
Applied Soft Computing 10 (2010) 398–408
Hardware-friendly Higher-Order Neural Network Training using Distributed
Evolutionary Algorithms

M.G. Epitropakis a, V.P. Plagianakos b, M.N. Vrahatis a,*
a Computational Intelligence Laboratory (CI Lab), Department of Mathematics, University of Patras, GR-26110 Patras, Greece
b Department of Computer Science and Biomedical Informatics, University of Central Greece, Papassiopoulou 2-4, GR-35100 Lamia, Greece

A R T I C L E I N F O

Article history:

Received 14 July 2008

Received in revised form 12 July 2009

Accepted 2 August 2009

Available online 11 August 2009

MSC:

65K10

68T20

68W10

68W15

90C10

90C56

78M50

62M45

Keywords:

Pi-Sigma Networks

Distributed Differential Evolution

Distributed Particle Swarm Optimization

Back-propagation Neural Networks

Integer Weight Neural Networks

Threshold activation functions

‘‘Hardware-Friendly’’ Implementations

‘On-chip’ training

Higher-Order Neural Networks

A B S T R A C T

In this paper, we study the class of Higher-Order Neural Networks and especially the Pi-Sigma Networks.

The performance of Pi-Sigma Networks is evaluated through several well known Neural Network

Training benchmarks. In the experiments reported here, Distributed Evolutionary Algorithms are

implemented for Pi-Sigma neural networks training. More specifically the distributed versions of the

Differential Evolution and the Particle Swarm Optimization algorithms have been employed. To this end,

each processor is assigned a subpopulation of potential solutions. The subpopulations are independently

evolved in parallel and occasional migration is employed to allow cooperation between them. The

proposed approach is applied to train Pi-Sigma Networks using threshold activation functions.

Moreover, the weights and biases were confined to a narrow band of integers, constrained in the range

½�32;32�. Thus, the trained Pi-Sigma neural networks can be represented by using 6 bits. Such networks

are better suited than the real weight ones for hardware implementation and to some extend are

immune to low amplitude noise that possibly contaminates the training data. Experimental results

suggest that the proposed training process is fast, stable and reliable and the distributed trained Pi-Sigma

Networks exhibited good generalization capabilities.

� 2009 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsevier .com/ locate /asoc
1. Introduction

Evolutionary Algorithms (EAs) are nature inspired problem
solving optimization algorithms, which employ computational
models of evolutionary processes. Various Evolutionary Algo-
rithms have been proposed in the literature. The most important
ones are: Genetic Algorithms [1,2], Evolutionary Programming
[3,4], Evolution Strategies [5,6], Genetic Programming [7], Particle
Swarm Optimization [8] and Differential Evolution algorithms [9].
The algorithms mentioned above share the common conceptual
base of simulating the evolution of a population of individuals
* Corresponding author. Tel.: +30 2610 997374; fax: +30 2610 992965.

E-mail addresses: mikeagn@math.upatras.gr (M.G. Epitropakis),

vpp@math.upatras.gr (V.P. Plagianakos), vrahatis@math.upatras.gr (M.N. Vrahatis).

1568-4946/$ – see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2009.08.010
using a predefined set of operators. Generally, the operators
utilized belong to one of the following categories: the selection and
the search operators. The most commonly used search operators
are mutation and recombination. EA’s are parallel and distributed
implementations and they are inspired by niche formation. Niche
formation is a common biological phenomenon [10]. Niches could
aid the differentiation of the species by imposing reproduction
restrictions. Many natural environments can lead to niche
formation. For example, remote islands, high mountains and
isolated valleys, restrict the species and therefore the evolution
process. Although diversity tends to be low in each subpopulation,
overall population diversity is maintained through isolation.
However, occasionally an individual may escape and reach nearby
niches, increasing the diversity of their populations [10].

In this paper, we study the class of Higher-Order Neural Networks
(HONNs) and in particular Pi-Sigma Networks (PSNs), which were

mailto:mikeagn@math.upatras.gr
mailto:vpp@math.upatras.gr
mailto:vrahatis@math.upatras.gr
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2009.08.010


M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408 399
introduced by Shin and Ghosh [11]. Although PSNs employ fewer
weights and processing units than HONNs they manage to indirectly
incorporate many of their capabilities and strengths. PSNs have
effectively addressed several difficult tasks, where traditional
Feedforward Neural Networks (FNNs) are having difficulties, such
as zeroing polynomials [12] and polynomial factorization [13]. Here,
we study PSN’s performance on several well known Neural Network
Training problems. In our experiments, we trained PSNs with small
integer weights and threshold activation functions, utilizing
Distributed Evolutionary Algorithms. More specifically, modified
distributed versions of the Differential Evolution (DE) [9,14] and
Particle Swarm Optimization (PSO) [8,15] algorithms have been
used. DE and PSO have proved to be effective and efficient
optimization methods on numerous hard real-life problems [14–
23]. The distributed EAs has been designed keeping in mind that the
resulting integer weights and biases require less bits to be stored and
the digital arithmetic operations between them are easier to be
implemented in hardware. An additional advantage of the proposed
approach is that no gradient information is required; thus (in
contrast to classical methods) no backward passes were performed.

Hardware implemented PSNs with integer weights and thresh-
old activation functions can continue training, even during the
operation of the system, if the input data are changing (on-chip
training) [14,19]. Another advantage of neural networks with
integer weights and threshold activation functions is that the
trained neural networks are to some extend immune to noise in the
training data. Such networks only capture the main feature of the
dataset. Low amplitude noise that possibly contaminates the
training set cannot perturb the discrete weights, because those
networks require relatively large variations to ‘‘jump’’ from one
integer weight value to another [14].

If the network is trained in a constrained weight space, smaller
weights are found and less memory is required. On the other hand,
the network training procedure can be more effective and efficient
when larger integer weights are allowed. Thus, for a given
application a trade off between effectiveness and memory
consumption has to be considered. Here, Pi-Sigma neural networks
with 6-bit weight representation have been utilized, i.e. integer
weights confined in the range ½�32;32�. Although the weights are
restricted, the trained PSNs can effectively tackle several bench-
mark problems, as presented in the experimental results.

The remaining of this paper is organized as follows. Section 2
reviews various parallel Evolutionary Algorithm implementations.
Section 3 briefly describes the mathematical model of HONNs and
PSNs. Section 4 is devoted to the presentation of the distributed DE
and PSO optimization algorithms. Extensive experimental results
are presented in Section 5. The paper ends with a discussion and
concluding remarks.

2. Parallel and Distributed Evolutionary Algorithms

Following the biological niche formation many parallel and
distributed Evolutionary Algorithm implementations exist [24–
29]. The most widely known are [24,25,29]:
Fig. 1. Parallel and Distributed Evolutionary Algorithms: (a) single-population mast

population coarse-grained algorithms, and (d) hybrid approaches
(a) single-population (global) master-slave algorithms,
(b) single-population fine-grained algorithms,
(c) multiple-population coarse-grained algorithms, and
(d) hierarchical parallel algorithms (hybrid approach).

