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Abstract

In this paper a globally convergent first-order training algorithm is proposed that uses sign-based information of the batch error
measure in the framework of the nonlinear Jacobi process. This approach allows us to equip the recently proposed Jacobi–Rprop
method with the global convergence property, i.e. convergence to a local minimizer from any initial starting point. We also propose
a strategy that ensures the search direction of the globally convergent Jacobi–Rprop is a descent one. The behaviour of the algorithm
is empirically investigated in eight benchmark problems. Simulation results verify that there are indeed improvements on the
convergence success of the algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, artificial neural networks are vital components of many systems and are considered a powerful tool for
pattern classification [5,11]. The vast majority of artificial neural network solutions are trained with supervision.

In this context, the training phase is one of the most important stages for the neural network to function properly
and achieve good performance. In supervised learning the desired outputs are supplied by a “teacher” and the network
is being forced into producing the correct outputs by adjusting the weights iteratively, in order to globally minimize
a measure of the difference between its actual output and the desired output for all examples in a training set [10].
Finding the global minimum is a difficult task in neural networks due to their complex objective function, the so-called
error function [10,27].
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Back-Propagation (BP) [27] is a popular training algorithm, which minimizes the error function by updating the
weights w using the steepest descent method [4]:

wk+1 = wk − �∇E(wk), k = 0, 1, 2, . . . , (1)

where E is the batch error measure defined as the sum-of-squared-differences error function (SSE) over the entire
training set, while ∇E denotes the gradient of E. The parameter � is a heuristic, called step-size.

Choosing the right value for the step-size is very important as it has an impact on the training speed, the success
of the learning process and the quality of the results produced by the network. First-order algorithms with individual
adaptive step-sizes provide dynamic tuning of the step-size using adaptation techniques that are able to handle the trade
off between maximizing the length of the step-size and reducing oscillations [15,16]. A variety of approaches that use
second derivative related information to accelerate the learning process have been proposed for small to medium size
networks [4,17,18,31].

An inherent difficulty with first-order and second-order learning schemes is convergence to local minima. While
some local minima can provide acceptable solutions, they often result in poor network performance. This problem can
be overcome through the use of global optimization at the expense of an increase in the computational cost, particularly
for large networks [7,21,22,30].

In this paper we focus on sign-based training schemes. Among these, the Resilient propagation (Rprop) algorithm
proposed by Riedmiller and Braun [24–26], is widely used and performs very well in pattern classification tasks. Rprop
takes into account only the sign of the derivative to indicate the direction of the weight update. The effectiveness
of Rprop in practical applications has motivated the development of several variants with the aim to improve the
convergence behaviour and effectiveness of the original method. Recently a modification of the Rprop, the so-called
Jacobi–Rprop (JRprop) method has been proposed [2,3]. Empirical evaluations of JRprop gave good results, showing
that JRprop outperforms in several cases the Rprop and Conjugate Gradient algorithms [3]. This paper proposes a
globally convergent JRprop-based learning scheme and derives a theoretical justification for its development.

The paper is organized as follows. First, we give a brief outline of the theoretical background behind the Jacobi–Rprop
algorithm. Next, the new globally convergent algorithm is presented and a theoretical result that justifies its convergence
is derived. Then we conduct an empirical evaluation of the new algorithm by comparing it with the classic Rprop, and
the recently proposed JRprop [2,3]. Finally our results are discussed and conclusions are drawn.

2. The composite Jacobi-Bisection algorithm

In order to provide a complete view of the proposed approach we briefly describe in this section the composite
Jacobi-Bisection method [2,3] that provides the basis for the development of the globally convergent JRprop. The idea
is to combine “individual” information about the error surface, described by the sign of the partial derivative of the
error function with respect to a weight, with more “global” information from the magnitude of the network learning
error, in order to decide for each weight individually whether or not to reduce, or even revert, a step.

