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Abstract. During the last decade, a variety of ensembles methods has been developed. All known and widely used methods of this
category produce and combine different learners utilizing the same algorithm as the basic classifiers. In the present study, we use
two well-known approaches, namely, Rotation Forest and Random Subspace, in order to increase the effectiveness of a single
learning algorithm. We have conducted experiments with other well-known ensemble methods, with 25 sub-classifiers, in order
to test the proposed model. The experimental study that we have conducted is based on 35 various datasets. According to the
Friedman test, the Rotation Forest of Random Subspace C4.5 (RFRS C4.5) and the PART (RFRS PART) algorithms exhibit the
best scores in our resulting ranking. Our results have shown that the proposed method exhibits competitive performance and better
accuracy in most of the cases.
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1. Introduction

In general, effective models and algorithms are re-
quired in order to tackle knowledge extraction for big
data analytics. For producing a reliable and efficient
machine learning method, empirical studies have shown
that we should focus on the overall problem field in-
stead of a specific problem. The theoretical work carried
out by Wolpert and Macready [1] indicates that there is
no single algorithm that outperforms all the other algo-
rithms regarding all problems. A recent study [2] based
on the work of Wolpert and Macready indicates that a
machine learning algorithm is not performing equally
well on all problems. For a further study in these issues
we refer the interested readers to [3].

We have to take into consideration that there could
exist a given learning algorithm that outperforms all
the other ones under certain conditions in specific real-
world problems. Thus in a particular subset of input
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data, we are able to conclude that it may be possible a
learning algorithm to outperform other ones in a specific
set of problems. On the other hand, it is unusual to
achieve the best performance for all problems [4].

Based on the above, various researchers focus their
attempts on building multiple learner systems, such as
an ensemble of classifiers, in order to produce a model
which takes advantage of the behaviour of different
base-classifiers. This issue results in creating an in-
ductive system with high accuracy and reliability. An-
other essential advantage of such a system is that even
if a learning algorithm fails, it does not mean that the
overall system fails.

The main concept concerning an ensemble of clas-
sifiers is the combination of individual decisions us-
ing in some way different classifiers [5]. In the last
decade, their use has been widespread, and for this rea-
son, many different methods of ensembles have been in-
troduced [4]. The main issues for creating an ensemble
of classifiers are the following:

(i) A different subset of training data with a unique
learning algorithm can be used.

(ii) The usage of different learning models is sug-
gested.

(iii) Several training variables concerning an indi-
vidual learning algorithm can be used.
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An informative review in comparing ensemble meth-
ods can be found in [4]. In addition in [4], the design and
application of multiple classifier systems are presented.
However, the following issue needs to be considered. In
a plethora of methods, the appropriate selection could
be a difficult task. Nevertheless, the effectiveness of an
ensemble method is based on the following issues:

(i) There are essential representational factors.
(ii) Computational issues give an advantage to an en-

semble.
(iii) Statistical aspects.

Thus, an ensemble of classifiers is preferable than a
single one [4]. A critical fact that affects the success of
a multiple learner system is the diversity of the partici-
pants. If the classifiers participating in the combination
have different characteristics, then possibly the predic-
tions will be stable and more accurate. More specifi-
cally, although all learners may misclassify instances, it
is important to notice that learners misclassify different
instances.

Ensemble methods have been of great interest, as
indicated by the growing number of the applications
that have been presented in recent studies [6,7]. Let
us address a critical problem belonging to the field of
medicine. This problem is related to breast cancer, a
disease that plagues women all over the globe. As it is
easily understood, such issue is significant to be fore-
casted in time for the patient to receive appropriate
treatment. In conclusion, an accurate diagnosis of this
disease is the first and perhaps an essential step in pro-
viding the most appropriate treatment. During the last
years, there are various developed techniques regarding
this issue, that are adopted by experts. Aličković and
Subasi in [6] have provided a comparison between data
mining techniques for the prognosis of breast cancer.

In addition, there is no doubt that the technologies
which use Android platforms are increasing. Indica-
tively, we mention the number of applications found
on the internet that serve market trends. A common
issue regarding such platforms and applications is the
attacks that can be received by malware. To address
such issues, Zhu et al. [7] proposed a highly effective
and, at the same time, a low-cost method that protects
the users from malware attacks. Specifically, using the
well-known and widely used Rotation Forest method,
Zhu et al. [7] have considered sensitive addresses or
suspicious systems in order to detect malware.

