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Abstract
The processing of inputs in the first two layers of the probabilistic neural network (PNN) is highly parallel which makes it 
quite appropriate for hardware implementations with FPGA. One of the main inconveniences however remains the implemen-
tation of the nonlinear activation function of the pattern layer neurons. In the present study, we investigate the applicability of 
three approximations of the exponential activation function with look-up tables of different precision and the effect this has on 
the training process and the classification accuracy. Furthermore, seeking for a highly-parallel hardware-friendly algorithm 
for the automated adjustment of the spread factor �

i
 , we investigated the performance of fifteen PNN training setups, which 

are based on the differential evolution (DE) or unified particle swarm optimization (UPSO) methods. The experimental evalu-
ation was performed following a common experimental protocol, which makes use of the Parkinson Speech Dataset, as this 
research aims to support the development of portable medical devices that are capable to detect episodes with exacerbation 
in patients with Parkinson’s disease. The performance of the most successful setups is discussed in terms of error rates and 
from the perspective of the resources required for an FPGA-based implementation.

Keywords  Probabilistic neural network · Differential evolution · Particle swarm optimization · Parkinson speech dataset · 
Hardware-friendly algorithm

Abbreviations
CPU	� Central processing unit
DE	� Differential evolution
EA	� Evolutionary algorithm
FPGA	� Field-programmable gate array
GA	� Genetic algorithm
GPU	� Graphics processing unit
LUT	� Look-up table
PDF	� Probability density function
PNN	� Probabilistic neural network
PSO	� Particle swarm optimization
UPSO	� Unified particle swarm optimization

1  Introduction

Parkinson’s disease, which causes motor system problems, 
reportedly is the second most common degeneration of the 
central nervous system in elder ages after the Alzheimer’s 
disease (Sakar et al. 2013). Although at present there is no 
cure, it is known that diet and rehabilitation help suppress-
ing motor symptoms for certain periods of time; however 
the disease development needs to be monitored on a daily 
basis as common long-term consequences include dementia, 
depression, anxiety, sensory, and behavioral problems. Non-
invasive automated detectors of episodes with exacerbation 
in patients with Parkinson’s disease would be especially 
important for people who live on their own. Such medi-
cal monitors and other portable devices can benefit from 
the automated detection of events with diagnostic signifi-
cance (Parisi et al. 2018; Ullah et al. 2018; Palo et al. 2018; 
Zhang et al. 2016; Lavanyadevi et al. 2017; Mathew et al. 
2018). A straightforward approach to implement such a 
functionality is to deploy a software application on a read-
ily available hardware platform with some popular operating 
system, for instance on a smart-phone (Brandenburg et al. 
2013; Boulos et al. 2014; Alshurafa et al. 2014; Moser and 
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Melliar-Smith 2015). Among the major weaknesses of such 
an approach are the complexity to combine multiple sensors 
measuring physiological signals (in addition to speech), the 
low reliability and low power efficiency. The low reliability 
stems from the multi-functionality of smart-phones and the 
risks other software applications to compromise the data 
collection and monitoring, or simply drain the battery. Even 
when avoiding collision with other applications is manage-
able and hardware resources are abundant, it is difficult to 
provide prolonged autonomy of operation due to the limited 
capacity of smart-phones’ battery.

Hardware implementations of machine learning algo-
rithms bring certain benefits among which are a lower energy 
consumption and improved reliability. These advantages 
are especially prominent when CPU-, GPU-, and FPGA-
based implementations providing equivalent computational 
throughput are compared (Hussain et al. 2011; Van Essen 
et al. 2012). The lower energy consumption in FPGA-based 
implementations is due to the opportunity to organize the 
required computations in a highly parallel manner, which 
translates to a multi-fold reduction of the operational clock 
frequency and therefore to a significant reduction of the 
overall energy consumption (Birk et al. 2012; Mittal and 
Vetter 2014). However, hardware implementations of auto-
mated recognizers also bring an inconvenience due to the 
limited flexibility of model retraining or adaptation. For 
instance, when the patient condition improves due to treat-
ment or worsens due to progress of disease, model adapta-
tion might be required. Here we investigate the opportunities 
to implement the required modeling and classification func-
tionality through a probabilistic neural network (PNN) (Spe-
cht 1990) as it is easy to retrain and is not sensitive to the 
finite-word-size effects, associated with the representation 
of numbers with limited number of bits. Furthermore, PNN 
is among the classifiers shown as particularly appropriate for 
various hardware implementations (Zhou et al. 2010; Wang 
et al. 2011; Akhmetov and James 2019; Krestinskaya and 
James 2018; Chen et al. 2019; Vipin et al. 2018).

