
Vol.:(0123456789)1 3

International Journal of Speech Technology (2019) 22:1039–1049
https://doi.org/10.1007/s10772-019-09640-7

Evaluation of PNN pattern‑layer activation function approximations
in different training setups

Nikolay T. Dukov1 · Todor D. Ganchev1  · Michael N. Vrahatis2

Received: 27 May 2019 / Accepted: 23 September 2019 / Published online: 9 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The processing of inputs in the first two layers of the probabilistic neural network (PNN) is highly parallel which makes it
quite appropriate for hardware implementations with FPGA. One of the main inconveniences however remains the implemen-
tation of the nonlinear activation function of the pattern layer neurons. In the present study, we investigate the applicability of
three approximations of the exponential activation function with look-up tables of different precision and the effect this has on
the training process and the classification accuracy. Furthermore, seeking for a highly-parallel hardware-friendly algorithm
for the automated adjustment of the spread factor �

i
 , we investigated the performance of fifteen PNN training setups, which

are based on the differential evolution (DE) or unified particle swarm optimization (UPSO) methods. The experimental evalu-
ation was performed following a common experimental protocol, which makes use of the Parkinson Speech Dataset, as this
research aims to support the development of portable medical devices that are capable to detect episodes with exacerbation
in patients with Parkinson’s disease. The performance of the most successful setups is discussed in terms of error rates and
from the perspective of the resources required for an FPGA-based implementation.

Keywords  Probabilistic neural network · Differential evolution · Particle swarm optimization · Parkinson speech dataset ·
Hardware-friendly algorithm

Abbreviations
CPU	� Central processing unit
DE	� Differential evolution
EA	� Evolutionary algorithm
FPGA	� Field-programmable gate array
GA	� Genetic algorithm
GPU	� Graphics processing unit
LUT	� Look-up table
PDF	� Probability density function
PNN	� Probabilistic neural network
PSO	� Particle swarm optimization
UPSO	� Unified particle swarm optimization

1  Introduction

Parkinson’s disease, which causes motor system problems,
reportedly is the second most common degeneration of the
central nervous system in elder ages after the Alzheimer’s
disease (Sakar et al. 2013). Although at present there is no
cure, it is known that diet and rehabilitation help suppress-
ing motor symptoms for certain periods of time; however
the disease development needs to be monitored on a daily
basis as common long-term consequences include dementia,
depression, anxiety, sensory, and behavioral problems. Non-
invasive automated detectors of episodes with exacerbation
in patients with Parkinson’s disease would be especially
important for people who live on their own. Such medi-
cal monitors and other portable devices can benefit from
the automated detection of events with diagnostic signifi-
cance (Parisi et al. 2018; Ullah et al. 2018; Palo et al. 2018;
Zhang et al. 2016; Lavanyadevi et al. 2017; Mathew et al.
2018). A straightforward approach to implement such a
functionality is to deploy a software application on a read-
ily available hardware platform with some popular operating
system, for instance on a smart-phone (Brandenburg et al.
2013; Boulos et al. 2014; Alshurafa et al. 2014; Moser and

 *	 Todor D. Ganchev
	 tganchev@tu‑varna.bg

1	 Applied Signal Processing Laboratory (ASPL), Faculty
of Computing and Automation, Technical University
of Varna, 9010 Varna, Bulgaria

2	 Computational Intelligence Laboratory (CI Lab), Department
of Mathematics, University of Patras, 26110 Patras, Greece

http://orcid.org/0000-0003-0384-4033
http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-019-09640-7&domain=pdf

1040	 International Journal of Speech Technology (2019) 22:1039–1049

1 3

Melliar-Smith 2015). Among the major weaknesses of such
an approach are the complexity to combine multiple sensors
measuring physiological signals (in addition to speech), the
low reliability and low power efficiency. The low reliability
stems from the multi-functionality of smart-phones and the
risks other software applications to compromise the data
collection and monitoring, or simply drain the battery. Even
when avoiding collision with other applications is manage-
able and hardware resources are abundant, it is difficult to
provide prolonged autonomy of operation due to the limited
capacity of smart-phones’ battery.

Hardware implementations of machine learning algo-
rithms bring certain benefits among which are a lower energy
consumption and improved reliability. These advantages
are especially prominent when CPU-, GPU-, and FPGA-
based implementations providing equivalent computational
throughput are compared (Hussain et al. 2011; Van Essen
et al. 2012). The lower energy consumption in FPGA-based
implementations is due to the opportunity to organize the
required computations in a highly parallel manner, which
translates to a multi-fold reduction of the operational clock
frequency and therefore to a significant reduction of the
overall energy consumption (Birk et al. 2012; Mittal and
Vetter 2014). However, hardware implementations of auto-
mated recognizers also bring an inconvenience due to the
limited flexibility of model retraining or adaptation. For
instance, when the patient condition improves due to treat-
ment or worsens due to progress of disease, model adapta-
tion might be required. Here we investigate the opportunities
to implement the required modeling and classification func-
tionality through a probabilistic neural network (PNN) (Spe-
cht 1990) as it is easy to retrain and is not sensitive to the
finite-word-size effects, associated with the representation
of numbers with limited number of bits. Furthermore, PNN
is among the classifiers shown as particularly appropriate for
various hardware implementations (Zhou et al. 2010; Wang
et al. 2011; Akhmetov and James 2019; Krestinskaya and
James 2018; Chen et al. 2019; Vipin et al. 2018).

In brief, PNN (cf. Section 2.1) implements a robust statis-
tical classification method, which deals very well with out-
liers and offers a good discriminative capability as soon as
some (representative) training samples are available for each
class. The original PNN introduced by Specht (Specht 1990)
has one adjustable parameter—the spread factor �i , which
controls the smoothing of the probability density function
surface defined by the underlying training data. Although
in many applications the value of �i is not crucial for the
reliable operation of the classifier, the overall recognition
accuracy could be significantly improved when �i is adjusted
in a sensible data-driven manner. Most often the parameter
�i had been adjusted heuristically, by conjugate gradient and
approximate Newton methods, conjugate gradient-based
approach proposed by Specht, fusion of orthogonal and

genetic algorithm, reinforced learning, or by means of some
evolutionary algorithms (EA)-based method (Chtioui et al.
1998; Kusy and Zajdel 2015; Mao et al. 2000). For instance,
the applicability of a particle swarm optimization (PSO)-
based method for adjustment of �i was studied in (Georgiou
et al. 2006, 2008; Hsieh and Chen 2009; Huang and Du
2008; Ganchev 2009; Zhou et al. 2017). Other studies with
self-adaptive PNNs investigated automated adjustment of �i
based on representative observational datasets. Successful
results were reported on various applications, such as driv-
ing assistance systems (Li and Ma 2008), economics (Ciar-
elli et al. 2009), and fault detection (Samanta et al. 2006).
Nearly all studies supported that the performance of the
PNN could be improved significantly when the parameter �i
is set in an adequate way. Although recent studies focused
on PSO as the preferable evolutionary algorithm for the opti-
mization of �i , there is evidence that Differential evolution
(DE)- and genetic algorithm (GA)-based methods may offer
favorable results (Behera et al. 2011; Acharya et al. 2013;
Ford et al. 2013). For comprehensiveness of exposition in
Section 2.3.2 we summarize the fundamentals of DE and in
Section 2.3.3 the UPSO-based optimization.