In EA literature single-population fine-grained algorithms are also
called cellular EAs (cEAs). The multiple-population coarse-grained

algorithms are also known as island models or distributed EAs (dEAs).
These two approaches are most popular among EA researchers and
seem to provide a better sampling of the search space. Additionally,
they improve the numerical and runtime behavior of the basic
algorithm [10,24,25,29] (Fig. 1).

In a master-slave implementation there exists a single
panmictic population (selection takes place globally and any
individual can potentially mate with any other), but the
evaluation of the fitness of each individual is performed in
parallel among many processors. This approach does not affect the
behavior of the EA algorithm; the execution is identical to a basic
sequential EA.

According to the cEA approach each individual is assigned to a
single processor and the selection and reproduction operators are
limited to a small local neighborhood. Neighborhood overlap is
permitting some interaction among all the individuals and allows a
smooth diffusion of good solutions across the population.

We must note that one could use a uniprocessor machine to run
cEAs and dEAs and still get better results than with sequential
panmictic EAs. The main difference between cEAs and dEAs is the
separation of individuals into distinct subpopulations (islands). In
biological terms, dEAs resembles distinct semi-isolated popula-
tions in which evolution takes place independently. dEAs are more
sophisticated as they occasionally exchange individuals between
subpopulations, utilizing the migration operator. The migration
operator defines the topology, the migration rate, the migration
interval, and the migration policy [25,26,30,31]. The migration
topology determines island interconnections. The migration rate is
the number of individuals exchanged during the migration. The
migration interval is the number of generations between two
consecutive calls of the operator, while the migration policy
defines the exchanged individuals and their integration within the
target subpopulations. The migration rate and migration interval
are the two most important parameters, controlling the quanti-
tative aspects of migration [24,25]. In the case where the genetic
material, as well as the selection and recombination operators, are
the same for all the individuals and all subpopulations of a dEA, we
call these algorithms uniform. On the other hand, when different
subpopulations evolve with different parameters and/or with
different individual representations, the resulting algorithm is
called nonuniform dEA [32,33]. For the rest of the paper we focus on
uniform dEAs.

Hierarchical parallel algorithms combine at least two different
methods of EA parallelization to form a hybrid algorithm. At the
higher level exists a multiple-population EA algorithm, while at
the lower levels any kind of parallel EA implementation can be
utilized.
er-slave algorithms, (b) single-population fine-grained algorithms, (c) multiple-



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408400
Algorithm 1 exhibits in pseudocode the asynchronous island
model of an EA (uniform dEA), which is executed in n parallel or
distributed processors. Both Distributed Differential Evolution and
Distributed Particle Swarm Optimization algorithms are based on
this scheme.

Algorithm 1. The asynchronous island model

To conclude, the use of parallel and distributed EA implemen-
tation has many advantages [32], such as:

1. finding alternative solutions to the same problem,
2. parallel search from multiple points in the space,
3. easy parallelization,
4. more efficient search, even without parallel hardware,
5. higher efficiency than sequential EAs, and
6. speedup due to the use of multiple CPUs.

For more information regarding parallel EA implementations,
software tools, and theory advances the interested reader could
refer to the following review papers and books [25,26,32,34,35].

3. Higher-Order Neural Networks and Pi-Sigma Networks

Higher-order Neural Networks (HONNs) expand the capabil-
ities of standard Feedforward Neural Networks (FNNs) by
including input nodes which provide the network with a more
complete understanding of the input patterns and their relations.
Basically, the inputs are transformed so that the network does not
have to learn the most basic mathematical functions, such as
squares, cubes, or sines. The inclusion of these functions enhances
the network’s understanding of a given problem and has been
shown to accelerate training on some applications. However,
typically only second order networks are considered in practice.
The main disadvantage of HONNs is that the required number of
weights increases exponentially with the dimensionality of the
input patterns.

On the other hand, a Pi-Sigma Network (PSN) utilizes product
(instead of summation) nodes as the output units to indirectly
incorporate some of the capabilities of HONNs, while using fewer
weights and processing units. Specifically, PSN is a multilayer
feedforward network that outputs products of sums of the input
components. It consists of an input layer, a single ‘hidden’ (or
middle) layer of summing units, and an output layer of product
units. The weights connecting the input neurons to the neurons
of the middle layer are adapted during the learning process by
the training algorithm, while those connecting the neurons of the
middle layer to the product units of the output layer are fixed. For
this reason the middle layer is not actually hidden and the
training process is significantly simplified and accelerated
[11,36,37].

Let the input x ¼ ð1; x1; x2; . . . ; xNÞtop, be an ðN þ 1Þ-dimensional
vector, where 1 is the input of the bias unit and xk; k ¼ 1;2; . . . ;N

denotes the k th component of the input vector. Each neuron in the
middle layer computes the sum of the products of each input with
the corresponding weight. Thus, the output of the jth neuron in the
middle layer is given by the sum:

h j ¼ wintcal;
j x ¼

XN

k¼1

wk jxk þw0 j;

where j ¼ 1;2; . . . ;K and w0 j denotes a bias term. Output
neurons compute the product of the aforementioned sums and
apply an activation function on this product. An output neuron
returns:

y ¼ s
YK

j¼1

h j

0
@

1
A;

where sð�Þ denotes the activation function. The number of
neurons in the middle layer defines the order of the PSN. This
type of networks are based on the idea that the input of a K th
order processing unit can be represented by a product of K linear
combinations of the input components. Assuming that ðN þ 1Þ
weights are associated with each summing unit, there is a total of
ðN þ 1ÞK weights and biases for each output unit. If multiple
outputs are required (for example, in a classification problem), an
independent summing layer is required for each one. Thus, for an
M-dimensional output vector y, a total of

PM
i¼1ðN þ 1ÞKi

adjustable weight connections are needed, where Ki is the
number of summing units for the ith output. This allows great
flexibility as the output layer indirectly incorporates some of the
capabilities of HONNs utilizing a smaller number of weights and
processing units. Furthermore, the network can be either regular
or can be easily incrementally expandable, since the order of the
network can be increased by adding another summing unit in the
middle layer without disturbing the already established con-
nections.

A further advantage of PSNs is that we do not have to pre-
compute the higher order terms and incorporate them into the
network, as is necessary for a single layer HONN. PSNs are able
to learn in a stable manner even with fairly large learning rates
[11,36,37]. The use of linear summing units makes the
convergence analysis of the learning rules for PSN more accurate
and tractable. The price to be paid is that the PSNs are not
universal approximators. Despite that, PSNs demonstrated
competent ability to solve many scientific and engineering
problems, such image compression [38], and pattern recognition
[11].

Although FNNs and HONNs can be simulated in software,
hardware implementation is required in real life applications,
where high speed of execution is necessary. Thus, the natural
implementation of FNNs or HONNs (because of their modularity) is
a distributed (or parallel) one [14]. In the next section we present
the distributed EA used in this study.

4. Neural Network Training using Distributed Evolutionary
Algorithms

For completeness purposes let us briefly present the distributed
versions of Differential Evolution and Particle Swarm Optimization
algorithms for Higher Order Neural Network Training. Our
distributed implementations are based on the Message Passing
Interface standard, which facilitates the execution of parallel
applications.