Following the nonlinear Jacobi prescription, one-dimensional subminimization is applied along each weight direction
in order to compute a minimizer of an objective function f : D ⊂ Rn → R [33]. More specifically, starting from an
arbitrary initial vector x0 ∈ D, one can subminimize at the kth iteration the function f (xk

1 , . . . , xk
i−1, xi, x

k
i+1, . . . , x

k
n),

along the ith direction and obtain the corresponding subminimizer x̂i . Obviously for the subminimizer x̂i holds that

�if (xk
1 , . . . , xk

i−1, x̂i , x
k
i+1, . . . , x

k
n) = 0, (2)

where �if (x1, . . . , xi, . . . , xn) denotes the partial derivative of f with respect to the ith coordinate. This is a one-
dimensional subminimization because all the components of the vector xk , except for the ith component, are kept
constant. Then the ith component is updated according to

xk+1
i = xk

i + �k(x̂i − xk
i ), (3)

for some relaxation factor �k . The objective function f is subminimized in parallel for all i.
In neural network training we have to minimize the batch error function E with respect to each one of the weights

wij . Let us assume that along a weight’s direction an interval is known which brackets a local minimum ŵij . When
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the gradient of the error function is available at the endpoints of the interval of uncertainty along this weight direction,
it is necessary to evaluate function information at an interior point in order to reduce this interval. This is because it
is possible to decide if between two successive iterations (k) and (k − 1) the corresponding interval brackets a local
minimum simply by looking at the function values E(k − 1), E(k) and gradient values �E(k − 1)/�wij , �E(k)/�wij

at the endpoints of the considered interval (see [28] for a general discussion on this issue). The conditions that have to
be satisfied are [28, pp. 34–35]

�E(S1)

�wij

< 0 and
�E(S2)

�wij

> 0,

�E(S1)

�wij

< 0 and E(S1) < E(S2),

�E(S1)

�wij

> 0 and
�E(S2)

�wij

> 0 and E(S1) > E(S2), (4)

where S1 and S2 determine the sets of weights for which the coordinate that corresponds to the weight wij is replaced
by ai = min{wij (k − 1), wij (k)}, and bi = max{wij (k − 1), wij (k)} correspondingly. Notice that, at this instance,
between two successive iterations (k − 1) and (k) all the other coordinate values remain the same. The above three
conditions lead to the conclusion that the interval [ai, bi] includes a local subminimizer along the direction of weight
wij . A robust method of interval reduction called bisection can now be used. We will consider here the bisection method
which has been modified to the following version described in [32]:

w
p+1
i = w

p
i + hi sign(�iE(wp))/2p+1, (5)

where p = 0, 1, . . . is the number of subminimization steps, �iE denotes the partial derivative of E with respect to the
ith coordinate and w0

i =ai ; hi = sign(�iE(w0)) (bi −ai); w0
i determines the weight at the (k −1) iteration while wp is

obtained by replacing the coordinate of w0 that corresponds to the weight wij by w
p
i and sign defines the well-known

triple-valued sign function. Of course, iterations (5) converge to ŵi ∈ (ai, bi) if for some w
p
i , p = 1, 2, . . . , the first

one of conditions (4) holds. In this case, the bisection method always converges with certainty within the given interval
(ai, bi).

The reason for choosing the bisection method is that it always converges within the given interval (ai, bi), as
mentioned above, and it is a globally convergent method. Also, the number of steps of the bisection method that are
required for the attainment of an approximate minimizer ŵi of Eq. (2) within the interval (ai, bi) to a predetermined
accuracy � is known beforehand and is given by

� = �log2[(bi − ai)�
−1]�. (6)

Moreover, it has a great advantage since it is the worst-case optimal, i.e. it possesses asymptotically the best possible
rate of convergence in the worst-case [29]. This means that it is guaranteed to converge within the predefined number
of iterations and moreover, no other method has this property. Therefore, using the value of � of relation (6) it is easy to
know in advance the number of iterations necessary to approximate a minimizer ŵi to a specified degree of accuracy.
Finally, it requires only the algebraic signs of the values of the gradient to be computed.

A theoretical result that ensures local convergence of the Jacobi-Bisection algorithm is presented in [3]. Below,
we will focus on a composite one-step Jacobi-Bisection method which exhibited very good performance in our tests
reported in [3].

