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Abstract—Differential evolution is a very popular optimization
algorithm and considerable research has been devoted to the
development of efficient search operators. Motivated by the
different manner in which various search operators behave, we
propose a novel framework based on the proximity characteristics
among the individual solutions as they evolve. Our framework
incorporates information of neighboring individuals, in an at-
tempt to efficiently guide the evolution of the population toward
the global optimum, without sacrificing the search capabilities of
the algorithm. More specifically, the random selection of parents
during mutation is modified, by assigning to each individual
a probability of selection that is inversely proportional to its
distance from the mutated individual. The proposed frame-
work can be applied to any mutation strategy with minimal
changes. In this paper, we incorporate this framework in the
original differential evolution algorithm, as well as other recently
proposed differential evolution variants. Through an extensive
experimental study, we show that the proposed framework results
in enhanced performance for the majority of the benchmark
problems studied.

Index Terms—Affinity matrix, differential evolution, mutation
operator, nearest neighbors.

I. Introduction

EVOLUTIONARY algorithms (EAs) are stochastic search
methods that mimic evolutionary processes encountered

in nature. The common conceptual base of these methods is to
evolve a population of candidate solutions by simulating the
main processes involved in the evolution of genetic material of
organism populations, such as natural selection and biological
evolution. EAs can be characterized as global optimization al-
gorithms. Their population-based nature allows them to avoid
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getting trapped in a local optimum and consequently provides
a great chance to find global optimal solutions. EAs have been
successfully applied to a wide range of optimization problems,
such as image processing, pattern recognition, scheduling,
and engineering design [1], [2]. The most prominent EAs
proposed in the literature are genetic algorithms [1], evo-
lutionary programming [3], evolution strategies [4], genetic
programming [5], particle swarm optimization (PSO) [6], and
differential evolution [7], [8].

In general, every EA starts by initializing a population of
candidate solutions (individuals). The quality of each solution
is evaluated using a fitness function, which represents the
problem at hand. A selection process is applied at each
iteration of the EA to produce a new set of solutions
(population). The selection process is biased toward the
most promising traits of the current population of solutions
to increase their chances of being included in the new
population. At each iteration (generation), the individuals
are evolved through a predefined set of operators, like
mutation and recombination. This procedure is repeated until
convergence is reached. The best solution found by this
procedure is expected to be a near-optimum solution [2], [9].

Mutation and recombination are the two most frequently
used operators and are referred to as evolutionary operators.
The role of mutation is to modify an individual by small
random changes to generate a new individual [2], [9]. Its main
objective is to increase diversity by introducing new genetic
material into the population, and thus avoid local optima. The
recombination (or crossover) operator combines two, or more,
individuals to generate new promising candidate solutions [2],
[9]. The main objective of the recombination operator is to
explore new areas of the search space [2], [10].

In this paper, we study the differential evolution (DE) algo-
rithm, proposed by Storn and Price [7], [8]. This method has
been successfully applied in a plethora of optimization prob-
lems [7], [11]–[19]. Without loss of generality, we only con-
sider minimization problems. In this case, the objective is to
locate a global minimizer of a function f (objective function).

Definition 1: A global minimizer x� ∈ RD of the real–
valued function f : E → R is defined as

f (x�) � f (x) ∀ x ∈ E

where the compact set E ⊆ RD is a D-dimensional scaled
translation of the unit hypercube.
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A main issue in the application of EAs to a given opti-
mization problem is to determine the values of the control
parameters of the algorithm that will allow the efficient explo-
ration of the search space, as well as its effective exploitation.
Exploration enables the identification of regions of the search
space in which good solutions are located. On the other
hand, exploitation accelerates the convergence to the optimum
solution. Inappropriate choice of the parameter values can
cause the algorithm to become greedy or very explorative and
consequently the search of the optimum can be hindered. For
example, a high mutation rate will result in much of the space
being explored, but there is also a high probability of losing
promising solutions; the algorithm has difficulty in converging
to an optimum due to insufficient exploitation. Several evolu-
tionary computation approaches have been proposed that try
to give a satisfactory answer to this exploration/exploitation
dilemma [20]–[27]. Recent studies of the exploration and
exploitation capabilities of different mutation operators have
shown that after a number of iterations of the DE algorithm the
individuals exhibit the tendency to gather around optimizers
of the objective function [21], [22].

Motivated by these findings, we propose an alternative to
the uniform random selection of parents during mutation.
We advocate a stochastic selection framework in which the
probability of selecting an individual to become a parent
is inversely proportional to its distance from the individual
undergoing mutation. By favoring search in the vicinity of
the mutated individual this framework promotes efficient ex-
ploitation, without substantially diminishing the exploration
capabilities of the mutation operator. The proposed framework
can be applied to any mutation strategy and, as shown through
extensive experimental evaluation, produces remarkable im-
provement. We also incorporate this framework to a number
of recently proposed DE variants and observe performance
gains.

The rest of this paper is organized as follows. Section II
describes the original differential evolution algorithm. In Sec-
tion III, we include a short literature review. Section IV illus-
trates the behavior of different mutation operators, providing
the motivation for the proposed framework, which is presented
in Section V. Next, in Section VI we present the results of an
extensive experimental analysis, and the paper concludes with
a discussion in Section VII.

II. Differential Evolution Algorithm

Differential evolution [7], [8] is a population-based stochas-
tic parallel direct search method that utilizes concepts bor-
rowed from the broad class of EAs. The method typically
requires few control parameters and numerous studies have
shown that it has good convergence properties. DE outper-
forms other well-known EAs in a plethora of problems [7],
[11]–[13], [15] and has attracted the interest of the research
community. Consequently, several variations of the classical
DE algorithm have been proposed in the literature [13], [14],
[22], [23], [26]–[34]. A detailed description of the DE algo-
rithm and experimental results on hard optimization problems
can be found in [12]–[15], [18].

The DE algorithmic schemes can be classified using the
notation DE/base/num/cross. The method of selecting the
parent that constitutes the base individual is indicated by
base. For example, DE/rand/num/cross selects the parent for
the base individual randomly, while in DE/best/num/cross the
parent for the base individual is the best individual of the
population. The number of differences between individuals
that are used to perturb the base individual is indicated by
num. Finally, cross stands for the crossover type utilized by
the mutation strategy, i.e., exp for exponential and bin for bi-
nomial. Exponential and binomial crossover will be discussed
in Section II-C. In this paper, we always employ binomial
crossover, and thus we exclude the cross part to simplify the
notation.

In DE the central search operator is known as mutation
strategy. Consequently, a substantial amount of research has
been devoted to the development and the analysis of efficient
mutation operators and their dynamics [12], [13], [15], [18],
[35], [36]. In more detail, for each individual undergoing
mutation (mutated individual) a set of individual solutions
are uniformly selected across the population (parents). The
parents and the mutated individual are subsequently mixed to
construct a new candidate solution (mutant individual). The
mutation operators prescribe the manner in which this mixing
is performed, and the number of parents that will be used.
The search operators efficiently shuffle information among the
individuals, enabling the search for an optimum to focus on
the most promising regions of the solution space. Next, we
describe in detail the DE procedures.

A. Initialization

Following the general concept of EAs, the first step
of DE is the initialization of a population of NP , D-
dimensional potential solutions (individuals) over the opti-
mization search space. We shall symbolize each individual
by xi

g = [xi
g,1, x

i
g,2, . . . , x

i
g,D], for i = 1, 2, . . . , NP, where

g = 0, 1, . . . , gmax is the current generation and gmax the max-
imum number of generations. At the first generation (g = 0)
the population should be sufficiently scaled to cover as much
as possible of the optimization search space. Initialization
is implemented by using a random number distribution to
generate the potential individuals in the optimization search
space. The optimization search space can be defined by
lower and upper bound values, i.e., L = [L1, L2, . . . , LD]
and U = [U1, U2, . . . , UD]. Hence, we can initialize the jth
dimension of the ith individual according to

xi
0,j = Lj + randj(0, 1) · (Uj − Lj) (1)

where randj(0, 1) is a uniformly distributed random number
confined in the [0, 1] range.