In the present work, we study a PNN-based classifier for
the identification of Parkinson’s disease from speech. Head-
ing towards an FPGA-based implementation of the PNN,
we aim to select an appropriate approximation of the expo-
nential activation function in the pattern-layer neurons (cf.
Sect. 2.2), which requires a significant portion of the FPGA
resources. For that purpose, here we investigate the applica-
bility of three approximations with look-up tables of differ-
ent precision, and the effect this has on the training process
and the classification accuracy. Furthermore, we investigate
fifteen training setups (cf. Sect. 2.3) for the adjustment of
�i , which are compared in a common experimental proto-
col based on the Parkinson Speech Dataset. Among these
are DE and UPSO-based setups, which are known to be
intrinsically parallel and were reported to provide a good
trade-off between computational demands and classifica-
tion accuracy (Parsopoulos and Vrahatis 2002; Plagiana-
kos and Vrahatis 2002). To the authors’ best knowledge
a study on the applicability of DE and UPSO algorithms
for the adjustment of �i , when the pattern-layer activation
function is approximated with a look-up table, has not been
carried out, yet. Discussion on the experimental results and
a comparative assessment of complexity for the top-4 set-
ups, which provide the highest classification accuracy, is
offered in Sect. 3. Based on the experimental results, we
draw conclusions (Sect. 4) about the appropriateness of vari-
ous approximations of the exponential activation function
and for the training setups for adjusting �i . Eventually, we
discuss the most advantageous solutions in terms of recogni-
tion accuracy and complexity of potential implementation
with an FPGA chip.

1041International Journal of Speech Technology (2019) 22:1039–1049	

1 3

2 � Materials and methods

2.1 � Probabilistic neural network

The PNN (Specht 1990) is a supervised, nonlinear, non-
parametric pattern recognition algorithm that estimates a
probability density function (PDF) for each and every class
and then uses it in Bayesian optimal classification scheme.
Most often, the PDF is estimated by employing a sum of
spherical Gaussian functions that are centered at each train-
ing vector. Consequently, the PNN makes the classification
decision in accordance with the Bayes’ strategy for decision
rules. Besides the decision, PNN also provides probability
and reliability measures of each classification. The first layer
of the PNN, designated as an input layer, accepts the input
vectors to be classified. The nodes of the second layer, which
is designated as a pattern layer, are grouped depending on
the class they belong to. These nodes, also referred to as pat-
tern units or kernels, are connected to all inputs of the first
layer. Here we consider each and every pattern unit defined
as having the Gaussian activation function:

where i = 1,… ,K, j = 1,… ,Mi. Here, � is the standard
deviation, and is also known as spread or smoothing factor
�i , which regulates the receptive field of the kernel. The
input vector x and the centers �ij ∈ Rd of the kernel are of
dimensionality d, and Mi is the number of pattern units in a
given class ki . Finally, exp stands for the exponential func-
tion, and the superscript T denotes the transpose of the vec-
tor. Obviously, the total number of the second-layer nodes is
given as the sum of the pattern units for all classes.

Next, the weighted outputs of the pattern units in the sec-
ond layer are connected to the summation unit in the third
layer (aka summation layer) corresponding to that specific
class. The weights for the member functions of class ki are
positive numbers that sum to unity and are determined based
on the decision cost and a priori class distribution. Each
node of the summation layer estimates the class-conditional
PDF:

where i = 1,… ,K  . In the output layer (aka competitive
layer), the PNN decides the winning class ki to which the
input vector x belongs based on the Bayesian decision rule
(3). This makes use of the estimation of the class-conditional
PDF (2) for all classes computed from the training data and

(1)

fij(�;�ij, �i) =

1

(2�)d∕2�d
i

exp

(

−
1

2�2
i

(� − �ij)
T (� − �ij)

)

,

(2)
�

(k+1)

i
= u�

(k+1)

i
+ (1 − u)�

(k+1)

i

�k+1
i

= �k
i
+ �

(k+1)

i

the a priori class probability P(ki) , which in many applica-
tions is known in advance, or otherwise is usually assumed
uniform.

In such a way, once the training vectors are stored in the
pattern layer and the parameter �i is computed, the PNN
classifier is ready for operation.

2.2 � Approximation of the exponential function

Although, different activation functions exist, traditionally for
the PNN the exponential function is used, which is proven
as an advantageous in variety of tasks. In FPGA designs, the
exponential function exp in (2) can be implemented by means
of a look-up table (LUT) with precomputed values or com-
puted on-the-fly by means of some power series (for instance
the Taylor series), Euler’s continued fraction formula, or
another approximation. Aiming at the highest speed of compu-
tation during training and operation of PNN, here we assume
LUT-based approximation of the exponential function, where
the LUT values are precomputed as � = exp(−V) . The val-
ues of � correspond to the argument of the exponential func-
tion in (2) and therefore depend on the computed Euclidean
distance and the spread factor �i . Due to this dependence on
the Euclidean distance, the range of � = [V1,… ,Vi,… ,VN]
depends on the dynamic range of feature vectors x, i.e. whether
the feature vectors are raw, normalized, scaled, etc. Here, the
range of values is specified with the lowest boundary V1 , below
which the approximated exponential function �idx will not
change value, and the upper boundary VN , above which the
approximated exponential function �idx will not change value.
During the LUT creation, any Vi is obtained as the increased
value of V1 with i − 1 steps of size q . The number of steps
N = (VN − V1)∕q of such an approximation, i.e. the size of the
LUT table, depends on the desired resolution. For a precom-
puted LUT, we can calculate the index idx (4) for any given
argument V and retrieve the value �idx:

where round(.) rounds to the closest integer number. Cer-
tainly the useful range of V is restricted to V1 ≤ V ≤ VN , and
values outside this range will be attributed to the lowest or
the upper LUT value, i.e. 1 ≤ idx ≤ N.

2.3 � Experimental setup

The experimental protocol and the Parkinson Dataset are
outlined in Section 2.3.1, and Sections 2.3.2 and 2.3.3 pro-
vide a concise outline of the DE and UPSO methods used
in the optimization of �i. The fifteen setups considered here

(3)D(�) = argmaxi{P(ki)pi(� ∣ ki)}, i = 1,… ,K.

(4)idx = round

(

V

q

)

, for V = −
1

2�2
i

(� − �ij)
T (� − �ij),

1042	 International Journal of Speech Technology (2019) 22:1039–1049

1 3

for the adjustment of the class-specific �i values are outlined
in Sect. 2.3.4.

