
Artificial Intelligence 132 (2001) 1–38

Artificial nonmonotonic neural networks

B. Boutsinas a,c,∗, M.N. Vrahatis b,c

a Department of Computer Engineering and Informatics, University of Patras, GR-26500 Patras, Greece
b Department of Mathematics, University of Patras, GR-26500 Patras, Greece

c University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR-26500 Patras, Greece

Received 30 August 1999; received in revised form 8 January 2001

Abstract

In this paper, we introduce Artificial Nonmonotonic Neural Networks (ANNNs), a kind of
hybrid learning systems that are capable of nonmonotonic reasoning. Nonmonotonic reasoning plays
an important role in the development of artificial intelligent systems that try to mimic common
sense reasoning, as exhibited by humans. On the other hand, a hybrid learning system provides
an explanation capability to trained Neural Networks through acquiring symbolic knowledge of a
domain, refining it using a set of classified examples along with Connectionist learning techniques
and, finally, extracting comprehensible symbolic information. Artificial Nonmonotonic Neural
Networks acquire knowledge represented by a multiple inheritance scheme with exceptions, such
as nonmonotonic inheritance networks, and then can extract the refined knowledge in the same
scheme. The key idea is to use a special cell operation during training in order to preserve the
symbolic meaning of the initial inheritance scheme. Methods for knowledge initialization, knowledge
refinement and knowledge extraction are introduced. We, also, prove that these methods address
perfectly the constraints imposed by nonmonotonicity. Finally, performance of ANNNs is compared
to other well-known hybrid systems, through extensive empirical tests. 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Nonmonotonic reasoning; Neural networks; Hybrid systems; Inheritance networks; Unconstrained
optimization; DNA sequence analysis

* Corresponding author.
E-mail address: vutsinas@ceid.upatras.gr (B. Boutsinas).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)0 01 26 -6

2 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

1. Introduction

1.1. Motivation and background

Nonmonotonic reasoning plays an important role in the development of systems that try
to mimic common sense reasoning, as exhibited by humans. Human beings are constantly
forced to make decisions and reach conclusions in an ambiguous world. The knowledge
that can be acquired by observation is inherently incomplete and may contain conflicting
information as well as exceptions to general rules. Many formalisms are proposed in the
literature that are capable of representing knowledge under a multiple inheritance scheme
with exceptions (e.g., [3,6,9,19,26,48,50,54]). A nonmonotonic reasoner has to face the
two general problems of knowledge-based systems, namely the strong dependency on the
correctness of the domain knowledge and the lack of domain independent and effective
learning algorithms. Due to the latter, the domain knowledge must be altered manually,
whenever necessary. Moreover, a nonmonotonic reasoner, usually, has problems in dealing
with multiple extensions of a theory. In such situations, extensions are treated as cases of
ambiguity. The way they are treated depends on whether a credulous or a skeptical view
is adopted [55]. Besides, no attempt is made to resolve possible conflicts (except for a few
cases, as in [52]).

On the other hand, example-based systems, such as Artificial Neural Networks (ANNs),
need a large set of training examples and they have a strong dependency on the features
used to describe those examples. They also lack an explanation capability for the generated
outputs and, consequently, for the decisions reached. Moreover, a longstanding problem
in connectionist modelling is the representation of structured objects. Although some
attempts have been made to address this problem (e.g., [47]), the proposed systems are not
efficient [27]. On the contrary, an explanation capability and representation of structured
objects can be easily provided by a knowledge-based system.

Recently, significant attention has been paid to the development of hybrid systems that
are based on a neural-symbolic integration, aiming at exploring the advantages of each
constituent paradigm. There were promising early attempts [11] toward the combination of
the explanation capabilities and the powerful declarative knowledge representation of the
symbolic approach with the massive parallelism and the generalization capabilities of the
connectionist approach. Neural-symbolic hybrid systems use an Artificial Neural Network
as an example-based learning system and a symbolic knowledge representation scheme for
the domain knowledge. The most important contributions to this interesting field can be
found in [1,8,10,12,18,22,29,30,42,56].

Following McCarthy’s observation [37], most of the hybrid systems using neural net-
works for inferential processing, are based on logic-based propositional knowledge repre-
sentation schemes. Such logic-based formalisms may lack several important properties of
nonmonotonic reasoning [6], such as the very important property of stability (also called
cumulativity). This is generally true even for well known nonmonotonic formalisms such
as Reiter’s Default Logic [6]. Special extensions of Default Logic have been introduced in
order to tackle the stability problem, such as Cumulative Default Logic [4,34]. Moreover,
it has been shown that many decision problems are intractable or even undecidable when
stated within the context of formal logic-based systems.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 3

On the other hand, symbolic-connectionist systems in a nonmonotonic domain are
of great importance to both theory and practice. Path-based such formalisms are
representation schemes based on semantic networks. They introduce an alternative
approach to nonmonotonic reasoning. They try to tackle algorithmic intractability and the
correct treatment of incomplete or contradictory knowledge. Although there exists a lot of
criticism about the semantics of semantic networks [64], it is accepted that they can be
effectively used as a representation and inference scheme in a nonmonotonic domain [54].
Inheritance networks is such a path-based formalism with widespread use in nonmonotonic
reasoning systems [55].

Hybrid systems are usually based on logic-based knowledge representation schemes
as far as the domain knowledge is concerned. The proposed, in this paper, Artificial
Nonmonotonic Neural Networks (ANNNs) are hybrid systems that use inheritance
networks, as a nonmonotonic multiple inheritance knowledge representation scheme for
the domain knowledge, and Artificial Neural Networks as a learning mechanism. The
latter are supported by a proper training method, which suits perfectly our approach and
is applied by changing selected weights at each epoch. ANNNs are not based on energy
minimization, but on the spreading activation metaphor. The input cells of the connectionist
part are externally activated, based on known facts in the domain knowledge, and the
spreading of this activation forces some output cells to be either activated or deactivated. It
is the activation of output cells that guides the reasoning process.

1.2. Related work

In [23] a logic-based method is presented for inserting any propositional general logic
program P into a three-layer feedforward Artificial Neural Network with binary threshold
neurons. It is proved that if the network is transformed into a recurrent network, by
connecting output units to corresponding input units, it always falls into a unique stable
state that corresponds to the unique stable model, namely the semantics, of P . The
potential impact of this result is that a new massively parallel computational model for
logic programming is derived.

The system presented in [56] (Knowledge-Based Artificial Neural Network) is capable
of inserting “if-then” rules into a neural network, refining these rules using a backpropaga-
tion based learning algorithm and extracting rules from the neural network. It is empirically
shown that the system can not only revise the domain knowledge but also can efficiently
learn new rules from examples using the domain knowledge.

Following the key idea in [23], the system in [12] (Connectionist Inductive Learning
and Logic Programming System) integrates inductive learning from examples and
domain knowledge with deductive learning from Logic Programming. Propositional logic
programs can be inserted into a feedforward Artificial Neural Network with bipolar semi-
linear threshold neurons. The network is trained using the standard backpropagation
learning algorithm and the revised logic program can be extracted.

Moreover, it is shown [40–42] that the satisfiability problem in propositional logic can
be reduced to the problem of finding a global minima of an energy function of a symmetric
network. The consequence of this very important result is that symmetric neural networks

4 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

can be applied in solving a lot of hard problems, such as optimization problems and
constraint satisfaction problems [16].

There are also efforts in the direction of hybrid systems that use knowledge represen-
tation schemes based on first-order logic. Unfortunately, such systems are still proposi-
tional [24,25]. In [21], an automated reasoning system for first-order Horn clauses is pre-
sented (Connectionist Horn Clause Logic), which is implemented in a feedforward neural
network. In [24] an extension of the method in [23] is presented for inserting first-order
logic programs into three-layer recurrent Artificial Neural Networks that correspond to an
approximation of the semantics of programs. Finally, in [43] an analogous result to [42] is
shown, according to which a first-order resolution proof (although of a fixed predetermined
length) can be also reduced to a global minimum of the energy function of a symmetric
network.

The first result toward a hybrid symbolic-connectionist system in a nonmonotonic
domain is due to Pinkas. In [44], it is shown that the minimization problem of an energy
function of a symmetric network can also be applied to propositional nonmonotonic
reasoning (in fact, exceeding it [45]). As shown in [46], initial domain knowledge can
be represented by a logic-based scheme, the Penalty Logic. To every propositional formula
representing domain knowledge (the assumption), a positive real number is assigned (the
penalty), in order to form a penalty logic well formed formula. This penalty has to be paid
by any assignment that does not satisfy the assumption. An assignment is preferred over
any other that pays a higher penalty. Assignments that pay the minimum penalty (preferred
models) are preferred over any other. Pinkas showed that the minimization problem of an
energy function of a symmetric network can be reduced to the problem of finding preferred
models for a given set of assumptions representing initial domain knowledge.

In the rest of the paper, we first describe ANNNs. Then, we present a knowledge
initialization, a knowledge refinement and a knowledge extraction method for ANNNs.
Consequently, we test the performance of ANNNs against other well-known hybrid
systems and, finally, we discuss some critical issues.

2. Artificial Nonmonotonic Neural Networks

Artificial Nonmonotonic Neural Networks are neural-symbolic hybrid systems. They
possess a domain knowledge that is used for the initialization of an Artificial Neural
Network. The latter is used as an example-based learning mechanism for the refinement of
the initial knowledge through processing a set of classified examples. After the refinement,
the acquired knowledge is extracted substituting the initial domain knowledge. At this
state, a new cycle of knowledge initialization-refinement-extraction can start, whenever a
new set of examples need to be considered (see Fig. 1).

Domain knowledge is represented by a nonmonotonic multiple inheritance scheme
allowing exceptions. More specifically, we use Nonmonotonic Inheritance Networks
(NINs) that are based on semantic networks. There is a clash of intuitions [55] in
nonmonotonic inheritance networks concerning the treatment of nonmonotonicity (on-path
versus off-path preemption), the treatment of competing extensions (forms of skepticism
versus forms of credulity) and the direction in which the represented inheritance is followed

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 5

Fig. 1. The cycle of knowledge initialization, refinement and extraction.

(upward versus downward view of reasoning). Their performance is closely related to
these intuitions [51]. The reasoning process was proved to be NP-hard for on-path/off-
path credulous downward reasoners as well as for on-path upward credulous reasoners.
However, it is proved to have polynomial time complexity for skeptical reasoners.