In brief, PNN (cf. Section 2.1) implements a robust statis-
tical classification method, which deals very well with out-
liers and offers a good discriminative capability as soon as 
some (representative) training samples are available for each 
class. The original PNN introduced by Specht (Specht 1990) 
has one adjustable parameter—the spread factor �i , which 
controls the smoothing of the probability density function 
surface defined by the underlying training data. Although 
in many applications the value of �i is not crucial for the 
reliable operation of the classifier, the overall recognition 
accuracy could be significantly improved when �i is adjusted 
in a sensible data-driven manner. Most often the parameter 
�i had been adjusted heuristically, by conjugate gradient and 
approximate Newton methods, conjugate gradient-based 
approach proposed by Specht, fusion of orthogonal and 

genetic algorithm, reinforced learning, or by means of some 
evolutionary algorithms (EA)-based method (Chtioui et al. 
1998; Kusy and Zajdel 2015; Mao et al. 2000). For instance, 
the applicability of a particle swarm optimization (PSO)-
based method for adjustment of �i was studied in  (Georgiou 
et al. 2006, 2008; Hsieh and Chen 2009; Huang and Du 
2008; Ganchev 2009; Zhou et al. 2017). Other studies with 
self-adaptive PNNs investigated automated adjustment of �i 
based on representative observational datasets. Successful 
results were reported on various applications, such as driv-
ing assistance systems (Li and Ma 2008), economics (Ciar-
elli et al. 2009), and fault detection (Samanta et al. 2006). 
Nearly all studies supported that the performance of the 
PNN could be improved significantly when the parameter �i 
is set in an adequate way. Although recent studies focused 
on PSO as the preferable evolutionary algorithm for the opti-
mization of �i , there is evidence that Differential evolution 
(DE)- and genetic algorithm (GA)-based methods may offer 
favorable results  (Behera et al. 2011; Acharya et al. 2013; 
Ford et al. 2013). For comprehensiveness of exposition in 
Section 2.3.2 we summarize the fundamentals of DE and in 
Section 2.3.3 the UPSO-based optimization.

In the present work, we study a PNN-based classifier for 
the identification of Parkinson’s disease from speech. Head-
ing towards an FPGA-based implementation of the PNN, 
we aim to select an appropriate approximation of the expo-
nential activation function in the pattern-layer neurons (cf. 
Sect. 2.2), which requires a significant portion of the FPGA 
resources. For that purpose, here we investigate the applica-
bility of three approximations with look-up tables of differ-
ent precision, and the effect this has on the training process 
and the classification accuracy. Furthermore, we investigate 
fifteen training setups (cf. Sect. 2.3) for the adjustment of 
�i , which are compared in a common experimental proto-
col based on the Parkinson Speech Dataset. Among these 
are DE and UPSO-based setups, which are known to be 
intrinsically parallel and were reported to provide a good 
trade-off between computational demands and classifica-
tion accuracy  (Parsopoulos and Vrahatis 2002; Plagiana-
kos and Vrahatis 2002). To the authors’ best knowledge 
a study on the applicability of DE and UPSO algorithms 
for the adjustment of �i , when the pattern-layer activation 
function is approximated with a look-up table, has not been 
carried out, yet. Discussion on the experimental results and 
a comparative assessment of complexity for the top-4 set-
ups, which provide the highest classification accuracy, is 
offered in Sect. 3. Based on the experimental results, we 
draw conclusions (Sect. 4) about the appropriateness of vari-
ous approximations of the exponential activation function 
and for the training setups for adjusting �i . Eventually, we 
discuss the most advantageous solutions in terms of recogni-
tion accuracy and complexity of potential implementation 
with an FPGA chip.
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2 � Materials and methods