In the paper at hand, we combine two well-known
methods, namely the Rotation Forest [7,8] and the
Random-Subspace method [9] in order to produce an
effective single model. For testing our model, we per-

formed comparisons with other well-known ensem-
ble methods, including Bagging [10], Boosting [11],
Decorate [12], Random-Subspace method as well as
widely used ensemble methods that have been presented
in [13]. In most cases, our experiments were based on
standard benchmark problems and the experimental re-
sults have shown that the provided method has been
stable and accurate. Furthermore, widely used methods,
such as Decision Trees [14] and Rule Learners [15]
have been included in the experiments.

In Section 2, we discuss the most common algorithms
used in the literature to create an ensemble of classifiers
that are based on a single learning method. In Section 3,
the proposed ensemble method is presented. The ex-
periments and the comparison of our approach to well-
known methods of this category are presented in Sec-
tion 4. Finally, in Section 5 we give some concluding
remarks and a discussion for further research.

2. Ensemble methods: Background material and
well-known techniques

In this section, we briefly mention the fundamental
characteristics of ensemble methods, as well as useful
information about the main approach and the essential
aspects concerning the ensemble of classifiers.

Let us denote by P a given problem, by A a learner
or learning algorithm, and by H a searching or hypoth-
esis space. The main goal of a classifier is the appropri-
ate connection between these elements. Consequently,
the algorithm A aims to the best solution in the space
H . A difficult issue that we face in many real-world
problems is when the available data are restricted. In
addition, various real-world data sets may have several
problems, such as incomplete instances. In such cases,
the learner A should reach diverse solutions in H that
could achieve efficient results. Hence, we have the op-
portunity to select the most suitable set of solutions in
respect of accuracy and low capacity.

During the last years, various researchers focus their
attention on ensemble methods. The advantage of this
approach is the combination of multiple classification
algorithms in order to build a single more robust, effec-
tive and efficient model instead of the usage of a single
classification algorithm. A difficult issue that has to be
tackled is the selection of a single strong classifier and
an ensemble method. In order to achieve a good selec-
tion, we have to examine several issues. For this pur-
pose, we present the basic characteristics of ensemble
methodology and how an ensemble of classifiers can be
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created. It is worth noting that most of ensemble meth-
ods are based on varying the given data in some way,
and hence techniques of varying the dataset are quite
useful [16,17]. Thus, allow us to briefly present sam-
pling techniques, distortion techniques and adaptive
re-sampling techniques.

One of the well-known algorithms of this category
is the Bagging (Bootstrap aggregating) algorithm [10].
The aim of this algorithm is to improve a classifica-
tion task through different classifications using random
training samples. Specifically, if T is an initial train-
ing set of size t, then the Bagging method produces Ti

new training sets of size t′. These sets Ti are produced
from the Bagging training set T by a uniform distri-
bution with replacement. Thus, some elements may be
repeated in Ti. For each set Ti, a learner Li is provided.
The final, strong learner Ls is introduced through the
aggregation of i learners. As a result, an element x is
classified through a voting procedure created uniformly
by the L1, L2, . . . , Li. Specifically, x is classified into
that class which is most voted by Li.

Boosting [11] is also a well-known method quite
similar to the bagging one, but on the other hand it
exhibits a significant difference. Specifically, for the
bootstrap method the assignment of weights takes place
such as to create a new strategy sequentially in contrast
to the Bagging method. Thus, some elements may be
participants of more data sets according to their weight.
In each iteration, misclassified instances gain a higher
weight and examples that classify correctly lost weight.
It is worth noting that Boosting method may lead to
over-fitting. On the other hand, Dagging reduces this
issue in most of the cases [18].

In order to tackle the usage of the full attribute set
to train the classifier, the method that has been pro-
posed in [9] uses random sub-samples of features, i.e.
the well-known Feature Bagging or Random Subspace
method. Assume that, the initial training set consists
of n instances and that f is the number of the features.
Assume further that, m is the number of participants
in the ensemble scheme. Then, for each participant, a
number f ′ < f is selected as input data. Also it is rec-
ommended to choose an amount of 50% of the original
features and to use the same number f ′ for all the par-
ticipants. In addition, the ensemble method combines
the predictions of all m individuals through a majority
voting process.

In [19] an improvement of AdaBoost method (which
is the most well-known Boosting method) has been
provided and a way for improving parameters setting
has been presented. In addition, a refined criterion for

training weak hypotheses has been performed. Hence,
the authors of [19] have concluded the following: (a)
when the training data are “poor”, then the base learner
does not respond well, and so, the AdaBoost will fail,
and (b) when the training errors are highly grown, then
the AdaBoost will probably also fail.

