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a b s t r a c t

Complex binary sequences are generated through the application of simple threshold,
linear transformations to the logistic iterative map. Depending primarily on the value of
its non-linearity parameter, the logistic map exhibits a great variety of behavior, including
stable states, cycling and periodical activity and the period doubling phenomenon that
leads to high-order chaos. From the real data sequences, binary sequences are derived.
Consecutive L bit sequences are given as input to a cellular automaton with the task to
regenerate the subsequent L bits of the binary sequence in precisely L evolution steps.
To perform this task a genetic algorithm is employed to evolve cellular automaton rules.
Various complex binary sequences are examined, for a variety of initial values and a wide
range of values of the non-linearity parameter. The proposed hybrid multiple-step-ahead
prediction algorithm, based on a combination of genetic algorithms and cellular automata
proved efficient and effective.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular automata (CA) are decentralized structures of simple and locally interacting elements, named cells. A CA starts
with an initial configuration that refers to the initial state of its cells and it evolves according to a set of rules [1,2]. The set
of rules determines the derived cell states (values) at the next evolution step, for all possible combinations of cell states. CA
have been proposed as a novel approach for a large number of problems. Among others, CA have been proposed asmodels for
physical, biological and social systems, games and pattern recognition [3,4]. As systems, CA have proved capable of parallel
and emergent computation [5,6].
In this work, simple, bistable, one-dimensional CA are used to predict highly complex binary sequences. The considered

binary sequences are derived by applying two linear threshold transformations, proposed in [7], on real-valued sequences
obtained from the logisticmap. In previouswork [8], we considered the capability of CA given as input (initial configuration)
the first L bits of a binary sequence of length 2L, to reproduce the last L bits of the sequence in at most L evolution steps. To
this end, a population of CAwas evolved using a Genetic Algorithm (GA) [9,10]. The GA evolved the set of rules of the CA [11–
13]. Different values of the half-length, L, reaching up to 50 were considered, and the experimental results suggested that
the GA was capable of identifying a suitable set of CA rules within a small number of generations. At present, our primary
focus is to investigate the extent towhich this approach can be employed to perform perfectmultiple-step-ahead prediction
for all subsequences of a given length L in very long binary sequences.
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Fig. 1. Bifurcation diagram of the steady states of the logistic map with respect to r .

To the best of our knowledge this is the first attempt to utilize CA to performprediction of binary sequences. An important
advantage of CA is the fact that they are capable of generating an L-step-ahead forecast based only on the L previous values
of the sequence. In other words, CA exploit substantially less information to perform this task than alternative prediction
methods like artificial neural networks. Furthermore, bistable, one-dimensional CA and GAs are particularly suited to the
task of binary sequence prediction. Finally, CA, aswell as, the GA employed to evolve the set of rules, are easily implemented,
and inherently parallel algorithms, a property that is highly desirable in computationally demanding tasks like the one
presently considered. The experimental results reported suggest that the proposed approach is capable of distinguishing
regions of (perfect) predictability of a highly complex system. On the other hand, no set of rules was discovered that would
allow the perfect predictability of entire binary sequences, with the exception of trivial sequences.
The remaining paper is organized as follows: Section 2 provides a brief discussion on the properties of the logistic map

and presents the two binary transformations employed in Section 2.1; while Section 2.2 outlines CA. Next, in Section 3 the
obtained experimental results are presented and discussed. The paper ends with concluding remarks and future work in
Section 4.

2. Background material and methods

2.1. Binary transformations

Complex binary sequences are generated through a two step procedure. At the first step, the logistic map:

xn+1 = r xn (1− xn), n = 0, 1, . . . (1)

is used to generate real-valued sequences. For values of r in the interval [0, 4] and initial value, x0, in the interval [0, 1]
the logistic map is bounded in the interval [0, 1]. Despite its simplicity, Eq. (1) yields a variety of dynamical characteristics,
which strongly depend on the value of the parameter r [14,15]. The parameter r is an expression of the non-linearity of the
system [16,17]. Specifically, for values of the non-linearity parameter r in the range (0, 3) the system reaches a single-state
stable value, xs = 1 − 1/r . For r in the range [3, 3.57) the period doubling phenomenon occurs, and the system exhibits
cycling (periodical) behaviorwith increasing cycling period as the value of r increases. This results to a fully chaotic behavior,
i.e. infinite period, for values of r in the range [3.57, 4]. A plot of the steady state valueswith respect to r is called a bifurcation
diagram. The bifurcation diagram for the logistic map is provided in Fig. 1. It has been shown that the bifurcation diagram
of the logistic map is a fractal object.
Having generated the chaotic data, xn(x0, r) through Eq. (1), the binary sequence bn(x0, r) is derived by applying the

transformation [7]:

bn(x0, r) =
{
0, if xn 6 0.5,
1, if xn > 0.5.