In NINs, knowledge is represented by attaching, to each node of a directed acyclic graph,
a label that denotes an object, a class of objects or a property possessed by objects of the
domain of discourse and by establishing the desired relationships through the insertion
of the proper directed edges. When we insert an edge that emanates from a node and
is incident to another, we mean that the class of objects represented by the former node
inherits some or all of the defining properties of the class represented by the latter. If an
inheritance exception exists, this is indicated by an exception link. For example, the NIN
shown in the left part of Fig. 2 represents the facts that all Es are Ds (or are kinds of Ds,
or are like Ds [3]), all Ds are Cs and so on. Moreover, a reasoning system can conclude
that all Es are Cs because they are Ds. Finally, the exception link (indicated by a dotted
line) represents that Ds are not Bs, although they are Cs.

There are two main operations associated with NINs. The first operation consists in
answering whether an object possesses a particular property. The second consists in finding
all the objects satisfying a particular set of properties. Developing efficient algorithms
for these two operations is of great importance to many AI applications. Both of these
operations can be reduced to computing the transitive relationships between the objects in
the nonmonotonic inheritance network.

The objective of the knowledge initialization phase is to construct an Artificial Neural
Network that provides the same answers as the nonmonotonic inheritance network, as far as
the above operations are concerned. The knowledge initialization methodology we employ
is presented in the next section. After the knowledge initialization phase, the constructed
Artificial Neural Network is trained using a set of classified examples, in order to refine
the initial knowledge. The refinement is achieved through changing the initial weights. The

6 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

way we construct the Artificial Neural Network during the initialization phase imposes
some constraints on the training method we can use. We propose a new training method,
which suits perfectly our approach, satisfying the requirements. The method is presented in
Section 4. Finally, the refined knowledge is extracted from the Artificial Neural Network
and it is represented by a nonmonotonic inheritance network, which replaces the initial
one. The proposed knowledge extraction method is presented in Section 5.

3. The knowledge initialization method

The representation in the nonmonotonic inheritance network that corresponds to the
domain knowledge can be based on either directed acyclic graphs or on set descriptions.
The knowledge initialization phase is formally defined as follows:

Given: A directed acyclic graph G = (V ,E = R ∪ POS ∪ NEG) where V is the set
of nodes that represent objects of the domain of discourse and E is the set of
edges that represent relations between those objects. Set R consists of the edges
that represent ordinary relations, set POS consists of the edges that represent
exceptional positive relations and set NEG consists of the edges that represent
exceptional negative relations. Finally, it is assumed that R ∩ POS ∩ NEG = ∅.

or: (i) a set of relations R = {r | r = 〈q, s〉}, with some type of semantics (e.g., of
the “isa”, “ako” or “isl” [3] type), and

(ii) a set of exceptionsX = {〈q, {n1, . . . , nk}, {p1, . . . , pl}〉}, where q , n1, . . . , nk ,
p1, . . . , pl represent objects of the domain of discourse and any ni is in
exceptional negative relation with q and any pi is in exceptional positive
relation with q .

initialize an Artificial Neural Network, with:

• a set of k ∈ N cells U = {u1, . . . , uk}, each one of which receives a network
binary input and gives a network binary output. Moreover, each cell ui performs
an operation S (to be described later) on its inputs;

• a set of integer weights W = {wi,j | i, j � k};
• a proper activation function σ applied to the network outputs:

σ(x)=
{

1, if x > 0;

−1, if x � 0.
(1)

Cell input and activation are assumed to be discrete (see Section 4 for a justification).

In the following, we use interchangeably the notion of a link in the inheritance network
and the notion of a weighted connection in the neural network. We first present the
knowledge initialization method with respect to the main characteristics of common sense
reasoning, namely nonmonotonicity, redundancy and ambiguity.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 7

Fig. 2. An ANN initialized using a NIN.

3.1. Inserting symbolic knowledge with exceptions

Exceptions in the inheritance of properties, from more general classes to more specific
ones, introduce nonmonotonicity in reasoning about the represented knowledge. The
existence of more specific knowledge about an object of discourse may change previously
valid conclusions.

Consider, for example, the nonmonotonic inheritance network shown in the left part of
Fig. 2. An interpretation of the symbols could be the following: A stands for HOVER,
B stands for FLY, C stands for BIRD, D stands for PENGUIN and E stands for MALE
PENGUIN. The fact that an object of discourse is a bird leads to the conclusion that it flies.
But the more specific fact that it is a penguin forces the conclusion that it does not fly.

The initial nonmonotonic inheritance network can be transformed to an Artificial Neural
Network, as shown in the right part of Fig. 2. The equivalence between the ANN and
the initial NIN, as far as its intended meaning is concerned, requires simulation of the
inheritance cancelling (exceptions) represented by the negative links. This can be achieved
by attaching a negative weight to the connection of the Artificial Neural Network that
corresponds to the negative link of the symbolic domain knowledge, as shown in the right
part of Fig. 2. In this way, the activation of cell u4 or u5 (corresponding to the fact that
an object of discourse is a penguin or a male penguin) will prevent cells u2 and u1 from
getting activated (corresponding to the conclusion that an object of discourse flies and
hovers). The above are considered under a standard activation function and cell operation.

3.2. Inserting symbolic knowledge with redundancies

Since our aim is to simulate common sense reasoning as closely as possible, it is
important for a nonmonotonic reasoner to handle redundant information in a consistent
manner. Of course, as long as the reasoner’s knowledge about the world remains unchanged

8 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Fig. 3. A NIN supplemented with a redundant atomic statement.

in time, this kind of information could be recognized and, subsequently, removed during
a preprocessing phase of the reasoner’s life cycle. However, if the reasoner’s knowledge
is continuously subjected to revisions, as it is often the case, it is always possible that
redundant, or even contradictory, information is introduced as a side effect of a revision
process. Redundant information is closely related to the stability (cumulativity) of the
reasoner.

Suppose that the reasoner, whose knowledge is represented by a nonmonotonic
inheritance network, supports the conclusion isa(X,Y). We say that the reasoner is stable
if, after inserting into its knowledge base the (redundant) information that isa(X,Y), it
continues to support all the conclusions it supported before the insertion of this piece of
information.

Consider, for example, the nonmonotonic inheritance network shown in the left part
of Fig. 3, with the same interpretation of symbols as that of the previous example.
Clearly, the redundant fact that a male penguin is a bird should not change any previous
conclusion made without taking this redundant fact into consideration. This is satisfied by
the activation of the cells in the right part of Fig. 3.

This kind of stability, is called atomic stability. It is obvious that an Artificial Neural
Network initialized with the proposed methodology supports atomic stability. Atomic
stability is viewed [26] as an acceptability criterion for an inheritance reasoner.

However, the other kind of stability, called generic stability, is not viewed as such
a criterion. In our opinion, both atomic and generic stability should be viewed as
acceptability criteria for an inheritance reasoner [2,3].

Consider, for example, the nonmonotonic inheritance network shown in the left part of
Fig. 4, with the same interpretation of symbols as that of the previous example. Clearly,
the redundant fact that a bird hovers should not change any previous conclusion that was
made without taking this redundant fact into consideration. This is however not satisfied
by the activation of the cells in the right part of Fig. 4. Without the connection from cell u3

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 9

Fig. 4. A NIN supplemented with a redundant generic statement.

to cell u1, activation of cell u4 or u5 prevents activation of cells u2 and u1. However, this is
no longer true in the presence of that connection. Therefore, an Artificial Neural Network
initialized with the methodology proposed so far does not support generic stability.

In order to overcome this serious problem, a more negative weight, say −2, could be
attached to all the connections that correspond to the negative links. But, this technique
does not always offer a solution, since this negative weight could be absorbed in the
activation function of a standard type, if it is a function of the weighted sum of the inputs
to a cell.

To address this problem, we define a cell operation S as the computation of the maximum
absolute value of the inputs of the cell. Thus,

∀ui, Si(in1, . . . , inm) := in1 � in2 � · · ·� inm, (2)

where � is a binary operator defined as:

x � y =

−||x|−|y||+|x|+|y|

2 , if x−ε+y
|x−ε+y| < 0;

+||x|−|y||+|x|+|y|
2 , if x−ε+y

|x−ε+y| > 0 ∧ x, y > 0;

+1, otherwise.

(3)

in1, . . . , inm are the inputs of cell ui and ∀uj that is connected to ui , inj is derived by the
function

inj =
{

0, if σ(Sj)= −1;

wj,i � Sj , if σ(Sj)= 1.
(4)

Intuitively, the cell operation S guarantees that the output of a cell is identical to its input
with the maximum absolute value. In the case that there are more than one input of equal
absolute value, the output is identical to the negative one. This is achieved by subtracting
a very small positive number ε from some of the inputs determining the resolution of
distinguishing x and y .

10 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Therefore, (see Fig. 4) if w4,2 = −2 the output of cell u2 is −2, if u4 is activated.
Eventually, the output of the cell u2 becomes the output of cell u1. Considering only
the positive outputs as activating a cell, the Artificial Neural Network in Fig. 4 behaves
correctly satisfying the very important property of stability.

3.3. Satisfying “inferential distance ordering”

It is often the case that a negative link should be preempted by a more specific positive
one (or vice versa). Therefore, there is also an ordering of the exception links, either
negative or positive, according to how specific is the class they refer to. The more specific
the referring class the higher the priority of the exception link. This ordering is referred
to, in the literature, as the “inferential distance ordering” [54] and it is viewed as an
acceptability criterion for nonmonotonic reasoning. It ensures that if there are any conflicts
among the exception links, they are resolved in favor of the exceptions that have a higher
priority, according to “inferential distance ordering”; that is, in favor of the exceptions
concerning more specific classes.

In order to properly initialize the Artificial Neural Network we have to preserve the
“inferential distance ordering”. But, if all negative links were represented by the same
negative weight and all positive links by the same positive weight, we could not resolve
the conflict in favor of the more specific one. We overcome this problem by assigning to
a negative or a positive weight a negative or a positive link respectively, with a magnitude
relative to a topological ordering of the cells.