3. The globally convergent JRprop

The term global convergence is used in our context in a similar way as in Dennis and Schnabel [8, p. 5] “to denote
a method that is designed to converge to a local minimizer of a nonlinear function, from almost any starting point”.
Dennis and Schnabel also note that “it might be appropriate to call such methods local or locally convergent, but these
descriptions are already reserved by tradition for another usage”. Moreover, Nocedal [20, p. 200] defines a globally
convergent algorithm as an algorithm with iterates that converge from a remote starting point. Thus, the notion of
global convergence is totally different from global optimization [30]. To this end, equipping JRprop with the global
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convergence property will ensure the algorithm will globally converge to a local minimum starting from any initial
condition.

First, let us recall some concepts from the theory of unconstrained minimization. Suppose that (i) f : D ⊂ Rn → R

is the function to be minimized and f is bounded below in Rn; (ii) f is continuously differentiable in a neighbourhood
N of the level set L= {x : f (x)�f (x0)}, and (iii) the gradient of f, ∇f , is Lipschitz continuous on Rn, that is, there
exists a Lipschitz constant L > 0 such that ‖∇f (x) − ∇f (y)‖�L‖x − y‖, ∀x, y, ∈ N, and x0 is the starting point of
the following iterative scheme:

xk+1 = xk + �kdk , (7)

where dk is the search direction and �k > 0 is a step-length obtained by means of a one-dimensional search.
Convergence of the general iterative (7) requires that the search direction dk satisfies the condition ∇f (wk)
dk < 0,

which guarantees that dk is a descent direction of f (x) at xk . The step-length �k in (7) can be determined by means of
a number of rules, such as Armijo’s rule [8], Goldstein’s rule [8], or Wolfe’s rule [34], and guarantees the convergence
in certain cases. For example, when the step-length is obtained through Wolfe’s rule [34]

f (xk + �kdk) − f (xk)��1�
k∇f (xk)
dk , (8)

∇f (xk + �kdk)
dk ��2∇f (xk)
dk , (9)

where 0 < �1 < �2 < 1, then a theorem by Wolfe [34] is used to obtain convergence results. Moreover, Wolfe’s Theorem
suggests that if the cosine of the angle between the search direction dk and −∇f (xk) is positive then

lim
k→∞ ‖∇f (xk)‖ = 0, (10)

which means that the sequence of gradients converges to zero [8,20]. For an iterative scheme (7), limit (10) is the best
type of global convergence result that can be obtained (see [20] for a detailed discussion). Evidently, no guarantee is
provided that (7) will converge to a global minimizer, x∗, but only that it possesses the global convergence property
[8,20] to a local minimizer.

In batch training, when the batch error measure is defined as the sum-of-squared-differences error function E over
the entire training set, the error function E is bounded from below, since E(w)�0. For a given training set and network
architecture, if a w∗ exists such that E(w∗) = 0, then w∗ is a global minimizer; otherwise, w with the smallest E(w)

value is considered a global minimizer. Also, when using smooth enough activations (the derivatives of at least order
p are available and continuous), such as the well-known hyperbolic tangent, the logistic activation function, etc., the
error E is also smooth enough.

Based on the above we proceed with the following convergence result for JRprop’s scheme.

Theorem 1. Suppose that for the error function E conditions (i)–(iii) are fulfilled. Then, for any w0 ∈ Rn and any
sequence {wk}∞k=0 generated by JRprop’s scheme

wk+1 = wk − �k diag{�k
1, . . . , �

k
i , . . . , �

k
n} sign(∇E(wk)), (11)

where sign(∇E(wk)) denotes the column vector of the signs of the components of ∇E(wk) ≡ (�1E(wk),
�2E(wk), . . . , �nE(wk)), �k > 0, satisfies Wolfe’s conditions (8)–(9), �k

m (m = 1, 2, . . . , i − 1, i + 1, . . . , n) are small
positive real numbers generated by the JRprop learning rates’ schedule:

if E(wk)�E(wk−1) {
if (�mE(wk−1) · �mE(wk) > 0) then �k

m = min{�k−1
m · �+, �max} (12)

if (�mE(wk−1) · �mE(wk) < 0) then �k
m = max{�k−1

m · �−, �min} (13)

if (�mE(wk−1) · �mE(wk) = 0) then �k
m = �k−1

m (14)

},
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where 0 < �− < 1 < �+, �max is the learning rate upper bound, �min is the learning rate lower bound, and

�k
i = −

∑n
j=1
j =i

�k
j�jE(wk) + �

�iE(wk)
, 0 < �>∞, �iE(wk) = 0, (15)

holds that limk→∞ ‖∇E(wk)‖ = 0.

