
January 7, 2011 10:46 WSPC/S0218-1274 02819

International Journal of Bifurcation and Chaos, Vol. 20, No. 12 (2010) 4067–4077
c© World Scientific Publishing Company
DOI: 10.1142/S0218127410028197

OPTIMAL DYNAMIC BOX-COUNTING
ALGORITHM

PANAGIOTIS D. ALEVIZOS∗ and MICHAEL N. VRAHATIS†
Computational Intelligence Laboratory, Department of Mathematics,

University of Patras Artificial Intelligence Research Center,
University of Patras, GR-26110 Patras, Greece

∗alevizos@math.upatras.gr
†vrahatis@math.upatras.gr

Received April 1, 2008; Revised July 6, 2010

An optimal box-counting algorithm for estimating the fractal dimension of a nonempty set which
changes over time is given. This nonstationary environment is characterized by the insertion of
new points into the set and in many cases the deletion of some existing points from the set. In
this setting, the issue at hand is to update the box-counting result at appropriate time intervals
with low computational cost. The proposed algorithm tackles the dynamic box-counting problem
by using computational geometry methods. In particular, we use a sequence of compressed Box
Quadtrees to store the data points. This storage permits the fast and efficient application of
our box-counting approach to compute what we call the “dynamic fractal dimension”. For a
nonempty set of points in the d-dimensional space R

d (for constant d ≥ 1), the time complexity
of the proposed algorithm is shown to be O(n log n) while the space complexity is O(n), where
n is the number of considered points. In addition, we show that the time complexity of an
insertion, or a deletion is O(log n), and that the above time and space complexity is optimal.
Experimental results of the proposed approach illustrated on the well-known and widely studied
Hénon map are presented.

Keywords : Box-counting; fractal dimension; quadtree; Hénon map.

1. Introduction

The box-counting dimension (capacity or “pack-
ing” dimension) is widely used for determining the
fractal dimension of a nonempty set V in a met-
ric space. In fractal geometry, this dimension is
also known as the Minkowski–Bouligand dimension,
or Minkowski dimension. To compute the box-
counting dimension for a nonempty set V, over-
lay the d-dimensional space that embeds V with
an evenly-spaced grid of d-dimensional boxes with
sides of length ε, and count the number of boxes
N(ε) that are required to cover V. The box-counting
dimension dimB(V) for the set V is then determined
by checking how N(ε) changes as ε becomes smaller.

The box-counting dimension is well defined only if
the following limit exists:

dimB(V) = − lim
ε→0

log N(ε)
log ε

. (1)

Otherwise, the lower limit corresponds to the
lower box-counting dimension called the lower
Minkowski dimension, while the upper limit cor-
responds to the upper box-counting dimension
called the upper Minkowski dimension (also known
as entropy dimension, Kolmogorov dimension, or
Kolmogorov capacity).

In [Liebovitch & Toth, 1989] a static box-
counting algorithm to determine the fractal

4067

http://dx.doi.org/10.1142/S0218127410028197

January 7, 2011 10:46 WSPC/S0218-1274 02819

4068 P. D. Alevizos & M. N. Vrahatis

dimension of a data set V in d dimensions has been
proposed. The coordinates of each point of V are
rescaled in the interval [0, 2k − 1] and are expressed
in binary form. Thus, the coordinates are consid-
ered integer numbers and each number is stored in
a word of k bits. The set is covered by a grid of
d-dimensional boxes with edge size 2m (0 ≤ m ≤
k − 1). With the binary representation of coordi-
nates, the box to which a point belongs can be found
by checking the most significant m bits (left m bits)
of each coordinate of that point. To find the number
of boxes needed to cover the set N(2m), the right
k−m bits of each coordinate are masked to 0’s and
the points are sorted into lexicographical order in
O(n log n) time. However, the lexicographical order-
ing of points requires a new sorting for each box size,
and the time complexity becomes O(kn log n). The
space complexity is O(n). To avoid the lexicograph-
ical ordering, an efficient way to order the points in
any embedding dimension space has been proposed
in [Liebovitch & Toth, 1989] (based on a suggestion
by D. Kaplan). This approach allows for a faster
implementation of box-counting algorithms, as has
been fully described in [Hou et al., 1990] and imple-
mented in [Kruger, 1996].

