strongly supported by the results of the experiments we

carried out on various artificial and real-world problems.

When compared against cross-validation, the proposed

approach provides results which are consistent with the

theory.

We estimate that a side effect of the proposed approach

is that it offers the possibility to study, via the network

classification function, the distribution of the data in the

input space, the vicinity of the different classes, their

overlap and even the prospect to compute approximate

values of the Hausdorff distance between the classes.

Moreover, the domain of validity can be seen as a level set

in the input space resulting from the inversion of an output

interval. It is interesting to study, using IA-based inversion,

the extent to which a trained network participates in

forming such level sets and, hence, it performs a non-

parametric estimation of the probability distribution func-

tion of the input data [19]. All these constitute open issues

for future study.

The previous considerations deal, also, with the need to

validate the proposed empirical metrics from a mathe-

matical point of view which will take into account the

Bayesian aspects of the neural network classification

function. Finally, we are concerned by a suitable imple-

mentation of SIVIA for neural network inversion which

should perform inversion incrementally, i.e., for each class

exclude from the search space the area found to belong to

previously examined classes. This will help to reduce the

computational cost of applying a branch-and-bound tech-

nique to explore the entire input space.
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Appendix A

In order to illustrate the impact of the b-cut on the domain

of validity first let us consider the two-dimensional clas-

sification dataset with two classes forming nine groups

shown in Fig. 6a. A 2� 10� 1 MLP, using logistic
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sigmoid activation functions, has been trained on this

dataset, and the contour plot of its output is shown in

Fig. 6b. In this Figure, the white regions (output greater

than 1� b) correspond to patterns classified by the MLP

network into class 1 (red points), while the black regions

(output lower than b) correspond to patterns classified into

class 2 (blue points). Obviously, the gray level zone depicts

the ambiguity of classification for patterns near the class

boundaries and provides MLP output values in the interval

½b; 1� b�.
The impact of this b-cut classification decision is better

depicted in Figs. 7 and 8. For each one of these Figures, the

red colored area corresponds to a specific domain of

validity defined for some specific interval ½1� b; 1� of the
network output, for the MLP trained on the above two-

dimensional problem. Each area is determined using SIVIA

to invert the MLP output interval ½1� b; 1� for class 1 in

the input space.

It is obvious that the value of b clearly extends or

restricts the input space area classified by the MLP into

class 1. This argument can be easily verified by simple

observation of Fig. 7a, b, while for problems with a higher

dimension this can be confirmed with the comparison of

the volumes of the respective domains of validity. This

shows the importance of choosing the right value for b
which, here, needs to be 0.1 if one wants to take the right

classification decision for a significant part of the input

space. As shown in Fig. 8a, b, the appropriate value of b
also depends on the number of training epochs and the

error threshold that were used chosen to train the MLP.

Appendix B

In the extreme case, of a pattern producing more than one

valid outputs (i.e., it is assigned to more than one classes),

the current implementation computing the domain of

validity results in considering this pattern misclassified.

Actually, for its proper class the pattern is correctly clas-

sified while for any other class for the other classes it is a

misclassified pattern. A previous approach for determining
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(a) The artificial dataset (b) Contour plot of the MLP output

Fig. 6 The artificial dataset and the contour plot of an MLP trained on this dataset
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(a) When the output interval is [0.999,1]
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(b) When the output interval is [0.9,1]

Fig. 7 The domain of validity for an MLP trained with 500 epochs

and MSE 6 1e� 03
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the domain of validity considered such a pattern unclassi-

fied. However in terms of the proposed metrics both

approaches compute the same result given that unclassified

and misclassified patterns have the same status for the

computed metrics.