(2)

A second binary transformation, also proposed in [7], was applied on the raw data, Eq. (3). This is also a simple, linear,
threshold and binary transformation, but it incorporates a variable threshold, which is set equal to the previous value of the
raw data of the logistic map. This transformation is formulated as:

bn(x0, r) =
{
0, if xn 6 xn−1,
1, if xn > xn−1.

(3)

Assuming a binary sequence bn(x0, r), consecutive L bit long subsequences are provided as input to the CA. In other words,
L bits are used for the construction of the initial configuration of the CA, which corresponds to evolution step zero of the CA.
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Fig. 2. The components of a one-dimensional, binary-state, R = 1 (‘‘elementary’’) CA, iterated one time step on a configuration with N = 11 lattice sites
and periodic boundary conditions (i.e. sN = s0).

The task is to evolve the CA, using a suitable set of rules, for L evolution steps and to investigate if it is able to regenerate the
subsequent L bits of bn(x0, r), for all the L bit subsequences in bn(x0, r). An outline of the workings of one-dimensional CA
is provided in the next subsection.

2.2. Cellular automata

A one-dimensional cellular automaton consists of a lattice of N identical finite-state machines (cells), each with an
identical topology of local connections to other cells for input and output, along with boundary conditions. Let Σ denote
the set of states in a cell’s finite-state machine, and k = |Σ | denote the number of states per cell. Each cell is indexed by its
site number, i = 0, 1, . . . ,N − 1.
A cell’s state at time t is denoted by sti , where s

t
i ∈ Σ . The state, s

t
i , of cell i together with the states of the cells with which

i is connected is called the neighborhood, ηti , of cell i. Each cell obeys the same transition rule ϕ(η
t
i ), that gives the updated

state, st+1i = ϕ(ηti ), for cell i as a function of η
t
i . We will drop the indices on s

t
i and η

t
i when we refer to them as general

(local) variables. We use st to denote the configuration of cell states, st = {st0, s
t
1, . . . , s

t
N−1}, at time t . Thus, a CA {Σ

N , ϕ}
specifies a global mapΦ of the configurations:

Φ : ΣN → ΣN , with st+1 = Φ(st).

In a synchronous CA, a global clock provides an update signal for all cells: at each t all cells synchronously read the states of
the cells in their neighborhood and then update their own states according to st+1i = ϕ(η

t
i ).

The neighborhood η is often taken to be spatially symmetric. For one-dimensional CA, ηi = si−R, . . . , s0, . . . , si+R, where
R is the CA’s radius. Therefore, ϕ : Σ2R+1 → Σ . For small-radius, binary-state CA, in which the number of possible
neighborhoods is not too large ϕ is often displayed as a look-up table, or rule table, that lists every possible η together
with the output bit, st+1i . One-dimensional CA, with (k, R) = (2, 1) are employed in this work. Here, the neighborhood of
each cell consists of itself and its two adjacent cells and the boundary conditions are periodic: sN = s0. An example is shown
in Fig. 2. The number of rules of a specific CA depends on the order R (radius) of the cell neighborhood. This parameter
determines the number (2R + 1) of cells that a specific cell interacts with in a local manner. For R = 1, therefore, the
neighborhood of each cell consists of three cells. A three-cell neighborhood, with each cell considered as a bistable element,
presents C = 22R+1 = 23 = 8 distinct combinations. Thus, the adaptation of a set of 8 rules is necessary. In the general case,
these C combinations are ordered and numbered from 0 to (C − 1) following the representation of integer numbers in the
binary arithmetical system. This is shown in Table 1.
To identify rules that manage to predict satisfactorily L bit binary sequences, the sets of rules of a population of N CA are

evolved using a binary encoded GA. Each set of rules is represented as the chromosome of an individual of the GA, with each
gene being a binary digit. The length of the chromosome is C , as this is the number of rules that comprise the corresponding
set of rules. The binary representation of the GA individuals permits the application of well-known and widely used genetic
operators for selection, crossover and mutation [9]. In particular, we used roulette-wheel selection, one-point crossover, and
bit-flip mutation. Recalling our goal, the fitness function for the evaluation of the individuals of the GA counts the number of
bits that are successfully predicted after L evolution steps of the CA. The necessity of utilizing a GA must be emphasized. As
shown in Table 2, the size, V , of the search space expands exponentially, and becomes enormous even for small values of R.
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Table 1
An example of a set of rules for R = 1, which results to C = 8 distinct rules.