According to a topological ordering, there is a function f :U → N that assigns an integer
to each cell such that, if cell ui is an ancestor of cell uj (in the sense that there exists a
connection path from ui to uj), then f (ui) > f (uj). We assign a weight to each exception
link, starting from the links having tail nodes with the lowest topological order. If there are
links having tail nodes with the same topological ordering, we start from a negative link(s).
To each negative link, a negative weight, equal to the topological order of its tail node, is
assigned. To each positive link, a positive weight, equal to the topological order of the tail
node of the last examined negative link in the same path, is assigned. Exceptionally, to each
positive link, in the case that its head node has a topological order lower than or equal to
the head node of the last examined negative link (or of all the last examined negative links
with the same tail node), a positive weight equal to the topological order of its tail node is
assigned.

The above methodology, which is applied to the example of Fig. 5, is formally presented
by the Initialization Algorithm in Section 3.5. Intuitively, this methodology guarantees that,
along a path, every combination of positive and negative exception links satisfies stability
and inferential distance ordering (see Section 5.4 for a proof).

3.4. Inserting symbolic knowledge with conflicts

Nonmonotonic multiple inheritance frequently introduces multiple extensions of a
theory. We quote from [9]:

“. . . an extension is a set of beliefs which are in some sense justified or reasonable
in light of what is known about a world”.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 11

Fig. 5. Assigning negative or positive weights according to a topological ordering.

These multiple extensions are due to conflicts in the represented knowledge. Usually, all
cases of multiple inheritance are treated as cases of ambiguity, e.g., in [54], and there is no
effort to resolve the conflicts (an exception is [52]). The way in which multiple extensions
are treated depends on whether a credulous or a skeptical view is adopted [26].

The proposed methodology, by definition, can not recognize multiple extensions and
supports a preference over the conclusions represented by paths containing connections
with weights of maximum absolute value. Consider, for example, the nonmonotonic
inheritance network shown in the left part of Fig. 6. An interpretation of the symbols
could be the following: A stands for PACIFIST, B stands for QUAKER, C stands for
REPUBLICAN and D stands for NIXON. The activation of the cells in the right network
of Fig. 6, supports the conclusion that, definitely,Ds are notAs, since they areCs, although
the opposite conclusion is also supported, since As are Bs. This conclusion is due to the
activation of cell u3, that prevents u1 from activation. Generally, any path that contains a
connection with a maximum absolute value, due to the transfer of this value, is prevalent
over any other. Therefore, if the weight is negative(positive) then a negative(positive)
conclusion is derived.

One of the main advantages of the Artificial Nonmonotonic Neural Networks is that,
during the knowledge refinement phase, explained in a later section, the conflicts can be
resolved in favor of the most probable ones, with respect to the training set.

12 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Fig. 6. Conflicted extensions.

3.4.1. Inserting symbolic coupled knowledge
In nonmonotonic reasoning, usually, objects are coupled with their immediate succes-

sors. This means that an object is not allowed to possess a property that is not possessed
by any of its immediate successors, since this object possesses a property strictly because
it belongs to a particular class. Of course, in some kind of nonmonotonic reasoning, the
skeptical reasoning for instance, an object can not be coupled with its immediate succes-
sors.

In the proposed methodology, neither coupling nor decoupling can be assured. This
is because the conclusion is relied on the maximum absolute value of the connections.
Consider, for example, the nonmonotonic inheritance network shown in the left part of
Fig. 7. Clearly, neither Ds nor Es are As, due to the negative weights w3,2 and w5,3.
A skeptical reasoner, on the contrary, supports the conclusions that Es are As and that Ds
are not As, thus allowing the decoupling of Es from Ds.

Of course, during the knowledge refinement phase, coupling or decoupling is preferred
in favor of the most probable, with respect to the training set.

3.5. The initialization algorithm

According to the methodology presented in the above sections, the initialization
algorithm is as follows:

Given: a direct acyclic graph: G(V,E =R ∪ POS ∪ NEG),

or: a set of relations: R = {r | r = 〈q, s〉}
along with a set of exceptions: X = {〈q, {n1, . . . , nk}, {p1, . . . , pk}〉},

initialize an Artificial Neural Network with:

• a set of cells U = {u1, . . . , uk},
• a set of weights W = {wi,j | i, j � k},

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 13

Fig. 7. Another example of conflicted extensions.

executing the following algorithm:

The initialization algorithm

1. for each vi ∈ V (or for each distinct q that is referred to in R), define a cell ui ∈ U ,
2. for each e = (i, j) ∈E (or for each r = (i, j) ∈R) define a connection from ui to

uj with wi,j = 1,
3. for each n = (i, j) ∈ NEG (or for each 〈i, (j, . . .), (. . .)〉 ∈ X), in ascending

topological order of i , define a connection from ui to uj with wi,j = −(d × i)

(where d is a positive integer that is used in order not to allow contiguous
weights),

4. for each p = (i, j) ∈ POS (or for each 〈i, (. . .), (j, . . .)〉 ∈ X), in ascending
topological order of i , define a connection from ui to uj with wi,j = +(d × i)

(where d is as above), if for the most closed, in the same path, edge n= (x, y) ∈
NEG of p, f (j) � f (y). Otherwise, define a connection from ui to uj with
wi,j = +(d × x).

4. A knowledge refinement method

Knowledge refinement is based on the training of the corresponding Artificial Neural
Network. At the same time, knowledge refinement aims to an effective knowledge extrac-
tion. To this end, we need a training method that preserves the symbolic meaning of the
initialized Artificial Neural Network. In our case, this is accomplished both by restricting
the weights to be set to selected ones and by using a fixed architecture. Notice that most
training algorithms are specialized to train a particular type of network architecture.

14 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

In our case, the network is considered as a network of neurons with discrete states. Thus,
consider a Discrete Multilayer Neural Network (DMNN) consisting of L layers, in which
the first layer denotes the input, the last one (L) is the output and the intermediate layers
are the hidden layers. It is assumed that the (l − 1)th layer has Nl−1 units. These units
operate according to the following equations:

net lj =
Nl−1∑
i=1

w
l−1,l
ij yl−1

i + θ lj , ylj = σ l
(
net lj

)
, (5)

where net lj is the net input to the j th unit at the lth layer, wl−1,l
ij is the connection weight

from the ith unit at the (l − 1)th layer to the j th unit at the lth layer, yli denotes the output
of the ith unit belonging to the lth layer, θ lj denotes the threshold of the j th unit at the

lth layer, and σ is the activation function. We consider units where σ(netli) is a discrete
activation function. We especially focus on units with two output states, usually called
binary or hard-limiting units [38], i.e.:

σ l
(
net lj

) =
{

“true”, if net lj � 0;

“false”, if net lj < 0.
(6)

Although units with discrete activation function have been superseded to a large extent by
the computationally more powerful units with analog activation function, DMNNs are still
important in that they can handle many of the inherently binary tasks that neural networks
are used for. Their internal representation is clearly interpretable, they are computationally
simpler to understand than networks with sigmoid units and provide a starting point for
the study of the neural network properties. Furthermore, when using hard-limiting units
we can understand better the relationship between the size of the network and the training
complexity [17]. In [13], it has been demonstrated that DMNNs with only one hidden layer
can create any decision region that can be expressed as a finite union of polyhedral sets
when there is one unit in the input layer. Moreover, artificially created examples were given,
where these networks create non convex and disjoint decision regions. Finally, discrete
activation functions facilitate neural network implementations in digital hardware and are
much less costly to fabricate.

The most common feed forward neural network (FNN) training algorithm, back-
propagation (BP) [49], which makes use of the gradient descent, cannot be directly applied
to networks of units with discrete output states, since discrete activation functions (such
as hardlimiters) are non-differentiable. This also holds for various modifications of the
BP method (see, e.g., [31,32]). However, various modifications of the gradient descent
approach have been presented in the literature [14,53,63]. In [15] an approximation to
gradient descent, the so-called pseudo-gradient training method, is proposed. This method
uses the gradient of a sigmoid as a heuristic hint instead of the true gradient. Experimental
results validated the effectiveness of this approach.

We derive and apply a new training method for DMNNs that makes use of the
gradient approximation introduced in [15]. Our method exploits the imprecise information
regarding the error function and the approximated gradient, like the pseudo-gradient
method does, but it has an improved convergence speed and has the potential to train

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 15

DMNNs in situations where, according to our experiments, the pseudo-gradient method
fails to converge. For some comparative results of this method with BP see [33].

4.1. Problem formulation and proposed solution

We consider units with two discrete output states and use the convention f (or −f) for
“false” and t (or +t) for “true”, instead of the classical 0 and 1 (or −1, and +1). f , t are
real positive numbers and f < t . Real positive values prevent units from saturating, give
to the logic “false” some power of influence over the next layer of the DMNN and help the
justification of the approximated gradient value, which we employ.

First, let us define the error for a discrete unit as follows:

ej (t)= dj (t)− yLj (t), for j = 1,2, . . . ,NL, (7)

where dj (t) is the desired response at the j th neuron of the output layer at the input
pattern t , yLj (t) is the output at the kth neuron of the output layer L. Notice that N refers to
the number of output cells that are semantically related to the input cells. More specifically,
these output cells are only those that eventually can be activated by the input cells. Thus,
we consider a subgraph of the initial inheritance network. For a fixed, finite set of input–
output cases, the square error over the training set, which contains T representative cases,
is:

E =
T∑
t=1

E(t)=
T∑
t=1

NL∑
j=1

e2
j (t). (8)

The idea of the pseudo-gradient was first introduced in training discrete recurrent neural
networks [65,66] and was extended to DMNNs [15]. The method approximates the true
gradient ∇E(w) of the error function E(w) with respect to the weights w, by introducing
an analog set of values for the outputs of the hidden layer units and the output layer units.

Thus, it is assumed that ylj in Eq. (5) can be written as:

ylj = σ̃ l
(
S
(
net lj

))
, (9)

where, if S(·) is defined in [0,1] then:

σ̃ (x)=
{

“true”, if x � 0.5;

“false”, if x < 0.5,
(10)

otherwise if S(·) is defined in [−1,1] then

σ̃ (x)=
{

“true”, if x � 0;

“false”, if x < 0.
(11)

Using the chain rule, the pseudo-gradient is computed by:

∂̃E

∂w
l−1,l
ij

= δ̃lj y
l−1
i , (12)

where the back-propagating error signal δ̃ for the output layer is:

δ̃Lj = (
dj − S

(
netLj

)) · s′(netLj
)
, (13)

16 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

and for the hidden layers (l ∈ [2,L− 1]) is:

δ̃lj = s′
(
net lj

)∑
n

w
l,l+1
jn δ̃l+1

n . (14)

In these expressions s′(net lj) is the derivative of the analog activation function.
By using real positive values for “true” and “false” we ensure that the pseudo-gradient

will not reduce to zero when the output is “false”. Notice also that we do not use σ ′, which
is zero everywhere and nonexistent at zero. Instead, we use s′, which is always positive, so

δ̃lj gives an indication of the direction and magnitude of a step up or down as a function of

net lj in the error surface E.
However, as pointed out in [15], the value of the pseudo-gradient is not accurate enough,

so gradient descent based training in DMNNs is considerably slow when compared to BP
training in FNNs.