2.3.1 � Experimental protocol

The experimental evaluation was carried out on the Parkin-
son Speech Data Set with Multiple Types of Sound Record-
ings from the UCI machine learning repository (Sakar et al.
2013). This dataset contains speech feature vectors with
dimensionality 26, computed from recordings of 20 healty
individuals and 20 patients diagnosed with Parkinson’s dis-
ease. The original dataset is split to 1040 train and 168 test
feature vectors which are provided in two separate ASCII
files with comma separated values. For this specific split
of data, our heteroscedastic PNN detector obtained 100 %
recognition accuracy, regardless of the manner in which the
class-specific �i values were adjusted. As this is not conveni-
ent for the purpose of the intended comparative evaluation,
likewise (Sakar et al. 2013), we implemented an experimen-
tal protocol which does not make use of the provided split to
train and test data. Specifically, we merged all train and test
data to a single matrix with cardinality 1208, and in the fol-
lowing considered ten times cross-validation scheme with 50
runs per data split. The main goal was to evaluate the PNN
training and operational performance for different approxi-
mations of the pattern-layer exponential activation function.
Here we consider a comparison of the three approximations
(cf. Table 1) vs. the exponential function computed with
64-bit double-precision according to the IEEE Standard for
Floating-Point Arithmetic (IEEE 754). In the last column of
Table 1, we show the number of LUT values used in each
approximation.

2.3.2 � Differential evolution

The differential evolution (DE) (Storn and Price 1997) is a
well-known iterative optimization method which systemati-
cally searches the space of potential solutions via a popula-
tion of particles. At each iteration, called generation g, three
steps, called mutation, recombination, and selection, are
performed (Storn and Price 1997). According to the DE
method, initially all weight vectors are randomly initialized.
Then at the mutation step, new mutant weight vectors vi

g+1

are generated by combining weight vectors, randomly

chosen from the population. For that purpose some variation
operator is used, such as:

where �r1
g

 , �r2
g

 , �r3
g

 , �r4
g

 , and �r5
g

 are randomly selected vec-
tors, different from �i

g
 , �best

g
 is the best member of the cur-

rent generation, and the positive mutation constant � con-
trols the magnification of the difference between two weight
vectors. At the recombination step, each component
j = 1,… , d of these new weight vectors is subjected to a
further modification. A random number r ∈ [0, 1] is gener-
ated, and if r is smaller than a predefined crossover constant
Cpr , the jth component of the mutant vector �i

g+1
 becomes

the jth component of the trial vector. Otherwise, the jth com-
ponent is obtained from the target vector. Each mutation
strategy could be combined with either the exponential type
crossover or the binomial type crossover, resulting in ten
different DE strategies. Finally, at the selection step, the trial
weight vectors obtained at the crossover step are accepted
for the next generation only if they yield a reduction of the
value of the error function; otherwise, the previous weights
are retained. The training process ends when the target error
margin is reached, when the error does not decrease after
certain number of iterations, or after completing the prede-
fined maximum number of iterations.

The variation operator sets the strategy for modification
of the particles on which depends the speed of convergence
and the objective function guides the algorithm towards
the global optimum. In some aspects the DE is similar to
the GA, however, the population does not consist of binary
strings but of real vectors, as well as the mutation step is
dynamic which makes DE less vulnerable to genetic drift
than GA.

2.3.3 � Particle swarm optimization

Particle swarm optimization (PSO) is a population based sto-
chastic optimization method (Kennedy and Eberhart 1995;
Clerc and Kennedy 2002; Trelea 2003) which has many

(5)�i
g+1

=�best
g

+ �(�r1
g
− �r2

g
),

(6)�i
g+1

=�r1
g
+ �(�r2

g
− �r3

g
),

(7)�i
g+1

=�i
g
+ �(�best

g
− �t

g
) + �(�r1

g
− �r2

g
),

(8)�i
g+1

=�best
g

+ �(�r1
g
− �r2

g
) + �(�r3

g
− �r4

g
),

(9)�i
g+1

=�r1
g
+ �(�r2

g
− �r3

g
) + �(�r4

g
− �r5

g
),

Table 1   Created LUTs for approximating the exponential function

LUTname V
1

q V
N

Size

LUTe1 0 0.1 4.9 50
LUTe2 0 0.1 13.9 140
LUTe3 0 0.01 13.82 1383

1043International Journal of Speech Technology (2019) 22:1039–1049	

1 3

different variants. According to (Parsopoulos and Vrahatis
2007):

where the velocity �k+1
i

 denotes the amount of change in the
position, �k

i
 , of a particle (in the multidimensional space)

with respect to the difference with its personal best position
�i ever visited, and the difference between the neighbor-
hoods’ best position �gi and its current position; gi is the
index of the particle that attained the best previous position
among all the particles in the neighborhood of �k

i
 ; �1 and r2

are vectors of random numbers, whose elements r1,i and r2,i
receive values within the range r1,i, r2,i ∈ [0, 1], i=1,2,…,d,
where d is the dimensionality; ac and as are the cognitive and
social acceleration factors; and k is the time index, which
serves as the iterations’ counter. All vector operations are
performed element-wise.

Here we consider the algorithm proposed in (Parsopou-
los and Vrahatis 2010), as it combines the advantages of the
global and local exploration and exploitation strategies in a
Unified PSO (UPSO).

where u ∈ [0,1] is called the unification factor, �(k+1)

i
 is the

velocity update of ith particle of the swarm for the global
PSO variant, �(k+1)

i
 is the velocity update of ith particle of

the swarm for the local PSO variant, g is the index of the
best particle in the whole swarm, and k is the iteration coun-
ter. The typical form of local or global search is obtained by
setting the parameter u to 0 or 1, respectively. However when
u is selected with value 0 < u < 1 , the PSO algorithm is
adjusted to a certain combination of exploration and exploi-
tation behaviors depending on the actual value of u (Parso-
poulos and Vrahatis 2007).

In summary, the UPSO-based training of �i operates
as follows: After (random) initialization of the initial val-
ues of all particles, �i , in the d-dimensional space, their
new positions are re-estimated iteratively, by computing
the velocity and then updating their current position (12).
The particles of the swarm perform search of the d-dimen-
sional space, striving to reach the area where the error
function has its global minimum. The search process ends
when (i) the target error margin is reached, (ii) there is no
error reduction for a given number of iterations, or (iii)

(10)
{

�k+1
i

= �

(

�k
i
+ ac�1(�

k
i
− �k

i
) + as�2(�

k
gi
− �k

i
)
)

,

�k+1
i

= �k
i
+ �k+1

i
,

(11)
�

(k+1)

i
=�

(

�k
i
+ ac�1(�

k
i
− �k

i
) + as�2(�

k
g
− �k

i
)
)

,

�
(k+1)

i
=�

(

�k
i
+ ac�

�

1
(�k

i
− �k

i
) + as�

�

2
(�k

gi
− �k

i
)
)

(12)
�

(k+1)

i
= u�

(k+1)

i
+ (1 − u)�

(k+1)

i

�k+1
i

=�k
i
+ �

(k+1)

i

after completing a predefined maximum number of itera-
tions. The training ends with selecting the particle, which
provides the lowest value of the error function.