2.1 � Probabilistic neural network

The PNN (Specht 1990) is a supervised, nonlinear, non-
parametric pattern recognition algorithm that estimates a 
probability density function (PDF) for each and every class 
and then uses it in Bayesian optimal classification scheme. 
Most often, the PDF is estimated by employing a sum of 
spherical Gaussian functions that are centered at each train-
ing vector. Consequently, the PNN makes the classification 
decision in accordance with the Bayes’ strategy for decision 
rules. Besides the decision, PNN also provides probability 
and reliability measures of each classification. The first layer 
of the PNN, designated as an input layer, accepts the input 
vectors to be classified. The nodes of the second layer, which 
is designated as a pattern layer, are grouped depending on 
the class they belong to. These nodes, also referred to as pat-
tern units or kernels, are connected to all inputs of the first 
layer. Here we consider each and every pattern unit defined 
as having the Gaussian activation function:

where i = 1,… ,K, j = 1,… ,Mi. Here, � is the standard 
deviation, and is also known as spread or smoothing factor 
�i , which regulates the receptive field of the kernel. The 
input vector x and the centers �ij ∈ Rd of the kernel are of 
dimensionality d, and Mi is the number of pattern units in a 
given class ki . Finally, exp stands for the exponential func-
tion, and the superscript T denotes the transpose of the vec-
tor. Obviously, the total number of the second-layer nodes is 
given as the sum of the pattern units for all classes.

Next, the weighted outputs of the pattern units in the sec-
ond layer are connected to the summation unit in the third 
layer (aka summation layer) corresponding to that specific 
class. The weights for the member functions of class ki are 
positive numbers that sum to unity and are determined based 
on the decision cost and a priori class distribution. Each 
node of the summation layer estimates the class-conditional 
PDF:

where i = 1,… ,K  . In the output layer (aka competitive 
layer), the PNN decides the winning class ki to which the 
input vector x belongs based on the Bayesian decision rule 
(3). This makes use of the estimation of the class-conditional 
PDF (2) for all classes computed from the training data and 

(1)

fij(�;�ij, �i) =

1

(2�)d∕2�d
i

exp

(

−
1

2�2
i

(� − �ij)
T (� − �ij)

)

,

(2)
�

(k+1)

i
= u�

(k+1)

i
+ (1 − u)�

(k+1)

i

�k+1
i

= �k
i
+ �

(k+1)

i

the a priori class probability P(ki) , which in many applica-
tions is known in advance, or otherwise is usually assumed 
uniform.

In such a way, once the training vectors are stored in the 
pattern layer and the parameter �i is computed, the PNN 
classifier is ready for operation.

2.2 � Approximation of the exponential function

Although, different activation functions exist, traditionally for 
the PNN the exponential function is used, which is proven 
as an advantageous in variety of tasks. In FPGA designs, the 
exponential function exp in (2) can be implemented by means 
of a look-up table (LUT) with precomputed values or com-
puted on-the-fly by means of some power series (for instance 
the Taylor series), Euler’s continued fraction formula, or 
another approximation. Aiming at the highest speed of compu-
tation during training and operation of PNN, here we assume 
LUT-based approximation of the exponential function, where 
the LUT values are precomputed as � = exp(−V) . The val-
ues of � correspond to the argument of the exponential func-
tion in (2) and therefore depend on the computed Euclidean 
distance and the spread factor �i . Due to this dependence on 
the Euclidean distance, the range of � = [V1,… ,Vi,… ,VN] 
depends on the dynamic range of feature vectors x, i.e. whether 
the feature vectors are raw, normalized, scaled, etc. Here, the 
range of values is specified with the lowest boundary V1 , below 
which the approximated exponential function �idx will not 
change value, and the upper boundary VN , above which the 
approximated exponential function �idx will not change value. 
During the LUT creation, any Vi is obtained as the increased 
value of V1 with i − 1 steps of size q . The number of steps 
N = (VN − V1)∕q of such an approximation, i.e. the size of the 
LUT table, depends on the desired resolution. For a precom-
puted LUT, we can calculate the index idx (4) for any given 
argument V and retrieve the value �idx:

where round(.) rounds to the closest integer number. Cer-
tainly the useful range of V  is restricted to V1 ≤ V  ≤ VN , and 
values outside this range will be attributed to the lowest or 
the upper LUT value, i.e. 1 ≤ idx ≤ N.