More specifically, in [Hou et al., 1990] the time
complexity of the box counting method is improved
by using a new topological ordering of points.
Instead of sorting the points into lexicographical
order directly, this method intercalates the coordi-
nates of each point into a long bit string of length
d k and sorts the points according to the value of
intercalated bit string in O(n log n) time. Once the
intercalated points are sorted, the most significant
d bits determine the box which contains that point.
All points in the same box are always in one seg-
ment, independent of the box size. In order to count
the number of nonempty boxes the algorithm finds
the number of distinct values in the ordered list
of points. This gives the number of boxes of the
smallest possible size 20 required to cover the set
N(20). Then d bits on the right are masked to 0’s
to create a list of boxes of size 21, then d more bits
from the right are masked for the next box size 22,
and so on. Each time d bits are masked, and a list
is prepared in O(n) time which counts the num-
ber of boxes required of a bigger box size. Thus, in
O(n log n) time the algorithm gets the number of
boxes needed to cover the set for box sizes ranging
between 20 and 2k−1.

Obviously, the box counting method of [Hou
et al., 1990] is a static method and works efficiently

for a fixed data set of n points. In a dynamic data set
however, insertions and deletions of points change
the sorted sequence of the long bit strings, and the
algorithm must restart the counting procedure, in
order to update the number of boxes needed to cover
the set for box sizes ranging between 20 and 2k−1.
Therefore, after an insertion or deletion in the data
set, the method in [Hou et al., 1990] updates the
fractal dimension in O(n log n) time.

The purpose of our contribution is to intro-
duce the dynamic fractal dimension of a set which
changes over time by inserting new points into the
set and in many cases by deleting some existing
points from the set. To estimate the dynamic frac-
tal dimension we employ computational geometry
methods and propose an optimal box-counting algo-
rithm which we call dynamic box-counting algo-
rithm. Furthermore, we show that the proposed
algorithm possesses an optimal time and space
complexity.

The rest of the paper is organized as follows.
In Sec. 2, we present the box-counting algorithm
along with its complexity issues. In Sec. 3, we give
a method to determine the fractal dimension of
a nonempty set and we show that the proposed
dynamic box-counting algorithm possesses an opti-
mal time and space complexity. In Sec. 4, we present
experimental results of our approach illustrated on
the well-known and widely studied Hénon map. The
paper ends in Sec. 5 with a synopsis.

2. The Box-Counting Algorithm

Next, we present our approach. Let V = {p1,
p2, . . . , pn} be a set of n points in d-dimensional
space, for constant d ≥ 1, with coordinate axes
(Ox1 , Ox2 , . . . , Oxd

), and let pi = (xi
1, x

i
2, . . . , x

i
d) be

the representation of any point pi ∈ V. We assume
that the coordinates of each point in V are real
numbers. Each point pi = (xi

1, x
i
2, . . . , x

i
d) is inter-

calated into a long string with digits of the set
{0, 1, . . . , 9}. We show this intercalation procedure
in d = 2 dimensions: let p = (x, y) be a point in R

2

and let

x = 〈Xa−1Xa−2 · · ·X1X0〉〈X ′
b−1X

′
b−2 · · ·X ′

1,X
′
0〉,

be the form of the decimal number x, where
〈Xa−1Xa−2 · · ·X1X0〉 (Xq ∈ {0, 1, . . . , 9}, 0 ≤
q ≤ a − 1) is the integer part of x and
〈X ′

b−1X
′
b−2 · · ·X ′

1X
′
0〉 (X ′

r ∈ {0, 1, . . . , 9}, 0 ≤ r ≤
b − 1) is the decimal part of x; and similarly for y:

y = 〈Yc−1Yc−2 · · ·Y1Y0〉〈Y ′
e−1Y

′
e−2 · · · Y ′

1Y
′
0〉.