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408 401
4.1. The distributed DE algorithm

Differential Evolution (DE) is an optimization method, that
utilizes concepts borrowed from the broad class of Evolutionary
Algorithms. DE is capable of handling non-differentiable,
discontinuous and multimodal objective functions. The method
requires few, easily chosen, control parameters. Extensive
experimental results have shown that DE has good convergence
properties and in many cases outperforms other well
known Evolutionary Algorithms. The original DE algorithm as
well as its distributed implementation have been successfully
applied to FNN training [14,16,20]. Distributed Differential
Evolution (DDE) for Pi-Sigma Networks training is presented
here.

More specifically, the modified DDE algorithm is a uniform
dEA. DDE maintains distinct subpopulations (islands) of
potential integer solutions, individuals, to probe the search
space. Each subpopulation of individuals is randomly initialized
in the optimization domain. At each iteration, called generation,
new individuals are generated through the combination of
randomly chosen individuals of the current subpopulation.
Starting with a subpopulation of NP integer weight vectors,
wi

g ; i ¼ 1;2; . . . ;NP, where g denotes the current generation,
each weight vector undergoes mutation to yield a mutant
vector, ui

gþ1. The mutant vector that is considered here (for
alternatives see [9,39]), is obtained through one of the following
equations:

ui
gþ1 ¼ wbest

g þ Fðwr1
g �wr2

g Þ; (1)

ui
gþ1 ¼ wr1

g þ Fðwr2
g �wr3

g Þ; (2)

where wbest
g denotes the best member of the current generation

and F >0 is a real parameter, called mutation constant that controls
the amplification of the difference between the two weight vectors.
Moreover, r1; r2; r3 2f1;2; . . . ; i� 1; iþ 1; . . . ;NPg are random inte-
gers mutually different and different from the running index i.
Obviously, the mutation operator results in a real weight vector. As
our aim is to maintain an integer weight subpopulation at each
generation, each component of the mutant weight vector is
rounded to the nearest integer. Additionally, if the mutant vector is
not in the hypercube ½�32;32�N , we calculate ui

gþ1 using the
following formula:

ui
gþ1 ¼ signðui

gþ1Þ � jui
gþ1jmod 32

� �
; (3)

where sign is the well known three valued signum function.
During recombination, for each component j of the integer mutant
vector, ui

gþ1, a random real number, r, in the interval ½0;1� is
obtained and compared with the crossover constant, CR. If r � CR

we select as the jth component of the trial vector, vi
gþ1, the

corresponding component of the mutant vector, ui
gþ1. Otherwise,

we choose the jth component of the target vector, wi
g . It must be

noted that the result of this operation is also a 6-bit integer vector.
Finally, the trial individual is accepted for the next generation only
if it reduces the value of the objective function (selection
operator).

Furthermore, the subpopulations are independently evolved
in parallel and occasionally migration is employed to
allow cooperation between them through the migration
operator (see Section 4.3). The DDE algorithm is based on the
asynchronous island model which is exhibited in Algorithm 1.
Additionally, for completeness purposes let us briefly present
the EA step of the island model in the case of DDE algorithm
(Algorithm 2).
Algorithm 2. DE step in DDE algorithm

4.2. The distributed PSO algorithm

The Particle Swarm Optimization (PSO) algorithm is an
Evolutionary Computation technique, which belongs to the
category of Swarm Intelligence methods. It was introduced by
Eberhart and Kennedy [40] in 1995. PSO is inspired by the social
behavior of bird flocking and fish schooling, and is based on a
social-psychological model of social influence and social learning.
The fundamental hypothesis to the development of PSO is that an
evolutionary advantage is gained through the social sharing of
information among members of the same species. Furthermore,
the behavior of the individuals of a flock corresponds to
fundamental rules, such as nearest-neighbor velocity matching
and acceleration by distance [8,41]. Like DE, PSO is capable of
handling non-differentiable, discontinuous and multimodal objec-
tive functions and has shown great promise in several real-world
applications [15,17,18].

To this end, PSO is a population-based stochastic algorithm that
exploits a population of individuals, to effectively probe promising
regions of the search space. Thus, each individual (particle) of the
population (swarm) moves with an adaptable velocity within the
search space and retains in its memory the best position it ever
encountered. There are two variants of PSO, namely the global and
the local. In the global variant, the best position ever attained by all
individuals of the swarm is communicated to all the particles,
while in the local variant, for each particle it is assigned a
neighborhood consisting of a pre-specified number of particles and
the best position ever attained by the particles in their neighbor-
hood is communicated among them [41].

More specifically, each particle is an D-dimensional vector, and
the swarm consists of NP particles. Thus, the position the ith
particle of the swarm can be represented as: Xi ¼ ðxi1; xi2; . . . ; xiDÞ:
The velocity of each particle is also an D-dimensional vector, and
for the ith particle is denoted as: Vi ¼ ðui1;ui2; . . . ;uiDÞ: The best
previous position of the ith particle can be recorded as: Pi ¼
ðpi1; pi2; . . . ; piDÞ; and the best particle in the swarm, the particle
with the smallest fitness function value, is indicated by the index g.
Furthermore, the neighborhood of each particle is usually defined
through the particles’ indices. The most common topology is the
ring topology, where the neighborhood of each particle consists of
particles with neighboring indices [42].

Clerc and Kennedy [43], proposed a version of PSO which
incorporates a new parameter x, known as the constriction factor.
The main role of the constriction factor is to control the magnitude
of the velocities and alleviate the ‘‘swarm explosion’’ effect that
prevented the convergence of the original PSO algorithm [44].
According to [43], the dynamic behavior of the particles in the



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408402
swarm is manipulated using the following equations:

Viðt þ 1Þ ¼ xðViðtÞ þ c1r1ðPiðtÞ � XiðtÞÞ þ c2r2ðPgðtÞ � XiðtÞÞÞ; (4)

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ; (5)

where i ¼ 1;2; . . . ;N, c1 and c2 are positive constants referred to as
cognitive and social parameters respectively, and r1 and r2 are
randomly chosen numbers uniformly distributed in ½0;1�. The
resulting position of the ith particle (Xiðt þ 1Þ) is a real weight
vector. To this end, similarly to the DDE implementation, we round
Xiðt þ 1Þ to the nearest integer and subsequently utilize Eq. (3) to
constrain it in the range ½�32;32�.

In a stability analysis provided in [43] it was implied that the
constriction factor is typically calculated according to the formula:

x ¼ 2k

j2� f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 4f

q
j
; (6)

for f>4, where f ¼ c1 þ c2, and k ¼ 1.
Furthermore, as Differential Evolution algorithm, the Particle

Swarm Optimization algorithm can be easily parallelized. The
incorporation of PSO into an island model is a straightforward
procedure. Each island evolves in parallel a sub-swarm of particles
and occasionally migration is employed to allow cooperation
between them through the migration operator (Section 4.3). Notice
that, here the integer weights wi

gþ1 are represented with the
Xiðt þ 1Þ notation, where t denotes the number of the current
generation and i represents the ith particle of the sub-swarm. The
DPSO algorithm is based on the asynchronous island model which is
exhibited in Algorithm 1. Additionally, for completeness purposes
let us briefly present the EA step of the island model in the case of
DPSO algorithm (Algorithm 3).