2.3 � Experimental setup

The experimental protocol and the Parkinson Dataset are 
outlined in Section 2.3.1, and Sections 2.3.2 and 2.3.3 pro-
vide a concise outline of the DE and UPSO methods used 
in the optimization of �i. The fifteen setups considered here 

(3)D(�) = argmaxi{P(ki)pi(� ∣ ki)}, i = 1,… ,K.

(4)idx = round

(

V

q

)

, for V = −
1
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for the adjustment of the class-specific �i values are outlined 
in Sect. 2.3.4.

2.3.1 � Experimental protocol

The experimental evaluation was carried out on the Parkin-
son Speech Data Set with Multiple Types of Sound Record-
ings from the UCI machine learning repository (Sakar et al. 
2013). This dataset contains speech feature vectors with 
dimensionality 26, computed from recordings of 20 healty 
individuals and 20 patients diagnosed with Parkinson’s dis-
ease. The original dataset is split to 1040 train and 168 test 
feature vectors which are provided in two separate ASCII 
files with comma separated values. For this specific split 
of data, our heteroscedastic PNN detector obtained 100 % 
recognition accuracy, regardless of the manner in which the 
class-specific �i values were adjusted. As this is not conveni-
ent for the purpose of the intended comparative evaluation, 
likewise  (Sakar et al. 2013), we implemented an experimen-
tal protocol which does not make use of the provided split to 
train and test data. Specifically, we merged all train and test 
data to a single matrix with cardinality 1208, and in the fol-
lowing considered ten times cross-validation scheme with 50 
runs per data split. The main goal was to evaluate the PNN 
training and operational performance for different approxi-
mations of the pattern-layer exponential activation function. 
Here we consider a comparison of the three approximations 
(cf. Table 1) vs. the exponential function computed with 
64-bit double-precision according to the IEEE Standard for 
Floating-Point Arithmetic (IEEE 754). In the last column of 
Table 1, we show the number of LUT values used in each 
approximation.

2.3.2 � Differential evolution

The differential evolution (DE) (Storn and Price 1997) is a 
well-known iterative optimization method which systemati-
cally searches the space of potential solutions via a popula-
tion of particles. At each iteration, called generation g, three 
steps, called mutation, recombination, and selection, are 
performed (Storn and Price 1997). According to the DE 
method, initially all weight vectors are randomly initialized. 
Then at the mutation step, new mutant weight vectors vi

g+1
 

are generated by combining weight vectors, randomly 

chosen from the population. For that purpose some variation 
operator is used, such as:

where �r1
g

 , �r2
g

 , �r3
g

 , �r4
g

 , and �r5
g

 are randomly selected vec-
tors, different from �i

g
 , �best

g
 is the best member of the cur-

rent generation, and the positive mutation constant � con-
trols the magnification of the difference between two weight 
vectors. At the recombination step, each component 
j = 1,… , d of these new weight vectors is subjected to a 
further modification. A random number r ∈ [0, 1] is gener-
ated, and if r is smaller than a predefined crossover constant 
Cpr , the jth component of the mutant vector �i

g+1
 becomes 

the jth component of the trial vector. Otherwise, the jth com-
ponent is obtained from the target vector. Each mutation 
strategy could be combined with either the exponential type 
crossover or the binomial type crossover, resulting in ten 
different DE strategies. Finally, at the selection step, the trial 
weight vectors obtained at the crossover step are accepted 
for the next generation only if they yield a reduction of the 
value of the error function; otherwise, the previous weights 
are retained. The training process ends when the target error 
margin is reached, when the error does not decrease after 
certain number of iterations, or after completing the prede-
fined maximum number of iterations.

The variation operator sets the strategy for modification 
of the particles on which depends the speed of convergence 
and the objective function guides the algorithm towards 
the global optimum. In some aspects the DE is similar to 
the GA, however, the population does not consist of binary 
strings but of real vectors, as well as the mutation step is 
dynamic which makes DE less vulnerable to genetic drift 
than GA.