January 7, 2011 10:46 WSPC/S0218-1274 02819

Optimal Dynamic Box-Counting Algorithm 4069

If a �= c and/or b �= e, then we complete with 0 as the appropriate number, so that both numbers X and Y
have a+ c+ |a− c| digits in their integer part, and b+ e+ |b− e| digits in their decimal part. For example,
if a < c and b > e we have,

x = 〈0 · · · 0︸ ︷︷ ︸
c−a

Xa−1Xa−2 · · ·X1X0〉〈X ′
b−1X

′
b−2 · · ·X ′

1,X
′
0〉,

y = 〈Yc−1Yc−2 · · ·Y1Y0〉〈Y ′
e−1Y

′
e−2 · · ·Y ′

1Y
′
0 0 · · · 0︸ ︷︷ ︸

b−e

〉.

The intercalated point of x and y is the real number Nxy = IxyDxy, with an integer part Ixy consisting of
2c digits,

Ixy = 〈0Yc−1 0Yc−2 · · · 0YaXa−1Ya−1 · · ·X1Y1X0Y0〉,
and a decimal part Dxy consisting of 2b digits,

Dxy = 〈X ′
b−1Y

′
e−1X

′
b−2Y

′
e−2 · · ·X ′

b−eY
′
0X

′
b−e−10X ′

b−e−2 0 · · ·X ′
0 0〉.

It is well known that, given n points pi = (xi
1,

xi
2, . . . , x

i
d) ∈ V in d-dimensional space, with con-

stant d ≥ 1, the numbers Ni = Nxi···xi
d

(1 ≤ i ≤ n)
can be sorted in O(n log n) time.

A Box Quadtree T , in d-dimensional space R
d

is defined by associating each node v in T with
a hypercube in R

d. The hypercube in the root of
T contains the entire data set V. We assume that
the coordinates of each point in V are real num-
bers which lie in the interval [0, 10k − 1], for any
k > 0, and have k digits in their integer part and a
given constant length in their decimal part. Thus,
the hypercube in the root of T has size (10k − 1)d.
If the associated hypercube of a node v contains
more than a single point, the hypercube is subdi-
vided into at most 10d equally sized hypercubes,
associated with the children of v. The subset of V,
which is included in some hypercube of node v, is
denoted by V[v]. If V(v) = ∅, the node v is called
empty.

For each node v, the left-to-right order of the
nonempty children v0, v1, . . . , vk of v (k ∈ {0, 1,
2, . . . , 10d−1}), corresponds to the increasing order
of the set N , i.e. let vp and vt be two nonempty
children of v (with p < t); then, for each point
pi = (xi

1, x
i
2, . . . , x

i
d) ∈ V[vp] and for each point pj =

(x j
1 , x j

2 , . . . , x j
d) ∈ V[vt] we have: Nxi···xi

d
< N

x j ···x j
d
.

Each leaf of T stores a hypercube which includes a
single point pi ∈ V. We conclude that,

Theorem 2.1. The left-to-right order of the leaves
of T corresponds to the increasing order of the set
N = {Ni | 1 ≤ i ≤ n}.

Unfortunately, a Box Quadtree T may have
arbitrary depth, independently of the number of

input points. If a node v obtains two or more
nonempty children then, it is called an interesting
node, otherwise, the tree T has a maximal path
v,w, . . . , u such that the corresponding subsets are
equal: V[v] = V[w] = · · · = V[u]; any node in
this path has exactly one nonempty child except for
the last node u which has two or more nonempty
children. We compress the path v,w, . . . , u and the
node u replaces the node v; any other node in this
path and their empty children are deleted. The
interesting node u is called a compressed node. By
compressing any such path in T , we obtain a com-
pressed Box Quadtree T with height O(n) (Fig. 1).
Notice that, for simplicity, the examples in Figs. 1–3
are given in d = 2 dimensions, and the coordinates
of each point of V lie into the interval [0, 2k −1] and
are expressed in binary form; thus, each node of T
has at most 22 nonempty children.

According to the standard practice in computa-
tional geometry, we assume that certain operations
on points in R

d can be done in O(1) time. Given a
point x and a hypercube hj in T , we can decide in
O(1) time if hj covers x and in the positive case we
can also decide which child of hj covers x.