B. Mutation Operators

Following initialization, the evolution process begins with
the application of the mutation operator. For each individual
of the current population a new individual, called the mutant
individual vi

g, is derived through the combination of randomly
selected and pre-specified individuals. The originally proposed
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and most frequently used mutation strategies in the literature
are:

1) “DE/best/1”

vi
g = xbest

g + F (xr1
g − xr2

g ); (2)

2) “DE/rand/1”

vi
g = xr1

g + F (xr2
g − xr3

g ); (3)

3) “DE/current-to-best/1”

vi
g = xi

g + F (xbest
g − xi

g) + F (xr1
g − xr2

g ); (4)

4) “DE/best/2”

vi
g = xbest

g + F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ); (5)

5) “DE/rand/2”

vi
g = xr1

g + F (xr2
g − xr3

g ) + F (xr4
g − xr5

g ); (6)

6) “DE/current-to-best/2”

vi
g = xi

g + F (xbest
g − xi

g)

+ F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ) (7)

where xbest
g denotes the best (fittest) individual of the current

generation, the indices r1, r2, r3, r4, r5 ∈ Sr = {1, 2, . . . , NP} \
{i} are uniformly random integers mutually different and
distinct from the running index i, (xrx

g − x
ry

g ) is a difference
vector that mutates the base vector, (rx, ry ∈ Sr), and F > 0
is a real positive parameter, called mutation or scaling factor.
The mutation factor controls the amplification of the difference
between two individuals and is used to prevent the stagnation
of the search process. Large values of this parameter amplify
the differences and hence promote exploration, while small
values favor exploitation. The inappropriate choice of the
mutation factor can therefore cause the deceleration of the
algorithm and a reduction of population diversity [12], [15],
[28]. In the original DE algorithm, the mutation factor F is a
fixed and user defined parameter, while in many adaptive DE
variants each individual is associated with a different adaptive
mutation factor [23], [26]–[31], [33], [37], [38]. Several DE
variants that either introduce new mutation strategies or new
self-adaptive techniques to tune the control parameters have
been recently proposed [12], [15], [18], [22], [25]–[27], [31],
[34], [35], [39]–[44]. A detailed discussion about the current
state-of-the-art of DE can be found in a recently published
survey [13].

In an attempt to rationalize the mutation strategies, (2)–
(7), we observe that (3) is similar to the crossover operator
employed by some genetic algorithms. Equation (2) is derived
from (3), by substituting the best member of the previous
generation, xbest

g , with a random individual xr1
g . Equations (4),

(5), (6), and (7) are modifications obtained by the combination
of (2) and (3). It is clear that new DE mutation operators can
be generated using the above ones as building blocks. Such
examples include the trigonometric mutation operator [39],
the recently proposed genetically programmed mutation op-
erators [45], or new classes of mutation operators that attempt
to combine the explorative and exploitative capabilities of the
original ones [21], [22].

C. Crossover or Recombination Operators

Following mutation, the crossover or recombination opera-
tor is applied to further increase the diversity of the population.
It is important to note that without the crossover operator,
the original DE algorithm performs poorly on multimodal
functions [12]. In crossover, the mutant individuals are com-
bined with other predetermined members of the population,
called target individuals, to produce the trial individuals. The
most well known and widely used variants of DE utilize two
main crossover schemes: the exponential and the binomial
or uniform crossover [7], [12], [13], [46]. The exponential
crossover scheme was introduced in the original work of Storn
and Price [8], but in the subsequent DE literature the binomial
variant [7], [13] is mostly used.

The binomial or uniform crossover is performed on each
component j (j = 1, 2, . . . , D) of the mutant individual vi

g. In
detail, for each component of the mutant vector a random real
number r in the interval [0, 1] is drawn and compared with the
crossover rate or recombination factor, CR ∈ [0, 1], which is
the second DE control parameter. If r � CR, then we select, as
the jth component of the trial individual ui

g, the jth component
of the mutant individual vi

g. Otherwise, the jth component of
the target vector xi

g becomes the jth component of the trial
vector. The aforementioned procedure can be outlined as

ui
g,j =

{
vi

g,j, if (randi,j(0, 1) � CR or j = jrand)

xi
g,j, otherwise

(8)

where the randi,j(0, 1) is a uniformly distributed random
number in [0, 1], different for every jth component of every
individual, and jrand ∈ {1, 2, . . . , D} is a randomly chosen
integer which ensures that at least one component of the
mutant vector will be assigned to the target vector. It is evident
that for values of the recombination factor close to zero the
effect of the mutation operator is very small, since the target
and the mutant vector become identical.

D. Selection

Finally, the selection operator is employed to maintain
the most promising trial individuals in the next generation
and to retain the population size constant over the evolution
process [12]. The original DE adopts a simple monotone
selection scheme. It compares the objective values of the target
xi

g and trial ui
g individuals. If the trial individual reduces the

value of the objective function then it is accepted for the next
generation; otherwise the target individual is retained in the
population. Thus, the selection operator can be defined as

xi
g+1 =

{
ui

g, if f (ui
g) < f (xi

g)

xi
g, otherwise.

(9)

The original DE algorithm (DE/rand/1/bin) is illustrated in
Algorithm 1.

III. Related Work

Darwin was the first to realize that populations may exhibit
a spatial structure which can influence the population’s dynam-
ics. The evolutionary computing (EC) literature today utilizes
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Algorithm 1 Algorithmic scheme for the original Differential Evo-
lution algorithm (DE/rand/1/bin)

Set the generation counter g = 0
/* Initialize the population of NP individuals: Pg =
{x1

g, x
2
g, . . . , x

NP
g }, with xi

g = {xi
1,g, x

i
2,g, . . . , x

i
D,g} for i =

1, 2, . . . , NP uniformly in the optimization search hyper-
rectangle [L, U].*/
for i = 1 to NP do

for j = 1 to D do
xi

0,j = Lj + randj(0, 1) · (Uj − Lj)
end for
Evaluate individual xi

0
end for
while termination criteria are not satisfied do

Set the generation counter g = g + 1
for i = 1 to NP do

/* Mutation step */
Select uniformly random integers r1, r2, r3 ∈ Sr =
{1, 2, . . . , NP} \ {i}
/* For each target vector xi

g generate the corresponding
mutant vector vi

g using (3) */
for j = 1 to D do

vi
j,g = x

r1
j,g + F (xr2

j,g − x
r3
j,g)

end for
/* Crossover step: For each target vector xi

g generate
the corresponding trial vector ui

g through the Binomial
Crossover scheme.*/
jrand = a uniformly distributed random integer ∈
{1, 2, . . . , D}
for j = 1 to D do

ui
g,j =

{
vi

g,j, if (randi,j(0, 1) � CR or j = jrand),
xi

g,j, otherwise,
end for
/* Selection step */
if f (ui

g) < f (xi
g) then

xi
g+1 = ui

g

if f (ui
g) < f (xbest

g ) then
xbest

g = ui
g and f (xbest

g ) = f (ui
g)

end if
else

xi
g+1 = xi

g

end if
end for

end while

spatial information in populations and the general concept of
a neighborhood in several domains. In this section, we briefly
discuss how the neighborhood concept has been utilized in the
context of the differential evolution algorithm.

A. Neighborhood Concepts in Structured EAs

In structured EAs the population is decentralized into sub-
populations which can interact and may have different evolu-
tionary roles. Two of the most prominent structured EAs are
cellular evolutionary algorithms (cEAs) [47] and distributed
evolutionary algorithms (dEAs) [48], [49]. A comprehensive
classification and presentation can be found in [50] and [51].