2.3.4 � Optimization of sigma

Based on the DE or UPSO algorithms, we designed fifteen
optimization setups for the adjustment of �i in a hetero-
scedastic PNN (Georgiou et al. 2008). Thus, finding the
most appropriate setup for the given task for increasing
the performance in terms of accuracy. Specifically, we
made use of ten strategies of DE, provisionally denoted as
DE / m / n / c, where m stands for the method of selecting
the vectors for the mutation process {best, rand, rand-to-
best}, n is the number of pairs of vectors used to compute
the difference vector {1 or 2 pairs}, and c the crossover
method {binomial or exponential}. In addition, we tested
five UPSO-based setups with different unification factors
(cf. Table 2). For convenience of presentation, we assigned
a provisional index to every setup, shown in round brack-
ets in front of the respective designation.

In the comparative evaluation we experimented with
two population sizes: 20 and 40 particles for all training
setups, where population size 20 is based on the empiri-
cal rule (Parsopoulos and Vrahatis 2005) Np = 10d , with
Np standing for the population size and d for the weight
vector dimension. In our application scenario d = 2 as we
consider a two-class problem with independent adjustment
of �i for each class. In addition, we consider the case with
population size 40, in order to investigate whether larger
population is beneficial on the current task.

Two strategies for the resolving of ties, i.e. equal val-
ues of the probability computed for the two classes, are
considered. In the first one the ties are decided in favor of
class 1, while in the second the ties are randomly assigned
to one of the two classes.

Table 2   Fifteen setups for adjustment of �
i
 are compared in a com-

mon experimental protocol

Setup Setup (cont.)

(1) DE/best/1/exp (9) DE/best/2/bin
(2) DE/rand/1/exp (10) DE/rand/2/bin
(3) DE/rand-to-best/1/exp (11) UPSO u=0
(4) DE/best/2/exp (12) UPSO u=0.25
(5) DE/rand/2/exp (13) UPSO u=0.5
(6) DE/best/1/bin (14) UPSO u=0.75
(7) DE/rand/1/bin (15) UPSO u=1
(8) DE/rand-to-best/1/bin

1044	 International Journal of Speech Technology (2019) 22:1039–1049

1 3

3 � Experimental results and discussion

3.1 � Evaluation of different approximations
of the exponential function

We report the average error in percentages computed after
fifty runs for each of the four representations of the expo-
nential function as well as for each setup and for both
population sizes 20 and 40 particles (Fig. 1). The experi-
mental results show that the LUTe approximations, in most
cases, express performance similar to the PNN with the
full-precision exponential function and this is true for both
ties resolving strategies. Moreover, for the case of LUTe1
the majority of the results for the total error are advan-
tageous, when compared to the PNN with full-precision
exponential function. This is well pronounced for the case
with 40 particles (Tables 3, 4). However, the number of
resulting ties in the probability for the two classes is much
higher when LUTe approximations are used (cf. Fig. 2).
Even when the ties are disregarded, the PNN implementa-
tions with LUTe approximations still have advantageous
accuracy, and LUTe1 has still the best results. In the cases
of LUTe implementations however, it was noticed that ties
are more frequent where the expected result is class 1.
This is especially true when the strategy of assigning ties
to class 1 is considered. This occurrence also seem data
dependent, as for some data splits very low number of ties
were observed, while for others almost 1/4 of the results
were ties. An unpleasant implication of the higher number
of occurring ties is the uncertainty they bring to the final
decision. The lowest number of ties was observed for the
LUTe3 approximation, where their number is close to the
case with the full-precision exponent.

Generally speaking, when the DE-based training strate-
gies are considered, the PNN with LUTe approximations

of the exponential function show better classification
results then the full precision exp. However, the number
of ties occurring when DE-based training is employed
are considerably higher when compared to the UPSO-
based training. Even for data splits where ties are more
frequently observed, the UPSO-based training manages
to find more solutions for the two �i parameters with only
few or no ties than for the case of DE-based training. On
the other hand, UPSO achieves better classification accu-
racy with the full-precision exponential function, however
the average number of ties is higher than the one with
DE-based training (cf. Fig. 2). In terms of computational
performance, it was observed that DE tends to need more
cost function evaluations than UPSO to reach an optimal
�i values. However, the number of iterations needed by the
UPSO-based strategies seemed longer than the one DE
needed to converge.

Summarizing the experimental results, we support that
the full-precision exponential function and various approxi-
mations with lower computational complexity lead to similar
classification accuracy of the PNN. This opens opportunities
for FPGA designs with different complexity (and demand of
resources), which show similar classification accuracy. In
order to obtain a more conclusive assessment of these results
we carried out statistical significance test.

3.2 � Statistical significance tests

In Fig. 3 we show the averaged error for all strategies for
a specific LUT approximation of the exponential function
and population size vs. the number of resources in terms of
LUT size and population size. Aiming at a low-complexity
implementation in FPGA chip, we choose to compare the
performance obtained for the full-precision exponential
function FPexp and the LUTe1 approximation trained with
population size 40.

Fig. 1   Average miss-classification error of different approximations of the activation function obtained for fifteen setups for adjustment of �
i

1045International Journal of Speech Technology (2019) 22:1039–1049	

1 3

Making use of the Kolmogorov-Smirnov test, we rejected
the hypothesis that the results are from a standard normal
distribution. Therefore, we chose to use nonparametric
statistical significance tests—the Friedman test. Given the
circumstances, we follow the recommendations in (Derrac
et al. 2011) for the comparison of evolutionary and swarm
intelligence algorithms.

Specifically, in order to assess the statistical significance
of the difference in accuracy, we performed the Friedman
statistical test for multiple comparisons (1 × N) with Hoch-
berg post-hoc (Table 5). The comparison was performed

between the best performing setup from the LUTe1 approx-
imation in terms of accuracy and all of the full-precision
exponential function implementation setups. The results of
this test suggested no statistical difference between most
of the setups for the full-precision implementation and
the LUTe1. Moreover, no statistical difference was found
between the best performing LUTe1 setup and the best per-
forming full-precision setup (UPSO u = 0.25). Additional
significance tests among different setups and population
sizes were carried out as well and the results confirmed
these observations. It is worth mentioning that (1) DE/

Table 3   Average miss-
classification error of different
approximations of the activation
function obtained for fifteen
setups for adjustment of �

i
 from

the ten times cross-validation
scheme (Part 1)

Training setup LUTe1 population
20 (error in %)

LUTe1 population
40 (error in %)

LUTe2 population
20 (error in %)

LUTe2 popula-
tion 40 (error
in %)