A point location search in a compressed Box
Quadtree T is to locate the smallest hypercube in
the nodes of T , covering the query point x. The
search starts at the root of T and returns either
a leaf in T or a compressed node with none of its
children nodes covering the location of x. Hence, the
search time in T is O(n). An insertion or deletion
can be done by a search in O(n) time plus O(1)
updates in T . For an insertion of a point x, the
location search returns a node ni (which is either
a leaf already containing a point or a compressed

January 7, 2011 10:46 WSPC/S0218-1274 02819

4070 P. D. Alevizos & M. N. Vrahatis

Fig. 1. An ordered Box Quadtree with four points (left) and its compressed Box Quadtree (right) with height 3. The node
with a “bold square” is a compressed node, the node with an “empty square” represents an empty hypercube, and the node
with a “bold circle” represents a hypercube which contains a single point.

node). Thus, we add in O(1) time in T , an interest-
ing node nj that covers both x and V[ni]. The node
nj becomes a child of the parent of ni and obtains
as children the node of x and the node ni.

Deleting a point x from T implies that the leaf
ni which covers x becomes empty, and is deleted.
If the parent nj of ni remains with one nonempty
child nk then, we compress the path nj, nk. Thus,
the compressed Box Quadtree is updated correctly
in O(1) time.

In order to improve the O(n) search time in
T , first we sort in O(n log n) time the set V on
the basis of the increasing order of the set N ,
and we implement V as a 2–3 tree S with height
h = O(log n) (Fig. 2). Let Ni be the subset of V
stored in the nodes of height i in the tree S. For all

Fig. 2. The 2–3 tree used for the construction of the Box Quadtrees in Fig. 3.

i = h, h − 1, . . . , 0 we define the subset Vi ⊆ V:

(a) Vh = Nh,
(b) Vi−1 = Vi ∪ Ni−1 (i = h, h − 1, . . . , 1).

We obtain,

(1) 2(h−i)+1 − 1 ≤ |Vi| ≤ 3(h−i)+1 − 1 (i = h, h −
1, . . . , 0)

(2) V = V0

(3)
∑h

i=0 Vi = O(n).

For each Vi (i = h, h−1, . . . , 0) we construct an
ordered compressed Box Quadtree Ti and obtain the
sequence of Box Quadtrees Th, Th−1, . . . , T0 that are
defined respectively on the subsets Vh,Vh−1, . . . ,V0

of the data set V (Fig. 3).

January 7, 2011 10:46 WSPC/S0218-1274 02819

Optimal Dynamic Box-Counting Algorithm 4071

Fig. 3. A sequence of three compressed Box Quadtrees and the corresponding two-dimensional boxes, over the 2–3 tree
in Fig. 2.

January 7, 2011 10:46 WSPC/S0218-1274 02819

4072 P. D. Alevizos & M. N. Vrahatis

The above construction is based on a related
work in [Eppstein et al., 2005], which constructs a
deterministic skip PR-quadtree guided by a deter-
ministic 1–2–3 skip list [Munro et al., 1992]. We
conclude,

Theorem 2.2. The sequence of compressed Box
Quadtrees Th, Th−1, . . . , T0 is constructed in O(n)
space and O(n log n) time.

To resolve a point location searching problem in
a sequence T = {Th, Th−1, . . . , T0} we must find the
smallest hypercube in the tree T0 covering a query
point x. We now show that a searching problem in
T can be done in O(log n) time: Start at the root of
S and search for the smallest hypercube in the tree
Th covering a query point x. When we terminate the
search for a tree Ti we continue the search for tree
Ti−1 (i = h, h − 1, . . . , 1). Let vj(i) be the node in
Ti which stores the smallest hypercube covering the
query point x, and let vj(i−1) be the copy of vj(i) in
the tree Ti−1. We continue the search in the subtree
of Ti−1 with root vj(i−1), and let vj(i−1), va1 , . . . , var

be the searching path. We will show that the length
of the search path is r = O(1). The interesting
nodes vai (∀ i ∈ {1, 2, . . . , r}) of the tree Ti−1 do
not exist in the tree Ti. Moreover, the ordered set
Vi−1 is a merge of the ordered sets Vi and Ni−1.
The 2–3 property of S implies that in the set Vi−1,
there are alternatively q (1 ≤ q ≤ 2) points of Ni−1

with one point of Vi. For example from the 2–3 tree
in Fig. 2 we have (the underlining elements in Vi

denote the elements of Ni, 0 ≤ i ≤ 2):