Webb has presented in [20] a variation of AdaBoost.
The algorithm, named MultiBoosting, is a combina-
tion of the AdaBoost method with Wagging, which is a
variation of the Bagging method. The main difference
between Bagging and Wagging is the re-weighting of
each training point used in Wagging in order to achieve
differently the outcome of Bagging.

Kuncheva et al. [21] have used the nearest mean
classifier and the pseudo-Fisher linear discriminant
classifier to test the applicability and the efficiency of
well-known ensemble methods, such as Bagging and
Boosting. The main goal was to test the usefulness of
diverse ensembles. Their outcomes have shown that
Boosting succeeds in inducing diversity even for stable
linear classifiers whereas Bagging does not.

Another well-known method of ensembles is the
Random Forests method. This method is presented
in combination with the Random Subspace method
that has been proposed in [22]. In particular, the ran-
dom forests method uses two other known techniques:
the Decision Trees approach and the Feature Bagging
method. It should be mentioned that, random subsam-
ples of the training data are selected as well as ran-
dom features are used for learning the base classifiers.
Consequently, the algorithm selects at random a set of
feature data in each step of the decision tree creation
and hence, the best tree is established.

An alternative approach that uses a robust classifier
as a meta-classifier in order to build a model with di-
versity has been presented in [12]. Specifically, the au-
thors Melville and Mooney in [12] have proposed a new
meta-learner that uses a learner with high accuracy in
the training data in order to create a final model with
high classification ability. Their method is called DEC-
ORATE (Diverse Ensemble Creation by Oppositional
Re-labeling of Artificial Training Examples). During
DECORATE execution, the following process is per-
formed: during the participation of a new learner in
the set of the classifiers, different constructed examples
are randomly added to the training set. The aim was to
create a model where its participants would be more
diverse. To this end, these newly constructed examples
are labelled as conflicting with the current classification.
As a result, when a new entrant is added to the classifi-
cation scheme, the diversity is instantly increased as it
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is trained in the new training set. Then, the sub-learner
is added to the new algorithm scheme.

A popular method belonging to the class of ensem-
ble methods is the so-called Rotation Forest [8]. This
method is based on feature extraction and uses Prin-
cipal Component Analysis (PCA) [23] on a subset of
classes. Specifically, the set of features is divided at
random into n subsets, where n is a factor of the num-
ber of features. Each subset of features consists of a
number of selected features. Let us denote by Sij the
j-th feature subset given for training to the Li learner.
The concept of the rotation method is to motivate par-
ticipant accuracy and diversity simultaneously into the
ensemble. The first issue is sought by maintaining all
principal components and using the whole training set
to train each base learner. The second one is performed
using feature extraction.

Another approach that uses the well-known method
of Rotation Forest was proposed in [24]. This method
aims to predict landslides in an area using the Geo-
graphic Information System (GIS) [25]. The proposed
method has been named Rotation Forest fuzzy rule-
based Classifier Ensemble (RFCE). At this point, let
us briefly present some interesting issues regarding this
method. Mainly, it is a hybrid model that combines
tested techniques for predicting landslides in a specific
region of India. Thus, the authors encounter the hybrid
method of rotation forest and fuzzy unordered rules in-
duction algorithm classifier. In this research, 930 related
landslide sites as well as 15 factors that are proven to
occur in a landslide have been considered. In order to
test the performance of the proposed hybrid method, the
authors conducted tests and comparisons with a set of
the most well-known and widely used ensemble meth-
ods. The obtained results have shown that the proposed
model is competitive and can provide a reliable pre-
diction of landslides based on statistical estimates with
indicators.

Randomness can increase the model diversity, but
might reduce the individual accuracy of the base clas-
sifiers. Blaser and Fryzlewicz in [26] have proposed a
method that controls the diversity of ensemble classi-
fiers so that the accuracy of the basic classifiers does not
fall significantly. In particular, the feature space of the
data set is randomly rotated before passed to the base
classifiers in order to make predictions. The authors
have pointed out that the improvement in the forecasts
of the well-known ensemble method is crucial.