Algorithm 3. PSO step in DPSO algorithm

Next, we briefly describe the operator controlling the migration
of the best individuals.

4.3. The migration operator

The distributed versions of the DE and PSO algorithms have
been employed according to the dEA paradigm. To this end, each
processor is assigned a subpopulation of potential solutions. The
subpopulations are independently evolved in parallel and occa-
sional migration is employed to allow cooperation between them.
The migration of the best individuals is controlled by the migration
constant j. A good choice for the migration constant is one that
allows each subpopulation to evolve for some iterations indepen-
dently before the migration phase actually occur. There is a critical
migration constant value below which the DDE and DPSO
performance is hindered by the isolation of the subpopulations,
and above which the subpopulations are able to locate solutions of
the same quality as the panmictic implementations. Detailed
description of the DDE algorithm and experimental results on
difficult optimization problems can be found in [14,22]. A parallel
implementation of the PSO algorithm can be found in [45]. Next,
we briefly describe the Message Passing Interface standard which
has been incorporated to our distributed implementations.

4.4. The Message Passing Interface

The Message Passing Interface (MPI) is a portable message-
passing standard that facilitates the development of parallel
applications and libraries. MPI is the specification resulting from
the MPI-Forum [46] which involved several organizations design-
ing a portable system which can allow programs to work on a
heterogeneous network. MPI implementations for executing
parallel applications run on both tightly-coupled massively-
parallel machines and on networks of distributed workstations
with separate memory. With this system, each executing process
will communicate and share its data with others by sending and
receiving messages. The MPI functions support process-to-process
communication, group communication, setting up and managing
communication groups, and interacting with the environment.
Thus, MPI can be incorporated for dEA and/or cEA implementation.

A large number of MPI implementations are currently available,
each of which emphasizes different aspects of high-performance
computing or is intended to solve a specific research problem. In
this paper the OpenMPI implementation of the MPI standard has
been utilized. OpenMPI is open source, peer-reviewed, production-
quality complete MPI implementation, which provides extremely
high performance [47].

5. Experimental results

In this study, the sequential, as well as the distributed versions
of the DE and PSO algorithms are applied to train PSNs with integer
weights and threshold activation functions. Here, we report results
from the following well known and widely used Neural Network
Training problems:

1. N-bit Parity check problems [48,49],
2. the numeric font classification problem (NumFont) [50],
3. the MONK’s classification problems (MONK1, MONK2, and

MONK3) [51],
4. the handwritten digits classification problem (PenDigits) [52],

and
5. the rock vs. mine Sonar problem (Sonar) [53].

For all the training problems, we have used the fixed values of
F ¼ 0:5 and CR ¼ 0:7 as the DE mutation and crossover constants
respectively. Similarly, for the PSO algorithm, fixed values for the
cognitive and social parameters c1 ¼ c2 ¼ 2:05 have been used,
and the constriction factor j ¼ 0:729 has been calculated using
Eq. (6).

Regarding the number of hidden neurons, we tried to minimize
the degrees of freedom of the PSN. Thus, the simpler network
topology, which is capable to solve each problem, has been chosen.
Below we exhibit the experimental results from the sequential and
the distributed DE and PSO implementations. For all the
experiments reported below we utilize threshold activation
functions and 6-bit integer weights.

5.1. Sequential DE and PSO implementation

Here, we exhibit experimental results from the sequential DE
and PSO algorithms. We call DE1 and DE2 the DE algorithms that
use the mutation operators defined in Eqs. (1) and (2), respectively.
We call PSO1 and PSO2 the local and the global PSO variant,
respectively. The neighborhood of each particle had a radius of one.



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408 403
Specifically, the neighborhood of the ith particle contains the ði�
1Þ th and the ðiþ 1Þ th particles. Notice that the software used in
this section does not contain calls to the MPI library. To this end,
this implementation is marginally faster than the distributed
implementation executed in only one computer node.

The first set of experiments consists of the N-bit parity check
problems. These problems are well known and widely used
benchmarks and are suitable for testing the non-linear mapping
and ‘‘memorization’’ capabilities of neural networks. Although
these problems are easily defined they are hard to solve, because of
their sensitivity to initial weights and their multitude of local
minima. Each N-bit problem has 2N patterns with N attributes in
each pattern. All patterns have been used for training and testing.
For each N-bit problem we have used an N degree Pi-Sigma
network (resulting N neurons in the middle layer). Here, we report
results for N ¼ 2;3;4;5.

For each problem and each algorithm, we have used 10
individuals in each population and have conducted 1000
independent simulations. The termination criterion applied to
the learning algorithm was the mean square training error (MSE)
and it was different for each N-bit parity problem (0.05, 0.025,
0.125, and 0.125, respectively), following the experimental setup
of [36]. Notice that the PSNs trained here have threshold activation
functions.

Table 1 shows the experimental results for the parity check
problems. The reported parameters for the simulations that have
reached solution are: Min the minimum number, Mean the
mean value, Max the maximum number, and St.D. the standard
deviation of the number of training generations. All trained
networks gave perfect generalization capabilities for all pro-
blems. The results of PSNs having threshold activation functions
reported below are equivalent or better than the results of PSNs
trained using the classical back-propagation algorithm [36]. An
additional advantage of the proposed approach is that no
gradient information is required; no backward passes were
performed.

Below we report experimental results from the sequential DE
and PSO implementations on (a) the numeric font, (b) the MONK’s,
(c) the handwritten digits and (d) the rock vs. mine sonar
classification problems. To present the generalization results the
following notation is used in the following Tables: Min indicates
the minimum generalization capability of the trained PSNs; Max is
the maximum generalization capability; Mean is the average
generalization capability; St.D. is the standard deviation of the
generalization capability. In all cases, average performance
presented was validated using the well known test for statistical
Table 1
Simulation results for the N-bit parity check problem.

N Topology Algorithm Generations

Min Mean Max St.D.

2 2–2–1 DE1 1 1.70 5 1.36

2 2–2–1 DE2 1 5.04 12 4.92

2 2–2–1 PSO1 1 1.92 10 1.26

2 2–2–1 PSO2 1 2.07 13 1.71

3 3–3–1 DE1 1 13.93 50 10.16

3 3–3–1 DE2 1 17.98 77 13.95

3 3–3–1 PSO1 1 23.21 177 21.91

3 3–3–1 PSO2 1 29.06 281 35.28

4 4–4–1 DE1 1 9.09 47 8.29

4 4–4–1 DE2 1 9.66 34 8.55

4 4–4–1 PSO1 1 2.02 10 1.42

4 4–4–1 PSO2 1 2.20 17 1.74

5 5–5–1 DE1 1 36.14 100 21.21

5 5–5–1 DE2 1 35.98 100 21.76

5 5–5–1 PSO1 1 27.01 200 28.51

5 5–5–1 PSO2 1 28.53 210 29.74
hypotheses, named t-test (see for example [54]), using the SPSS 15
statistical software package.