V2 = {9, 15}

V1 = {3, 6, 9, 12, 15}

V0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

Thus, any path vj(i−1), va1 , . . . , var may contain at
most five points and we obtain r ≤ 4. An insertion
or deletion of a point x in the tree S can be accom-
panied by an update in the sequences V0,V1, . . . ,Vh

and T0, T1, . . . , Th, in O(log n) time.

3. Determining the Fractal
Dimension of Nonempty Set V

It is well known, that the fractal dimension
describes how many new pieces of a set are resolved
as the resolution scale is decreased [Mandelbrot,
1983]. Furthermore, since a fractal set V is self-
similar, this means that the fractal dimension
can be evaluated by comparing properties between

any two scales, namely [Liebovitch & Toth, 1989;
Kruger, 1996],

dimB(V) � −∆ log N(εl)
∆ log εl

, (2)

where N(εl) is the number of boxes with minimum
size εl, needed to cover the set V. One common
approach is to plot log N(εl) against log εl and use
the slope of this curve to approximate dimB(V). To
find the number N(εl) we count the number n of
nonempty leaves in the tree T0.

Insertion or deletion of a point from the set V,
implies the insertion or deletion of a leaf in the
tree T0 and the number of points required in
Eq. (2) becomes n + 1 or n − 1, respectively.
Moreover, an insertion or deletion may decrease or
increase respectively the minimum size εl, which is
updated in constant time. Thus the fractal dimen-
sion dimB(V) is updated in O(log n) total time.

The box-counting method in one-dimension
(d = 1) involves finding the number of intervals
with minimum size on the x-axis, needed to cover
the set V. This means that, for any point v ∈ V we
know the predecessor and the successor points in V,
on the x-axis. Therefore, the box-counting method
resolves the sorting problem of the n points on the
x-axis. Since O(n log n) is the lower bound for the
time complexity of the sorting problem of n real
numbers, we conclude,

Theorem 3.1. The dynamic box-counting method
can be done in O(n log n) time and O(n) space, and
this is optimal. An insertion or deletion in the data
point set is updated in optimal O(log n) time.

4. Experimental Results

Next, we present experimental results of our
approach using one of the most studied examples
of dynamical systems that exhibit chaotic behavior
which is the Hénon Map. Hénon map is a discrete-
time dynamical system and it is defined as fol-
lows [Hénon, 1976]:{

xi+1 = yi + 1 − ax2
i

yi+1 = bxi

for i = 0, 1, 2, (3)

This map takes a point (xi, yi) in the plane and
maps it to a new point (xi+1, yi+1). It depends on
two parameters, a and b, which for the canoni-
cal Hénon Map have the values a = 1.4 and b =
0.3. For these canonical values the Hénon map is
chaotic. Depending on the initial point (x0, y0), the

January 7, 2011 10:46 WSPC/S0218-1274 02819

Optimal Dynamic Box-Counting Algorithm 4073

(a)

−30 −25 −20 −15 −10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

loge
l

l
o
g
N
(
e
l
)

107

5 × 106

106

5 × 105

105

5 × 104

104

5 × 103

103

slope = −1.272396

(b)

Fig. 4. (a) The data set produced by the Hénon map with parameters a = 1.4095 and b = 0.3095. (b) Box-counting results
for nine data sets of n = 103, n = 5 × 103, n = 104, n = 5 × 104, n = 105, n = 5 × 105, n = 106, n = 5 × 106 and n = 107

points. The estimated slope of each graph gives the corresponding fractal dimension exhibited in Table 1.