2.3.3 � Particle swarm optimization

Particle swarm optimization (PSO) is a population based sto-
chastic optimization method  (Kennedy and Eberhart 1995; 
Clerc and Kennedy 2002; Trelea 2003) which has many 
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Table 1   Created LUTs for approximating the exponential function

LUTname V
1

q V
N

Size

LUTe1 0 0.1 4.9 50
LUTe2 0 0.1 13.9 140
LUTe3 0 0.01 13.82 1383
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different variants. According to  (Parsopoulos and Vrahatis 
2007):

where the velocity �k+1
i

 denotes the amount of change in the 
position, �k

i
 , of a particle (in the multidimensional space) 

with respect to the difference with its personal best position 
�i ever visited, and the difference between the neighbor-
hoods’ best position �gi and its current position; gi is the 
index of the particle that attained the best previous position 
among all the particles in the neighborhood of �k

i
 ; �1 and r2 

are vectors of random numbers, whose elements r1,i and r2,i 
receive values within the range r1,i, r2,i ∈ [0, 1], i=1,2,…,d, 
where d is the dimensionality; ac and as are the cognitive and 
social acceleration factors; and k is the time index, which 
serves as the iterations’ counter. All vector operations are 
performed element-wise.

Here we consider the algorithm proposed in  (Parsopou-
los and Vrahatis 2010), as it combines the advantages of the 
global and local exploration and exploitation strategies in a 
Unified PSO (UPSO).

where u ∈ [0,1] is called the unification factor, �(k+1)

i
 is the 

velocity update of ith particle of the swarm for the global 
PSO variant, �(k+1)

i
 is the velocity update of ith particle of 

the swarm for the local PSO variant, g is the index of the 
best particle in the whole swarm, and k is the iteration coun-
ter. The typical form of local or global search is obtained by 
setting the parameter u to 0 or 1, respectively. However when 
u is selected with value 0 < u < 1 , the PSO algorithm is 
adjusted to a certain combination of exploration and exploi-
tation behaviors depending on the actual value of u  (Parso-
poulos and Vrahatis 2007).

In summary, the UPSO-based training of �i operates 
as follows: After (random) initialization of the initial val-
ues of all particles, �i , in the d-dimensional space, their 
new positions are re-estimated iteratively, by computing 
the velocity and then updating their current position (12). 
The particles of the swarm perform search of the d-dimen-
sional space, striving to reach the area where the error 
function has its global minimum. The search process ends 
when (i) the target error margin is reached, (ii) there is no 
error reduction for a given number of iterations, or (iii) 
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after completing a predefined maximum number of itera-
tions. The training ends with selecting the particle, which 
provides the lowest value of the error function.

2.3.4 � Optimization of sigma

Based on the DE or UPSO algorithms, we designed fifteen 
optimization setups for the adjustment of �i in a hetero-
scedastic PNN (Georgiou et al. 2008). Thus, finding the 
most appropriate setup for the given task for increasing 
the performance in terms of accuracy. Specifically, we 
made use of ten strategies of DE, provisionally denoted as 
DE / m / n / c, where m stands for the method of selecting 
the vectors for the mutation process {best, rand, rand-to-
best}, n is the number of pairs of vectors used to compute 
the difference vector {1 or 2 pairs}, and c the crossover 
method {binomial or exponential}. In addition, we tested 
five UPSO-based setups with different unification factors 
(cf. Table 2). For convenience of presentation, we assigned 
a provisional index to every setup, shown in round brack-
ets in front of the respective designation.

In the comparative evaluation we experimented with 
two population sizes: 20 and 40 particles for all training 
setups, where population size 20 is based on the empiri-
cal rule (Parsopoulos and Vrahatis 2005) Np = 10d , with 
Np standing for the population size and d for the weight 
vector dimension. In our application scenario d = 2 as we 
consider a two-class problem with independent adjustment 
of �i for each class. In addition, we consider the case with 
population size 40, in order to investigate whether larger 
population is beneficial on the current task.

Two strategies for the resolving of ties, i.e. equal val-
ues of the probability computed for the two classes, are 
considered. In the first one the ties are decided in favor of 
class 1, while in the second the ties are randomly assigned 
to one of the two classes.