Rule Nr. C: 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
1 0 0 1 1 0 1 0

Table 2
Number of possible combinations of CA rules for various values of R.

Radius Number of neighbors Number of rules Size of search space
R H = 2R+ 1 C = 2H V = 2C

1 3 8 28 = 256
2 5 32 232 = 4294 967 296
3 7 128 2128 = 3.40282× 1038

4 9 512 2512 = 1.34078×10154

3. Experimental results

The proposed CA trained through GAs was implemented in C++ using the GNU Compiler Collection (gcc) ver. 4.0.3. The
method was tested for various binary sequences generated for a large number of combinations of the parameters x0 and r
of the logistic map, Eq. (1), and for both binary transformations, Eqs. (2) and (3). The values of the non-linearity parameter,
r , were selected in the range [3.57, 4] for which the logistic map exhibits chaotic behavior. To avoid transient phenomena,
if any, the first 104 iterations of the map were disregarded. To generate the real-valued sequences from the logistic map,
floating point numberswith precision of at least 5000 bits were utilized using the GNUMultiple Precision Arithmetic Library
(GMP) ver. 4.1.4 [18]. The total length of the binary sequences, n, was set to 106 in all experiments, while the parameter L
ranged from 2 to 30.
To measure the fitness of a rule, all consecutive sequences of length L are provided as initial configuration to the CA.

Starting from each initial configuration, the CA performs L evolution steps. The resulting configuration is compared with
the L bits of the binary sequence, bn(x0, r), immediately following the L input bits. The fitness of a rule for a particular
input configuration is equal to the number of common bits between the L bits of bn(x0, r) immediately following the input
configuration, and the L bit long final configuration of the CA. The overall fitness of a rule, is equal to the mean fitness over
all the input sequences that are encountered in bn(x0, r). The number of input sequences is equal to (n − 2L + 1), where
n = 106 stands for the length of bn(x0, r).

3.1. Fixed threshold binary transformation

In this subsection, we present indicative results for binary sequences, obtained by applying the transformation of Eq. (2).
In Fig. 3 the distribution of bits with value ‘1’ and ‘0’ for values of the non-linearity parameter, r ∈ [3.5, 4], is plotted.
Evidently, for this binary transformation, an equal distribution of ones and zeros appears to be the exception rather than
the rule.
Fig. 4 illustrates the proportion of the binary sequence b106(0.4, 3.6) that is perfectly predictable as the number of CA

rules considered increases from one to 256. Note that rules are included in descending order of mean predictability (overall
fitness), starting from the best performing rule. In case the mean predictability associated with two, or more, CA rules is
equal, the rules are included according to their lexicographic ordering. Fig. 4(a) depicts the proportion of the sequence that
is perfectly predictable for L = {2, . . . , 10}, while Fig. 4(b) corresponds to longer forecasting horizons, L = {11, . . . , 30}.
As expected, the chaotic nature of the logistic map and the corresponding complexity of the derived binary sequences,
reduces the proportion of the sequence that is perfectly predictable as the forecasting horizon increases. This finding is
common to all the binary sequences considered. As illustrated, however, the decreasewith respect to L is notmonotonic. The
maximum proportion of the sequence that is predictable when all 256 possible rules are included is 0.7427 and corresponds
to L = 6. This proportion drops below 0.1 for L = 13, and it reaches 0.0034 for L = 30. Table 3 reports the mean forecasting
performance (µ) of the best performing CA rule for different horizons.
Finally, Fig. 5 provides a visualization of the regions of the phase space of the logistic map with r = 3.6 that are perfectly