(1) DE/best/1/exp 26.0 ± 4.5 25.4 ± 4.2 26.5 ± 4.2 26.2 ± 4.0
(2) DE/rand/1/exp 25.0 ± 4.0 24.8 ± 3.8 25.5 ± 3.9 25.2 ± 3.7
(3) DE/rand-to-best/1/exp 25.5 ± 4.1 25.0 ± 3.9 26.2 ± 3.9 25.7 ± 3.9
(4) DE/best/2/exp 25.1 ± 4.0 25.0 ± 3.9 25.7 ± 4.0 25.3 ± 3.7
(5) DE/rand/2/exp 24.9 ± 3.8 24.8 ± 3.7 25.4 ± 3.8 25.3 ± 3.7
(6) DE/best/1/bin 26.0 ± 4.5 25.5 ± 4.1 26.5 ± 4.1 26.2 ± 4.0
(7) DE/rand/1/bin 24.9 ± 3.9 24.8 ± 3.8 25.4 ± 3.9 25.2 ± 3.6
(8) DE/rand-to-best/1/bin 25.6 ± 4.1 25.1 ± 4.0 26.3 ± 4.0 25.7 ± 3.9
(9) DE/best/2/bin 25.2 ± 4.1 24.9 ± 3.9 25.8 ± 4.0 25.4 ± 3.8
(10) DE/rand/2/bin 24.9 ± 3.8 24.8 ± 3.8 25.4 ± 3.8 25.3 ± 3.7
(11) UPSO − u = 0 25.7 ± 4.0 25.2 ± 3.9 26.5 ± 3.7 25.9 ± 3.6
(12) UPSO − u = 0.25 26.5 ± 4.0 25.4 ± 4.0 26.9 ± 3.6 26.0 ± 3.7
(13) UPSO − u = 0.5 27.0 ± 4.0 25.8 ± 4.1 27.2 ± 3.5 26.5 ± 3.7
(14) UPSO − u = 0.75 27.0 ± 4.4 25.9 ± 4.3 27.3 ± 3.7 26.6 ± 3.8
(15) UPSO − u = 1 26.9 ± 4.4 25.9 ± 4.3 27.3 ± 3.8 26.6 ± 4.0

Table 4   Average miss-
classification error of different
approximations of the activation
function obtained for fifteen
setups for adjustment of �

i
 from

the ten times cross-validation
scheme (Part 2)

Training setup LUTe3 population
20 (error in %)

LUTe3 population
40 (error in %)

FPexp population
20 (error in %)

FPexp popula-
tion 40 (error
in %)

(1) DE/best/1/exp 27.1 ± 4.5 26.0 ± 4.1 25.8 ± 2.9 25.3 ± 2.8
(2) DE/rand/1/exp 25.6 ± 3.7 25.1 ± 4.1 26.2 ± 3.3 25.9 ± 2.9
(3) DE/rand-to-best/1/exp 26.9 ± 4.4 25.9 ± 4.0 25.8 ± 2.8 25.5 ± 2.6
(4) DE/best/2/exp 25.7 ± 4.0 25.1 ± 3.4 27.2 ± 3.2 25.5 ± 3.1
(5) DE/rand/2/exp 25.1 ± 3.2 24.9 ± 3.2 28.2 ± 2.9 25.2 ± 2.9
(6) DE/best/1/bin 27.4 ± 4.6 26.2 ± 4.2 25.8 ± 2.9 25.3 ± 2.8
(7) DE/rand/1/bin 25.6 ± 3.6 25.1 ± 3.4 26.1 ± 3.2 25.8 ± 2.9
(8) DE/rand-to-best/1/bin 26.8 ± 4.5 25.9 ± 4.1 25.7 ± 2.7 25.5 ± 2.6
(9) DE/best/2/bin 25.4 ± 3.7 25.1 ± 3.4 27.3 ± 3.3 25.5 ± 3.1
(10) DE/rand/2/bin 25.0 ± 3.2 24.9 ± 3.2 28.1 ± 3.0 25.3 ± 2.9
(11) UPSO – u=0 29.0 ± 3.7 27.4 ± 3.7 25.8 ± 2.8 25.3 ± 2.7
(12) UPSO – u=0.25 29.6 ± 3.7 28.1 ± 4.0 25.5 ± 2.8 25.1 ± 2.7
(13) UPSO – u=0.5 30.1 ± 3.8 28.6 ± 3.9 25.8 ± 3.0 25.2 ± 2.9
(14) UPSO – u=0.75 30.4 ± 4.1 28.9 ± 3.7 26.1 ± 3.1 25.4 ± 3.0
(15) UPSO – u=1 29.9 ± 4.4 28.4 ± 4.1 26.3 ± 3.1 25.7 ± 3.1

1046	 International Journal of Speech Technology (2019) 22:1039–1049

1 3

best/1/exp, (6) DE/best/1/bin, (12) UPSO u=0.25 and (13)
UPSO u=0.5 are consistent in failing to reject similarity
with each other at a significance level � = 0.05 and � = 0.1.
Although, (5) DE/rand/2/exp does not perform well with the
full-precision implementation with population size 20, the
recognition accuracy obtained after training with population
size 40 are comparable to the other best-performing setups.
Moreover, as one can expect, significant statistical difference
between the two population sizes was found. Overall the
Unified PSO (UPSO) showed the best results for unifica-
tion factor u = 0.25 when full-precision of the exponential
function is considered, while DE and more specifically DE/
rand/2/exp performs better when reduced precision in terms
of LUT approximation is considered. However, between the

Fig. 2   Average number of ties for different approximations of the exponential function and population size

Fig. 3   Resources and error rate for the different exponential approxi-
mations (population size is considered as resource as well)

1047International Journal of Speech Technology (2019) 22:1039–1049	

1 3

best performing setups and implementations no statistical
difference was found in terms of accuracy.

As for the approximation of the exponential function,
the LUTe1 seems the preferred choice. Although, there is a
considerable number of ties when LUTe1 is used, its small
size, which in turn means less resources needed for imple-
mentation and the advantageous classification accuracy are
preferred.

4 � Conclusion

Analyzing the overall complexity of the studied algorithms
for just one-dimensional optimization problem solved by a
single particle, it is obvious that the UPSO would require
more hardware resources to implement. The combination
of a local and a global search schemes will require two mul-
tiplications, a summation, and a subtraction. To reach the
combination point of the global and local search schemes
however, we need to calculate the global and local compo-
nents. As the algorithm makes use of the constriction factor
we have five multiplications, two subtractions, and two sum-
mations for each of the two components.

In the same manner, according to Eq. (6), the setup (7)
DE/rand/1/bin/ has only one multiplication, subtraction, and
summation. In the cross-over we have two more multiplica-
tions and a single summation, which means that (7) DE/
rand/1/bin will need approximately 4 times less multiplica-
tions and ≈3.3 times less summations/subtractions.