In order to alleviate this problem, we propose an alternative to the pseudo-gradient
training method procedure. The proposed training method is applied by changing selected
weights at each epoch, which is very useful in our approach. It is based on recently
proposed unconstrained optimization methods [59–61].

Next, we present the proposed training method. For simplicity, we index the se-
lected weights in sequence: wi, i = 1,2, . . . , n. Thus, in order to find a point w∗ =
(w∗

1,w
∗
2 , . . . ,w

∗
n), which minimizes the given error function:

E :D ⊂ R
n → R, (15)

in a specific bounded domain D, we try to obtain a sequence of points {wk}, k = 0,1, . . . ,
which converges to w∗. So, using an arbitrary chosen starting vector of weights w0 =
(w0

1,w
0
2, . . . ,w

0
n) ∈ D, we subminimize E along the w1 direction. Now, if ŵ1 is such a

subminimizer, then, of course, point (ŵ1,w
0
2, . . . ,w

0
n) possesses a smaller function value

than point w0. Then, we set w1
1 = ŵ1. We repeat the above process to find a subminimizer

ŵ2 along w2 direction with as starting vector of weights (w1
1,w

0
2, . . . ,w

0
n). Thus, we

compute the point w1
2 and in the same way we compute the point w1

3 with as starting vector
of weights (w1

1,w
1
2, . . . ,w

0
n) and so on until point w1 = (w1

1,w
1
2, . . . ,w

1
n) is formed. Now,

after replacing the starting point w0 by w1, we can repeat the above process to compute
w2 and so on until the final estimated point w∗ is computed according to a predetermined
accuracy. Notice that we use only one-dimensional subminimization techniques to
minimize the error function. For more details on such techniques see [7,36,39,57,58].

With the above discussion in mind we provide below a high level description of our
algorithm, where E indicates the error function, w0 = (w0

1, . . . ,w
0
n) the starting weights,

h = (h1, . . . , hn) the starting stepsizes in each coordinate direction, MEP the maximum
number of epochs required and δ, ε the predetermined desired accuracy.

The training algorithm

1. Input {E;w0;h; MEP; δ; ε}.
2. Set k = −1.
3. Set i = 0.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 17

4. If k < MEP, replace k by k + 1 and go to the next step;
otherwise, go to Step 12.

5. Replace i by i + 1 and continue.
6. Compute a subminimizer ŵi , within an accuracy δ, along the ith direction by applying

any one-dimensional subminimization iterative scheme.
7. If ŵi is a subminimizer of E along the ith direction set wk+1

i = ŵi ;
otherwise set wk+1

i =wk
i .

8. If i < n, go to Step 5.
9. If E(wk+1)�E(wk), go to Step 3;

otherwise set y0 =wk and continue.
10. Apply one step of a pseudo-gradient training method utilizing the starting value y0

and take its output value ySUB.
11. If E(wk+1) > E(ySUB), then set wk+1 = ySUB and return to Step 3.
12. Output {wk;E(wk)}.

Our experience is that in many cases, as well as for all the problems studied in [33,
60,61], the application of the subprocedure at Step 10 is not necessary. We have placed
it in our algorithm for the sake of completeness. For a proof of the convergence of this
algorithm and related ones, see [59–61].

5. The knowledge extraction method

One of the main advantages of a hybrid system comes from the fact that the symbolic part
is used to access the refined knowledge. Therefore, the knowledge extraction phase, where
the refinement knowledge provided by the trained Artificial Neural Network is extracted
in a comprehensible symbolic scheme, is of great importance to the reliability of a hybrid
system.

The proposed knowledge extraction method of Artificial Nonmonotonic Neural Net-
works heavily relies on reversing the initialization phase. The cells of the Artificial Neural
Network are, simply, transformed into nodes of the Nonmonotonic Inheritance Network.
But the refinement of the initialized knowledge is actually represented by the changes in
the weights of the connections of the Artificial Neural Network. These changes actually re-
alize the refinement of the initialized knowledge, resolving conflicts. The initial knowledge
of the inheritance network is changed due to insertions and deletions of exception links.

As it is well known, there is not a unique trained set of weights w∗ that verifies the
corresponding error function. To ensure that the changes in the weights do not concern
connections that do not contribute in the knowledge refinement, we apply the training
algorithm to selected weights, as described in Section 5.3.

5.1. Resolving conflicts

In resolving conflicts, a technique based on the identification of the extension that is
supported by the set of classified examples used during the refinement phase is employed.
Extensions are actually represented by paths of the inheritance network, and, hence,

18 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

of the connectionist network. The identification of the prevalent extensions, after the
refinement phase, is achieved by the identification of changes in the weights attached to
the connections.

In the initialized connectionist network prevalent extensions are those represented by
a path containing connections with weights of maximum absolute value. Since negative
weights support negations, a decrease of a weight gives a further precedence to a prevalent
extension supporting negations. On the other hand, an increase in a weight, contributes
toward the cancelling of a negative weight and therefore gives precedence to a prevalent
extension supporting a positive result. An increase or a decrease in a weight,wi,j , is defined
with regard to its value before the refinement phase, w0

i,j . When a prevalent extension is
identified by a change in a weight, the extracted inheritance network is modified in order
to support this extension. This is achieved by adding to the inheritance network a proper
exception link, positive or negative, depending on the result supported by the identified
extension. The added exception link concerns the extension as a whole and, clearly, it does
not concern the exception link whose corresponding connection has changed. Therefore,
the added exception link is attached to the path that represents the extension.

Consider, for example, the trained Artificial Neural Network of Fig. 8. Suppose that
there is a decrease in the weight w3,2 = −6, (w0

3,2 = −3), which identifies the extension
F → D → C → A as prevalent. Then, a negative exception link (F,A) is added that
supports this prevalent extension. Notice that the added link does not affect the existed
negative exception link (C,A), which has to remain. The added link, of course, has a
priority over the existing one, according to the “inferential distance measure”.

In order to add exception links properly, we need to identify the path that represents
a certain extension. Since a prevalent extension is identified by a change in a weight of
a connection that represents an existing exception link, we assume that an extension is

Fig. 8. Adding exception links.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 19

represented by a path containing the tail and the head nodes of this exception link. Such a
path is the F →D →C →A in Fig. 8, containing the tail node F and the head node A of
the existing exception link (C,A).

In general, if there exists a path from a node representing an input cell under
consideration to a node representing an output node under consideration and this path
contains the changed weight, we add an exception link between these two nodes. The
exception link is positive (negative) if there is an increase (decrease) to a negative (positive)
weight or a decrease (increase) to a positive (negative) weight.

5.2. Preemption of exception links

It may also be the case that an existing exception link should be preempted, because it is
not supported by the set of training examples. Such exception edges can be also identified
by changes in weights of the corresponding connections.

Consider, for example, the trained Artificial Neural Network of Fig. 9 that was initialized
as shown in Fig. 5. Suppose that weight w6,4 is decreased. Therefore a positive exception
link (F,D) is added. Notice that the added link introduces a conflict. This conflict is
resolved in the implementation level, where the existing exception link (F,D) is deleted
(see the extraction algorithm in the next subsection).

Fig. 9. Preempted exception links.

20 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

5.3. The extraction algorithm

To attack all the above cases, during the refinement phase, the training method is applied
on selected weights. Mainly, these weights are the ones that correspond to exception
links. Therefore, any change to a weight guarantees the prevalence or the validation of
an exception link. Meanwhile, when resolving conflicts, if there are extensions represented
by paths without exceptions, then identification of the prevalent extension is not possible,
because only the weights that correspond to exception links are considered. Actually, in
such a case the initialized connectionist network can not be trained.

We handle this problem by allowing the addition of weights to the set of selected weights
that correspond to ordinary links. These are the weights of the connections that are adjacent
to those output cells that represent nodes without incoming exception links.

Consider, for example, the trained Artificial Neural Network of Fig. 11. The training
algorithm allows the addition of the weight w563,561 to the set of selected ones, apart from
w560,559 and w561,560.

The extraction algorithm, at first, transforms cells and connections to nodes and edges.
Then, the algorithm adds proper negative or positive exception links, if a prevalent
extension is identified. The extraction algorithm is presented below:

Given: the trained connectionist network with:
a set of cells U = {u1, . . . , uk}, a set of weights W = {wi,j | i, j � k} along with
the initial set of weights W 0 = {w0

i,j | i, j � k} before the refinement phase,

Revise the Inheritance Network with:

• a set of nodes V ;
• a set of edges that represent ordinary relations R;
• a set of edges that represent exceptional positive relations POS;
• a set of edges that represent exceptional negative relations NEG.

Executing the following algorithm:

The extraction algorithm

1. for each cell ui ∈ U :
construct a node vi ∈ V

2. for each connection from ui to uj :
if wi,j = 1 then

construct an edge e= (i, j) ∈R

if wi,j < 0 then
construct an edge e= (i, j) ∈ NEG

if wi,j > 0 then
construct an edge e= (i, j) ∈ POS

3. for each connection from ui to uj

where |w0
i,j | �= |wi,j |:

if a path h, t containing (i, j) exists,
where h is the node representing input under consideration
and t is the node representing output under consideration

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 21

then
if w0

i,j < wi,j then
add (if it does not already exist)
the exception link e = (h, t) ∈ POS.
delete any existing exception link e = (h, t) ∈ NEG.

elseif w0
i,j > wi,j then

add (if it does not already exist)
the exception link e = (h, t) ∈ NEG.
delete any existing exception link e = (h, t) ∈ POS.

5.4. Soundness and completeness

The proposed methodology is sound and complete, as it is proved in the following. In
general, we consider that:

a system is sound if every output is valid,
a system is complete if every valid output can be produced.

The proof of soundness and completeness of ANNNs is actually reduced to the proof of
soundness and completeness of initialization, revision and extraction phase separately.