Proof. Evidently, E is bounded below on Rn. The sequence {wk}∞k=0 generated by the iterative (11) follows the direction

dk = −diag{�k
1, . . . , �

k
i , . . . , �

k
n} sign(∇E(wk)),

which is a descent direction if �k
m, where m = 1, 2, . . . , i − 1, i + 1, . . . , n, are positive real numbers derived from

relations (12)–(14), and �k
i is given by relation (15), since ∇E(wk)
dk < 0. Following the proof of [33, Theorem 6],

since dk is a descent direction and E is continuously differentiable and bounded below along the radius {wk+�dk | � > 0},
then there always exist �k satisfying relations (8)–(9) [8,20]. Moreover, Wolfe’s Theorem [8,20] suggests that if the
cosine of the angle between the descent direction dk and the −∇E(wk) is positive then limk→∞ ‖∇E(wk)‖ = 0. In
our case, indeed cos �k = −∇E(wk)
dk/‖∇E(wk)‖ ‖dk‖ > 0. �

The Globally convergent modification of the JRprop, named GJRprop, is implemented through relations (11)–(15).
It is also important to mention that in case of an error increase, the corresponding weight update procedure of JRprop,
described in [3], is adopted. The role of � is to alleviate problems with limited precision that may occur in simulations,
and should take a small value proportional to the square root of the relative machine precision. In our tests we set
� = 10−6 in an attempt to test the convergence accuracy of the proposed strategy. Also �k = 1 for all k allows the
minimization step along the resultant search direction to be explicitly defined by the values of the local learning rates
(�k

1, . . . , �
k
i , . . . , �

k
n). The length of the minimization step can be regulated through �k tuning to satisfy conditions

(8)–(9). Checking condition (9) at each iteration requires additional gradient evaluations; thus, in practice condition
(9) can be enforced simply by placing the lower bound on the acceptable values of the learning rates [16, p. 1772],
i.e. �min.

4. Empirical study

In this section, we evaluate the performance of the GJRprop, and compare it with the JRprop and the Rprop algorithms.
We have used well-studied problems from the UCI Repository of Machine Learning Databases of the University of
California [19], as well as problems studied extensively by other researchers, such as the parity-N problems that possess
strong local minima and stationary points. Literature suggests standard neural architectures for these problems, so it
helps us to reduce as much as possible biases introduced by the size of the weight space. In all cases we have used
networks with classic logistic activations. Below, we report results from 150 independent trials. These 150 random
weight initializations are the same for all the learning algorithms. In all cases we have used networks with sigmoid
hidden and output nodes, and adopted the notation I-H-O to denote a network architecture with I inputs, H hidden layer
nodes and O outputs nodes.

For the UCI problems, cancer1, diabetes1, thyroid1, and Escherichia coli (E. coli), we have used the data sets as
supplied on the PROBEN1 website [23]. PROBEN1 provides explicit instructions for generating training and test sets,
and choosing network architectures [23]. The data set for the E. coli problem was used as supplied on the UCI repository
and the sets for training and testing were generated following guidelines published by Horton [12].

The results reported below present the average number of iterations (epochs), the average training time to reach
the error goal ± the corresponding value of standard deviation, the average generalization (generalization is measured
as the percentage of correctly classified test patterns), and the percentage of convergence success (this percentage is
calculated out of 150 runs).

In all experiments the parameters have been set as follows: �+ = 1.2; �− = 0.5; �0
ij = �0 = 0.1; �max = 50 [26].