Generally, in cEAs, the sub-populations are created according
to a neighborhood criterion and thus each sub-population has
both an explorative and an exploitative role for a different
region of the search space. On the other hand, in dEAs,
distinct sub-populations (islands) explore in parallel the entire
search space. In biological terms, dEAs resemble distinct semi-
isolated populations in which evolution takes place indepen-
dently. The migration operator in dEAs controls the exchange
of individuals between subpopulations. This operator defines
the topology, the migration rate, the migration frequency, and
the migration policy [49], [52], [53]. These additional degrees
of freedom make dEAs more flexible and capable of tackling
harder optimization tasks.

The concept of structured populations has been incorporated
in DE. In [23] and [54], distributed DE variants were presented
which control adaptively the migration and the DE control pa-
rameters according to a genotype diversity criterion. In [55], a
distributed DE algorithm is proposed that preserves diversity in
the niches in order to solve multimodal optimization problems.
In [56], a ring topology distributed DE was proposed with a
migration operator that exchanges best performing individuals
and replaces random individuals among neighboring sub-
populations. In [57], Apolloni et al. proposed a modified
version of [56], in which migration is performed through a
probabilistic criterion. Modifications of [56] presented in [58]–
[60] utilize a locally connected topology, where each node is
connected to l other nodes. The recently proposed distributed
differential evolution with explorative–exploitative population
families (DDE-EEPF) [24] employs sub-populations which are
grouped into two families: explorative and exploitative. Explo-
rative subpopulations have constant size, are arranged accord-
ing to a ring topology, and employ a migration of best perform-
ing individuals. On the other hand, exploitative subpopulations
have dynamic size, are highly exploitative, and aim to quickly
detect fittest solutions. Numerical results show that DDE-
EEPF is an efficient and promising distributed DE variant. The
distributed differential evolution with scale factor inheritance
mechanism [61] implements sub-populations arranged in a
ring topology. Each sub-population is characterized by its
own scale factor and migrates the best individual with its
associated scale factor to its neighbors. The distribution of
the successful scale factors and the fittest individuals among
the subpopulations enhances the scheme, and its performance
substantially.

B. Index Neighborhood Concepts in Differential Evolution

A popular neighborhood structure in EC is the index-based
neighborhood concept, introduced in the PSO algorithm.
PSO incorporates an index-based neighborhood structure in
its population and not real topological-based neighborhoods.
Thus, the neighbors of each potential solution do not necessary
lie in the vicinity of its topological region in the search space.
Recently, the index neighborhood structures of PSO have also
been considered in DE. The differential evolution with global
and local neighborhoods (DEGL) [13], [25], [42] incorporates
concepts of the UPSO algorithm [62], such as the index
neighborhoods of each individual, a local and a global scheme
to facilitate the exploration and the exploitation of the search
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space, and a convex combination of these schemes to balance
their effect. The self-adaptive DE [63] has been modified
by using a ring neighborhood topology in [64]. The same
authors introduced the barebones differential evolution [65]
(BBDE). BBDE employs the concept of index neighborhoods
in DE and enhances the DE mutation scheme by utilizing as
a base vector either a randomly chosen personal best position
or a stochastic weighted average of the individual’s attractors
(e.g., its personal and neighborhood best positions). This
mutation scheme tends to explore the search space around
the corresponding base vector and thus to exploit the vicinity
of the current position.

C. Neighborhood Concepts in Mutation Strategies

Numerous DE variants utilize specialized mutation strate-
gies to exploit population structure. In [66], five mutation
strategies have been proposed that produce new vectors in
the vicinity of the corresponding base vector. To this end,
the weighted difference between two individuals is used in
conjunction with an adaptive scaling factor. DE with parent
centric crossover (DEPCX) and DE with probabilistic parent
centric crossover (Pro. DEPCX) [67] are inspired by the parent
centric crossover operator (PCX) used in GAs [68]. DEPCX
utilizes the parent centric approach in the mutation strategy to
generate new solution vectors, while Pro. DEPCX stochasti-
cally utilizes the parent centric mutation operator along with
the basic DE mutation operation. The PCX procedure increases
the probability of producing new candidate solution vectors
in the vicinity of the parent vectors and thus exploits the
neighborhood of parent vectors. In [44] and [69], two modified
DE variants called DE with random localization (DERL) and
DE with localization using the best vector (DELB) were
proposed. Both variants incorporate simple techniques to
produce solutions that exhibit a local search effect around
the base vector, with global exploration characteristics at the
early stages of the algorithm and a local effect in terms of
convergence at later stages of the algorithm.

D. Neighborhood Concepts Through Local Search

Various DE variants attempt to exploit and refine the po-
sition of the best individuals by incorporating a list of local
search procedures. MDE [70] makes use of the Hooke-Jeeves
algorithm and a stochastic local searcher adaptively coordi-
nated by a fitness diversity-based measure. The EMDE [16],
[17] combines the powerful explorative features of DE with the
exploitative features of three local search algorithms employ-
ing different pivot rules and neighborhood generating func-
tions, e.g., Hooke Jeeves algorithm, a stochastic local search,
and simulated annealing. The super-fit memetic differential
evolution (SFMDE) [71] employs PSO, the Nelder-Mead
algorithm, and the Rosenbrock algorithm. SFMDE coordinates
the local search algorithms by means of an index that measures
the quality of the super-fit individual with respect to the
remaining individuals in the population and a probabilistic
scheme based on the generalized beta distribution. Noman
and Iba [72] recently proposed a fittest individual refinement
(FIR), a crossover-based local search DE variant to tackle high
dimensional problems. In [73], FIR is enhanced through a

Fig. 1. 3-D plot of the Shekel’s foxholes function.

local search technique which adaptively adjusts the length of
the search, utilizing a hill-climbing heuristic. This approach
accelerates DE by enhancing the search capability in the
neighborhood of the best solution in successive generations.
Additionally, the scale factor local search differential evolu-
tion [74] is based on the DE/rand/1 mutation strategy and
incorporates, within a self-adaptive scheme, two local search
algorithms to efficiently adapt the mutation factor during the
evolution. The local searchers aim to detect a value of the
scale factor that corresponds to a refined offspring and thus
tend to correct “weak” individuals.

IV. Dynamics of DE Mutation Strategies

In this section, we investigate the impact of DE dynamics,
i.e., the exploration/exploitation capabilities of the different
DE mutation strategies. Our findings suggest that the indi-
viduals evolved through some of the original DE mutation
strategies sometimes tend to gather around minimizers of the
objective function. This motivates our approach, which aims to
appropriately select neighboring individuals for incorporation
in each mutation strategy. The goal is to efficiently guide the
evolution of the population toward a global optimum, without
sacrificing the search capabilities of the DE algorithm.

The exploration and exploitation capabilities of different DE
mutation strategies were studied in [21] and [22], where it
was shown that not all DE search operators have the same
impact on the exploration/exploitation of the search space.
Thus, the choice of the most efficient mutation operator can
be cumbersome and problem dependent.

In general, we can distinguish between mutation oper-
ators that promote exploration and operators that promote
exploitation. An observation of the equations of the mutation
operators (2)–(7) reveals that operators that incorporate the
best individual (e.g., DE/best/1, DE/best/2, and DE/current-
to-best/1) favor exploitation, since the mutant individuals are
strongly attracted around the current best individual. Note that
DE/best/2 usually exhibits better exploration than DE/best/1,
because it includes one more difference of randomly selected
individuals, which adds one more component of random
variation in each mutation. In contrast, mutation operators that
incorporate either randomly chosen individuals or many dif-
ferences of randomly chosen individuals (e.g., DE/rand/1 and
DE/rand/2) enhance the exploration of the search space, since
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Fig. 2. DE/best/1/bin population after 1, 5, 10, and 20 generations.

a high degree of random variability affects each mutation.
Again, although DE/current-to-best/2 is based on DE/current-
to-best/1 the utilization of a second difference vector further
promotes the exploration of the search space [12], [13], [15].