Based on these considerations and the results reported
in the current study, we can summarize that setup (7) DE/
rand/1/bin would be more suitable to implement in a FPGA
chip, when compared to the setups UPSO and (5) DE/rand/2/
exp. This training strategy achieves one of the best results
for the LUTe1 approximation and no statistical difference
is found to (5) DE/rand/2/exp – it uses only one vector to

compute the difference vector and the crossover method
is binomial. This leads to a significantly lower demand of
FPGA-resources needed for obtaining good classification
accuracy.

Acknowledgements  The authors T.D.G. and N.T.D. acknowledge with
thanks the support received through the research projects PD5 “Study
of biologically substantiated architectures of artificial neural networks
for the identification of heart diseases and neurological disorders”,
SNP2 “Technological support for improving quality of life of peo-
ple with the Alzheimer disease”, and the NP4 “Capacity building for
object-oriented FPGA design in support of knowledge-based econ-
omy” financed by the Technical University of Varna and the Bulgarian
National Science Fund. In addition, N.T.D. would like to acknowledge
the financial support of the National Science Program “Young Scien-
tists and Postdoctoral Students” financed by the state budget and the
Erasmus Mundus Programme of the European Commission. Also, to
thank Assoc. Prof. Dimitar Kovachev for the fruitful discussion on
certain aspects of FPGA design.

References

Acharya, U. R., Mookiah, M. R. K., Sree, S. V., Yanti, R., Martis, R.,
Saba, L., et al. (2013). Evolutionary algorithm-based classifier
parameter tuning for automatic ovarian cancer tissue characteriza-
tion and classification. In L. Saba, U. Acharya, S. Guerriero, & J.
Suri (Eds.), Ovarian neoplasm imaging (pp. 425–440). Boston:
Springer. https​://doi.org/10.1007/978-1-4614-8633-6_27

Akhmetov, Y., & James, A.P. (2019). Probabilistic neural network with
memristive crossbar circuits. In 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS) (pp. 1–5). https​://doi.
org/10.1109/ISCAS​.2019.87021​53

Alshurafa, N., Eastwood, J., Pourhomayoun, M., Liu, J.J., & Sarrafza-
deh, M. (2014). Remote health monitoring: Predicting outcome
success based on contextual features for cardiovascular disease. In
2014 36th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (pp. 1777–1781). https​://doi.
org/10.1109/EMBC.2014.69439​53

Behera, M., Fowler, E. E., Owonikoko, T. K., Land, W. H., Mayfield,
W., Chen, Z., et al. (2011). Statistical learning methods as a pre-
processing step for survival analysis: Evaluation of concept using
lung cancer data. BioMedical Engineering OnLine, 10(1), 97.
https​://doi.org/10.1186/1475-925X-10-97.

Birk, M., Balzer, M., Ruiter, N., & Becker, J. (2012). Comparison
of processing performance and architectural efficiency metrics
for FPGAs and GPUs in 3D ultrasound computer tomography. In
2012 International Conference on Reconfigurable Computing and
FPGAs (pp. 1–7). https​://doi.org/10.1109/ReCon​Fig.2012.64167​
35

Boulos, M. N. K., Brewer, A. C., Karimkhani, C., Buller, D. B., & Del-
lavalle, R. P. (2014). Mobile medical and health apps: State of the
art, concerns, regulatory control and certification. Online Journal
of Public Health Informatics, 5(3), 229. https​://doi.org/10.5210/
ojphi​.v5i3.4814.

Brandenburg, C., Worrall, L., Rodriguez, A., & Copland, D. (2013).
Mobile computing technology and aphasia: An integrated review
of accessibility and potential uses. Aphasiology, 27(4), 444–461.
https​://doi.org/10.1080/02687​038.2013.77229​3.

Chen, C. H., Chang, H. W., & Kuo, C. M. (2019). VLSI implemen-
tation of anisotropic probabilistic neural network for real-time
image scaling. Journal of Real-Time Image Processing, 16(1),
71–80. https​://doi.org/10.1007/s1155​4-018-0770-3.

Table 5   Adjusted values for the Friedman test between the best LUT
approximation – LUTe1 trained with setup (5) – and the best results
for the full-precision exponential function, in both cases considering
population size 40. Value higher than 0.05 indicates no statistical dif-
ference

Compari-
son

Unad-
justed

Hoch-
berg

Compari-
son

Unad-
justed

Hochberg

(5)
l
 − (1)

e
0.6505 0.7714 (5)l − (9)e 6.3e−6 3.8e−5

(5)
l
 − (2)

e
0.4129 0.6882 (5)l − (10)e 8.6e−4 0.0032

(5)
l
 − (3)

e
0.4826 0.7240 (5)l − (11)e 0.1029 0.2204

(5)
l
 − (4)

e
7.7e−6 3.8e−5 (5)l − (12)e 0.6361 0.7714

(5)
l
 − (5)

e
0.0020 0.0059 (5)l − (13)e 0.7714 0.7714

(5)
l
 − (6)

e
0.6927 0.7714 (5)l − (14)e 0.0106 0.0264

(5)
l
 − (7)

e
0.7630 0.7714 (5)l − (15)e 6.0e−8 9.0e−7

(5)
l
 − (8)

e
0.3534 0.6626

https://doi.org/10.1007/978-1-4614-8633-6_27
https://doi.org/10.1109/ISCAS.2019.8702153
https://doi.org/10.1109/ISCAS.2019.8702153
https://doi.org/10.1109/EMBC.2014.6943953
https://doi.org/10.1109/EMBC.2014.6943953
https://doi.org/10.1186/1475-925X-10-97
https://doi.org/10.1109/ReConFig.2012.6416735
https://doi.org/10.1109/ReConFig.2012.6416735
https://doi.org/10.5210/ojphi.v5i3.4814
https://doi.org/10.5210/ojphi.v5i3.4814
https://doi.org/10.1080/02687038.2013.772293
https://doi.org/10.1007/s11554-018-0770-3

1048	 International Journal of Speech Technology (2019) 22:1039–1049

1 3

Ciarelli, P., Krohling, R., & Oliveira, E. (2009). Particle swarm optimi-
zation applied to parameters learning of probabilistic neural net-
works for classification of economic activities. In Particle Swarm
Optimization, InTech, chap 19, https​://doi.org/10.5772/6756

Clerc, M., & Kennedy, J. (2002). The particle swarm—Explosion,
stability, and convergence in a multidimensional complex space.
IEEE Transactions on Evolutionary Computation, 6(1), 58–73.
https​://doi.org/10.1109/4235.98569​2.

Derrac, J., Garcia, S., Molina, D., & Herrera, F. (2011). A practical
tutorial on the use of nonparametric statistical tests as a method-
ology for comparing evolutionary and swarm intelligence algo-
rithms. Swarm and Evolutionary Computation, 1(1), 3–18. https​
://doi.org/10.1016/j.swevo​.2011.02.002.