3. Proposed method

It is essential to estimate the expected error of a learn-

ing algorithm for different target functions and different
training sets. Generalization ability of the learning al-
gorithm is a desirable goal. Over-fitting on the training
data set is not desirable and thus, the following three
key features should be considered:

1. How well responds the classifier produced by the
learning algorithm regarding the given target func-
tion.

2. The minimum classification error associated with
the well-known Bayes algorithm for the target
function.

3. The discrepancy between the decisions of the clas-
sifiers.

Rotation Forest [8] is an established ensemble
method where each base classifier is trained in a set of
data which is formed by the PCA technique. Particu-
larly, with the usage of PCA, the initial axes of the data
set features are rotated. In order to structure the training
set, that the base classifiers of the ensemble will use,
the feature set is randomly divided into N subsets. The
PCA technique is applied to each subset. All principal
components are preserved to maintain the variability
information in the set of data. Therefore, there are as
many axis rotations as the subsets of data in which the
feature set is separated. The new data sets are provided
in order to train the base classifiers of the ensemble
scheme. The rotation forest method has the advantage
of offering diversity in the ensemble of the classifiers
and, at the same time, maintains the individual accuracy
at a high level. During the rotation forest method, the
so-called feature extraction process takes place, which
enhances the diversity. Simultaneously, as all the prin-
cipal components are kept intact, the accuracy does
not fall. Thus, the training set is maintained for each
classifier, and consequently no useful information is
lost.

In order to improve the performance of the proposed
method, the Rotation Forest method is combined with
the Random Subspace method [9]. This combination
creates a more robust final ensemble approach, which
is presented in Algorithm 1. Specifically, we used five
sub-classifiers for each sub-ensemble method.

At this point, we discuss the reason for which the
proposed ensemble method is effective. First of all, a
good reason is the good representation that it offers.
The hypothesis space may not contain the actual func-
tion. However, it will have good approximations. In
this way, classifiers outside the hypothesis space may
be represented using the above good approximations.
Then, a voting scheme takes place. The majority of the
votes provide the opportunity to eliminate the issue of
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randomness. In addition, when different subspaces of
features are used, we have an increase in the diversity of
classification decisions that is desirable for our model.

Algorithm 1 : Rotation Forest of Random Subspace (RFRS) algo-
rithm
Require: Learning set A, where A = 5 the number of bootstrap

samples
Ensure: Learning Algorithm (LA) outputs C∗ classifier

for i = 1 to A do
Group the initial variables at random.
For each group of input variables consider the following:
Regard a data set formed by this initial variables and the whole
set of examples.
Delete from the dataset all the instances from an appropriate
subset of the classes.
Delete from the dataset a subset of the examples.
Apply PCA technique using the remaining data set.
Regard the PCA’s components as a new set of variables: None
of the components is rejected.
Let Ti be the training data set using as new variables the com-
ponents of PCA technique for each group
for j = 1 to A do

Let Tj be a random projection from the d−dimensional
input space of Ti to a k−dimensional subspace;
Let CA(i−1)+j be a LA (Tj ) for the generation of a base
classifier

end for
end for
Output: The classifier

C∗ = argmax
A2∑
i=1

Ci(x) = y

4. Experimental results and comparisons

In this section, we present in detail the datasets, the
experiments and the comparisons with other methods
that we have considered. We have considered well-
known and widely used datasets from UCI reposi-
tory [27] corresponding to real-world data that pos-
sess diversity in terms of characteristics. Also, we have
used datasets from different and varied domains, such
as the pattern and image recognition, the medical di-
agnosis and commodity trading. In addition, we have
also considered datasets belonging to the field of music
composition and computer games among others.

In addition, we provide specific details for the
datasets that we have used concerning the number of
classes and instances and the type of attributes in Ta-
ble 1. Moreover, regarding the accuracy of the classi-
fiers, we divide the training set into ten mutually exclu-
sive and equal-sized subsets. After that, for every sub-
set, the classifier is trained on the union of all remaining
datasets. Furthermore, the technique of cross-validation
is applied for each of the algorithms. Specifically, we

Table 1
Description of the datasets, where “Inst.” denotes the number of
the instances, “Cat.f.” declares the number of categorical features,
“Num.f.” denotes the number of numerical features on the dataset and
“Clas.” indicates the number of the classes