Next, we investigate the impact of the dynamics of different
DE mutation strategies on the population. Experimental sim-
ulations indicate that DE mutation strategies tend to distribute
the individuals of the population in the vicinity of the objective
function’s minima. Exploitative strategies rapidly gather all the
individuals to the basin of attraction of a single minimum,
whereas explorative strategies tend to spread the individuals
around many minima.

To demonstrate this, we employ as a case study the
2-D Shekel’s Foxholes benchmark function illustrated in
Fig. 1. This function has 24 distinct local minima and one
global minimum f (−32, 32) = 0.998004, in the range
[−65.536, 65.536]2 [75].

We utilize two DE variants with different dynamics: the
explorative DE/rand/1 and the exploitative DE/best/1. Contour
plots of the Shekel’s Foxholes function and the positions of
a population of 100 individuals after 1, 5, 10, 20 generations
of DE/best/1 and DE/rand/1 are depicted in Figs. 2 and 3,
respectively. The two figures show that both DE/best/1 and
DE/rand/1 first explore the search space around their initial
population positions. The exploitative character of DE/best/1
causes the individuals to gather rapidly around the basin of
attraction of the global minimum (see Fig. 2). On the other
hand, DE/rand/1 (Fig. 3) spreads the individuals over many

minima locations, before gathering them around the global
minimum.

To study the clustering tendency of different DE mutation
strategies we utilize a statistical test called the Hopkins
test [76]. Clustering tendency is a well-known concept in
the cluster analysis literature that deals with the problem of
determining the presence or absence of a clustering structure
in a data set [77]. The Hopkins test relies on the distances
between a number of vectors which are randomly placed
in the search space, and the vectors of a data set, X =
{xi, i = 1, 2, . . . , NP}, which in our case correspond to the
individuals of the population. More specifically, let Y = {yi, i =
1, 2, . . . , M}, M � NP , with typically M = NP/10, be a set
of vectors that are uniformly distributed in the search space. In
addition, let X1 ⊂ X be a set of M randomly chosen vectors
from X. Let dj be the distance of yj ∈ Y to its closest vector
in X1, denoted by xj , and δj be the distance between xj and
its nearest neighbor in X1\{xj}. The Hopkins statistic involves
the lth powers of dj and δj and is defined as [77]

h =

∑M
j=1 dl

j∑M
j=1 dl

j +
∑M

j=1 δl
j

.

This statistic compares the nearest neighbor distribution of the
points in X1 with that from the points in Y . When the dataset
X contains clusters, the distances between nearest neighbors
in X1 are expected to be small on average, and h assumes
relatively large values. Therefore, large values of h indicate the
presence of a clustering structure in the dataset, while small
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Fig. 3. DE/rand/1/bin population after 1, 5, 10, and 20 generations.

values of h indicate the presence of regularly spaced points.
A value around 0.5 indicates that the vectors of the dataset X

are randomly distributed over the search space.
Due to the stochastic nature of H-measure, for every gen-

eration in every simulation we calculate the H-measure value
100 times, by considering different random solutions. Thus, in
Fig. 4, we illustrate the mean value of the H-measure at each
generation, obtained from 100 independent simulations for
the 30-dimensional versions of the shifted sphere and shifted
Griewank functions [78]. Error bars around the mean depict
the standard deviation of the H-measure. The shifted sphere
is a simple unimodal function, while the shifted Griewank
is highly multimodal. These benchmarks were chosen to
investigate the behavior of the DE mutation operators in two
qualitatively different problems.

As shown, all mutation strategies exhibit large H-measure
values within the first 100 generations, indicative of a strong
clustering structure, even from these initial stages of the
evolution. Also, the relative values of the H-measure for the
different strategies indicate an ordering with respect to their
exploitation tendency. DE/best/1 appears to be the most ex-
ploitative operator, and DE/current-to-best/1 behaves similarly.
The least exploitative operator is DE/rand/2.

In this paper, we attempt to take advantage of this clustering
behavior. To this end, we modify the way that DE mutation
strategies choose individuals to form the difference vectors,
which are employed to mutate the base vector. More specifi-
cally, to generate a mutant individual, we propose to use indi-

viduals in the vicinity of the parent vector that probably reside
in the same cluster, instead of uniformly random individuals.
This has the potential to rapidly exploit the regions of minima,
and thus accelerate convergence.

To illustrate this concept, Figs. 5 and 6 show the 5-nearest
neighbors graphs for the DE/best/1 and DE/rand/1 populations
of the 2-D Shekel’s Foxholes function, after 1, 5, 10, and
20 generations, respectively. As shown, selecting individuals
amongst the 5-nearest neighbors to produce mutant individuals
will achieve our goal of exploiting local information. The
occasional connections between individuals clustered around
different local minima suggest that the exploration abilities
of the algorithm will not be severely hindered. We further
promote exploration by introducing stochasticity into the se-
lection mechanism, instead of just using a prespecified number
of nearest neighbors. In particular, we assign a probability of
selection to each individual which is inversely proportional to
its distance to the parent individual. In the next section, we
describe in detail the proposed method.

V. Proposed Proximity-Based Mutation

Framework

As shown in the previous section, it is possible to guide the
evolution toward a global optimum without compromising the
algorithm’s search capabilities by incorporating information
from neighboring individuals. In this section, we discuss the
main concepts behind a proximity-based differential evolution
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Fig. 4. H-measure of six classic DE mutation strategies on the shifted sphere
and on the shifted griewank.

framework (Pro DE). The easiest way to implement the pro-
posed approach would be to select the indices r1, r2, r3 of the
individuals involved in mutation, to correspond to the 3-nearest
neighbors of the parent individual, rather than being random.
However, such an approach could result in an exceedingly
exploitative (greedy) algorithm, especially during the first steps
of the evolution where such a behavior can be detrimental.
Instead, we propose a stochastic selection of ri, i ∈ {1, 2, 3}
in the mutation procedure.

Let us consider a population of NP , D-dimensional individ-
uals Pg = [x1

g, x
2
g, . . . , x

NP
g ]. We calculate the affinity matrix,

Rd , based on real distances between individuals. Thus, the
Rd(i, j) element of the matrix corresponds to the distance
between the ith and the jth individuals

Rd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ‖x1
g, x

2
g‖ · · · ‖x1

g, x
NP
g ‖

‖x2
g, x

1
g‖ 0 · · · ‖x2

g, x
NP
g ‖

‖x3
g, x

1
g‖ ‖x3

g, x
2
g‖ 0 ‖x3

g, x
NP
g ‖

...
...

. . .
...

‖xNP
g , x1

g‖ ‖xNP
g , x2

g‖ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where ‖x, y‖ is a distance measure between the x and y

individuals. In the case of decision variables with different
search ranges, a scale-invariant distance measure (e.g., the
Mahalanobis distance [77]) needs to be used to avoid any

Algorithm 2 Pro DE/rand/1: proximity-based mutation algorithmic
scheme for DE/rand/1

/* Mutation step */
Calculate the probability matrix Rp based on (10)
Utilize a roulette wheel to select indices r∗

1, r
∗
2, r

∗
3 ∈ Sr =

{1, 2, . . . , NP} \ {i} based on probability matrix Rp

/* For each target vector xi
g generate the corresponding

mutant vector vi
g using (3) */

for j = 1 to D do
vi

j,g = x
r∗

1
j,g + F (x

r∗
2

j,g − x
r∗

3
j,g)

end for

dependence on the scale of the variables. It has been shown
that a fixed number of points becomes increasingly “sparse”
as the dimensionality increases [79]. Therefore, in very high
dimensional problems p-norms, with p � 1 can be used [80].
In this paper we use Euclidean distances, since in all the
considered problems all the variables have equal ranges.