Table 2   Fifteen setups for adjustment of �
i
 are compared in a com-

mon experimental protocol

Setup Setup (cont.)

(1) DE/best/1/exp (9) DE/best/2/bin
(2) DE/rand/1/exp (10) DE/rand/2/bin
(3) DE/rand-to-best/1/exp (11) UPSO u=0
(4) DE/best/2/exp (12) UPSO u=0.25
(5) DE/rand/2/exp (13) UPSO u=0.5
(6) DE/best/1/bin (14) UPSO u=0.75
(7) DE/rand/1/bin (15) UPSO u=1
(8) DE/rand-to-best/1/bin
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3 � Experimental results and discussion

3.1 � Evaluation of different approximations 
of the exponential function

We report the average error in percentages computed after 
fifty runs for each of the four representations of the expo-
nential function as well as for each setup and for both 
population sizes 20 and 40 particles (Fig. 1). The experi-
mental results show that the LUTe approximations, in most 
cases, express performance similar to the PNN with the 
full-precision exponential function and this is true for both 
ties resolving strategies. Moreover, for the case of LUTe1 
the majority of the results for the total error are advan-
tageous, when compared to the PNN with full-precision 
exponential function. This is well pronounced for the case 
with 40 particles (Tables 3, 4). However, the number of 
resulting ties in the probability for the two classes is much 
higher when LUTe approximations are used (cf. Fig. 2). 
Even when the ties are disregarded, the PNN implementa-
tions with LUTe approximations still have advantageous 
accuracy, and LUTe1 has still the best results. In the cases 
of LUTe implementations however, it was noticed that ties 
are more frequent where the expected result is class 1. 
This is especially true when the strategy of assigning ties 
to class 1 is considered. This occurrence also seem data 
dependent, as for some data splits very low number of ties 
were observed, while for others almost 1/4 of the results 
were ties. An unpleasant implication of the higher number 
of occurring ties is the uncertainty they bring to the final 
decision. The lowest number of ties was observed for the 
LUTe3 approximation, where their number is close to the 
case with the full-precision exponent.  

Generally speaking, when the DE-based training strate-
gies are considered, the PNN with LUTe approximations 

of the exponential function show better classification 
results then the full precision exp. However, the number 
of ties occurring when DE-based training is employed 
are considerably higher when compared to the UPSO-
based training. Even for data splits where ties are more 
frequently observed, the UPSO-based training manages 
to find more solutions for the two �i parameters with only 
few or no ties than for the case of DE-based training. On 
the other hand, UPSO achieves better classification accu-
racy with the full-precision exponential function, however 
the average number of ties is higher than the one with 
DE-based training (cf. Fig. 2). In terms of computational 
performance, it was observed that DE tends to need more 
cost function evaluations than UPSO to reach an optimal 
�i values. However, the number of iterations needed by the 
UPSO-based strategies seemed longer than the one DE 
needed to converge.

Summarizing the experimental results, we support that 
the full-precision exponential function and various approxi-
mations with lower computational complexity lead to similar 
classification accuracy of the PNN. This opens opportunities 
for FPGA designs with different complexity (and demand of 
resources), which show similar classification accuracy. In 
order to obtain a more conclusive assessment of these results 
we carried out statistical significance test.

3.2 � Statistical significance tests

In Fig. 3 we show the averaged error for all strategies for 
a specific LUT approximation of the exponential function 
and population size vs. the number of resources in terms of 
LUT size and population size. Aiming at a low-complexity 
implementation in FPGA chip, we choose to compare the 
performance obtained for the full-precision exponential 
function FPexp and the LUTe1 approximation trained with 
population size 40.

Fig. 1   Average miss-classification error of different approximations of the activation function obtained for fifteen setups for adjustment of �
i
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Making use of the Kolmogorov-Smirnov test, we rejected 
the hypothesis that the results are from a standard normal 
distribution. Therefore, we chose to use nonparametric 
statistical significance tests—the Friedman test. Given the 
circumstances, we follow the recommendations in (Derrac 
et al. 2011) for the comparison of evolutionary and swarm 
intelligence algorithms.