predictable by all the CA rules, when the real-valued sequence undergoes the transformation of Eq. (2). Fig. 5(a) corresponds
to forecasting the next six bits (L = 6) while in Fig. 5(b) L = 10. It is evident from the figure that increasing the forecasting
horizon inhibits predictability. A closer inspection of Fig. 5 also reveals that although increasing L from six to ten reduces
overall performance (as clearly shown in Fig. 4), the regions of the phase space that are perfectly predictable, become less
clearly separable from those that are not. This finding becomes more pronounced in the binary sequences considered next.
Increasing the value of the non-linearity parameter, r , to 3.9, reduces overall predictability, as illustrated in Fig. 6. Fig. 6(a)

reports the obtained results for L = {2, . . . , 10}, while Fig. 6(b) illustrates the results for L = {11, . . . , 30}. The maximum
proportion of the series that is predictable when all 256 possible rules are included is 0.7016 and corresponds to L = 3. This
proportion falls below 0.1 for L = 10, and it reaches 10−5 for L = 30. Table 4 presents the mean predictive ability, µ, of the
best performing CA rule for different sequence lengths. A visualization of the regions of the phase space of the logistic map
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Fig. 3. Distribution of ones (solid red) and zeros (dashed blue) for binary sequences obtained through Eq. (2) for r ∈ [3.5, 4] with stepsize 10−3 . (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

a

b

Fig. 4. Proportion of the sequence b106 (0.4, 3.6), obtained through the transformation of Eq. (2) that is perfectly predictable as additional CA rules are
included. (CA rules are added in descending order of fitness): (a) L = {1, . . . , 10}, (b) L = {11, . . . , 30}. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

for r = 3.9 that are perfectly predictable when the original sequence is subjected to the transformation of Eq. (2) is provided
in Fig. 7. In this figure the previously discussed phenomenon that wants increasing the forecasting horizon to render the
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Table 3
Mean performance of the best CA rule for bn(0.4, 3.6) generated through Eq. (2) with respect to the prediction horizon L.

L 2 3 4 5 6 7 8 9

µ 1.45434 2.18772 3.47918 4.05752 5.18151 5.69623 6.90867 7.49329

L 10 11 12 13 14 15 16 17

µ 8.63584 9.1991 10.363 10.9815 12.0902 12.70221 13.8174 14.4361

L 18 19 20 21 22 23 24 25

µ 15.5445 16.1412 17.2717 17.8601 18.9989 19.5872 20.726 21.3124

L 26 27 28 29 30
µ 22.4532 23.058 24.1804 24.773 25.9075
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Fig. 5. Regions of perfect predictability on the phase diagram of the logistic map with r = 3.6. (a) L = 6 blue: best performing rule; blue and yellow: top
30 best performing rules; non-red: all 256 rules. (b) L = 10 blue: best performing rule; blue and yellow: top 50 best performing rules; non-red: all 256
rules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Mean performance of the best CA rule for bn(0.4, 3.9) generated through Eq. (2) with respect to the prediction horizon L.

L 2 3 4 5 6 7 8 9

µ 1.13995 1.91696 2.32276 2.8808 3.46368 3.98985 4.61595 5.12981

L 10 11 12 13 14 15 16 17

µ 5.69979 6.26977 6.83976 7.40974 7.97972 8.54971 9.11969 9.68968

L 18 19 20 21 22 23 24 25

µ 10.2597 10.8296 11.3996 11.9696 12.5396 13.1096 13.6796 14.2495

L 26 27 28 29 30
µ 14.8195 15.3895 15.9595 16.5295 17.0994

regions of the phase space that are perfectly predictable less clearly separable from those that are not (despite the fact that
overall predictability deteriorates) is more visible.
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a

b

Fig. 6. Proportion of the sequence bn(0.4, 3.9), obtained through the transformation of Eq. (2) that is perfectly predictable as additional CA rules are
included. (CA rules are added in descending order of fitness): (a) L = {2, . . . , 10}, (b) L = {11, . . . , 30}. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

3.2. Variable threshold binary transformation

In Fig. 8 the distribution of bits with value ‘1’ and ‘0’ for binary sequences obtained through Eq. (3), and values of the
non-linearity parameter, r ∈ [3.5, 4], is plotted. In contrast to the distribution induced by the transformation of Eq. (2), this
transformation produces an equal distribution of ones and zeros until r reaches approximately 3.7. As r increases beyond 3.7,
the two proportions tend to diverge. This phenomenon has direct implications for the predictability of the binary sequences
obtained through this transformation. For example, for r = 3.6 a bit with value ‘1’ always follows a bit with value ‘0’, and
vice versa. This renders the entire binary sequence perfectly predictable by a large number of rules and to any forecasting
horizon, L. Therefore, only results for the case of r = 4.0 are presented.
The proportion of the binary sequence b106(0.4, 4.0) that is perfectly predictable with respect to the number of CA rules