Dataset Inst. Cat.f. Num.f. Clas.
Anneal 898 32 6 6
Audiology 226 69 0 24
Autos 205 10 15 6
Breast-cancer 286 9 0 2
Breast-w 699 0 9 2
Colic 368 15 7 2
Credit-g 1000 13 7 2
Diabetes 768 0 8 2
Dimin 3949 12 0 5
Haberman 306 0 3 2
Heart-c 303 7 6 5
Heart-h 294 7 6 5
Heart-statlog 270 0 13 2
Hepatitis 155 13 6 2
Hypothyroid 3772 22 7 4
Ionosphere 351 34 0 2
Iris 150 0 4 3
Kr-vs-kp 3196 35 0 2
Letter 20000 0 16 26
Lymphotherapy 148 15 3 4
Monk1 124 6 0 2
Monk2 169 6 0 2
Mushroom 8124 22 0 2
Primary-tumor 339 17 0 21
Segment 2310 0 19 7
Sick 3772 22 7 2
Sonar 208 0 60 2
Soybean 683 35 0 19
Spambase 4601 0 58 2
Student 344 11 0 2
Titanic 2201 3 0 2
Vote 435 16 0 2
Vowel 990 3 10 11
Waveform 5000 0 40 3
Zoo 101 16 1 7

Table 2
Friedman ranking (using C4.5)

Rank Algorithm
2.72353 RFRS C4.5
2.96765 Rotation Forest C4.5
3.95588 MultiBoost C4.5
4.29412 Boosting C4.5
4.76471 Random Subspace C4.5
5.16176 Bagging C4.5
5.50000 Decorate C4.5
6.63235 Dagging C4.5

have carried out a ten-time cross-validation for every
algorithm, taking into consideration their average value.

For some of the considered methods, the reduction
in error seems to have arisen after 10 to 15 classifiers.
Specifically, this issue occurs to Bagging, Boosting,
Decorate and Random-Subspace methods. Neverthe-
less, the AdaBoost method persists in considerably im-
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Table 3
Finner Post-hoc (using RFRS C4.5 as control method)

Comparison Statistic Adjusted p-value Result
RFRS C4.5 vs Dagging C4.5 6.41121 0.00000 H0 is rejected
RFRS C4.5 vs Decorate C4.5 4.50517 0.00002 H0 is rejected
RFRS C4.5 vs Bagging C4.5 3.93584 0.00019 H0 is rejected
RFRS C4.5 vs Random Subspace C4.5 3.26749 0.00190 H0 is rejected
RFRS C4.5 vs Boosting C4.5 2.47537 0.01858 H0 is rejected
RFRS C4.5 vs MultiBoost C4.5 1.90603 0.06577 H0 is accepted
RFRS C4.5 vs Rotation Forest C4.5 0.07426 0.94080 H0 is accepted

Table 4
Comparisons of the proposed ensemble method with established ensemble methods using the C4.5 classifier as base
classifier, where “MultiB.” denotes the MultiBoost algorithm, “Rot.Forest” declares the Rotation Forest method and
“Rand.-Sub.” indicates the Random-Subspace algorithm

Dataset
RFRS
C4.5

Bagging
C4.5

Dagging
C4.5

Boosting
C4.5

MultiB.
C4.5

Decorate
C4.5

Rot.Forest
C4.5

Rand.-Sub.
C4.5

Anneal 99.01 98.79 83.73 99.61 99.62 98.72 99.22 98.73
Audiology 82.31 80.76 46.69 84.62 85.27 81.97 80.57 79.08
Autos 82.78 83.95 50.19 86.05 86.24 83.38 84.31 85.37
Breast-cancer 72.74 73.15 71.71 69.87 68.01 70.16 71.82 73.25
Breast-w 97.07 96.12 96.08 96.51 96.55 96.17 97.14 96.50
Colic 85.02 85.29 81.76 81.76 83.56 84.31 84.51 84.85
Credit-g 75.87 74.27 70.71 72.79 74.59 72.53 75.80 74.44
Diabetes 76.57 76.38 75.48 72.81 74.67 74.91 76.44 74.61
Dimin 96.62 97.16 89.83 96.03 96.33 96.95 97.39 95.00
Haberman 73.30 72.62 73.16 71.12 71.08 72.66 72.86 73.07
Heart-c 83.01 79.47 82.34 79.60 80.16 78.58 83.46 81.39
Heart-h 82.35 80.11 81.92 78.25 79.97 79.09 81.69 81.48
Heart-statlog 82.93 81.19 83.44 80.15 80.93 80.56 83.33 83.59
Hepatitis 84.89 81.50 79.38 82.74 82.93 82.19 83.13 82.81
Hypothyroid 98.20 99.59 98.65 99.67 99.68 98.65 99.66 95.62
Ionosphere 94.42 92.45 81.05 93.62 93.50 92.60 93.17 93.71
Iris 95.73 94.67 81.00 94.47 94.40 95.33 94.67 94.33
Kr-vs-kp 98.33 99.43 94.48 99.62 99.62 99.53 99.41 96.97
Letter 95.21 93.50 82.03 96.62 94.98 92.85 96.75 93.01
Lymphography 83.69 78.75 77.41 83.09 82.42 80.38 86.48 79.76
Monk1 92.29 82.99 58.71 96.54 93.49 90.13 96.67 85.97
Monk2 67.99 60.33 60.87 61.86 60.44 59.19 70.48 61.90
Mushroom 100 100 98.52 100 100 100 100 100
Primary-tumor 46.29 45.16 31.74 41.65 41.71 44.22 45.12 45.40
Segment 97.98 97.55 92.00 98.42 98.34 98.18 98.23 97.54
Sick 98.38 98.85 97.55 99.06 99.01 97.55 98.91 95.83
Sonar 85.07 79.78 70.45 83.03 83.33 78.33 85.14 82.08
Soybean 94.24 93.15 62.90 93.21 93.28 94.29 94.58 94.36
Spambase 95.26 94.44 91.48 95.11 95.61 94.13 94.54 94.87
Students 87.04 86.29 86.81 81.46 82.78 80.52 86.08 86.19
Titanic 78.88 78.00 77.60 78.89 78.65 79.05 78.83 78.19
Vote 96.41 96.50 95.61 95.33 95.52 94.94 96.79 95.42
Vowel 98.59 91.68 56.57 95.42 95.11 95.96 98.79 95.26
Waveform 85.76 83.02 83.24 83.32 83.64 79.48 85.52 83.78
Zoo 93.21 93.00 46.37 95.38 95.37 93.18 91.18 94.27