Ford, W., Xiang, K., Land, W., Congdon, R., Li, Y., & Sadik, O.
(2013). A multi-class probabilistic neural network for pathogen
classification. Procedia Computer Science, 20, 348–353. https​://
doi.org/10.1016/j.procs​.2013.09.284.

Ganchev, T. (2009). Enhanced training for the locally recurrent proba-
bilistic neural networks. International Journal of Artificial Intel-
ligence Tools, 18(6), 853–881. https​://doi.org/10.1142/S0218​
21300​90004​33.

Georgiou, V. L., Pavlidis, N. G., Parsopoulos, K. E., Alevizos, P. D.,
& Vrahatis, M. N. (2006). New self-adaptive probabilistic neu-
ral networks in bioinformatics and medical tasks. International
Journal on Artificial Intelligence Tools, 15(3), 371–396. https​://
doi.org/10.1142/S0218​21300​60027​22.

Georgiou, V. L., Alevizos, P. D., & Vrahatis, M. N. (2008). Novel
approaches to probabilistic neural networks through bagging
and evolutionary estimating of prior probabilities. Neural Pro-
cessing Letters, 27(2), 153–162. https​://doi.org/10.1007/s1106​
3-007-9066-5.

Hsieh, S., & Chen, C. (2009). Adaptive image interpolation using
probabilistic neural network. Expert Systems with Applications,
36(3), 6025–6029. https​://doi.org/10.1016/j.eswa.2008.06.124.

Huang, D., & Du, J. (2008). A constructive hybrid structure optimiza-
tion methodology for radial basis probabilistic neural networks.
IEEE Transactions on Neural Networks, 19(12), 2099–2115. https​
://doi.org/10.1109/TNN.2008.20043​70.

Hussain, H.M., Benkrid, K., Erdogan, A.T., & Seker, H. (2011). Highly
parameterized k-means clustering on FPGAs: Comparative results
with GPPs and GPUs. In Proceedings of the 2011 International
Conference on Reconfigurable Computing and FPGAs, RECON-
FIG ’11 pp. 475–480. https​://doi.org/10.1109/ReCon​Fig.2011.49

Zhang, Jianhai, Chen, Ming, Hu, Sanqing, Cao, Yu, & Kozma, R.
(2016). Pnn for eeg-based emotion recognition. In 2016 IEEE
International Conference on Systems, Man, and Cybernet-
ics (SMC) (pp. 002319–002323). https​://doi.org/10.1109/
SMC.2016.78445​84

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimiza-
tion. Proceedings of ICNN’95—International Conference on
Neural Networks (pp. 1942–1948). https​://doi.org/10.1109/
ICNN.1995.48896​8

Krestinskaya, O., & James, A.P. (2018). Approximate probabilistic
neural networks with gated threshold logic. In 2018 IEEE 18th
International Conference on Nanotechnology (IEEE-NANO) (pp.
1–4). https​://doi.org/10.1109/NANO.2018.86263​02

Kusy, M., & Zajdel, R. (2015). Application of reinforcement learning
algorithms for the adaptive computation of the smoothing param-
eter for probabilistic neural network. IEEE Transactions on Neural
Networks and Learning Systems, 26(9), 2163–2175. https​://doi.
org/10.1109/TNNLS​.2014.23767​03.

Lavanyadevi, R., Machakowsalya, M., Nivethitha, J., & Kumar, A.N.
(2017). Brain tumor classification and segmentation in mri images
using pnn. In 2017 IEEE International Conference on Electri-
cal, Instrumentation and Communication Engineering (ICEICE)
(pp. 1–6). https​://doi.org/10.1109/ICEIC​E.2017.81918​88

Li, L., & Ma, G. (2008). Optimizing the performance of probabilistic
neural networks using PSO in the task of traffic sign recognition.
In Advanced Intelligent Computing Theories and Applications.
With Aspects of Artificial Intelligence (pp. 90–98) https​://doi.
org/10.1007/978-3-540-85984​-0_12

Mao, K. Z., Tan, K., & Ser, W. (2000). Probabilistic neural-network
structure determination for pattern classification. IEEE Trans-
actions on Neural Networks, 11(4), 1009–1016. https​://doi.
org/10.1109/72.85778​1.

Mathew, N.A., Vivek, R.S., & Anurenjan, P.R. (2018). Early diagno-
sis of alzheimer’s disease from mri images using pnn. In 2018
International CET Conference on Control, Communication, and
Computing (IC4) (pp. 161–164) https​://doi.org/10.1109/CETIC​
4.2018.85309​10

Mittal, S., & Vetter, J. S. (2014). A survey of methods for analyzing
and improving GPU energy efficiency. ACM Computing Surveys
(CSUR), 47(2), 19:1–19:23. https​://doi.org/10.1145/26363​42.

Moser, L.E., & Melliar-Smith, P.M. (2015). Personal health monitor-
ing using a smartphone. In 2015 IEEE International Conference
on Mobile Services (pp. 344–351) https​://doi.org/10.1109/MobSe​
rv.2015.54

Palo, H. K., Chandra, M., & Mohanty, M. N. (2018). Recognition of
human speech emotion using variants of Mel-frequency ceps-
tral coefficients (pp. 491–498). Singapore: Springer. https​://doi.
org/10.1007/978-981-10-4762-6_47.

Parisi, L., RaviChandran, N., & Manaog, M. L. (2018). Feature-driven
machine learning to improve early diagnosis of Parkinson’s dis-
ease. Expert Systems with Applications, 110, 182–190. https​://doi.
org/10.1016/j.eswa.2018.06.003.

Parsopoulos, K., & Vrahatis, M. (2002). Recent approaches to global
optimization problems through particle swarm optimization. Nat-
ural Computing, 1(2), 235–306. https​://doi.org/10.1023/A:10165​
68309​421.

Parsopoulos, K., & Vrahatis, M. (2005). Unified particle swarm opti-
mization for tackling operations research problems. In Swarm
intelligence symposium, 2005 SIS 2005 Proceedings 2005 IEEE
(pp. 53–59) https​://doi.org/10.1109/SIS.2005.15016​02

Parsopoulos, K., & Vrahatis, M. (2007). Parameter selection and adap-
tation in unified particle swarm optimization. Mathematical and
Computer Modelling, 46(1–2), 198–213. https​://doi.org/10.1016/j.
mcm.2006.12.019.

Parsopoulos, K., & Vrahatis, M. (2010). Particle swarm optimiza-
tion and intelligence: Advances and applications. Hershey,
PA: Information Science Publishing (IGI Global). https​://doi.
org/10.4018/978-1-61520​-666-7.

Plagianakos, V. P., & Vrahatis, M. N. (2002). Parallel evolutionary
training algorithms for “hardware-friendly” neural networks. Nat-
ural Computing, 1(2), 307–322. https​://doi.org/10.1023/A:10165​
45907​026.