In many cases a training algorithm results in either

under-trained or over-trained networks. Under-training

arises for many reasons (insufficient training, small sized

training data, inappropriate network architecture, etc.). In

consequence, as shown in Fig. 9b, the domain of validity

covers either small regions of the input space or a large

region is incorrectly classified. For instance, the validity

domain of a 2–4–2 MLP, shown in Fig. 9a, exhibits a more

regular coverage of the input space, while the 2–2–2 MLP,

as shown in Fig. 9b manages to cover a narrow strip in the

input space. In general, it can be stated the validity domain

of an under-trained network is composed of a small number

of large regions with regularly shaped boundaries.

Besides under-training, another issue affecting general-

ization is network over-training. Typically, an over-trained

network fails to correctly classify unseen patterns as it has

learned ‘‘exactly’’ the training data and hence it is not able

to generalize well. In this case the decision boundaries

computed by the network delimit as firmly as possible the

regions in the input space and the network fails to
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(a) When the output interval is [0.999,1]
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(b) When the output interval is [0.9,1]

Fig. 8 The domain of validity for an MLP trained with 5000 epochs

and MSE 6 1e� 05

Fig. 9 Indicative examples of different domains of validity
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interpolate even among close neighboring groups. In such a

case the domain of validity consists of smaller regions and

so its volume diminishes. An indicative example of such a

validity domain is given in Fig. 9c. As a result we may

state that for a well-trained network, the lower the volume

of its domain of validity, the poorer the generalization

achieved by the network due to over-training.

Another unfortunate result, when considering over-

training is that MLPs, especially those with a high number

of nodes in the hidden(s) layer(s), tend to fit outliers, noisy

input patterns as well as patterns with noisy class labels,

see Fig. 10. In these cases the network has the flexibility to

form the decision boundaries that discriminate the outlying

or misplaced patterns. Doing so, the network defines iso-

lated regions, such as isles or lobes, in the input space

which delimit not only these very patterns but also

important parts of the input space for which there is no

information about the class or the classes they belong to. In

general, it can be stated that the validity domain of an over-

trained network contains regions with small size and

irregularly shaped boundaries.

Hence, the previous cases constitute different aspects of

over-training that need to be taken into account when

considering the volume of the domain of validity as a

metric of the network’s generalization performance.

References

1. Adam SP, Karras DA, Magoulas GD, Vrahatis MN (2015)

Reliable estimation of a neural network’s domain of validity

through interval analysis based inversion. In: 2015 international

joint conference on neural networks (IJCNN), pp 1–8. https://doi.

org/10.1109/IJCNN.2015.7280794

2. Adam SP, Likas AC, Vrahatis MN (2017) Interval analysis based

neural network inversion: a means for evaluating generalization.

In: Boracchi G, Iliadis L, Jayne C, Likas A (eds) Engineering

applications of neural networks. Springer International Publish-

ing, Berlin, pp 314–326

3. Adam SP, Magoulas GD, Karras DA, Vrahatis MN (2016)

Bounding the search space for global optimization of neural

networks learning error: an interval analysis approach. J Mach

Learn Res 17(169):1–40. http://jmlr.org/papers/v17/14-350.html

4. Bishop CM (1996) Neural networks for pattern recognition.

Oxford University Press, Oxford

5. Courrieu P (1994) Three algorithms for estimating the domain of

validity of feedforward neural networks. Neural Netw

7(1):169–174

6. Eberhart R, Dobbins R (1991) Designing neural network expla-

nation facilities using genetic algorithms. In: 1991 IEEE inter-

national joint conference on neural networks, vol 2,

pp 1758–1763

7. Hampshire II JB, Pearlmutter BA (1991) Equivalence proofs for

multilayer perceptron classifiers and the Bayesian discriminant

function. In: Proceedings of the 1990 connectionist models

summer school, vol 1, pp 159–172

8. Hassoun MH (1995) Fundamentals of artificial neural networks.

MIT Press, Cambridge

9. Haykin S (1999) Neural networks a comprehensive foundation,

2nd edn. Prentice-Hall, Upper Saddle River, NJ

10. Hernández-Espinosa C, Fernández-Redondo M, Ortiz-Gómez M
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