January 7, 2011 10:46 WSPC/S0218-1274 02819

4074 P. D. Alevizos & M. N. Vrahatis

(a)

−30 −25 −20 −15 −10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

log e
l

l
o
g
N
(
e
l
)

107

5 × 106

106

5 × 105

105

5 × 104

104

5 × 103

103

slope = −1.231975

(b)

Fig. 5. (a) The data set produced by the Hénon map with parameters a = 1.39, b = 0.29. (b) Box-counting results for nine
data sets of n = 103, n = 5× 103, n = 104, n = 5× 104, n = 105, n = 5 × 105, n = 106, n = 5× 106 and n = 107 points. The
estimated slope of each graph gives the corresponding fractal dimension exhibited in Table 1.

January 7, 2011 10:46 WSPC/S0218-1274 02819

Optimal Dynamic Box-Counting Algorithm 4075

(a)

−30 −25 −20 −15 −10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

loge
l

l
o
g
N
(
e
l
)

107

5 × 106

106

5 × 105

105

5 × 104

104

5 × 103

103

slope = −1.251695

(b)

Fig. 6. (a) The data set produced by the Hénon map with canonical parameters a = 1.4, b = 0.3. (b) Box-counting results
for nine data sets of n = 103, n = 5 × 103, n = 104, n = 5 × 104, n = 105, n = 5 × 105, n = 106, n = 5 × 106 and n = 107

points. The estimated slope of each graph gives the corresponding fractal dimension exhibited in Table 1.

January 7, 2011 10:46 WSPC/S0218-1274 02819

4076 P. D. Alevizos & M. N. Vrahatis

Table 1. Fractal dimension (dimB(V)) for the nine data sets of
Figs. 4–6 for n = 103, n = 5 × 103, n = 104, n = 5 × 104, n = 105,
n = 5 × 105, n = 106, n = 5 × 106 and n = 107 points.

dimB(V)

n a = 1.4095, b = 0.3095 a = 1.39, b = 0.29 a = 1.4, b = 0.3

103 0.945001 0.961029 0.980880

5 × 103 1.118395 1.081111 1.121696

104 1.143340 1.100308 1.140679

5 × 104 1.150556 1.120797 1.148970

105 1.180866 1.142795 1.172097

5 × 105 1.203798 1.159760 1.174206

106 1.219895 1.195601 1.213407

5 × 106 1.267300 1.228493 1.248346

107 1.272396 1.231975 1.251695

sequence of points obtained by iteration of the map-
ping either diverges to infinity or tends to a strange
attractor, known as Hénon attractor, which appears
to be the product of an one-dimensional manifold
by a Cantor set [Hénon, 1976]. The Hénon attractor
is a fractal, smooth in one direction and a Cantor
set in another.

We have applied the proposed dynamic box-
counting algorithm to compute the fractal dimen-
sion of various data sets V that consist of n points
(xj , yj), j = 0, 1, . . . , n produced by the Hénon map.
First, by using the Hénon Map (3) with values
a = 1.4095 and b = 0.3095 and starting point
(x0, y0) = (0.63135448, 0.18940634) we produced
nine data sets for n = 103, n = 5 × 103, n = 104,
n = 5 × 104, n = 105, n = 5 × 105, n = 106,
n = 5× 106 and n = 107 points. The corresponding
set for n = 106 is exhibited in Fig. 4(a). In Fig. 4(b),
we plot log N(εl) against log εl where N(εl) is the
number of boxes with minimum size εl, needed to
cover the corresponding set V for all the consid-
ered six data sets. To find the number N(εl) we
have counted the number of nonempty leaves in the
corresponding tree T0. Then by using the slope of
the curve that correspond to n = 107, we obtained
dimB(V) = 1.272396.

In Fig. 5 using the parameters a = 1.39,
b = 0.29 we exhibit the corresponding results with
the same amount of points. The data set produced
with 107 points gives dimB(V) = 1.231975. In
Fig. 6, we give the corresponding results for the
canonical parameters a = 1.4, b = 0.3. In this
case, the data set produced with 107 points gives
dimB(V) = 1.251695.