The completeness of the initialization phase is obvious and comes straightforward from
the initialization algorithm in Section 3.5. Every inheritance network can be transformed
to a neural network of the type described throughout Section 3. This is so, because there is
a one to one correspondence between the sets of nodes V and edges E of the inheritance
network and the sets of cells U and connections W of the neural network respectively.
Obviously, there is always a topological ordering of nodes in the inheritance network,
therefore it is always possible to assign weights to the connections of the neural network.

The soundness of the initialization phase guarantees the equivalence between the
neural network and the intended meaning of the background knowledge. We consider
that equivalence is guaranteed if the neural network satisfies inheritance, stability and
inferential distance ordering (described in detail in Section 3). We prove the soundness
of the initialization phase by cases. Lemmas 1 and 2 guarantee the satisfaction of
the inheritance property. Satisfaction of the inferential distance metric and the stability
property is guaranteed by Theorems 3 and 6. Notice that the conflict resolution property is
guaranteed after the refinement phase, therefore all the following proofs refer to an intra-
extension (intra-path) domain.

Lemma 1. In a neural network constructed from an inheritance network without any
exceptions or only positive ones, using the algorithm in Section 3.5, a cell o ∈ U is
activated iff at least one cell jk ∈ U connected to o via a path of connections p = {wj0,j1,

wj1,j2, . . . ,wjn,o}, where j0, . . . , jn ∈ U and wj0,j1,wj1,j2, . . . ,wjn,o ∈ W , is also
activated.

Proof. Suppose that cell jk, where 1 � k � n, is activated. Thus, from Eq. (2) we obtain
Sjk+1(. . . , injk, . . .) = · · · � injk � · · · and, since jk is activated, from Eq. (4) we obtain

22 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

σ(Sjk) = 1 and injk = wjk,jk+1 � Sjk . Given that there exist only positive exceptions,
wjk,jk+1 � 1, Sjk+1 � 1 and σ(Sjk+1) = 1. Similarly, σ(Sjk+2) = 1 and so on, until,
finally, σ(So)= 1. ✷
Lemma 2. In a neural network constructed from an inheritance network with at most
one negative exception in each of its paths and no positive ones, using the algorithm in
Section 3.5, the activation of cell t ∈ U , which the exception link starts from, prevents from
activation any other cell connected to the head h ∈ U of the exception link via a path of
connections p = {wh,j1,wj1,j2, . . .}, where j1, j2, . . .∈ U and wh,j1,wj1,j2, . . .∈W .

Proof. Since cell t is activated and there exists only one negative exception,wt,h, St (· · ·)�
1 and σ(St) = 1. Thus, from Eq. (2) we obtain Sh(. . . , int , . . .) = · · · � int � · · · and
by means of Eq. (4) we have int = wt,h � St . Because there exists only one negative
exception, wt,h < −1, since f (t) < f (h) and f (h) � 1. Thus, int < −1, hence Sh < −1
and σ(Sh)= −1. Similarly, by Lemma 1, for any jk included in p, σ(Sjk)= −1. ✷
Theorem 3. In a neural network constructed from an inheritance network with at most
two exceptions wf t,f h,wst,sh in each of its paths p = {wj0,j1,wj1,j2, . . . , wjn,o}, where
j0, . . . ,jn ∈ U and wj0,j1,wj1,j2, . . . ∈ W , the inferential distance metric and stability
property are satisfied. The following cases exist:
(1) Both of them are negative or positive. In this case the following sub cases are

distinguished:
(a) exclusion: f (f t) < f (f h)� f (st) < f (sh);
(b) inclusion: f (f t)� f (st) < f (sh)� f (f h);
(c) intersection: f (f t)� f (st) < f (f h) < f (sh).

(2) The first is positive and the other is negative. In this case the following sub cases are
distinguished:
(a) exclusion: f (f t) < f (f h)� f (st) < f (sh);
(b) inclusion: f (f t)� f (st) < f (sh)� f (f h);
(c) intersection: f (f t)� f (st) < f (f h) < f (sh). This subcase, actually, introduces

atomic stability.
(3) The first is negative and the other is positive. In this case the following sub cases are

distinguished:
(a) exclusion: f (f t) < f (f h)� f (st) < f (sh);
(b) inclusion: f (f t)� f (st) < f (sh)� f (f h);
(c) intersection: f (f t)� f (st) < f (f h) < f (sh). This subcase, actually, introduces

generic stability.

Proof. It is straightforward from Eqs. (2), (3) and (4) that for each of the above
subcases, considering arbitrary input and output cells, the output cells are properly
activated/deactivated so that the inferential distance metric and stability property are
satisfied. In the following, we prove this claim for one of the above subcases. The proofs
for the rest subcases are similar. Consider the case ((ii)(a)) above. Suppose that cell f t is
activated. Then, from Lemma 1, for every node f i for which f (f t) < f (f i) < f (sh),
σ(Sf i) = 1 is implied. It is clear, from the fourth step of the initialization algorithm in

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 23

Section 3.5, that |wf t,f h| = |wst,sh|,wf t,f h > 0,wst,sh < 0. Therefore, for the output
cell sh, Ssh(insm, inst) = insm � inst , where sm is the immediate ancestor of sh. Then,
insm = wsm,sh � Ssm = wf t,f h. Also, inst = wst,sh � Sst = wst,sh due to ε in Eq. (3).
Therefore, Ssh =wst,sh, also due to ε in Eq. (3). Finally, σ(Ssh)= −1. ✷
Definition 4. If m = (mt,mh), n = (nt, nh) are exception links, we define the dominant
exception link as the link that has priority over the other, according to the inferential
distance metric and the stability property with respect to Theorem 3. Formally, m is
dominant on n, denoted as m� n, if{

sign(Snh)= sign(wm), if sign(wm) �= sign(wn);

f (mt)� f (nt), f (mh)� f (nh), if sign(wm)= sign(wn).
(16)

Lemma 5. The dominant operator, �, defines a relation D on the set of connections W .
Relation D is reflexive and antisymmetric.

Proof. Obviously, ∀m = (mt,mh) ∈ W,m � m, since f (mt) = f (mt). Therefore D is
reflexive. Obviously, ∀m = (mt,mh),n = (nt, nh) ∈ W , for which m � n,n � m, then
m≡ n is implied. Therefore D is antisymmetric. ✷
Theorem 6. The general case of a neural network constructed from any inheritance
network is reduced to the case of Theorem 3, where at most two exceptions in each of its
paths are allowed. This is accomplished by successively replacing the pairs of exceptions
(m,n) by the dominant exception of them, starting from the pair with the lower topological
order for the tail of m. Under this constraint, we prove that D is also transitive and hence
permits successive substitutions.

Proof. We prove that ∀l = (lt, lh),m = (mt,mh),n = (nt, nh) ∈ W , for which f (lt) >

f (lh), f (mt) > f (mh),f (nt) > f (nh), f (lt) � f (mt) � f (lh) � f (mh), f (mt) �
f (nt) � f (mh) � f (nh), if l � m,m � n then l � n is implied. Hence, D is
transitive. If sign(wl) = sign(wm) (both negative or positive), from Definition 4, f (lt) �
f (mt), f (lh) � f (mh). If, also, sign(wm) = sign(wn) then sign(wl) = sign(wm) =
sign(wn) and from Definition 4 f (mt) � f (nt), f (mh) � f (nh). So, f (lt) � f (nt),
f (lh) � f (nh) and, from the second case of Definition 4, l � n. Else, if sign(wm) �=
sign(wn) then, also, sign(wl) �= sign(wn) and, since m � n, sign(Snh) = sign(wm).
Therefore, sign(Snh) = sign(wl) and, hence, from the first case of Definition 4, l � n.
Consider, now, the case where sign(wl) �= sign(wm). If, also, sign(wm) �= sign(wn) then
sign(wl) = sign(wn). Since, by constraint, f (lt) � f (nt), f (lh) � f (nh) then, from the
second case of Definition 4, l � n. Finally, if sign(wm) = sign(wn) then sign(wl) �=
sign(wn). Since l � m then sign(Smh) = sign(wl). Moreover, sign(Snh) is determined by
sign(wm) and sign(Smh). But, since sign(Smh)= sign(wl) then sign(Snh) is determined by
the dominant of l and m, which is l. Therefore, sign(Snh) = sign(wl), and, from the first
case of Definition 4, l � n. ✷

Completeness and soundness of the refinement phase is reduced to convergence of the
training algorithm. For a proof of convergence of this algorithm as well as for some other
related results see [59–61].

24 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Completeness of the extraction phase is obvious and comes straightforward from
the extraction algorithm in Section 5.3. The extraction algorithm guarantees that every
output cell o ∈ U can be reached by an input cell i ∈ U by at least one path
p = {wi,j1,wj1,j2, . . . ,wjn,o}, where j1, . . . , jn ∈ U and wi,j1, . . . ,wjn,o ∈ W , which
includes a weight wp,q that belongs to the set of the selected weights. Therefore, every
change to a weight that belongs to the set of the selected weights, during the refinement
phase, can be transformed to an addition of an exception link between the head and the tail
of the path(s) which the changed weight is assigned to.

Soundness of the extraction phase is, also, obvious. An increase in a negative weight
or a decrease in a positive weight actually decreases the absolute value of the weight and
hence gives precedence to any other conflicted path with a positive or negative weight
respectively. Similarly, a decrease in a negative weight or an increase in a positive weight
gives precedence to the path that contains it.

6. Experimental results

In order to test the effectiveness and efficiency of ANNNs, as a learning system, we need
to refine some initial knowledge of a pure nonmonotonic domain. Instead of choosing
such a scarcely mentioned in the literature domain, which would not be appropriate for
comparative results, we tested ANNNs in a problem that can be considered as being defined
in a nonmonotonic domain, although in the literature, it is not treated as such. The problem
is the extraction of classification rules from a dataset that can be considered, in the scope
of this work, as being reduced to the extraction of general patterns and their exceptions.
Classification problem, in a monotonic domain, has been attacked using both symbolic and
connectionist techniques. There are also hybrid systems, as most of those mentioned in the
introduction, that have been evaluated using it.