proving their test-set error up to 25 classifiers [4]. In
order to utilize the behaviour mentioned above, we have
used 25 sub-learners for all the tested ensembles of
classifiers. Regarding the time complexity, our method
is competitive with Rotation Forest, Decorate, Bagging,
Boosting and Random-Subspace methods with 25 sub-
learners. This is easily understood if we consider the

use of 5 sub-classifiers for every sub-ensemble.
In our study we have used two well-known and

widely used algorithms as base classifiers, namely,
the Decision Trees and Rule Learner algorithm. Con-
sequently, in the following subsections, we present
the results regarding the algorithms mentioned above.
Hereafter, let us briefly describe two significant issues.
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Table 5
Friedman ranking (using PART)

Rank Algorithm
2.45714 RFRS PART
2.74286 Rotation Forest PART
4.32857 MultiBoost PART
4.42857 Boosting PART
4.47143 Bagging PART
4.70000 Random Subspace PART
5.95714 Decorate PART
6.91429 Dagging PART

Firstly, in our experiments, we have attempted to re-
duce the outcome of any expert bias by avoiding tuning
any of the algorithms to a particular dataset. Secondly,
the standard learning parameter assignments have been
used in all our experiments. Through this simple way,
we have achieved lower estimates of the true error rate.
However, that bias influences all learning models uni-
formly. It should be mentioned that we have conducted
our experiments using the widely used machine learn-
ing software of Waikato Environment for Knowledge
Analysis (Weka) [28].

4.1. Using C4.5 algorithm as base classifier

In our first attempt, we have used an established clas-
sifier as the base classifier in the proposed scheme,
the well-known Decision Tree algorithm. According
to [29,30], decision trees are one of the most common
classifiers in the field of machine learning. Specifically,
the classification process is based on the values of the
features. Also, the algorithm sorts the examples by their
attribute values. Thus, every node of the tree briefly
describe an attribute in an instance to be classified. Ev-
ery branch of the decision tree presents a value that the
node is associated. The classification task starts at the
root of the tree. The instances are classified according to
their feature values. The feature that optimally divides
the training data occupies a position as the root of the
tree.

The procedure described above is repeated similarly
in each division of the tree. Thus, smaller trees are cre-
ated, the so-called sub-trees, until the data sets are sub-
divided into smaller batches, and finally, the examples
in a node belong to the same class. Nevertheless, a cru-
cial issue that may occur is the case of overfitting [31].
This case is a common problem that may arise in dif-
ferent learning algorithms, such as decision trees or ar-
tificial neural networks. Precisely, during the overfitting
case, the learning algorithm fits perfectly to the training
data. On the other hand, it may be imprecise in pre-
dicting the results of the unseen data. Subsequently, we

briefly describe three of the most common processes to
balance the issue mentioned previously.