Finally, we have set � = 10−6 in an attempt to test the convergence accuracy of the proposed strategy and also �k = 1
for all k.
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Table 1
Comparison of algorithm performance in the cancer problem for the converged runs

Cancer

Algorithm Iterations Time (s) Generalization (%) Convergence (%)

Rprop 234 1.6 ± 0.60 97.4 95
JRprop 150 1.2 ± 0.50 97.2 96
GJRprop 137 1.0 ± 0.38 97.5 99

Table 2
Number of times, out of 150 runs, each algorithm performs better than the other methods in the cancer problem with respect to training speed
and generalization

Cancer Times faster algorithm Times better generalization

Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop

Rprop — 55 25 — 20 13
JRprop 93 — 57 42 — 36
GJRprop 125 102 — 53 50 —
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Fig. 1. GJRprop, JRprop and Rprop learning curves for (a) the cancer problem and (b) the diabetes problem.

4.1. The Cancer1 problem

The breast cancer diagnosis problem is based on nine inputs describing a tumour as benign or malignant. The data
set consists of 350 patterns. We used a feed-forward neural network with 9-4-2-2 nodes as suggested in the PROBEN1
benchmark collection and in [3]. The error goal in training was E < 0.02 to harmonize with the training errors obtained
in [3,13]. The results for this pattern classification problem are summarized in Table 1. The new algorithm performs
significantly better than the other two methods. Table 2 presents the number of times each algorithm outperforms the
other methods in terms of training speed and generalization within 150 independent runs. It yields that the new learning
scheme is frequently faster and achieves better generalization than the other two members of the Rprop family. Fig. 1(a)
presents an example of convergence behaviour starting from the same initial conditions: the Rprop converges to a local
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Table 3
Comparison of algorithm performance in the diabetes problem for the converged runs

Diabetes

Algorithm Iterations Time (s) Generalization (%) Convergence (%)

Rprop 380 2.3 ± 2.0 75.5 90
JRprop 310 1.9 ± 1.5 75.4 93
GJRprop 290 1.7 ± 0.8 75.8 98

Table 4
Number of times, out of 150 runs, each algorithm performs better than the other methods in the diabetes problem with respect to training speed
and generalization

Diabetes Times faster algorithm Times better generalization

Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop

Rprop — 45 38 — 18 20
JRprop 68 — 51 30 — 20
GJRprop 101 70 — 52 50 —

minimizer, whilst both JRprop and GJRprop converge to a feasible solution (E�10−2) with GJRprop outperforming
all other methods.

4.2. The Diabetes1 problem

The aim of this real-world classification task is to decide when a Pima Indian individual is diabetes positive or not.
We have eight inputs representing personal data and results from a medical examination. The data set consists of 384
patterns. The PROBEN1 collection proposes several architectures for this problem, including one with 8-2-2-2 nodes.
We decided to use this architecture as it was also suggested by others [3,13]. The error goal in this case was set at 0.14
to conform to the training error obtained in [3,13].

Table 3 summarizes the performance of the tested algorithms. The increased training speed does not affect the
generalization performance of the new method. It is worth noting the standard deviation value of the GRprop is
significantly less than the corresponding Rprop and JRprop values, which means GJRprop performance is closer to the
average value. Table 4 gives an analytic view of the comparative results in the 150 trials. Fig. 1(b) illustrates a training
instance where all the methods start under the same initial conditions: the Rprop converges to a local minimizer, whilst
both JRprop and GJRprop converge to a solution with E�10−1.

4.3. The Escherichia coli problem

This problem concerns the classification of the E. coli protein localization patterns into eight localization sites.
E. coli, being a prokaryotic gram-negative bacterium, is an important component of the biosphere. Three major and
distinctive types of proteins are characterized in E. coli: enzymes, transporters and regulators. The largest number of
genes encodes enzymes (34%) (this should include all the cytoplasm proteins) followed by the genes for transport
functions and the genes for regulatory process (11.5%) [14].

In these experiments the neural networks were tested using four-fold cross-validation, as this approach has been
used before in the literature for training probabilistic and nearest-neighbor classifiers in this problem [12]. The best
available architecture that was suggested is a 7-16-8 FNN [1]. Rprop-trained FNNs of this architecture achieved better
generalization than the best results reported in the literature [12], when the training error goal was E < 0.02 [1].