The key idea behind using ANNNs in the classification problem, under a pseudo
nonmonotonic domain, is to consider some initial, arbitrarily chosen, classification rules
that introduce conflicts and then to refine them by resolving these conflicts. Therefore,
exceptions in the initial knowledge are, actually, artificially defined. The reader should
bear in mind that ANNNs are capable of refining initial knowledge of a nonmonotonic
domain. To our knowledge, there exists no hybrid system, apart from Pinkas’s symmetric
networks based on a translation of Penalty Logic, (which however heavily relies on user
defined penalties, which in turn require a kind of preprocessing of the conflicts), that can be
used in classifying examples that belong to a nonmonotonic domain. Of course, a relation
can be established between Logic Programming and nonmonotonic reasoning through
default and autoepistemic logics, which is based on treating negation [35]. Thus, hybrid
systems like those in [23] and [12] can be, also, used in a nonmonotonic domain. However,
for practical problems, one should take into consideration that, in establishing a relation
between Logic Programming and nonmonotonic reasoning, the default interpretation of
negation is an NP-complete task. Therefore, heuristics as “negation as failure to prove”
has to be adopted. Moreover, one should also take into consideration hurdles imposed by
logic-based formalisms, in general, such as the lack of the stability property, mentioned in
the introduction.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 25

In order to evaluate ANNNs, by obtaining comparative results with other hybrid
systems, we transform a monotonic domain to an artificial nonmonotonic. It is actually
this transformation that prevents ANNNs from outperforming alternative systems in
classification in a monotonic domain. The main problem is that ANNNs, inherently, treat
noise as exceptions and thus tend to overspecialize. Therefore, ANNNs are not so accurate
in unseen examples, when applied to a monotonic domain. But, the obtained experimental
results, as presented in what follows, are comparable to other hybrid systems and superior
to various well-known pure symbolic or connectionist systems.

In the next subsection, we compare ANNNs with pure symbolic and connectionist
systems against the problem of classifying both real-world datasets and test datasets. More
specifically, we evaluate ANNNs using a real-world dataset representing the customer
base of a big telecommunications company and two real-world datasets from the domain
of Molecular Biology, especially that of DNA sequence analysis, namely the “promoter
recognition” and the “splice-junction determination” problems [62]. Notice that DNA
sequence analysis problems are used as benchmarks for comparing the performance of
learning systems.

6.1. Extracting customer profiles

Classification rules can be extracted using supervised learning methods and can be used
to classify data into predefined classes, described by a set of concepts (attributes). In most
of the cases, independently of the adopted representation scheme, a set of classification
rules describes a class through defining a general pattern with exceptions. A subset of
these rules defines the general pattern (e.g., “young loan applicants are of a high risk”),
while the rest define the exceptions (e.g., “young loan applicants with high income are of
low risk”).

Consider, for example the sample of rules shown in Fig. 10. These rules are constructed
by the CN2 algorithm [5] and describe the behavior of the customer base of a big
telecommunications company. 1 The conditions of the rules are certain attributes of the
customer base and the predefined classes denote a profit related behavior. It is obvious that
the last three rules define general patterns, while the first one is an exception to the last two
rules.

Therefore, if we represent general patterns as an initial knowledge using a nonmonotonic
inheritance scheme, we can find their exceptions refining the initial knowledge with respect
to database records as training examples. Initial knowledge is, usually, provided by experts.
In the tests we performed for ANNNs evaluation, it is chosen randomly. If we consider the
three general patterns shown in Fig. 10 as initial knowledge, the initial inheritance network
shown in Fig. 11 is constructed.

Consider the following interpretation 2 of the symbols:
• A stands for BAD;
• B stands for COMMON;
• C stands for GOOD;

1 For confidentiality reasons, the classes in the rules are not the same as the actual ones.
2 For confidentiality reasons, attribute values are not the same as the actual ones.

26 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Fig. 10. A sample of a decision list.

Fig. 11. An example.

• D stands for EMPLOYEES OF GOVERNMENT COMPANIES;
• E stands for RESIDENTS OF AEGEAN ISLANDS;
• F stands for YOUNG PEOPLE;
• G stands from YOUNG PEOPLE, EMPLOYEES OF GOVERNMENT COMPA-

NIES, RESIDENTS OF AEGEAN ISLANDS.
The above inheritance network, in turn, is used to initialize a connectionist network as

shown in the same figure. The latter is trained, using relational data as training examples.
Finally, refined rules are extracted in the form of a new inheritance network, as shown
in Fig. 12. This refined inheritance network can now be used to infer that “Employees

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 27

Fig. 12. Resolving conflicts.

of government companies and residents of Aegean Islands are common customers”. This
holds because of the added positive exception link (G,B) and the negative exception link
(G,C). The first supports the fact that Gs are Bs, while the previously conflicted extension
(that Gs are not Bs because they are Cs) is removed due to the second.

Notice that every such query, which is actually a combination of attribute values, should
be considered as exceptional and refined during training. Hence, combinations of attribute
values are considered as potential exceptions, determining a pseudo nonmonotonic domain.

The initial weights of the previous example are shown in Fig. 11. During the refinement
phase some of the initial weights are changed while trying to minimize the error function.
The error function, given that there are three output cells and one input cell, takes the
following form:

E =
3∑

i=1

[
σ(NOUTi)− (2DOUTi − 1)

]2
, (17)

Thus:

E = [(
(w560,559 � S560) � (w564,559 � S564)− (2DOUT559 − 1)

)2

+ (
(w561,560 � S561)� (w562,560 � S562)− (2DOUT560 − 1)

)2

+ (
(w563,561 � S561)− (2DOUT563 − 1)

)2]
.

A table with 30000 records is used as a training set. This table is the same as the one used
by the CN2 algorithm when the rules of Fig. 10 are extracted. 31 records of this table are
of the form:

“young_people, empl_gov_co, res_Aegean_Isl, bad ”

which are encoded as:

in565 = 1, DOUT561 = 0, DOUT560 = 0, DOUT559 = 1,

129 records of them are encoded as:

in565 = 1, DOUT561 = 0, DOUT560 = 1, DOUT559 = 0, and

108 records of them are encoded as:

in565 = 1, DOUT561 = 1, DOUT560 = 0, DOUT559 = 0.

28 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Table 1
Instances of the trace of execution

w0
563,561 w0

561,560 w0
560,559 E

1 −561 −560 1280

1 −561 566 2104

1 −561 −566 1280

566 −561 −560 2144

−1 −561 −560 1072

−1 −566 −560 1072

−1 2 −560 1112

Some epochs of the refinement process are exhibited in Table 1. Theoretically, the weight
w560,559 is changed properly in the interval [−ζ, ζ], where ζ is a “big” positive integer. We
consider ζ as the number assigned to the last cell in topological ordering plus one. Actually,
weight w560,559 is changed taking values from the set {−566, . . . ,+566}. Since there is not
any minimization of the error function, the algorithm proceeds to changing other weights.

Eventually, weight w563,561 is changed. A decrease minimizes the error function.
Meanwhile, in this case, as possibly in the general case, all outputs are deactivated and
there is no conflict resolution at all. In such a case, we ignore the decrement of the error
function and we proceed while keeping the change in the weight. This is also the case,
when more than one outputs are activated. According to our experience, and in view of all
the tests that we have made, the latter case has not been encountered.

Then, weightw561,560 is changed. An increase in the weight minimizes the error function
with respect to its initial value. More changes do not further minimize the error function,
therefore the refinement phase finishes. The revised inheritance network is shown in
Fig. 12. There was an increase in weightw561,560 that identifies the extensionG→E →B

as prevalent. Therefore a positive exception link (G,B) is added that supports this prevalent
extension. Notice that the added link does not affect the existed negative exception link
(B,A), which should be retained. Moreover, there was a decrease in weight w563,561.
Therefore, a negative exception link (G,C) is also added.

Notice that in the revised inheritance network a negative exception link (G,A) is not
added, in order to directly exclude the extension (G→D →A). Meanwhile, the positive
exception link (G,B) can be used to resolve the conflict, indirectly, through adopting a
skeptical view [26]. Alternatively, such conflicts can be resolved at the implementation
level. Thus, if a positive exception link is added by the extraction algorithm then negative
exception links are also added to the rest of the output nodes.

Initial knowledge, represented in the inheritance network shown in Fig. 11, consists
of general rules that refer to values of different attributes characterizing the training set
(nodes D,E,F), while the input node G represents a potential exception that refers to
a combination of attribute values. If we consider all possible general rules, each for a
different attribute value, that arbitrarily classify examples to all three classes (A, B and
C), we can use ANNNs to refine this initial knowledge, thus resolving these artificial

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 29

Fig. 13. Test-set performance.

conflicts. Obviously, we can then consider exceptions of these rules, each of them formed
by a combination of values, taken from a pair of attributes, and we can try to resolve any
conflicts. We can repeatedly consider further exceptions (exceptions of larger depth), each
of them formed by a combination of values taken from a triple of attributes (as in Fig. 11)
and so on. Thus, at the end, the obtained inheritance network represents classification rules,
with resolved conflicts, and can be used in a classification process.

We have compared ANNNs, in extraction of customer profiles, to symbolic and
connectionist techniques. We have chosen CN2, a well-known symbolic algorithm, and two
genuine connectionist learning techniques, namely the Self-Organized Map algorithm [28]
and the Radial Basis Function networks. The overall classification accuracy of tested
techniques is shown in Fig. 13, using a set of 30000 patterns, chosen out of a set of 60000
patterns. In each case we formed a training set choosing, randomly, 80% of the initial set
and a test set from the remaining 20%.

Using SOM, the best results was obtained when the number of neurons was in the range
50 to 150. Within that range the classification performance was not strongly dependent
on the number of neurons. The training set size should be large. For instance, for 10000
training patterns, taken from the training set, the obtained performance was 36%. However,
for 30000 training patterns and more (up to 50000 patterns that we tried) the classification
performance was not varied significantly and it was about 46%. When the class information
is appended as input to the training patterns, the classification performance is improved
by about 2–4% (it becomes about 48% to 50%). The LVQ phase, with the supervised
refinement of the class boundaries, further improves the classification results to 56–58%.

Radial Basis Function (RBF) networks were also used, taking as centers the weight
vectors of the neurons obtained after the SOM or LVQ. Then the RBF network training
algorithm learns locally the classification function, by accounting mostly the patterns that
fall near each training center [20]. However, practically, the numerical solution of the
formulated equations for the RBF training becomes problematic, due to the large size of
the problem. The currently achieved performance with the RBF networks is only 37%. The
poor performance can be attributed to the large size of the training set that involves large
matrices, which are mostly sparse.