In Table 1 we give the fractal dimension,
dimB(V), for the nine data sets of Figs. 4–6 for

n = 103, n = 5×103, n = 104, n = 5×104, n = 105,
n = 5 × 105, n = 106, n = 5 × 106 and n = 107

points.
For comparative purposes with the static algo-

rithm of [Hou et al., 1990] which is implemented
in [Kruger, 1996], we have calculated the CPU
time required by this algorithm as well as by the
proposed dynamic box-counting algorithm. To this
end, by using Hénon Map and parameters a= 1.4,
b = 0.3 we constructed a data set produced with 104

points and each time we insert 104 points in the data
set. In Fig. 7, we exhibit the CPU time required by
the static algorithm when it is re-executed over the
updated data sets as well as the corresponding CPU

0 1 2 3 4 5 6 7 8 9 10 11
x 104

0

1

2

3

4

5

6

7

8

9

10

Points

T
i
m
e

static algorithm

dynamic algorithm

Fig. 7. The CPU time of the static and dynamic box-
counting algorithm with parameters a = 1.4 and b = 0.3;
each time we insert 104 points in the data set.

January 7, 2011 10:46 WSPC/S0218-1274 02819

Optimal Dynamic Box-Counting Algorithm 4077

0 1 2 3 4 5 6 7 8 9 10
x 106

0

100

200

300

400

500

600

T
i
m
e

Points

static algorithm

dynamic algorithm

Fig. 8. The CPU time of the static and dynamic box-
counting algorithms for the data sets of Table 1 with param-
eters a = 1.4 and b = 0.3.

time consumed by our dynamic box-counting algo-
rithm. An additional comparison is given in Fig. 8
where we exhibit the CPU time required by the
static algorithm when it is re-executed over the
updated data sets considered in Table 1 as well
as the corresponding CPU time consumed by our
dynamic box-counting algorithm. It is evident that
the proposed algorithm achieves smaller running
time in all the considered cases.

5. Synopsis

In summary, we have proposed the optimal dynamic
box-counting algorithm for estimating the dynamic
fractal dimension of a set in a nonstationary envi-
ronment which changes over time and it is charac-
terized by insertion of new points into the set as
well as deletion of existing points from the set. We
have succeeded to update the box-counting result
at appropriate time intervals with the lowermost
possible computational cost. The proposed algo-
rithm tackles the dynamic box-counting problem
by using a sequence of O(log n) compressed Box

Quadtrees, guided by a 2–3 tree, to store the data
points. The time complexity of the proposed algo-
rithm is O(n log n), while the space complexity is
O(n), where d denotes the dimension of the problem
at hand and n is the number of considered points.
In addition, the time complexity of an insertion or a
deletion is O(log n). We have shown that the above
time and space complexity are optimal. Experimen-
tal results suggest that the proposed dynamic box-
counting algorithm achieves smaller running time
compared with the corresponding static algorithm.

Acknowledgment

We gratefully acknowledge many stimulating and
useful discussions with Professor T. C. Bountis.

References

Aho, A. V., Hopcroft, J. E. & Ullman, J. D. [1974]
The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA).

Eppstein, D., Goodrich, M. T. & Sun, J. Z. [2005] “The
skip quadtree: A simple dynamic data structure for
multidimensional data,” Proc. 21st ACM Symp. Com-
putational Geometry, pp. 296–305.

Hénon, M. [1976] “A two-dimensional mapping with
a strange attractor,” Commun. Math. Phys. 50,
69–77.

Hou, X.-J., Gilmore, R., Mindlin, G. B. & Solari, H. G.
[1990] “An efficient algorithm for fast O(N log N) box
counting,” Phys. Lett. A 151, 43–46.

Kaplan, D. (unpublished).
Kruger, A. [1996] “Implementation of a fast box-

counting algorithm,” Comput. Phys. Commun. 98,
224–234.

Liebovitch, L. S. & Toth, T. [1989] “A fast algorithm to
determine fractal dimensions by box counting,” Phys.
Lett. A 141, 386–390.

Mandelbrot, B. B. [1983] The Fractal Geometry of
Nature (Freeman, San Francisco).

Munro, J. I., Papadakis, T. & Sedgewick, R. [1992]
“Deterministic skip lists,” Proc. Third Annual
ACM-SIAM Symp. Discrete Algorithms (SODA),
pp. 367–375.

	1 Introduction
	2 The Box-Counting Algorithm
	3 Determining the Fractal Dimension of Nonempty Set V
	4 Experimental Results
	5 Synopsis