It must be noted that PSNs trained for the MONK1, MONK2,
MONK3, and the Sonar training problems have only one output
unit, since all the samples of those datasets belong to one of the
two available classes. On the other hand, the networks trained for
the NumFont and the PenDigits classification problems have ten
output units (one for each digit). To implement a PSN having
multiple output units is equivalent to constructing PSNs having
common input units and different middle layer units (thus,
different sets of weights), each having one output unit. Thus, a PSN
should be trained to discriminate samples from each problem
class.

5.1.1. The numeric font classification problem

For the numeric font classification problem the aim is to train a
PSN to recognize 8� 8 pixel machine printed numerals from zero
to nine in standard helvetica font [50]. After being trained, the PSN
was tested for its generalization capability using helvetica italic
font. Note that, the test patterns in the italic font have 6–14 bits
reversed from the training patterns. To evaluate the average
generalization performance the max rule was used.

For the NumFont problem we trained 10 distinct PSNs, each one
having 16 input units and one output unit. Thus, one PSN for each
digit has been trained and we have conducted 1000 independent
simulations for each network. The termination criterion applied to
the learning algorithm was either a training error less than 0.001 or
1000 iterations. The experimental results are presented in Table 2.
All algorithms exhibited good generalization capabilities. DE1 in
particular achieved 100 % generalization success, followed closely
by PSO2. This indicates that the global variants exhibited better
results for this problem.

5.1.2. The MONK’s classification problems

The MONK’s classification problems are three binary classifica-
tion tasks, which have been used for comparing the generalization
performance of learning algorithms [51]. These problems rely on
the artificial robot domain, in which robots are described by six
different attributes. Each one of the six attributes can have one of 3,
3, 2, 3, 4, and 2 values, respectively, which results 432 possible
combinations that constitute the total data set (see [51], for
details). Each possible value for every attribute is assigned a single
bipolar input, resulting 17 inputs.

For the MONK’s problems we have tested PSNs having two units
in the middle layer (i.e. 17–2–1 PSN architecture). Table 3
illustrates the average generalization results (1000 runs were
performed). The termination criterion applied to the learning
algorithm was either a training error less than 0.01 or 5000
iterations. Once again the DE and PSO trained PSNs exhibited high
classification success rates, while the training procedure was very
fast and robust. Notice that it has been theoretically proved that
PSNs are capable to learn perfectly any Boolean Conjunctive
Normal Form (CNF) expression [37] and that the MONK’s problems
can be described in CNF.
Table 2
Generalization results for the NumFont problem.

Network topology Mutation strategy Generalization (%)

Min Mean Max St.D.

64–1–1 DE1 80 99.4 100 2.50

64–1–1 DE2 100 100 100 0.00

64–1–1 PSO1 80 95.9 100 5.70

64–1–1 PSO2 90 99.8 100 1.21



Table 3
Generalization results for the MONK’s problems.

Problem Topology Algorithm Generalization (%)

Min Mean Max St.D.

MONK1 17–2–1 DE1 86 96.68 100 2.43

MONK1 17–2–1 DE2 86 96.74 100 2.38

MONK1 17–2–1 PSO1 80 95.16 100 3.30

MONK1 17–2–1 PSO2 83 96.02 100 2.66

MONK2 17–2–1 DE1 79 97.36 100 2.38

MONK2 17–2–1 DE2 91 97.66 100 1.45

MONK2 17–2–1 PSO1 90 96.86 100 1.69

MONK2 17–2–1 PSO2 91 97.31 100 1.64

MONK3 17–2–1 DE1 82 91.57 97 2.37

MONK3 17–2–1 DE2 81 90.77 97 3.10

MONK3 17–2–1 PSO1 80 92.02 99 2.97

MONK3 17–2–1 PSO2 81 93.14 99 2.46

Table 5
Generalization results for the Sonar problem.

Network

topology

Mutation

strategy

Generalization (%)

Min Mean Max St.D.

60–1–1 DE1 58 73.81 87 4.24

60–1–1 DE2 57 73.35 87 4.34

60–1–1 PSO1 61 74.44 90 3.85

60–1–1 PSO2 64 73.89 85 3.92

Table 4
Generalization results for the PenDigits problem.

Network

topology

Mutation

strategy

Generalization (%)

Min Mean Max St.D.

16–2–1 DE1 83.91 86.20 88.74 1.08

16–2–1 DE2 81.53 84.60 87.71 1.16

16–2–1 PSO1 82.38 84.76 87.19 1.20

16–2–1 PSO2 82.59 85.16 87.70 1.17

M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408404
5.1.3. The handwritten digits classification problem

The PenDigits problem is part of the UCI Repository of Machine
Learning Databases [52] and is characterized by a real-valued
training set of approximately 7500 patterns. In this experiment, a
digit database has been assembled by collecting 250 samples from
44 independent writers. The samples written by 30 writers are
used for training, and the rest are used for testing. The training set
consists of 7494 real valued samples and the test set of 3498
samples.

For the PenDigits problem we trained 10 different PSNs, one
PSN for each digit. We have conducted 100 independent
simulations for each network and the termination criterion
applied to the learning algorithm was either a training error less
than 0.001 or 1000 iterations. Table 4 exhibits the average
generalization results.

The average classification accuracy of the trained PSNs for the
PenDigits problem is about 85 % for all algorithms.

5.1.4. The Sonar problem

For the Sonar problem the task is to train a PSN to discriminate
between sonar signals bounced off a metal cylinder (mine) and
those bounced off a roughly cylindrical rock. In this experiment the
dataset contains 208 samples obtained by bouncing sonar signals
off a metal cylinder and a rock at various angles and under various
Table 6
Generalization results for the MONK1 and MONK2 benchmark problems.

Computer nodes Mutation strategy MONK1 generalization (%)

Min Mean

1 DDE1 90 97.26

1 DDE2 89 97.44

1 DPSO1 85 96.16

1 DPSO2 91 97.59

2 DDE1 90 97.81

2 DDE2 89 97.84

2 DPSO1 88 96.75

2 DPSO2 90 97.59

4 DDE1 93 98.13

4 DDE2 91 97.90

4 DPSO1 93 97.27

4 DPSO2 93 97.87

6 DDE1 91 97.86

6 DDE2 92 97.73

6 DPSO1 92 96.78

6 DPSO2 92 97.80

8 DDE1 92 98.22

8 DDE2 93 97.77

8 DPSO1 90 97.05

8 DPSO2 94 97.91
conditions [53]. There exist 111 samples obtained from mines and
97 samples obtained from rocks. Each pattern consists of 60 real
numbers in the range ½0:0;1:0�. Each number represents the energy
within a particular frequency band, integrated over a certain
period of time. The trained PSNs have one unit in the middle layer
(i.e. 60–1–1 PSN architecture).

The classification accuracy of the trained PSNs is exhibited in
Table 5. The average classification accuracy obtained by the EA
trained PSNs is comparable to the classification accuracy of FNNs.