considered is depicted in Fig. 9. As in the previous cases, rules are incorporated in descending order of mean predictability.
Furthermore, Fig. 9(a) shows the obtained results for forecasting horizons L = {2, . . . , 10}, while Fig. 9(b) illustrates the
results for longer forecasting horizons, L = {11, . . . , 30}. The mean predictive capability, µ, of the best performing CA rule,
for different values of L is reported in Table 5. The regions of the phase space of the logisticmap that are perfectly predictable
after the raw data undergo the transformation of Eq. (3) are depicted in Fig. 10. Fig. 10 shows that increasing L causes the
regions of perfect predictability to become less clearly separable.

4. Concluding remarks

In this work a hybrid evolutionary algorithm for the prediction of highly complex binary sequences is presented. The
algorithm incorporates Cellular automata with sets of rules that are suitably codified in order to be evolved by a simple,
binary encoded, Genetic Algorithm. A cellular automaton receives as input an L bit long binary pattern and produces
a prediction for the values of the subsequent L bits in L evolution steps. To this extent, cellular automata are capable
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Fig. 7. Regions of perfect predictability on the phase diagram of the logistic map with r = 3.9. (a) L = 3 blue: best performing rule; blue and yellow: top
100 best performing rules; non-red: all 256 rules. (b) L = 10 blue: best performing rule; blue and yellow: top 100 best performing rules; non-red: all 256
rules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Distribution of ones (solid red) and zeros (dashed blue) for binary sequences obtained through Eq. (3) for r ∈ [3.5, 4] with stepsize 10−3 . (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Mean performance of the best CA rule for bn(0.4, 4.0) generated through Eq. (3) with respect to the prediction horizon L.

L 2 3 4 5 6 7 8 9

µ 1.33407 2.0011 2.66814 3.33517 4.0022 4.66923 5.33627 6.0033

L 10 11 12 13 14 15 16 17

µ 6.67033 7.33736 8.0044 8.67143 9.33846 10.0055 10.6725 11.3396

L 18 19 20 21 22 23 24 25

µ 12.0066 12.6736 13.3407 14.0077 14.6747 15.3418 16.0088 16.6758

L 26 27 28 29 30
µ 17.3429 18.0099 18.6769 19.344 20.011
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a

b

Fig. 9. Proportion of the sequence bn(0.4, 4.0), obtained through the transformation of Eq. (3) that is perfectly predictable as additional CA rules are
included. (CA rules are added in descending order of fitness): (a) L = {2, . . . , 10}, (b) L = {11, . . . , 30}. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

of generating multiple-step-ahead predictions based on a very limited amount of information compared to alternative
methodologies.
To evaluate the algorithm we employed sequences derived from two simple, linear, threshold, transformations of real-

valued sequences generated by the logistic map. The logistic map is a well-known system that through period doubling
reaches chaotic behavior. The dynamical behavior of this map is heavily influenced by the value of the non-linearity
parameter r in Eq. (1). Our findings suggest that the same is true for the predictability of the derived binary sequences.
The reported experimental results indicate that the performance of the algorithm is particularly robust with respect to the
length of the forecasting horizon. Although no one-dimensional CA with radius one is capable of predicting accurately an
entire binary sequence (irrespective of forecasting horizon), the proposed algorithm can detect regions of the phase space
that are predictable. An interesting finding verified in all the considered sequences is that although expanding the forecasting
horizon reduces predictability, it also blurs the distinction between regions of perfect and imperfect predictability.
In future work we intend to investigate the robustness of the proposed algorithm to the presence of noise in the original

data generating process. Robust performance in the presence of noise is particularly important as most real-world time
series are contaminated with noise. This method will also be applied to real-world data. The second binary transformation
is particularly meaningful in financial time series applications, as it represents the direction of change of a series, a piece of
information that is vital in decision making. Finally, we intend to perform a thorough comparative analysis of the algorithm
against alternative approaches.
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Fig. 10. Regions of perfect predictability on the phase diagram of the logisticmapwith r = 4.0. (a) L = 2 blue: best performing rule; non-red: all 256 rules.
(b) L = 5 blue: top 50 best performing rules; blue and green: top 100 best performing rules; non-red: all 256 rules. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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