Specifically, in order to assess the statistical significance 
of the difference in accuracy, we performed the Friedman 
statistical test for multiple comparisons (1 × N) with Hoch-
berg post-hoc (Table 5). The comparison was performed 

between the best performing setup from the LUTe1 approx-
imation in terms of accuracy and all of the full-precision 
exponential function implementation setups. The results of 
this test suggested no statistical difference between most 
of the setups for the full-precision implementation and 
the LUTe1. Moreover, no statistical difference was found 
between the best performing LUTe1 setup and the best per-
forming full-precision setup (UPSO u = 0.25). Additional 
significance tests among different setups and population 
sizes were carried out as well and the results confirmed 
these observations. It is worth mentioning that (1) DE/

Table 3   Average miss-
classification error of different 
approximations of the activation 
function obtained for fifteen 
setups for adjustment of �

i
 from 

the ten times cross-validation 
scheme (Part 1)

Training setup LUTe1 population 
20 (error in %)

LUTe1 population 
40 (error in %)

LUTe2 population 
20 (error in %)

LUTe2 popula-
tion 40 (error 
in %)

(1) DE/best/1/exp 26.0 ± 4.5 25.4 ± 4.2 26.5 ± 4.2 26.2 ± 4.0
(2) DE/rand/1/exp 25.0 ± 4.0 24.8 ± 3.8 25.5 ± 3.9 25.2 ± 3.7
(3) DE/rand-to-best/1/exp 25.5 ± 4.1 25.0 ± 3.9 26.2 ± 3.9 25.7 ± 3.9
(4) DE/best/2/exp 25.1 ± 4.0 25.0 ± 3.9 25.7 ± 4.0 25.3 ± 3.7
(5) DE/rand/2/exp 24.9 ± 3.8 24.8 ± 3.7 25.4 ± 3.8 25.3 ± 3.7
(6) DE/best/1/bin 26.0 ± 4.5 25.5 ± 4.1 26.5 ± 4.1 26.2 ± 4.0
(7) DE/rand/1/bin 24.9 ± 3.9 24.8 ± 3.8 25.4 ± 3.9 25.2 ± 3.6
(8) DE/rand-to-best/1/bin 25.6 ± 4.1 25.1 ± 4.0 26.3 ± 4.0 25.7 ± 3.9
(9) DE/best/2/bin 25.2 ± 4.1 24.9 ± 3.9 25.8 ± 4.0 25.4 ± 3.8
(10) DE/rand/2/bin 24.9 ± 3.8 24.8 ± 3.8 25.4 ± 3.8 25.3 ± 3.7
(11) UPSO − u = 0 25.7 ± 4.0 25.2 ± 3.9 26.5 ± 3.7 25.9 ± 3.6
(12) UPSO − u = 0.25 26.5 ± 4.0 25.4 ± 4.0 26.9 ± 3.6 26.0 ± 3.7
(13) UPSO − u = 0.5 27.0 ± 4.0 25.8 ± 4.1 27.2 ± 3.5 26.5 ± 3.7
(14) UPSO − u = 0.75 27.0 ± 4.4 25.9 ± 4.3 27.3 ± 3.7 26.6 ± 3.8
(15) UPSO − u = 1 26.9 ± 4.4 25.9 ± 4.3 27.3 ± 3.8 26.6 ± 4.0

Table 4   Average miss-
classification error of different 
approximations of the activation 
function obtained for fifteen 
setups for adjustment of �

i
 from 

the ten times cross-validation 
scheme (Part 2)

Training setup LUTe3 population 
20 (error in %)

LUTe3 population 
40 (error in %)

FPexp population 
20 (error in %)

FPexp popula-
tion 40 (error 
in %)