The affinity matrix is symmetric, due to the symmetric
property of the distance. Thus, only the upper triangular part
of Rd needs to be calculated. Based on the Rd matrix, we
calculate a probability matrix Rp, in which each element
Rp(i, j) represents a probability between the ith and jth
individual with respect to the ith row. The probability of the
ith individual is inversely proportional to the distance of the
jth individual, i.e., the individual of the row with the minimum
distance has the maximum probability

Rp(i, j) = 1 − Rd(i, j)∑
i Rd(i, j)

(10)

where i, j = 1, 2, . . . , NP . Thus, we incorporate a stochas-
tic selection procedure, in the form of a simple roulette
wheel selection without replacement [2], to obtain the indices
r∗

1, r
∗
2, r

∗
3 ∈ Sr = {1, 2, . . . , NP} \ {i}.

A notable observation is that it is not necessary to repeatedly
calculate the probability matrix in every generation. As it is
previously described, the key role of the proximity framework
is to exploit possible clustering structure of the population
over the problem’s minima and subsequently incorporate that
information in the evolution phase of the algorithm. To this
end, whenever an individual passes the selection operator its
position is altered and the affinity matrix should be updated.
Depending either on the computational cost we are willing
to pay, or on the characteristics of the DE variant and
the considered problem, the Rp matrix can be calculated
in every or every few generations. It is evident that when
the affinity matrix is not calculated in every generation, it
contains errors. Inaccurate information in the affinity matrix
may not significantly affect the algorithm’s dynamics, due
to the desired randomness of indices ri. In this paper, we
propose to update the affinity matrix after each change of an
individual’s position, which is in essence at every generation.

Some DE variants incorporate operators that rapidly change
the position of many individuals either by the greediness of
the evolution operator, e.g., the mutation strategies DE/best/1
DE/current-to-best/1, DE/best/2, or due to an extra operator
that influences the evolution dynamics, e.g., the population of
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Fig. 5. 5-Nearest neighbors graph for the DE/best/1/bin population after 1, 5, 10, and 20 generations.

Fig. 6. 5-Nearest neighbors graph for the DE/rand/1/bin population after 1, 5, 10, and 20 generations.
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opposition-based DE [40], [41]. In these cases, we must imme-
diately transfer this information to the proximity framework,
and thus update the affinity matrix in every generation.

The proposed proximity-based framework affects only the
mutation step, hence it could be directly applied to any
DE mutation strategy. The application of this framework for
DE/rand/1 is demonstrated in Algorithm 2. We use the notation
Pro DE/rand/1 to designate that the proposed proximity-based
framework is used.

VI. Experimental Results

In this section, we perform an extensive experimental eval-
uation of the proposed framework. We employ the CEC 2005
benchmark suite which consists of 25 scalable benchmark
functions [78]. Based on their characteristics, the functions of
the CEC 2005 benchmark set can be divided into the following
four classes. Functions cf1 − cf5 are unimodal, cf6 − cf12

are basic multimodal functions, cf13 and cf14 are expanded
multimodal functions, and cf15 −cf25 are hybrid compositions
of functions with a huge number of local minima. A thorough
description of this test set is provided in [78].

To perform a comprehensive evaluation and highlight the
different aspects of the proposed framework, we divide the pre-
sentation of the experimental results into four subsections. We
first incorporate the proposed proximity framework into the
original DE mutation strategies and compare the performance
of each strategy with its “Pro DE” variant (Section VI-A).
Subsequently, we discuss the suitability of the proximity
framework for other well-known DE variants (Section VI-B).
In Section VI-C, the computational cost of the proposed
framework is discussed. Finally, an overall performance com-
parison among all the considered approaches is provided in
Section VI-D.

A. Proximity-Based Framework in DE

In this section, we incorporate the proposed proximity-
based framework in each of the six original DE mutation
strategies. To maintain a reliable and fair comparison we
employ parameter settings that are extensively used in the
literature. In more detail, the parameter settings used are:

1) population size, NP = 100 [15], [31], [75];
2) mutation factor F = 0.5 [7], [15], [29], [31];
3) recombination factor CR = 0.9 [7], [15], [29], [31].

The population for all DE variants, over all the benchmark
functions, was initialized using a uniform random number
distribution with the same random seeds.

To evaluate the performance of the algorithms we will
use the solution error measure, defined as f (x′) − f (x�),
where x� is the global optimum of the benchmark function
and x′ is the best solution achieved after 104 · D function
evaluations [78], where D is the dimensionality of the prob-
lem at hand. Each algorithm was executed independently
100 times, to obtain an estimate of the mean solution error
and its standard deviation. For each pair of original mutation
strategy and its proximity-based variant, we use boldface font
to indicate the best performance in terms of mean solution
error. To evaluate the statistical significance of the observed

performance differences we apply a two-sided Wilcoxon rank
sum test between the original mutation strategies and their
proximity-based variants. The null hypothesis in each test is
that the samples compared are independent samples from iden-
tical continuous distributions with equal medians. We mark
with “+” the cases when the null hypothesis is rejected at the
5% significance level and the proximity-based variant exhibits
superior performance, with “−” when the null hypothesis is
rejected at the same level of significance and the proximity-
based variant exhibits inferior performance and with “=” when
the performance difference is not statistically significant. At
the bottom of each table, for each pair, we also show the
total number of the aforementioned statistical significant cases
(+/=/−). Finally, we underline the algorithm that exhibits the
best result in each benchmark function.

Table I reports the results on the 30-dimensional version
of the CEC 2005 benchmark set. We observe that for the
explorative mutation strategies, DE/rand/1 and DE/rand/2,
the incorporation of the proximity-based framework yields
significant performance, with the best results obtained for
DE/rand/1. For DE/rand/2, it exhibits substantial performance
improvement in most of the unimodal functions (cf1−cf6) with
the exception of cf5. Furthermore, there are five hybrid compo-
sition multimodal functions in which the proposed framework
deteriorates performance slightly (cf18 − cf20, cf22 and cf25).
The framework, however, yields a significant improvement
in the other five hybrid functions (cf16, cf17, cf21, cf23, and
cf24). For DE/current-to-best/2 although the mean error is
smaller in most cases the improvement is significant in seven
cases. In this strategy, the proposed framework does not
hinder the algorithm’s performance on the hybrid multimodal
functions.

For the two exploitative strategies, DE/best/1, DE/current-
to-best/1, the proximity-based framework does not yield
similar performance improvement. DE/best/1 in most of the
unimodal and multimodal functions exhibits either marginal
improvement (cf3, cf7, cf9, cf12, cf15, and cf24) or an equal
performance, while in five hybrid functions the proposed
framework deteriorates performance slightly (cf18 −cf20, cf22,
and cf25). DE/current-to-best/1 is not improved by the
proximity-based framework. In general, this strategy produces
the largest errors, which indicate its inability to locate global
minimizers. This is more evident for the unimodal functions
cf1–cf5. This behavior also explains the inability of the
proposed approach to improve it. DE/current-to-best/1 is so
exploitative that it has difficulty in locating the minimizers.
This implies that it is highly unlikely for this strategy to
produce a local structure that could be exploited from the
proximity framework. Note also that this strategy utilizes only
two random individuals to generate an offspring, whereas the
similar and also exploitative DE/current-to-best/2 strategy uses
four. Finally, despite the exploitative character of DE/best/2 the
proximity framework enhances its performance in most mul-
timodal and hybrid functions. The original DE/best/2 exhibits
superior performance in five cases only (cf5, cf7, cf14, cf22,
and cf25). It must be noted that qualitatively similar results
were also obtained for the YAO benchmark function set [75],
but due to space limitations, so we do not present them here.