30 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

As far as the symbolic algorithm CN2 is concerned, it overcomes the low classification
performance problem of connectionist techniques. Actually, the construction of rules is
related to a predefined measure of classification performance (entropy). However, it suffers
from a very bad time and space complexity.

The example of the previous section, shown in Fig. 11, concerns a particular combination
of attribute values determining a potential exception that must be probably resolved. This
example is actually a subset of a complete solution provided by the other mentioned
approaches. The overall time complexity is dominated by the number of different
combinations of the values of a subset of input attributes to be examined. This is

Z =
S∑
i=2

[(Si)∑
j=1

[|Ak1| × · · · × |Akj |
]]
, (18)

where S is the number of attributes and |Akn| is the number of different values that
can be assigned to an attribute (a field). Therefore, the time complexity of the particular
application of ANNNs to a classification problem is directly proportional to the number of
different attributes and to the number of the different values of these attributes. On the other
hand, the number of attributes participating in a combination, that is the depth of exception,
has an impact on the classification accuracy. Large depths tend to overspecialize.

6.2. Analyzing DNA sequence

We, also, evaluate ANNNs using the promoter recognition and the splice-junction
determination problem. Initial knowledge of each problem is the rule sets used in [12,
56]. The initial knowledge for the promoter recognition problem is represented by the
NIN shown in Fig. 14, where every sequence location is arbitrarily connected both
to a “promoter” output node and to a “no promoter” one. These output nodes are
connected via an exception link. The same approach is, also, adopted for the splice-junction
determination problem.

We used cross-validation as the testing methodology. More specifically, for promoter
recognition we used leaving-one-out cross-validation in which the set of 106 examples is
permuted and divided into 106 sets with only one example in each set. In each evaluation
phase, one set, which has never been seen during learning, is used for testing, while

Fig. 14. The initial NIN for promoter recognition problem.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 31

Fig. 15. Test-set performance in promoter recognition.

Fig. 16. Test-set performance in splice-junction determination.

the examples of the remaining 105 sets are used for training. Hence, evaluation process
requires 106 training phases. Test-set performance in promoter recognition for ANNNs is
shown in Fig. 15, where the number of not recognized positive and negative examples is
depicted.

Test-set performance in splice-junction determination, using 10-fold cross-validation in
1000 examples, chosen randomly out of the standard set of 3190 examples, is illustrated
in Fig. 16. Test-set performance for ANNNs is compared to other empirical learning
algorithms and two methods (Stormo, O’Neill [56]) suggested by biologists. Notice that
we replicate tests for these algorithms performed in [56].

The overall classification accuracy of ANNNs, in promoter recognition and splice-
junction determination, compared to other systems that learn strictly from examples, as
well as from examples and background knowledge, is shown in Fig. 17 and Fig. 18,
respectively. Notice that we replicate tests for these algorithms performed also in [12].

Performance of ANNNs, in promoter recognition, is tested using, apart from leaving-
one-out, both 10-fold and 20-fold cross validation. Fig. 17 shows that the 10-fold
methodology exhibits the best results, while the 20-fold the worst. One hypothesis to

32 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

Fig. 17. Classification accuracy in promoter recognition.

Fig. 18. Classification accuracy in splice-junction determination.

explain this result is that there is a trade off between the decrease of accuracy, due to
insufficient training examples (20-fold) or overspecialization (leaving-one-out), and the
increase of accuracy, due to an optimum training set (10-fold).

We, also, evaluate the generalization ability of ANNNs in learning from small sets of
examples. The testing methodology consists in splitting the initial set of 106 examples
of the promoter recognition problem into two subsets, one containing approximately 25%
of the examples (26) and the other the remaining examples (80). The latter set is further

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 33

Fig. 19. Classification accuracy in learning from small sets.

Fig. 20. Classification accuracy as a function of depth of exceptions.

partitioned into sets of increasing size, with the smaller sets being subsets of the larger ones.
In each evaluation phase, one of those subsets is used for training, while the set of the 26
examples is always used for testing. The classification accuracy of ANNNs, in each phase,
is depicted in Fig. 19 compared to other hybrid systems and backpropagation. Notice that
we replicate tests performed in [12]. The same result holds, also, for the splice-junction
determination problem.

Depth of exceptions has a straightforward impact on the classification accuracy of
ANNNs (in the particular context of the pseudo nonmonotonic domain). On the other hand,
depth of exceptions has a straightforward impact on the time complexity. Note that large
depths of exceptions are not desirable in such a pseudo nonmonotonic domain, since they
introduce overspecialization. On the contrary, they are desirable in a pure nonmonotonic
domain, in order to capture exceptions.

Also, notice that all the tests presented so far have been performed with depth equals to
2 (combinations of two attributes). Of course, in a nonmonotonic domain, the larger the
depth the better the classification accuracy and the worse the time complexity. In Fig. 20,

34 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

classification accuracy, for the promoter recognition problem, is depicted as a function of
depth of exceptions, where approximately 25% of the examples (26) were used for testing
and the remaining examples for training.

7. Discussion, conclusion and further research

Hybrid systems are typically used for refinement of the domain knowledge. After the
refinement phase, the trained Artificial Neural Network, as part of the hybrid system, can
be used, as a reasoning system, in order to access the refined knowledge.

In general, an Artificial Neural Network, by construction, supports access operations
of the ISA type queries, that is it infers about whether an object possesses a particular
property or not. Notice that the complexity of ISA queries in an Artificial Neural Network
is comparable to the complexity of ISA queries in path-based networks, when using very
effective compression techniques (see, for example, [2]). Of course, this is true if we
consider the enumeration of the activation function of unit cost. Moreover, an Artificial
Neural Network can support access operations concerning the recognition problem, that is
it can find all the objects satisfying a particular set of properties. However, in that case such
operations are not effective enough.

The main advantages of hybrid systems come from using the symbolic part to access
the refined knowledge. Apart from more effective access operations, the symbolic part
has also an explanation capability about the generated outputs. In such a utilization of
hybrid systems, the refined knowledge has to be extracted in order to feed back the
domain knowledge. Therefore, reliability of the extraction phase is a critical factor to the
effectiveness of hybrid systems.

We have tried to use a proper initialization method, a proper training method and
a proper extraction algorithm for ANNNs. We proved that they preserve the symbolic
meaning of the Initial Inheritance Network, so that we can effectively transform the trained
Artificial Neural Network into a comprehensible nonmonotonic inheritance network.
Moreover, we evaluated ANNNs by applying them to the classification problem for a
pseudo nonmonotonic domain, where exceptions in the initial knowledge are artificially
defined. We have followed this evaluating procedure in order to obtain comparative results,
because, to our knowledge, there are no available benchmarks for pure nonmonotonic
domains. On the other hand, for a monotonic domain there are well known and widely
used benchmarks (e.g., see [56]). We empirically proved that, despite ANNNs being
capable of refining initial knowledge of a nonmonotonic domain, their performance in
the classification problem is comparable to other hybrid monotone systems and better than
various well-known monotone pure symbolic or connectionist systems. Of course, none of
the monotone systems, that ANNNs were compared to, can be used in classifying examples
that belong to a nonmonotonic domain. The main problem, observed during experiments,
is that ANNNs, inherently, treat noise as exceptions and thus tend to overspecialize.

We are currently applying ANNNs to different data sets that can constitute a pure
nonmonotonic domain (incomplete data, data with drifting or evolving concepts, data
arriving over time, etc.). We, also, try to improve the performance of ANNNs in monotonic
domains that are reduced to pseudo nonmonotonic domains, as those used in the presented

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 35

experimental tests. To this end, we try to identify any malfunctions in cases that biased
and noisy data exists, where ANNNs, in pseudo nonmonotonic domains, usually exhibit a
lower performance compared to other systems.

In general, ANNNs, treating noise as exceptions, are very sensitive to noise in both the
training and the domain knowledge, especially when ANNNs are applied to a monotonic
domain. This result is, also, obvious from the presented experiments. We propose to attack
this problem by properly selecting the training set, to be able to define as much desired
outputs as possible. That is, training is forced to contain not only examples for resolving
extensions or deleting exceptions, but also examples that support the already represented
knowledge. Moreover, although a continuous analogous refinement process may be more
powerful for tackling noise, however it does not satisfy the prerequisites imposed by the
proposed approach. To this end, we intent to modify our approach so that continuous
analogous refinement processes could be applied instead.

In conclusion, ANNNs are defined to be capable of refining initial knowledge of a
nonmonotonic domain. We applied ANNNs to a monotonic domain, reducing it to a pseudo
nonmonotonic domain, namely the extraction of classification rules from large relational
databases. Notice that, since common monotonic knowledge representation schemes,
such as production rules of traditional Expert Systems, are weaker than nonmonotonic
inheritance networks, the domain knowledge of a hybrid system can be the domain
knowledge of a traditional Expert System. In that case, the initialization-refinement-
extraction cycle can be considered as a knowledge acquisition and inferring methodology
for traditional Expert Systems, capable of justifying the produced conclusions.

Finally, we are interested in examining the behavior of training methods that do not
preserve the symbolic meaning of the initialized Artificial Neural Network, such as
those that are not restricted to changing the weights, but can also add hidden layers and
connections. The semantics of NINs that are extracted from such trained Artificial Neural
Network is under research.

Acknowledgements

We wish to thank the anonymous referees for their constructive comments, suggestions,
and invaluable criticisms which helped us to improve the paper. We also wish to thank
Dr. S. Papadimitriou and Mr. G. Petalas for their invaluable help during the tests as well as
Dr. P. Peppas for useful discussions.

References

[1] R. Andrews, J. Diederich, A.B. Tickle, Survey and critique of techniques for extracting rules from trained
artificial neural networks, Knowledge-Based Systems 8 (1995) 373–389.

[2] B. Boutsinas, On managing nonmonotonic transitive relationships, in: Proc. 8th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), Toulouse, France, 1996, pp. 374–382.

[3] B. Boutsinas, Y.C. Stamatiou, G. Pavlides, Massively parallel support for nonmonotonic reasoning, in:
J. Geller, H. Kitano, C. Suttner (Eds.), Parallel Processing for Artificial Intelligence, Elsevier Science,
Amsterdam, 1997, pp. 41–67.

36 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

[4] G. Brewka, Cumulative default logic: In defense of nonmonotonic inference rules, Artificial Intelli-
gence 50 (2) (1991) 183–205.