Results from 150 runs for three algorithms using the same architecture are given in Table 5. A detailed account of
the algorithms’ performance is exhibited in Table 6. Fig. 2(a) illustrates the behaviour of the training algorithms in a
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Table 5
Comparison of algorithm performance in the E.coli problem for the converged runs

E. coli

Algorithm Iterations Time (s) Generalization (%) Convergence (%)

Rprop 140 1.25 ± 0.31 90.0 99
JRprop 130 1.15 ± 0.25 90.0 99
GJRprop 125 1.10 ± 0.20 90.1 100

Table 6
Number of times, out of 150 runs, each algorithm performs better than the other methods in the E. coli problem with respect to training speed
and generalization

E. coli Times faster algorithm Times better generalization

Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop

Rprop — 62 61 — 55 49
JRprop 87 — 70 70 — 67
GJRprop 86 73 — 87 70 —
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Fig. 2. GJRprop, JRprop and Rprop learning curves for (a) the E. coli problem and (b) the thyroid problem.

case where E�0.01. Convergence to a feasible solution is achieved by GJRprop within 6000 iterations while the other
schemes require more than 10000 iterations.

4.4. The thyroid problem

In this problem, the aim is to find whether the patient’s thyroid has over-function, normal function, or under-function.
We used the thyroid1 dataset (3600 patterns), a network with 21-4-3 nodes, and the error goal was set at 0.0036, as
suggested in [3,30].

Comparative results are given in Table 7. GJRprop outperforms the other algorithms. Moreover, the value of
the deviation of the new algorithm is significantly lower than the standard deviation of the other two methods (see
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Table 7
Comparison of algorithm performance in the thyroid problem for the converged runs

Thyroid

Algorithm Iterations Time (secs) Generalization (%) Convergence (%)

Rprop 710 23.90 ± 12.5 98.12 87
JRprop 640 21.40 ± 10.1 98.12 89
GJRprop 620 19.90 ± 7.5 98.23 95

Table 8
Number of times, out of 150 runs, each algorithm performs better than the other methods in the thyroid problem with respect to training speed
and generalization

Thyroid Times faster Times better
algorithm generalization

Algorithm Rprop JRprop GJRprop Rprop JRprop GRprop

Rprop — 71 64 — 66 57
JRprop 79 — 66 69 — 60
GJRprop 86 84 — 78 76 —

Table 7). Finally, it is worth mentioning that the GJRprop exhibits significantly improved convergence success com-
pared to the other tested algorithms. This can be attributed to the ability of new globally convergent algorithm to follow
descent directions.

A detailed account of the algorithms’ performance is exhibited in Table 8. The new learning scheme is faster than
Rprop and JRprop 86 and 84 times, respectively. In terms of generalization success, GJRprop outperforms Rprop and
JRprop 78 and 76 times, respectively.

Fig. 2(b) illustrates a case where GJRprop converges to a minimizer while Rprop and JRprop get stuck at local
minimizers with higher error values. As shown in Fig. 2(b) Rprop’s and JRprop’s learning curves exhibit nonmonotone
behaviour denoted by two hard peaks: one around time point 100 for the Rprop, and the other around point 200 for the
JRprop. The GJRprop decreases monotonically the error function as it always follows a descent direction.

4.5. Boolean function approximation problems

Another set of experiments has been conducted to empirically evaluate the performance of the globally convergent
method in a well-studied class of boolean function approximation problems that exhibit strong local minima and
stationary points [6,9]. These problems include the XOR problem (whose local minima and saddle points have been
analysed in detail) and the various parity-N problems, which are considered as classic benchmarks [15,21,31]. The
adopted architectures were 2-2-1 for the XOR, 3-3-1 for the parity-3, 4-4-1 for the parity-4, 5-5-1 for the parity-5.

For the XOR problem the error target was set to E�10−5 within 2000 iterations and for the parity-5 problem was
set to E�10−6, while for the other remaining boolean function approximation problems the acceptable solution was
set at E�5 × 10−5. All these target values are considered low enough to guarantee convergence to a “global” solution.