EPITROPAKIS et al.: ENHANCING DIFFERENTIAL EVOLUTION UTILIZING PROXIMITY-BASED MUTATION OPERATORS 109

TABLE I

Error Values of the Original DE Mutation Strategies and Their Corresponding Proximity-Based Variants Over the

30-Dimensional CEC 2005 Benchmark Set

DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 Pro DE/current-to-best/1

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 1.537e+02 2.477e+02 3.054e+02 2.926e+02 −
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 1.973e+03 1.338e+03 2.137e+03 1.163e+03 =
cf3 2.756e+04 1.713e+04 1.493e+04 1.042e+04 + 5.077e+05 3.724e+05 4.096e+05 2.338e+05 = 2.689e+06 2.711e+06 3.130e+06 2.395e+06 =
cf4 2.159e+02 3.773e+02 3.092e+02 6.702e+02 = 2.410e−02 2.700e−02 1.700e−03 3.406e−03 + 3.669e+02 3.578e+02 4.871e+02 4.515e+02 =
cf5 1.555e+03 1.081e+03 2.184e+03 7.268e+02 − 1.470e−02 3.191e−02 1.183e+02 1.372e+02 − 4.603e+03 9.657e+02 5.766e+03 1.365e+03 −
cf6 1.595e+00 1.973e+00 1.435e+00 1.933e+00 = 2.255e+00 1.406e+00 3.625e+00 2.985e+00 − 9.147e+06 1.154e+07 2.884e+07 6.154e+07 −
cf7 4.764e+03 1.943e+02 4.696e+03 1.837e−12 + 4.696e+03 7.709e−03 4.696e+03 1.837e−12 − 5.001e+03 2.009e+02 5.242e+03 1.685e+02 −
cf8 2.095e+01 6.008e−02 2.101e+01 6.060e−02 − 2.094e+01 4.480e−02 2.094e+01 5.320e−02 = 2.094e+01 5.006e−02 2.093e+01 6.071e−02 =
cf9 1.058e+02 2.711e+01 9.199e+01 2.454e+01 + 1.325e+02 2.453e+01 1.641e+01 5.282e+00 + 6.895e+01 1.639e+01 8.097e+01 1.884e+01 −
cf10 1.306e+02 4.933e+01 1.379e+02 3.634e+01 = 1.822e+02 7.871e+00 3.298e+01 1.293e+01 + 8.895e+01 2.839e+01 1.001e+02 2.865e+01 −
cf11 2.188e+01 4.143e+00 2.295e+01 4.283e+00 = 3.903e+01 1.224e+00 1.180e+01 4.040e+00 + 1.447e+01 2.950e+00 1.753e+01 3.331e+00 −
cf12 5.717e+04 5.796e+04 1.250e+03 1.787e+03 + 2.553e+04 2.188e+04 2.366e+03 2.147e+03 + 6.172e+04 4.360e+04 2.441e+04 1.407e+04 +
cf13 9.802e+00 3.429e+00 1.079e+01 3.937e+00 = 1.542e+01 8.584e−01 2.813e+00 6.075e−01 + 5.306e+00 3.302e+00 5.056e+00 2.991e+00 =
cf14 1.217e+01 6.716e−01 1.250e+01 6.501e−01 − 1.356e+01 1.382e−01 1.315e+01 2.160e−01 + 1.194e+01 3.418e−01 1.172e+01 3.394e−01 +
cf15 5.226e+02 8.110e+01 4.493e+02 9.302e+01 + 2.520e+02 8.862e+01 3.960e+02 5.330e+01 − 4.339e+02 8.339e+01 4.594e+02 1.039e+02 =
cf16 2.825e+02 1.383e+02 2.476e+02 1.195e+02 = 2.187e+02 3.637e+01 5.613e+01 5.055e+01 + 2.228e+02 1.639e+02 2.333e+02 1.672e+02 =
cf17 3.199e+02 1.488e+02 2.614e+02 1.284e+02 = 2.461e+02 5.148e+01 8.541e+01 5.296e+01 + 2.346e+02 1.639e+02 2.062e+02 1.429e+02 =
cf18 9.292e+02 3.065e+01 9.477e+02 3.631e+01 − 9.034e+02 4.932e−01 8.824e+02 4.422e+01 + 9.504e+02 2.106e+01 9.609e+02 3.898e+01 −
cf19 9.235e+02 1.746e+01 9.394e+02 4.490e+01 − 9.033e+02 2.236e−01 8.975e+02 2.907e+01 + 9.518e+02 2.114e+01 9.661e+02 3.295e+01 −
cf20 9.305e+02 3.041e+01 9.510e+02 3.363e+01 − 9.033e+02 2.022e−01 8.952e+02 3.211e+01 + 9.411e+02 2.931e+01 9.582e+02 4.699e+01 −
cf21 8.314e+02 3.085e+02 6.858e+02 2.950e+02 = 5.582e+02 1.762e+02 5.000e+02 0.000e+00 + 8.315e+02 2.839e+02 9.096e+02 2.673e+02 =
cf22 9.952e+02 8.255e+01 1.051e+03 5.977e+01 − 8.591e+02 1.389e+01 9.031e+02 9.625e+00 − 9.777e+02 4.260e+01 9.999e+02 3.521e+01 −
cf23 8.146e+02 3.087e+02 7.263e+02 2.973e+02 = 5.697e+02 1.907e+02 5.060e+02 4.243e+01 + 8.596e+02 2.878e+02 8.808e+02 2.743e+02 =
cf24 9.725e+02 2.424e+02 3.463e+02 3.530e+02 + 9.785e+02 1.124e+02 2.000e+02 0.000e+00 + 5.809e+02 3.556e+02 5.932e+02 3.758e+02 =
cf25 1.675e+03 1.595e+01 1.713e+03 1.701e+01 − 1.649e+03 2.918e+00 1.641e+03 6.573e+00 + 1.669e+03 1.306e+01 1.700e+03 1.108e+01 −