A reliable solution can be provided by applying
data pre-processing steps [32]. In particular, using this
technique, we avoid the immediate simplification of
the results. Thus, implementing the appropriate pre-
processing steps, we try to simplify or extract useful
information from the dataset to feed the learning algo-
rithm with a small amount of data. In general, the pur-
pose of these techniques is to strive to clean the dataset
in order to select the most suitable features for building
a simpler learner. Secondarily, the usage of pre-pruning
and post-pruning technique is adopted. According to
the first technique, a termination criterion can be ap-
plied for controlling the height of the decision tree. On
the other hand, post-pruning eliminates some of the
terminal branches in order to increase the classification
accuracy.

In the paper at hand, we use one of the most known
and widely used algorithms [33] that belongs to the
family of decision trees, namely the C4.5 learner. In
order to make the partition process optimal, the C4.5 al-
gorithm uses a term called information gain. According
to that statistical term the feature that best divides the
training dataset is determined. The problematic issue of
overfitting is handling through a set of rules. One rule
for every path from the root to a leaf node is generated,
and by appropriate generalisation, the accuracy is max-
imised. In general, the algorithm of decision trees is a
model which is characterised by instability and hence
small changes to the training set lead to significant final
prediction changes.

The comparison is between the proposed model and
the established ensemble methods, such as Bagging,
Dagging, Boosting, MultiBoost, as well as Decorate,
Rotation Forest and Random-SubSpace using as base
classifier the C4.5 classifier with 25 sub-classifiers. In
order to test the statistical performance, we have used
the well-known Friedman test [34] and the Finner Post-
hoc test [35]. Thus, the proposed ensemble method has
exhibited statistically better performance than the other
considered ensemble methods. In Tables 2 and 3, the
results obtained by using the Friedman and Finner Post-
hoc tests are presented. Moreover, using underline (in
Table 4) we denote the performance of the methods
outperforming the proposed method according to the
same statistical tests. Particularly, the methods that are
outperformed by the proposed ensemble method are
displayed in bold.
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Table 6
Finner Post-hoc (using RFRS PART as control method)

Comparison Statistic Adjusted p-value Result
RFRS PART vs Dagging PART 7.44124 0.00000 H0 is rejected
RFRS PART vs Decorate PART 5.80661 0.00000 H0 is rejected
RFRS PART vs Random Subspace PART 3.65963 0.00059 H0 is rejected
RFRS PART vs Bagging PART 3.26927 0.00189 H0 is rejected
RFRS PART vs Boosting PART 3.19607 0.00195 H0 is rejected
RFRS PART vs MultiBoost PART 3.02529 0.00290 H0 is rejected
RFRS PART vs Rotation Forest PART 0.14639 0.88362 H0 is accepted

Table 7
Comparisons of the proposed ensemble method with established ensemble methods using the PART classifier as base
classifier, where “MultiB.” denotes the MultiBoost algorithm, “Rot.Forest” declares the Rotation Forest method and
“Rand.-Sub.” indicates the Random-Subspace algorithm