4.5.1. XOR problem
Table 9 shows the performance of each algorithm. GJRprop exhibits better convergence success than other methods:

GJRprop achieved 79% average convergence success, while Rprop and JRprop achieved on average 62% and 68%.
The GJRprop outperforms significantly over the Rprop in terms of convergence speed and has relatively similar speed
with the JRprop.

Fig. 3(a) gives an example of algorithms’ convergence. Starting from the same initial conditions, the Rprop and the
JRprop converge to a local minimizer, whilst GJRprop reaches a lower value.
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Table 9
Comparison of algorithm performance in the XOR problem for the converged runs

XOR

Algorithm Iterations Time (s) Convergence (%)

Rprop 160 1.57 ± 1.0 62
JRprop 105 1.22 ± 0.6 68
GJRprop 112 1.26 ± 0.5 79
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Fig. 3. Learning error curves for (a) the XOR problem and (b) the parity-3.

Table 10
Comparison of algorithm performance in the parity-3 problem for the converged runs

Parity-3

Algorithm Iterations Time (s) Convergence (%)

Rprop 885 3.8 ± 1.9 79
JRprop 850 3.5 ± 1.6 77
GJRprop 840 3.3 ± 1.3 88

4.5.2. Parity-3 problem
Table 10 presents comparative results in terms of training speed (in s) and convergence success for the 150 runs.

It presents the average training time and the corresponding standard deviation for each algorithm calculated over the
converged runs. GJRprop shows an increase in the percentage of convergence success. The globally convergent scheme
manages to escape from some local minima and finds acceptable solutions with higher possibility than the other two
tested methods do. Finally, Fig. 3(b) shows a case where Rprop and JRprop converge to local minima while GJRprop
reaches a minimizer with lower function value for the parity-3 problem.

4.5.3. Parity-4 problem
Comparative results for the parity-4 problem are given in Table 11. GJRprop outperforms the other algorithms

particularly in convergence success. It achieves to meet the error goal with 91% success whilst Rprop and JRprop
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Table 11
Comparison of algorithm performance in the parity-4 problem for the converged runs

Parity-4

Algorithm Iterations Time (s) Convergence (%)

Rprop 810 5.7 ± 3.4 77
JRprop 720 4.8 ± 3.0 81
GJRprop 615 4.2 ± 2.2 91
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Fig. 4. Typical learning error curves for (a) the parity-4 problem and (b) the parity-5 problem.

Table 12
Comparison of algorithm performance in the parity-5 problem for the converged runs

Parity-5

Algorithm Iterations Time (s) Convergence (%)

Rprop 950 6.7 ± 3.6 61
JRprop 760 4.1 ± 2.0 64
GJRprop 795 4.5 ± 2.1 82

have significantly less convergence success. Fig. 4(a) illustrates a case where GJRprop converges to a minimizer while
Rprop and JRprop get stuck at a local minimizer with higher error value.

4.5.4. Parity-5 problem
Comparative results for the parity-5 problem are presented in Table 12. The JRprop algorithm achieves the best

training speed, while GJRprop exhibits comparable performance. Both of them outperform the Rprop algorithm.
Furthermore, the GJRprop is more stable and shows an important convergence improvement over the other tested
methods. Fig. 4(b) illustrates a case where GJRprop converges to an acceptable minimizer while the other methods
converge to local minima with higher function values.
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5. Conclusions

It is widely accepted that the Rprop algorithm is one of the best performing sign-based learning algorithms for
neural networks with arbitrary topology. In this paper we built on the nonlinear Jacobi process to develop a globally
convergent composite Jacobi–Rprop. In our experiments, the GJRprop exhibited better training speed than Rprop and
JRprop in six out of the eight benchmarks, and demonstrated stability in locating minimizers with a high percentage of
success in all cases. The comparative study reported in the paper also showed that GJRprop exhibits more consistent
behaviour than the other algorithms. Nevertheless, we acknowledge that this is a small scale study. Further research
into the performance of the method is needed to fully explore its advantages and identify possible limitations in pattern
recognition problems.
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