[5] P. Clark, T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989) 261–283.
[6] J.P. Delgrande, T. Schaub, W. Ken Jackson, Alternative approaches to default logic, Artificial Intelligence 70

(1994) 167–237.
[7] J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[8] D. Dubois, H. Prade, Possibilistic logic, preferential models, nonmonotonicity and related issues, in: Proc.

IJCAI-91, Sydney, Australia, 1991, pp. 419–424.
[9] D. Etherington, Formalizing nonmonotonic reasoning systems, Artificial Intelligence 31 (1987) 41–85.

[10] L. Fu, Introduction to knowledge-based neural networks, Knowledge-Based Systems 8 (1995) 299–300.
[11] S.I. Gallant, Connectionist expert systems, Comm. ACM 31 (1988) 152–169.
[12] A.A. Garcez, G. Zaverucha, The connectionist inductive learning and logic programming system, Appl.

Intelligence 11 (1999) 59–77.
[13] G.J. Gibson, F.N. Cowan, On the decision regions of multi-layer perceptrons, Proc. IEEE 78 (1990) 1590–

1594.
[14] E.M. Gorwin, A.M. Logar, W.J.B. Oldham, An iterative method for training multilayer networks with

threshold functions, IEEE Trans. Neural Networks 5 (1994) 507–508.
[15] R. Goodman, Z. Zeng, A learning algorithm for multi-layer perceptrons with hard-limiting threshold units,

in: Proc. IEEE Neural Networks for Signal Processing, 1994, pp. 219–228.
[16] H.W. Güsgen, S. Hölldobler, Connectionist inference systems, in: B. Fronhofer, G. Wrightson (Eds.),

Parallelization in Inference Systems, Lecture Notes in Artificial Intelligence, Vol. 590, Springer, Berlin,
1992, pp. 82–120.

[17] S.E. Hampson, D.J. Volper, Representing and learning Boolean functions of multivalued features, IEEE
Trans. Systems Man Cybernet. 20 (1990) 67–80.

[18] I. Hatzilygeroudis, J. Prentzas, Constructing modular hybrid knowledge bases for expert systems, Internat.
J. Artificial Intelligence Tools 10 (1–2) (2001) 87–105.

[19] I. Hatzilygeroudis, H. Reichgelt, Handling inheritance in a system integrating logic in objects, Data
Knowledge Engineering 21 (1997) 253–280.

[20] S. Haykin, Neural Networks, 2nd edn., Macmillan Publishing, 1999.
[21] S. Hölldobler, F. Kurfess, CHCL—A connectionist inference system, in: B. Fronhöfer, G. Wrightson (Eds.),

Parallelization in Inference Systems, Lecture Notes in Artificial Intelligence, Vol. 590, Springer, Berlin,
1992, pp. 318–342.

[22] S. Hölldobler, Automated inferencing and connectionist models, Post Ph.D. Thesis, Intellektik, Informatic,
TH Darmstadt, 1993.

[23] S. Hölldobler, Y. Kalinke, Towards a massively parallel computational model for logic programming, in:
Proc. ECAI-94 Workshop on Combining Symbolic and Connectionist Processing, 1994, pp. 68–77.

[24] S. Hölldobler, Y. Kalinke, H. Störr, Approximating the semantics of logic programs by recurrent neural
networks, Appl. Intelligence 11 (1999) 45–58.

[25] S. Hölldobler, Challenge problems for the integration of logic and connectionist systems, Technical Report,
WV-99-03, AI Institute, Dept. of Computer Science, Dresden University of Technology, 1999.

[26] J. Horty, R. Thomason, D. Touretzky, A skeptical theory of inheritance in nonmonotonic semantic networks,
Artificial Intelligence 42 (1990) 311–318.

[27] Y. Kalinke, Using connectionist term representation for first-order deduction—A critical view, in: F. Maire,
R. Hayward, J. Diederich (Eds.), Connectionist Systems for Knowledge Representation Deduction,
Queensland Univ. of Tech., 1997.

[28] T. Kohonen, Self-Organized Maps, Springer, Berlin, 1997.
[29] R. Maclin, Learning from instruction and experience: Methods for incorporating procedural domain theories

into knowledge-based neural networks, Technical Report, UW CS-TR-95-1285, 1995.
[30] R. Maclin, J.W. Shavlik, Refining domain theories expressed as finite-state automata, in: Proc. 8th

International Machine Learning Workshop, San Mateo, CA, 1991.
[31] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, Effective backpropagation training with variable stepsize,

Neural Networks 10 (1997) 69–82.

B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38 37

[32] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, Increasing the convergence rate of the error backpropa-
gation algorithm by learning rate adaptation methods, Neural Computation 11 (1999) 1769–1796.

[33] G.D. Magoulas, M.N. Vrahatis, T.N. Grapsa, G.S. Androulakis, A training method for discrete multilayer
neural networks, in: S.W. Ellacott, J.C. Mason, I.J. Anderson (Eds.), Mathematics of Neural Networks,
Models, Algorithms and Applications, Kluwer Academic, Boston, 1997, pp. 250–254 (Chapter 42).

[34] D. Makinson, General theory of cumulative inference, in: M. Reinfrank (Ed.), Proc. 2nd International
Workshop on nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence, Vol. 346, Springer, Berlin,
1989, pp. 1–18.

[35] V.W. Marek, M. Truszczyński, Nonmonotonic Logic, Springer, Berlin, 1993, pp. 141–187.
[36] G.E. Manoussakis, M.N. Vrahatis, G.S. Androulakis, New unconstrained optimization methods based on

one-dimensional rootfinding, in: D. Bainov, A. Dishliev (Eds.), Proc. 3rd International Colloquium on
Numerical Analysis, Science Culture Technology Publishing, Oxford Graphic Printers, 1995, pp. 127–136.

[37] J. McCarthy, Epistemological challenges for connectionism, Behavioural and Brain Sciences 11 (1988) 44.
[38] W. McCullough, W.H. Pitts, A logical calculus of the ideas imminent in nervous activity, Bull. Math.

Biophysics 5 (1943) 115–133.
[39] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic

Press, New York, 1970.
[40] G. Pinkas, The equivalence of connectionist energy minimization and propositional calculus satisfiability,

Technical Report, WU CS 90-03, 1990.
[41] G. Pinkas, Energy minimization and the satisfiability of propositional logic, in: D. Touretzky, J. Elman,

T. Sejnowski, G. Hinton (Eds.), Proc. of the Connectionist Models School, Morgan Kaufmann, San Mateo,
CA, 1990.

[42] G. Pinkas, Symmetric neural networks and propositional logic satisfiability, Neural Computation 3 (1991)
282–291.

[43] G. Pinkas, Expressing first-order logic in symmetric connectionist networks, in: L.N. Kanal, C.B. Suttner
(Eds.), Informal Proc. Internat. Workshop on Parallel Processing for AI, Sydney, Australia, 1991, pp. 155–
160.

[44] G. Pinkas, Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks, in: Proc.
IJCAI-91, Sydney, Australia, 1991, pp. 525–530.

[45] G. Pinkas, Constructing syntactic proofs in symmetric networks, Advances in Neural Information
Processing Systems IV (NIPS91) (1992) 217–224.

[46] G. Pinkas, Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional
knowledge, Artificial Intelligence 77 (1995) 203–247.

[47] J. Pollack, Recursive distributed representations, Artificial Intelligence 46 (1990) 77–105.
[48] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.
[49] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in:

D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318–363.

[50] E. Sandewall, Nonmonotonic inference rules for multiple inheritance with exceptions, Proc. IEEE 74 (1986)
1345–1353.

[51] B. Selman, H.J. Levesque, The tractability of path-based inheritance, in: Proc. IJCAI-89, Detroit, MI, 1989.
[52] L. Shastri, Default reasoning in semantic networks: A formalization of recognition and inheritance, Artificial

Intelligence 39 (1989) 283–355.
[53] D.J. Tom, Training binary node feed forward neural networks by backpropagation of error, Electronics

Letters 26 (1990) 1745–1746.
[54] D. Touretzky, The Mathematics of Inheritance Systems, Morgan Kaufmann, Los Altos, CA, 1986.
[55] D. Touretzky, J. Horty, R. Thomason, A clash of intuitions: The current state of nonmonotonic multiple

inheritance systems, in: Proc. IJCAI-87, Milan, Italy, 1987, pp. 476–482.
[56] G.G. Towell, J.W. Shavlik, Knowledge based artificial neural networks, Artificial Intelligence 40 (1994)

119–165.
[57] M.N. Vrahatis, Solving systems of nonlinear equations using the nonzero value of the topological degree,

ACM Trans. Math. Software 14 (1988) 312–329.
[58] M.N. Vrahatis, CHABIS: A mathematical software package for locating and evaluating roots of systems of

nonlinear equations, ACM Trans. Math. Software 14 (1988) 330–336.

38 B. Boutsinas, M.N. Vrahatis / Artificial Intelligence 132 (2001) 1–38

[59] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos, G.D. Magoulas, A class of gradient unconstrained
minimization algorithms with adaptive stepsize, J. Comput. Appl. Math. 114 (2000) 367–386.

[60] M.N. Vrahatis, G.S. Androulakis, G.E. Manoussakis, A new unconstrained optimization method for
imprecise problems, in: D. Bainov, A. Dishliev (Eds.), Proc. 3rd International Colloquium on Numerical
Analysis, Science Culture Technology Publishing, Oxford Graphic Printers, 995, pp. 185–194.

[61] M.N. Vrahatis, G.S. Androulakis, G.E. Manoussakis, A new unconstrained optimization method for
imprecise function and gradient values, J. Math. Anal. Appl.197 (1996) 586–607.

[62] J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, Molecular Biology of the Gene, Vol. 1,
Benjamin Cummings, Menlo Park, CA, 1987.

[63] B. Widrow, R. Winter, Neural nets for adaptive filtering and adaptive pattern recognition, IEEE Computer
(March 1988) 25–39.

[64] W. Woods, What’s in a link?: Foundations for semantic networks, in: R. Brachman, H. Levesque (Eds.),
Readings in Knowledge Representation, Morgan Kaufmann, Los Altos, CA, 1985, pp. 217–241.

[65] Z. Zeng, R. Goodman, P. Smyth, Learning finite state machines with self-clustering recurrent networks,
Neural Comput. 5 (1993) 976–990.

[66] Z. Zeng, R. Goodman, P. Smyth, Discrete recurrent neural networks for grammatical inference, IEEE Trans.
Neural Networks 5 (1994) 320–330.