(1) DE/best/1/exp 27.1 ± 4.5 26.0 ± 4.1 25.8 ± 2.9 25.3 ± 2.8
(2) DE/rand/1/exp 25.6 ± 3.7 25.1 ± 4.1 26.2 ± 3.3 25.9 ± 2.9
(3) DE/rand-to-best/1/exp 26.9 ± 4.4 25.9 ± 4.0 25.8 ± 2.8 25.5 ± 2.6
(4) DE/best/2/exp 25.7 ± 4.0 25.1 ± 3.4 27.2 ± 3.2 25.5 ± 3.1
(5) DE/rand/2/exp 25.1 ± 3.2 24.9 ± 3.2 28.2 ± 2.9 25.2 ± 2.9
(6) DE/best/1/bin 27.4 ± 4.6 26.2 ± 4.2 25.8 ± 2.9 25.3 ± 2.8
(7) DE/rand/1/bin 25.6 ± 3.6 25.1 ± 3.4 26.1 ± 3.2 25.8 ± 2.9
(8) DE/rand-to-best/1/bin 26.8 ± 4.5 25.9 ± 4.1 25.7 ± 2.7 25.5 ± 2.6
(9) DE/best/2/bin 25.4 ± 3.7 25.1 ± 3.4 27.3 ± 3.3 25.5 ± 3.1
(10) DE/rand/2/bin 25.0 ± 3.2 24.9 ± 3.2 28.1 ± 3.0 25.3 ± 2.9
(11) UPSO – u=0 29.0 ± 3.7 27.4 ± 3.7 25.8 ± 2.8 25.3 ± 2.7
(12) UPSO – u=0.25 29.6 ± 3.7 28.1 ± 4.0 25.5 ± 2.8 25.1 ± 2.7
(13) UPSO – u=0.5 30.1 ± 3.8 28.6 ± 3.9 25.8 ± 3.0 25.2 ± 2.9
(14) UPSO – u=0.75 30.4 ± 4.1 28.9 ± 3.7 26.1 ± 3.1 25.4 ± 3.0
(15) UPSO – u=1 29.9 ± 4.4 28.4 ± 4.1 26.3 ± 3.1 25.7 ± 3.1
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best/1/exp, (6) DE/best/1/bin, (12) UPSO u=0.25 and (13) 
UPSO u=0.5 are consistent in failing to reject similarity 
with each other at a significance level � = 0.05 and � = 0.1. 
Although, (5) DE/rand/2/exp does not perform well with the 
full-precision implementation with population size 20, the 
recognition accuracy obtained after training with population 
size 40 are comparable to the other best-performing setups. 
Moreover, as one can expect, significant statistical difference 
between the two population sizes was found. Overall the 
Unified PSO (UPSO) showed the best results for unifica-
tion factor u = 0.25 when full-precision of the exponential 
function is considered, while DE and more specifically DE/
rand/2/exp performs better when reduced precision in terms 
of LUT approximation is considered. However, between the 

Fig. 2   Average number of ties for different approximations of the exponential function and population size

Fig. 3   Resources and error rate for the different exponential approxi-
mations (population size is considered as resource as well)
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best performing setups and implementations no statistical 
difference was found in terms of accuracy.

As for the approximation of the exponential function, 
the LUTe1 seems the preferred choice. Although, there is a 
considerable number of ties when LUTe1 is used, its small 
size, which in turn means less resources needed for imple-
mentation and the advantageous classification accuracy are 
preferred.

4 � Conclusion

Analyzing the overall complexity of the studied algorithms 
for just one-dimensional optimization problem solved by a 
single particle, it is obvious that the UPSO would require 
more hardware resources to implement. The combination 
of a local and a global search schemes will require two mul-
tiplications, a summation, and a subtraction. To reach the 
combination point of the global and local search schemes 
however, we need to calculate the global and local compo-
nents. As the algorithm makes use of the constriction factor 
we have five multiplications, two subtractions, and two sum-
mations for each of the two components.

In the same manner, according to Eq. (6), the setup (7) 
DE/rand/1/bin/ has only one multiplication, subtraction, and 
summation. In the cross-over we have two more multiplica-
tions and a single summation, which means that (7) DE/
rand/1/bin will need approximately 4 times less multiplica-
tions and ≈3.3 times less summations/subtractions.

Based on these considerations and the results reported 
in the current study, we can summarize that setup (7) DE/
rand/1/bin would be more suitable to implement in a FPGA 
chip, when compared to the setups UPSO and (5) DE/rand/2/
exp. This training strategy achieves one of the best results 
for the LUTe1 approximation and no statistical difference 
is found to (5) DE/rand/2/exp – it uses only one vector to 

compute the difference vector and the crossover method 
is binomial. This leads to a significantly lower demand of 
FPGA-resources needed for obtaining good classification 
accuracy.
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