Dataset
RFRS
PART

Bagging
PART

Boosting
PART

Ran.-SubS.
PART

Dagging
PART

MultiB.
PART

Decorate
PART

Rot.Forest
PART

Anneal 99.11 98.69 99.60 98.73 84.63 99.45 98.89 99.33
Audiology 83.16 82.68 85.28 79.00 46.55 85.50 81.32 81.56
Autos 83.79 81.98 84.38 83.75 50.56 83.75 82.33 83.83
Breast-cancer 74.16 71.33 68.93 73.13 72.29 69.38 68.92 74.16
Breast-w 97.28 96.37 96.50 96.72 96.08 96.61 95.57 96.99
Colic 84.23 85.21 81.30 84.69 81.90 83.99 83.96 84.50
Credit-g 76.10 75.18 74.03 75.81 71.56 74.62 72.30 77.80
Diabetes 77.35 75.95 73.78 74.96 74.79 74.88 75.53 76.43
Dimin 97.47 97.75 96.51 95.46 85.13 96.89 95.37 97.09
Haberman 73.53 73.30 72.18 72.84 73.46 72.18 74.48 73.52
Heart-c 84.44 81.95 80.47 83.27 82.61 81.03 79.49 83.80
Heart-h 82.03 82.25 81.47 82.45 82.13 81.53 78.62 83.71
Heart-statlog 83.70 81.70 80.78 83.44 83.33 81.22 77.78 81.48
Hepatitis 84.54 83.71 83.52 83.83 79.38 84.48 82.66 84.46
Hypothyroid 98.94 99.63 99.66 96.26 98.60 99.66 98.60 99.71
Ionosphere 94.89 92.77 93.51 93.51 80.97 93.54 92.32 95.17
Iris 95.33 94.6 94.93 94.67 79.80 94.73 95.33 95.33
Kr-vs-kp 98.94 99.46 99.67 97.28 95.68 99.68 98.59 99.62
Letter 95.18 94.20 94.33 94.12 92.96 94.67 93.13 95.11
Lymphography 85.76 83.20 84.13 83.01 77.21 83.19 81.67 84.38
Monk1 92.56 98.57 98.81 84.74 61.87 98.49 91.79 95.83
Monk2 65.04 67.75 66.24 62.49 60.12 65.78 58.05 68.09
Mushroom 100 100 100 100 98.60 100 100 100
Primary-tumor 45.40 45.34 42.21 46.11 31.77 42.6 44.82 44.52
Segment 98.01 97.80 98.45 97.69 91.95 98.28 97.92 98.18
Sick 98.44 98.79 98.92 96.69 97.44 98.85 97.44 98.65
Sonar 87.55 81.41 83.05 83.75 70.45 82.95 85.60 88.00
Soybean 93.40 93.26 93.22 94.13 56.79 93.43 93.26 93.99
Spambase 95.47 95.22 95.44 94.08 92.96 95.11 94.04 95.41
Students 86.95 84.08 81.37 85.44 85.73 82.43 78.50 84.92
Titanic 78.83 78.37 78.98 78.27 77.60 78.78 78.92 78.96
Vote 96.10 96.52 94.94 95.56 95.61 95.28 94.49 96.33
Vowel 98.38 91.33 94.32 96.15 57.08 93.71 96.36 97.98
ïijůaveform 85.88 84.42 84.19 84.94 83.82 84.19 83.32 86.34
Zoo 94.27 93.20 95.75 94.28 46.37 94.28 93.27 91.18

4.2. Using PART algorithm as base classifier

In this subsection, we present the second application
with a different base classifier. In that attempt, we have
used a rule-based learner as the base classifier of the
ensemble scheme. In rule-based strategies [36] the main
concept includes a series of Boolean clauses related to

logical AND operators that jointly denote membership
in a specific class. This process aims in constructing
the smallest rule-set that is consistent with the training
data. The most common conditions are the following:
when the number of rules is large, the algorithm tries to
memorise as much training data as possible. Contrary
to the situation we need, i.e. to detect the hidden pattern



S.-A.N. Alexandropoulos et al. / Rotation forest of random subspace models 323

in the data. In our study, we have used one of the most
known and widely used algorithms [37] belonging to
the family of rule-based learners, the PART algorithm.

Therefore, regarding the PART version, Friedman
and Finner Post-hoc procedures have been employed
and the obtained results are presented in Tables 5 and 6.

The comparisons between the proposed method and
the established ensemble methods, such as Bagging,
Boosting, Random-SubSpace, as well as Dagging,
MultiBoost, Decorate and Rotation Forest using as base
classifier the PART classifier are presented in Table 7.

5. Conclusion remarks and discussion

The issue of creating an efficient, reliable and com-
petitive ensemble of classifiers is an up-to-date scien-
tific field of supervised machine learning. Well-known
and widely used studies [38,39] indicate that an en-
semble of classifiers outperforms the individual ones.
The dominant cause is that most of learners use local
optimization techniques, which may remain in local
solutions. It is well-known that decision trees utilise a
greedy local search. Even though a learning algorithm
may, in principle, attain the best hypothesis, that is not
possible in practice. On the other hand, an ensemble of
classifiers may obtain a more reliable approximation,
even if no further information is provided [39].

In our study, we have provided the RFRS method
that combines the effectiveness of two widely used and
established methods in a single algorithm, namely, the
Rotation Forest and Random Subspace method. The
experiments that we have conducted indicate that the
RFRS method achieves better accuracy in most cases
compared to other well-known ensemble methods, such
as Bagging, Boosting and Random Subspace. The pro-
posed ensemble algorithm achieves lower error in com-
parison to other ensembles (including Boosting, Ran-
dom Subspace and other established methods) when
base learning algorithm, such as C4.5 and PART, has
been utilized.

Recently, significant progress has been made in the
construction of new, efficient ensemble algorithms.
However, there are significant issues that need further
investigation. Thus, a challenging future goal is to test
the proposed RFRS method in regression problems.
Moreover, a considerable issue is the automatic selec-
tion of appropriate and more effective learners in order
to integrate the best ensemble scheme. Furthermore, in
general, a diachronic issue for creating a good ensemble
is the selection of the most suitable number of partici-
pants. This issue will be further studied in combination
with other well-known machine learning algorithms.
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