5.2. Distributed DE and PSO implementations

In this section the DDE and the DPSO algorithms are applied to
train PSNs with integer weights and threshold activation functions.
Here, we report results on the MONK’s [51] as well as on the Sonar
[53] benchmark problems.

For this set of experiments, we have conducted 1000
independent simulations for each algorithm, using a distributed
computation environment consisting of 1, 2, 4, 6, and 8 nodes. For
the DDE and DPSO algorithms, we have used the same values for
MONK2 generalization (%)

Max St.D. Min Mean Max St.D.

100 2.18 93 98.00 100 1.42

100 2.06 94 98.12 100 1.39

100 2.54 91 97.14 100 1.62

100 1.71 93 98.19 100 1.23

100 2.18 94 97.88 100 1.36

100 1.73 93 97.74 100 1.56

100 2.47 93 97.59 100 1.50

100 1.92 96 98.35 100 1.19

100 1.79 93 98.12 100 1.14

100 1.93 93 98.00 100 1.46

100 1.88 93 97.90 100 1.46

100 1.49 95 98.21 100 1.12

100 1.91 94 98.12 100 1.25

100 1.85 94 97.79 100 1.28

100 1.69 93 97.61 100 1.49

100 1.68 95 98.18 100 1.22

100 1.59 95 97.96 100 1.33

100 1.59 95 98.24 100 1.15

100 2.03 92 97.48 100 1.71

100 1.26 95 98.19 100 1.08



Fig. 2. Average elapsed wall-clock times for training PSNs by DDE1, DDE2, DPSO1 and DPSO2, for the MONK’s and the Sonar problems. (a) MONK1 problem, (b) MONK2

problem, (c) MONK3 problem, and (d) SONAR problem.

Table 7
Generalization results for the MONK3 and SONAR benchmark problems

Computer nodes Mutation strategy MONK3 generalization (%) SONAR generalization (%)

Min Mean Max St.D. Min Mean Max St.D.

1 DDE1 83 92.69 97 2.19 61 76.62 88 5.87

1 DDE2 81 91.06 97 2.98 60 76.49 90 6.08

1 DPSO1 84 92.16 97 2.79 62 76.37 91 5.81

1 DPSO2 86 92.90 98 2.42 60 77.16 90 5.46

2 DDE1 87 92.49 97 2.14 54 76.22 90 5.87

2 DDE2 82 90.99 96 2.62 62 76.40 90 5.63

2 DPSO1 82 91.55 96 2.61 64 76.97 88 5.25

2 DPSO2 83 91.99 98 3.04 62 77.55 90 5.82

4 DDE1 83 92.37 97 2.47 61 75.90 90 6.23

4 DDE2 82 90.40 97 3.14 64 76.05 88 5.32

4 DPSO1 83 90.91 97 3.00 58 76.77 91 6.42

4 DPSO2 85 92.80 98 2.48 62 76.90 88 5.54

6 DDE1 84 92.71 96 2.11 58 76.59 87 5.92

6 DDE2 83 90.45 96 3.22 58 75.89 87 6.20

6 DPSO1 84 91.27 96 2.85 58 76.47 90 6.04

6 DPSO2 82 91.67 98 3.33 61 75.48 90 5.66

8 DDE1 85 92.34 96 1.93 61 76.53 87 5.60

8 DDE2 82 90.64 95 2.66 60 76.06 91 5.83

8 DPSO1 84 90.94 96 2.79 61 77.00 90 5.83

8 DPSO2 80 92.51 97 2.67 60 77.16 90 6.26

M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408 405



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408406
the algorithms’ parameters. The migration constant was j ¼ 0:1.
The termination criterion applied to the learning algorithm was
either a training error less than 0.01 or 5000 iterations.

As for the choice of the communication topology, islands with
many neighbors are more effective than sparsely connected ones.
However, this brings forth a tradeoff between computation and
communication cost. Optimal choice of the degree of the topology
that minimizes the total cost is difficult. For the DDE and the DPSO
implementation we have used the ring topology (each node
communicates only with the next node on a ring).

In the distributed implementation, each processor evolves a
subpopulation of potential solutions. To allow cooperation
between the subpopulations, migration is employed. When a
higher number of CPUs is utilized (i.e. higher number of
subpopulations) the average generalization accuracy is slightly
improved. This is probably due to the island model for the
migration of the best individuals [14,22].

The experimental generalization results of problems MONK1
and MONK2 are exhibited in Table 6, while the results of problems
MONK3 and SONAR are presented in Table 7. Overall, the results
indicate that the training of PSNs with integer weights and
thresholds, using the modified DDE and DPSO algorithms are
efficient and promising. The learning process was robust, fast and
Fig. 3. Speedup of training PSNs by DDE1, DDE2, DPSO1 and DPSO2, for the MONK’s and t

and (d) Sonar problem.
reliable, and the performance of the distributed algorithms stable.
Additionally, the trained PSNs utilizing DDE and DPSO exhibited
good generalization capabilities.

The four methods considered here, exhibit similar performance.
To better compare them, we have performed ANOVA tests and post
hoc analysis (Tukey). For the 8 computer node case, the statistical
results indicate that in the MONK problems the four methods
exhibit different behavior, while they are equivalent in the Sonar
problem. More specifically, in the MONK1 problem the two PSO
variants are equivalent, while in the MONK2 the global methods
(i.e. DDE2 and DPSO2) are equivalent.

In addition to the generalization accuracy test, we have also
compared the four methods by means of the time needed to train
the PSNs.

5.2.1. Distributed DE and PSO times and speedup measurements

To better understand the efficiency of the proposed methods we
have measured the time needed to converge to a solution. Fig. 2
illustrates average elapsed wall-clock times. For every experiment,
the MPI timer (MPI Wtime) was used. This procedure is a high-
resolution timer, which calculates the elapsed wall-clock time
between two successive function calls. From the results, it is
evident that the DDE algorithms are faster and trained the PSNs
he Sonar problems. (a) MONK1 problem, (b) MONK2 problem, (c) MONK3 problem,



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408 407
efficiently. Among the DDE algorithms DDE1 is marginally better,
while DPSO1 and DPSO2 seem equivalent.

Notice that DDE1 mutation operator uses the best individual of
the current generation for computation the mutant vector. On the
other hand, DDE2 computes the mutant vector from randomly
chosen individuals. To this end, DDE1 converges faster to a single
minimum, while DDE2 better explores the search space. Similarly,
DPSO1 is the local version of PSO, while DPSO2 is the global
version. Thus, to train a HONN for a new application, where the
balance between exploration and exploitation is unknown, both
local and global algorithms can be tried. Furthermore, one can
start the training process using the DDE2 or the DPSO2 for better
exploration and consequently switch to DDE1 or DPSO1 for faster
convergence [23]. If only one algorithm must be utilized, in the
case of an unknown problem, we recommend the use of the DDE1

algorithm.
In addition to time measurements, we also calculated the

speedup achieved by assigning each subpopulation to a different
processor relative to assigning all subpopulations to a single
processor. The speedup is illustrated in Fig. 3. In the literature
various speedup measurement methods have been proposed.
However, to perform fair comparison between the sequential and
the parallel (or distributed) code, several conditions must be met
[32,55]:

1. average and not absolute times must be used,
2. the uni- and multi-processor implementations should be

exactly the same, and
3. the parallel (or distributed) code must be run until a solution for

the problem is found.