Total number of (+/=/−): 6/11/8 16/4/5 2/11/12

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 Pro DE/current-to-best/2

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 4.075e−01 1.397e−01 0.000e+00 0.000e+00 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 2.789e+03 6.676e+02 1.225e+02 4.465e+01 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf3 1.842e+05 9.642e+04 1.245e+05 7.092e+04 + 3.793e+07 8.031e+06 4.471e+06 1.323e+06 + 8.594e+04 5.361e+04 5.417e+04 4.670e+04 +
cf4 3.477e+02 1.951e+03 2.000e−05 1.414e−04 + 6.998e+03 1.553e+03 8.728e+02 3.046e+02 + 0000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf5 4.586e+01 3.180e+02 6.732e+01 1.132e+02 − 1.611e+03 4.637e+02 2.060e+03 2.780e+02 − 0.000e+00 0.000e+00 9.150e−02 6.274e−02 −
cf6 5.582e−01 1.397e+00 1.196e+00 1.846e+00 = 3.612e+03 1.890e+03 1.960e+01 8.975e−01 + 1.595e−01 7.892e−01 2.392e−01 9.565e−01 =
cf7 4.609e+03 1.184e+02 4.696e+03 6.966e−03 − 4.671e+03 2.017e+01 4.811e+03 1.310e+01 − 4.695e+03 5.519e+00 4.696e+03 1.837e−12 −
cf8 2.095e+01 4.929e−02 2.094e+01 5.294e−02 = 2.095e+01 4.303e−02 2.095e+01 5.467e−02 = 2.095e+01 4.476e−02 2.094e+01 6.119e−02 =
cf9 1.725e+02 1.609e+01 4.493e+01 1.113e+01 + 2.061e+02 1.248e+01 1.878e+02 1.001e+01 + 1.694e+02 9.850e+00 1.724e+02 8.759e+00 =
cf10 1.985e+02 1.780e+01 1.306e+02 6.338e+01 + 2.321e+02 1.113e+01 2.061e+02 1.149e+01 + 1.898e+02 1.147e+01 1.899e+02 8.673e+00 =
cf11 3.231e+01 9.431e+00 3.133e+01 1.200e+01 = 3.967e+01 1.051e+00 3.964e+01 1.050e+00 = 3.960e+01 1.126e+00 3.964e+01 1.048e+00 =
cf12 1.487e+05 2.571e+05 2.233e+03 3.439e+03 + 9.199e+05 1.270e+05 2.588e+05 1.100e+05 + 4.450e+04 7.800e+04 1.285e+03 1.542e+03 +
cf13 1.607e+01 1.464e+00 3.856e+00 1.783e+00 + 2.360e+01 1.429e+00 1.738e+01 9.139e−01 + 1.584e+01 9.103e−01 1.534e+01 8.793e−01 +
cf14 1.309e+01 2.856e−01 1.329e+01 1.842e−01 − 1.373e+01 1.527e−01 1.339e+01 1.586e−01 + 1.343e+01 1.627e−01 1.329e+01 1.253e−01 +
cf15 4.284e+02 7.646e+01 3.556e+02 1.130e+02 + 4.220e+02 7.917e+01 4.020e+02 1.414e+01 = 3.439e+02 1.107e+02 3.790e+02 9.150e+01 =
cf16 2.971e+02 9.141e+01 2.358e+02 1.330e+02 + 2.793e+02 3.921e+01 2.317e+02 1.016e+01 + 2.953e+02 9.467e+01 2.633e+02 7.366e+01 =
cf17 3.334e+02 1.004e+02 3.122e+02 1.191e+02 = 3.068e+02 3.873e+01 2.565e+02 1.290e+01 + 3.024e+02 8.764e+01 2.779e+02 8.574e+01 =
cf18 9.071e+02 3.466e+00 9.004e+02 3.010e+01 + 9.063e+02 1.813e−01 9.096e+02 1.215e+00 − 9.055e+02 1.686e+00 8.911e+02 3.720e+01 =
cf19 9.117e+02 2.165e+01 8.985e+02 3.329e+01 + 9.062e+02 1.883e−01 9.096e+02 1.102e+00 − 9.054e+02 1.552e+00 8.784e+02 4.699e+01 =
cf20 9.078e+02 4.287e+00 8.936e+02 3.825e+01 = 9.062e+02 2.183e−01 9.096e+02 1.019e+00 − 9.053e+02 1.561e+00 8.888e+02 3.918e+01 =
cf21 1.030e+03 1.833e+02 5.603e+02 1.218e+02 + 8.957e+02 2.830e+02 5.000e+02 0.000e+00 + 9.477e+02 2.542e+02 5.300e+02 9.091e+01 +
cf22 8.980e+02 3.467e+01 9.277e+02 1.944e+01 − 8.553e+02 1.974e+01 9.459e+02 7.421e+00 − 8.754e+02 2.075e+01 9.124e+02 1.066e+01 −
cf23 1.025e+03 1.808e+02 5.528e+02 1.233e+02 + 8.680e+02 2.891e+02 5.000e+02 0.000e+00 + 1.004e+03 2.055e+02 5.180e+02 7.197e+01 +
cf24 9.185e+02 9.400e+01 2.000e+02 0.000e+00 + 9.814e+02 2.377e+01 2.000e+02 0.000e+00 + 9.913e+02 1.666e+01 2.000e+02 0.000e+00 +
cf25 1.644e+03 1.286e+01 1.659e+03 1.112e+01 − 1.651e+03 2.052e+00 1.688e+03 3.247e+00 − 1.653e+03 5.448e+00 1.672e+03 3.710e+00 −

Total number of (+/=/−): 13/7/5 15/3/7 7/14/4

We further evaluate the proposed framework on the 50-
dimensional version of the CEC 2005 set of benchmark
functions. Higher dimensional problems are typically harder
to solve and a common practice is to employ a larger pop-
ulation size. At present, we increased the population size
to 200, but we did not attempt to fine tune this parameter
to obtain optimal performance. In this set of experiments
algorithms terminated after performing 500 000 function eval-
uations [78]. The results summarized in Table II indicate that
the behavior on the 50-dimensional benchmark function set

is very similar to that on the 30-dimensional benchmark.
The main difference is that the improvement of using the
proximity-based approach is now statistically significant in
the majority of the test functions. Despite the exploitative
character of the DE/current-to-best/2 strategy its proximity-
based modification is superior in most of the unimodal,
multimodal, and hybrid composition functions in this bench-
mark function set. On the other hand, the proximity frame-
work does not improve the exploitative operator DE/current-
to-best/1 strategy, while there is a marginal improvement
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TABLE II

Error Values of the Original DE Mutation Strategies and Their Corresponding Proximity-Based Variants Over the

50-Dimensional CEC 2005 Benchmark Set

DE/best/1 Pro DE/best/1 DE/rand/1 Pro DE/rand/1 DE/current-to-best/1 Pro DE/current-to-best/1

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 2.198e+02 1.792e+02 5.241e+02 3.542e+02 −
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 3.960e+03 9.307e+02 3.254e+02 1.093e+02 + 2.136e+03 1.128e+03 2.662e+03 1.368e+03 −
cf3 3.270e+05 1.439e+05 1.440e+05 7.123e+04 + 5.404e+07 1.310e+07 7.509e+06 1.766e+06 + 1.089e+07 6.857e+06 1.196e+07 6.456e+06 =
cf4 3.473e+03 3.649e+03 1.133e+03 1.312e+03 + 1.180e+04 3.332e+03 2.476e+03 6.914e+02 + 1.489e+03 1.068e+03 1.532e+03 1.042e+03 =
cf5 4.674e+03 1.098e+03 4.608e+03 1.038e+03 = 1.709e+03 6.938e+02 2.192e+03 2.949e+02 − 7.462e+03 1.326e+03 7.982e+03 1.078e+03 −
cf6 8.771e−01 1.668e+00 1.116e+00 1.808e+00 = 4.231e+01 1.182e+01 3.855e+01 1.776e+01 + 1.078e+07 1.237e+07 3.382e+07 3.099e+07 −
cf7 6.235e+03 1.902e+02 6.195e+03 4.594e−12 + 6.195e+03 4.594e−12 6.199e+03 5.281e−01 − 6.669e+03 1.795e+02 6.771e+03 1.407e+02 −
cf8 2.113e+01 3.904e−02 2.113e+01 3.087e−02 = 2.114e+01 3.330e−02 2.114e+01 4.345e−02 = 2.113e+01 4.841e−02 2.112e+01 3.798e−02 =
cf9 2.091e+02 4.272e+01 1.951e+02 3.987e+01 = 3.468e+02 1.199e+01 1.382e+02 1.366e+01 + 1.406e+02 2.939e+01 1.554e+02 2.977e+01 −
cf10 2.378e+02 5.911e+01 2.617e+02 6.366e+01 = 3.763e+02 1.578e+01 3.529e+02 1.482e+01 + 1.717e+02 4.524e+01 2.107e+02 4.353e+01 −
cf11 4.269e+01 7.379e+00 4.210e+01 5.234e+00 = 7.264e+01 1.212e+00 7.263e+01 1.614e+00 = 2.950e+01 4.451e+00 3.141e+01 5.123e+00 −
cf12 2.749e+05 2.925e+05 6.740e+03 6.345e+03 + 2.049e+06 5.887e+05 9.192e+03 7.919e+03 + 2.505e+05 1.137e+05 7.933e+04 3.736e+04 +
cf13 2.281e+01 7.498e+00 2.107e+01 7.419e+00 = 3.296e+01 1.446e+00 2.238e+01 2.494e+00 + 1.412e+01 8.942e+00 1.546e+01 9.144e+00 =
cf14 2.179e+01 5.072e−01 2.108e+01 7.160e−01 + 2.339e+01 1.486e−01 2.304e+01 1.389e−01 + 2.186e+01 4.091e−01 2.183e+01 5.069e−01 =
cf15 4.990e+02 7.981e+01 4.248e+02 5.845e+01 + 2.047e+02 2.819e+01 4.000e+02 0.000e+00 − 4.489e+02 5.001e+01 4.298e+02 4.158e+01 =
cf16 2.520e+02 1.058e+02 2.391e+02 1.044e+02 = 2.715e+02 1.470e+01 2.479e+02 9.706e+00 + 1.812e+02 1.157e+02 1.806e+02 1.001e+02 =
cf17 2.616e+02 9.805e+01 2.772e+02 1.097e+02 = 3.049e+02 2.457e+01 2.735e+02 1.049e+01 + 1.724e+02 8.798e+01 1.840e+02 1.064e+02 =
cf18 9.519e+02 2.242e+01 9.958e+02 2.375e+01 − 9.151e+02 6.997e−01 8.928e+02 4.981e+01 + 9.745e+02 1.704e+01 9.930e+02 1.688e+01 −
cf19 9.489e+02 1.704e+01 9.903e+02 2.706e+01 − 9.154e+02 5.033e−01 8.836e+02 5.534e+01 + 9.753e+02 1.585e+01 9.914e+02 1.853e+01 −
cf20 9.509e+02 2.111e+01 9.868e+02 2.346e+01 − 9.153e+02 5.553e−01 9.001e+02 4.417e+01 + 9.736e+02 2.018e+01 9.962e+02 1.766e+01 −
cf21 1.042e+03 2.088e+01 6.970e+02 3.033e+02 + 1.004e+03 1.101e+00 5.000e+02 0.000e+00 + 7.930e+02 2.516e+02 9.818e+02 2.708e+02 −
cf22 9.837e+02 4.562e+01 1.071e+03 4.943e+01 − 9.061e+02 3.577e+00 9.586e+02 1.018e+01 − 1.020e+03 3.024e+01 1.058e+03 2.456e+01 −
cf23 1.005e+03 1.366e+02 6.700e+02 2.821e+02 + 1.003e+03 1.029e+00 5.000e+02 0.000e+00 + 7.381e+02 2.312e+02 8.923e+02 2.823e+02 −
cf24 1.103e+03 7.326e+01 1.126e+03 3.130e+02 − 1.038e+03 1.717e+00 2.000e+02 0.000e+00 + 1.022e+03 3.010e+02 1.180e+03 1.258e+02 −
cf25 1.715e+03 1.764e+01 1.777e+03 1.898e+01 − 1.688e+03 2.591e+00 1.709e+03 3.603e+00 − 1.717e+03 1.094e+01 1.755e+03 1.220e+01 −