Sakar, B. E., Isenkul, M., Sakar, C., Sertbas, A., Gurgen, F., Delil,
S., et al. (2013). Collection and analysis of a Parkinson speech
dataset with multiple types of sound recordings. IEEE Journal of
Biomedical and Health Informatics, 17(4), 828–834. https​://doi.
org/10.1109/JBHI.2013.22456​74.

Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2006). Artificial
neural networks and genetic algorithm for bearing fault detection.
Soft Computing, 10(3), 264–271. https​://doi.org/10.1007/s0050​
0-005-0481-0.

Specht, D. (1990). Probabilistic neural networks. Neural Networks, 3,
109–118. https​://doi.org/10.1016/0893-6080(90)90049​-Q.

Storn, R., & Price, K. (1997). Differential evolution—A simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11(4), 341–359. https​://doi.
org/10.1023/A:10082​02821​328.

Trelea, I. C. (2003). The particle swarm optimization algorithm:
Convergence analysis and parameter selection. Information

https://doi.org/10.5772/6756
https://doi.org/10.1109/4235.985692
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.procs.2013.09.284
https://doi.org/10.1016/j.procs.2013.09.284
https://doi.org/10.1142/S0218213009000433
https://doi.org/10.1142/S0218213009000433
https://doi.org/10.1142/S0218213006002722
https://doi.org/10.1142/S0218213006002722
https://doi.org/10.1007/s11063-007-9066-5
https://doi.org/10.1007/s11063-007-9066-5
https://doi.org/10.1016/j.eswa.2008.06.124
https://doi.org/10.1109/TNN.2008.2004370
https://doi.org/10.1109/TNN.2008.2004370
https://doi.org/10.1109/ReConFig.2011.49
https://doi.org/10.1109/SMC.2016.7844584
https://doi.org/10.1109/SMC.2016.7844584
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/NANO.2018.8626302
https://doi.org/10.1109/TNNLS.2014.2376703
https://doi.org/10.1109/TNNLS.2014.2376703
https://doi.org/10.1109/ICEICE.2017.8191888
https://doi.org/10.1007/978-3-540-85984-0_12
https://doi.org/10.1007/978-3-540-85984-0_12
https://doi.org/10.1109/72.857781
https://doi.org/10.1109/72.857781
https://doi.org/10.1109/CETIC4.2018.8530910
https://doi.org/10.1109/CETIC4.2018.8530910
https://doi.org/10.1145/2636342
https://doi.org/10.1109/MobServ.2015.54
https://doi.org/10.1109/MobServ.2015.54
https://doi.org/10.1007/978-981-10-4762-6_47
https://doi.org/10.1007/978-981-10-4762-6_47
https://doi.org/10.1016/j.eswa.2018.06.003
https://doi.org/10.1016/j.eswa.2018.06.003
https://doi.org/10.1023/A:1016568309421
https://doi.org/10.1023/A:1016568309421
https://doi.org/10.1109/SIS.2005.1501602
https://doi.org/10.1016/j.mcm.2006.12.019
https://doi.org/10.1016/j.mcm.2006.12.019
https://doi.org/10.4018/978-1-61520-666-7
https://doi.org/10.4018/978-1-61520-666-7
https://doi.org/10.1023/A:1016545907026
https://doi.org/10.1023/A:1016545907026
https://doi.org/10.1109/JBHI.2013.2245674
https://doi.org/10.1109/JBHI.2013.2245674
https://doi.org/10.1007/s00500-005-0481-0
https://doi.org/10.1007/s00500-005-0481-0
https://doi.org/10.1016/0893-6080(90)90049-Q
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328

1049International Journal of Speech Technology (2019) 22:1039–1049	

1 3

Processing Letters, 85(6), 317–325. https​://doi.org/10.1016/S0020​
-0190(02)00447​-7.

Ullah, I., Hussain, M., ul Haq, Qazi E., & Aboalsamh, H. (2018). An
automated system for epilepsy detection using EEG brain signals
based on deep learning approach. Expert Systems with Applica-
tions, 107, 61–71. https​://doi.org/10.1016/j.eswa.2018.04.021.

Van Essen, B.C., Macaraeg, C.C., Prenger, R., & Gokhale, M. (2012).
Accelerating a random forest classifier: Multi-core, GP-GPU, or
FPGA? In International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM’12). IEEE pp. (232–239). https​
://doi.org/10.1109/FCCM.2012.47

Vipin, K., Akhmetov, Y., Myrzakhme, S., & James, A.P. (2018). Fapnn:
An fpga based approximate probabilistic neural network library.
In 2018 International Conference on Computing and Network
Communications (CoCoNet) (pp. 64–68). https​://doi.org/10.1109/
CoCoN​et.2018.84768​89

Wang, D., Hao, Y., Zhu, X., Zhao, T., Wang, Y., Chen, Y., Chen, W.,
& Zheng, X. (2011). FPGA implementation of hardware pro-
cessing modules as coprocessors in brain-machine interfaces. In
2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (pp. 4613–4616). https​://doi.
org/10.1109/IEMBS​.2011.60911​42

Chtioui, Y., Marsh, R. A., & Panigrahi, S. (1998). Conjugate gradient
and approximate Newton methods for an optimal probablilistic
neural network for food color classification. Optical Engineering,
37(11), 3015–3024. https​://doi.org/10.1117/1.60197​2.

Zhou, F., Liu, J., Yu, Y., Tian, X., Liu, H., Hao, Y., et al. (2010). Field-
programmable gate array implementation of a probabilistic neural
network for motor cortical decoding in rats. Journal of Neurosci-
ence Methods, 185(2), 299–306. https​://doi.org/10.1016/j.jneum​
eth.2009.10.001.

Zhou, J., Zhong, T., & He, X. (2017). Auxiliary diagnosis of breast
tumor based on pnn classifier optimized by pca and pso algorithm.
In 2017 9th International Conference on Intelligent Human-
Machine Systems and Cybernetics (IHMSC) (Vol. 2, pp. 222–
227). https​://doi.org/10.1109/IHMSC​.2017.164

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1016/j.eswa.2018.04.021
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1109/CoCoNet.2018.8476889
https://doi.org/10.1109/CoCoNet.2018.8476889
https://doi.org/10.1109/IEMBS.2011.6091142
https://doi.org/10.1109/IEMBS.2011.6091142
https://doi.org/10.1117/1.601972
https://doi.org/10.1016/j.jneumeth.2009.10.001
https://doi.org/10.1016/j.jneumeth.2009.10.001
https://doi.org/10.1109/IHMSC.2017.164

	Evaluation of PNN pattern-layer activation function approximations in different training setups
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Probabilistic neural network
	2.2 Approximation of the exponential function
	2.3 Experimental setup
	2.3.1 Experimental protocol
	2.3.2 Differential evolution
	2.3.3 Particle swarm optimization
	2.3.4 Optimization of sigma

	3 Experimental results and discussion
	3.1 Evaluation of different approximations of the exponential function
	3.2 Statistical significance tests

	4 Conclusion
	Acknowledgements
	References