To obtain the plotted values, we conducted 1000 independent
simulations for 1, 2, 4, 6, 8 computer nodes and the average
speedup is shown. For every simulation the training error goal was
met and the migration constant was equal to 0:1.

Several factors can influence the speedup, such as the local area
network load and the CPU load due to system or other users’ tasks
[32,56,57]. Nevertheless, the speedup results indicate that the
combined processing power overbalances the overhead due to
process communication and speedup is achievable. It must be
noted that the DDE1 and DPSO2 generally exhibit higher speedup
results, with DDE1 being the best parallelized algorithm. Overall,
the best speedup was achieved by DDE1 on the MONK3 problem,
when 8 computer nodes were utilized (approximately 3.2 times
faster than the simulation utilizing one computer node). Once
again the use of DDE1 is recommended for large distributed
systems.

6. Concluding Remarks

In this paper, we study a special class of Higher-Order Neural
Networks, the Pi-Sigma Networks and propose the use of
sequential as well as parallel (or distributed) Evolutionary
Algorithms for their training. The incorporation of global
optimization methods (such as Evolutionary Algorithms) instead
of classical local optimization methods is strongly recommended.
Global optimization methods incorporate efficient and effective
searching mechanisms that avoid the convergence to local minima
and thus enhance the neural network training procedure, as well as
the classification accuracy of the trained networks. Additionally,
EAs’ capabilities of handling discrete, non-differentiable, discon-
tinuous and multimodal objective functions, provide the ability to
apply them for training ‘‘hardware-friendly’’ PSNs, i.e. PSNs with
threshold activation functions and small integer weights.

For the proposed distributed versions of Differential Evolution
and Particle Swarm Optimization algorithms each processor of a
distributed computing environment is assigned a subpopulation of
potential solutions. The subpopulations are independently evolved
in parallel and occasional migration of the best individuals is
employed to allow subpopulation cooperation. Such parallel or
distributed EAs implementations enhances the training process of
the Pi-Sigma Networks, due to the parallel search of the solution
space, while they speedup the training process due to the usage of
multiple CPUs.

The performance of the trained networks is evaluated through
well known Neural Network Training problems and the experi-
mental results suggest that the proposed training approach using
distributed Evolutionary Algorithms is robust, reliable, and
efficient. By assigning each subpopulation to a different processor
significant training speedup was achieved (approximately 3.2
times faster than the sequential implementation). The trained
networks were able to effectively address several difficult
classification tasks. Moreover, the EA trained PSNs exhibited good
generalization capabilities, comparable with the best general-
ization capability of PSNs trained using other well-known batch
training algorithms, such as the BP and the RProp [58]. Among the
EA algorithms studied, the local variant of the DE algorithm (DDE1)
was clearly the fastest one. Thus, the use of DDE1, in an unknown
optimization task, is recommended.

Finally, it has to be noted that the incorporation of either small
integer weights or threshold activation functions did not hindered
the performance and the generalization capabilities of the Pi-
Sigma Networks. Furthermore, in a future communication we
intend to rigorously compare the classification capability of PSNs
with other soft computing approaches, as well to tackle real-world
problems with smaller integer range weights. Additionally, we will
give experimental results of PSNs trained using hierarchical
parallel Evolutionary Algorithms.

Acknowledgements

The authors would like to thank the editor and the anonymous
reviewers for their useful comments and suggestions that helped
to improve the content as well as the clarity of the manuscript.

This work was partially supported by an ‘‘Empirikion Founda-
tion’’ award that helped the acquisition and the setup of the
distributed computer cluster.

References

[1] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison Wesley, Reading, MA, 1989.

[2] J.H. Holland, Adaptation in Natural and Artificial System, University of Michigan
Press, 1975.

[3] D. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, NJ, 1996.

[4] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated
Evolution, Wiley, 1966.

[5] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution
strategies, Evolutionary Computation 9 (2) (2001) 159–195.

[6] I. Rechenberg, Evolution strategy, in: J. Zurada, R. Marks, C. Robinson, II (Eds.),
Computational Intelligence: Imitating Life, IEEE Press, Piscataway, NJ, 1994.

[7] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

[8] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE
International Conference on Neural Networks, vol. IV, IEEE Service CenterPiscat-
away, NJ, 1942–1948.

[9] R. Storn, K. Price, Differential evolution—a simple and efficient adaptive scheme
for global optimization over continuous spaces, Journal of Global Optimization 11
(1997) 341–359.

[10] T. Baeck, D.B. Fogel, Z. Michalewicz (Eds.), Handbook of Evolutionary Computa-
tion, Oxford University Press, 1997.

[11] Y. Shin, J. Ghosh, The Pi-Sigma network: an efficient higher-order neural network
for pattern classification and function approximation, in: International Joint
Conference on Neural Networks, 1991.

[12] D.S. Huang, H.H.S. Ip, K.C.K. Law, Z. Chi, Zeroing polynomials using modified
constrained neural network approach, IEEE Transactions on Neural Networks 16
(3) (2005) 721–732.



M.G. Epitropakis et al. / Applied Soft Computing 10 (2010) 398–408408
[13] S. Perantonis, N. Ampazis, S. Varoufakis, G. Antoniou, Constrained learning in
neural networks: application to stable factorization of 2d polynomials, Neural
Processing Uetters 7 (1) (1998) 5–14.

[14] V.P. Plagianakos, M.N. Vrahatis, Parallel evolutionary training algorithms for
‘hardware–friendly’ neural networks, Natural Computing 1 (2002) 307–322.

[15] M. Clerc, Particle Swarm Optimization, ISTE Publishing Company, 2006.
[16] G. Magoulas, V. Plagianakos, M. Vrahatis, Neural network-based colonoscopic

diagnosis using on-line learning and differential evolution, Applied Soft Comput-
ing 4 (2004) 369–379.

[17] K. Parsopoulos, M. Vrahatis, On the computation of all global minimizers through
particle swarm optimization, IEEE Transactions on Evolutionary Computation 8
(3) (2004) 211–224.

[18] K.E. Parsopoulos, M.N. Vrahatis, Recent approaches to global optimization pro-
blems through particle swarm optimization, Natural Computing: An Interna-
tional journal 1 (2–3) (2002) 235–306.

[19] V. Plagianakos, G. Magoulas, M. Vrahatis, Evolutionary training of hardware
realizable multilayer perceptrons, Neural Computing and Application 15
(2005) 33–40.

[20] V.P. Plagianakos, M.N. Vrahatis, Neural network training with constrained integer
weights, in: P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, A. Zalzala (Eds.),
Congress of Evolutionary Computation (CEC’99), IEEE Press, Washington, DC, USA,
1999, pp. 2007–2013.

[21] R. Storn, System design by constraint adaptation and differential evolution, IEEE
Transactions on Evolutionary Computation 3 (1999) 22–34.

[22] D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, M.N. Vrahatis, Parallel differential
evolution, in: IEEE Congress on Evolutionary Computation (CEC 2004), 2004.

[23] D.K. Tasoulis, V.P. Plagianakos, M.N. Vrahatis, Clustering in evolutionary algo-
rithms to efficiently compute simultaneously local and global minima, in: IEEE
Congress on Evolutionary Computation (CEC 2005), vol. 2, 2005, 1847–1854.

[24] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE Transactions
on Evolutionary Computation 6 (5) (2002) 443–462.

[25] E. Cantú-Paz, A survey of parallel genetic algorithms, Calculateurs Parallèles,
Réseaux et Systèmes Répartis 10 (2) (1998) 141–171.

[26] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2000.

[27] M. Gorges-Schleuter, Explicit parallelism of genetic algorithms through popula-
tion structures, in: PPSN I: Proceedings of the 1st Workshop on Parallel Problem
Solving from Nature, Springer-Verlag, London, UK, 1991, pp. 150–159.

[28] S. Gustafson, E.K. Burke, The speciating island model: an alternative parallel
evolutionary algorithm, Journal of Parallel Distribution Computation 66 (8)
(2006) 1025–1036.

[29] J. Sprave, A unified model of non-panmictic population structures in evolutionary
algorithms, in: P.J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, A. Zalzala
(Eds.), Proceedings of the Congress on Evolutionary Computation, vol. 2, IEEE
Press, 1999, pp. 1384–1391.

[30] Z. Skolicki, An analysis of island models in evolutionary computation, in:
GECCO’05: Proceedings of the 2005 Workshops on Genetic and Evolutionary
Computation, ACM, New York, NY, USA, 2005, pp. 386–389.

[31] Z. Skolicki, K.D. Jong, The influence of migration sizes and intervals on island
models, in: GECCO’05: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, ACM, New York, NY, USA, 2005, pp. 1295–1302.

[32] E. Alba, Parallel evolutionary algorithms can achieve super-linear performance,
Information Processing Letters 82 (1) (2002) 7–13.

[33] R. Tanese, Parallel genetic algorithms for a hypercube, in: Proceedings of the
Second International Conference on Genetic Algorithms on Genetic algorithms
and their application, Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1987,
pp. 177–183.

[34] E. Alba, J.M. Troya, A survey of parallel distributed genetic algorithms, Complex 4
(4) (1999) 31–52.

[35] A.Y.H. Zomaya (Ed.), Parallel and Distributed Computing Handbook, McGraw-Hill,
Inc., New York, NY, USA, 1996.
[36] J. Ghosh, Y. Shin, Efficient higher-order neural networks for classification and
function approximation, International Journal of Neural Systems 3 (1992) 323–350.

[37] Y. Shin, J. Ghosh, Realization of boolean functions using binary pi-sigma networks,
in: C.H. Dagli, S.R.T. Kumara, Y.C. Shin (Eds.), Intelligent Engineering Systems
through Artificial Neural Networks, ASME Press, 1991, pp. 205–210.

[38] A.J. Hussain, P. Liatsis, Recurrent Pi-Sigma networks for dpcm image coding,
Neurocomputing 55 (1–2) (2003) 363–382, support Vector Machines.

[39] K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to
Global Optimization (Natural Computing Series), Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[40] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:
Proceedings of the 6th Symposium on Micro Machine and Human Science,
Nagoya, Japan, (1995), pp. 39–43.

[41] R. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence PC Tools, Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1996.

[42] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,
maybe better, IEEE Transactions on Evolutionary Computation 8 (3) (2004) 204–
210.

[43] M. Clerc, J. Kennedy, The particle swarm—explosion, stability, and convergence in
a multidimensional complex space, IEEE Transactions on Evolutionary Computa-
tion 6 (1) (2002) 58–73.

[44] P.J. Angeline, Evolutionary optimization versus particle swarm optimization:
philosophy and performance differences, in: EP’98: Proceedings of the 7th
International Conference on Evolutionary Programming VII, Springer-Verlag,
London, UK, 1998, pp. 601–610.

[45] N. Nedjah, E. Alba, L. de Macedo Mourelle, Parallel Evolutionary Computations
(Studies in Computational Intelligence), Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2006.

[46] M.P.I. Forum, Mpi: A Message-Passing Interface Standard, Tech. Re UT-CS-94–230,
1994.

[47] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P.
Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, T.S.
Woodall, Open MPI: goals, concept, and design of a next generation MPI imple-
mentation, in: Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, (2004), pp. 97–104.

[48] M.E. Hohil, D. Liu, S.H. Smith, Solving the n-bit parity problem using neural
networks, Neural Networks 12 (9) (1999) 1321–1323.

[49] D.E. Rumelhart, J.L. McClelland, the PDP Research Group (Eds.), Parallel Distrib-
uted Processing, vol. 1, The MIT Press, 1987.

[50] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, Effective backpropagation train-
ing with variable stepsize, Neural Networks 10 (1) (1997) 69–82.

[51] S.B. Thrun, et al., The MONK’s Problems: A Performance Comparison of Different
Learning Algorithms, Tech. Re CS-91–197, Carnegie Mellon University, Computer
Science Department, Pittsburgh, PA, 1991.

[52] P.M. Murphy, D.W. Aha, Uci Repository of Machine Learning Databases, 1994.
[53] R.P. Gorman, T.J. Sejnowski, Analysis of hidden units in a layered network trained

to classify sonar targets, Neural Networks 1 (1988) 75–89.
[54] A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, third edition,

McGraw-Hill, New York, 2000.
[55] W. Punch, How effective are multiple populations in genetic programming, in:

J.E.A. Koza (Ed.), Proceedings of the Third Annual Conference on Genetic Pro-
gramming, Morgan Kaufmann, Madison, WI, USA, (1998), pp. 308–313.

[56] J. He, X. Yao, Analysis of scalable parallel evolutionary algorithms, in: CEC 2006:
IEEE Congress on Evolutionary Computation, 2006, 120–127.

[57] J.I. Hidalgo, J. Lanchares, F.F. de Vega, D. Lombraina, Is the island model fault
tolerant? in: GECCO’07: Proceedings of the 2007 GECCO Conference Companion
on Genetic and Evolutionary Computation, ACM, New York, NY, USA, 2007, pp.
2737–2744.

[58] M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Higher-order neural networks
training using differential evolution, in: International Conference of Numerical
Analysis and Applied Mathematics, Wiley–VCH, Crete, Greece, 2006, pp. 376–379.


	Hardware-friendly Higher-Order Neural Network Training using Distributed Evolutionary Algorithms
	Introduction
	Parallel and Distributed Evolutionary Algorithms
	Higher-Order Neural Networks and Pi-Sigma Networks
	Neural Network Training using Distributed Evolutionary Algorithms
	The distributed DE algorithm
	The distributed PSO algorithm
	The migration operator
	The Message Passing Interface

	Experimental results
	Sequential DE and PSO implementation
	The numeric font classification problem
	The MONK’s classification problems
	The handwritten digits classification problem
	The Sonar problem

	Distributed DE and PSO implementations
	Distributed DE and PSO times and speedup measurements


	Concluding Remarks
	Acknowledgements
	References