Total number of (+/=/−): 8/11/6 17/3/5 1/8/16

DE/best/2 Pro DE/best/2 DE/rand/2 Pro DE/rand/2 DE/current-to-best/2 Pro DE/current-to-best/2

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 6.899e+03 8.880e+02 1.217e+02 3.143e+01 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 6.836e+01 8.537e+01 5.139e+00 2.709e+00 + 9.715e+04 8.252e+03 5.834e+04 6.223e+03 + 5.934e+02 1.328e+02 1.028e+02 2.798e+01 +
cf3 4.328e+06 1.598e+06 2.641e+06 9.875e+05 + 4.859e+08 6.865e+07 2.687e+08 4.238e+07 + 1.451e+07 2.936e+06 6.597e+06 1.459e+06 +
cf4 5.346e+03 6.011e+03 1.523e+03 8.763e+02 + 1.390e+05 1.502e+04 7.970e+04 8.841e+03 + 4.268e+03 9.739e+02 2.107e+03 5.709e+02 +
cf5 2.746e+03 1.769e+03 2.740e+03 5.324e+02 = 2.126e+04 1.720e+03 1.785e+04 9.111e+02 + 1.035e+03 1.155e+03 2.287e+03 5.298e+02 −
cf6 1.439e+01 1.028e+01 3.434e+00 2.767e+00 + 6.040e+08 1.238e+08 4.587e+05 1.577e+05 + 2.583e+01 1.463e+01 1.622e+01 1.196e+01 +
cf7 6.205e+03 5.419e+01 6.322e+03 3.314e+01 − 6.201e+03 2.003e+00 8.391e+03 1.181e+02 − 6.195e+03 4.594e−12 6.236e+03 6.720e+00 −
cf8 2.114e+01 3.572e−02 2.114e+01 3.384e−02 = 2.114e+01 3.143e−02 2.113e+01 4.171e−02 = 2.113e+01 3.968e−02 2.113e+01 3.402e−02 =
cf9 3.806e+02 3.573e+01 2.777e+02 1.001e+02 + 4.596e+02 1.477e+01 4.413e+02 1.935e+01 + 3.653e+02 1.772e+01 3.933e+02 1.873e+01 −
cf10 4.223e+02 2.514e+01 4.072e+02 2.742e+01 + 5.344e+02 1.467e+01 4.671e+02 1.751e+01 + 3.988e+02 1.363e+01 4.067e+02 2.008e+01 −
cf11 7.050e+01 7.783e+00 7.286e+01 1.513e+00 = 7.253e+01 1.553e+00 7.287e+01 1.267e+00 = 7.309e+01 1.275e+00 7.249e+01 1.681e+00 =
cf12 3.813e+05 3.877e+05 6.504e+03 6.901e+03 + 4.879e+06 3.996e+05 2.425e+06 1.833e+05 + 1.538e+05 2.758e+05 1.147e+05 1.969e+05 +
cf13 3.396e+01 2.146e+00 3.088e+01 2.132e+00 + 2.873e+05 1.109e+05 4.247e+01 1.876e+00 + 3.366e+01 1.824e+00 3.293e+01 1.321e+00 +
cf14 2.314e+01 2.062e−01 2.306e+01 1.928e−01 = 2.360e+01 1.387e−01 2.318e+01 1.702e−01 + 2.328e+01 1.458e−01 2.305e+01 1.407e−01 +
cf15 3.927e+02 5.897e+01 2.791e+02 8.862e+01 + 9.125e+02 1.553e+01 4.453e+02 2.914e+00 + 2.760e+02 8.419e+01 3.240e+02 1.079e+02 =
cf16 3.278e+02 4.836e+01 3.120e+02 4.674e+01 + 3.805e+02 1.884e+01 3.251e+02 1.166e+01 + 3.225e+02 4.977e+01 3.001e+02 3.625e+01 =
cf17 3.666e+02 5.547e+01 3.562e+02 5.005e+01 = 4.378e+02 2.531e+01 3.772e+02 1.603e+01 + 3.428e+02 4.725e+01 3.329e+02 3.840e+01 =
cf18 9.202e+02 8.482e+00 8.871e+02 1.268e+02 + 9.412e+02 6.037e+00 1.001e+03 6.688e+00 − 9.157e+02 1.964e+00 8.088e+02 2.127e+02 +
cf19 9.193e+02 6.276e+00 9.172e+02 3.634e+01 + 9.398e+02 5.601e+00 1.000e+03 6.091e+00 − 9.156e+02 8.459e−01 8.610e+02 1.703e+02 +
cf20 9.192e+02 6.324e+00 8.786e+02 1.520e+02 + 9.408e+02 5.730e+00 1.000e+03 6.548e+00 − 9.154e+02 1.449e+00 8.687e+02 1.274e+02 +
cf21 1.011e+03 3.265e+01 5.240e+02 8.221e+01 + 1.028e+03 2.190e+00 5.307e+02 7.809e+00 + 1.005e+03 3.089e+00 5.060e+02 4.243e+01 +
cf22 9.445e+02 3.246e+01 9.878e+02 1.545e+01 − 9.253e+02 1.030e+01 1.106e+03 1.330e+01 − 9.193e+02 1.592e+01 9.804e+02 1.410e+01 −
cf23 1.011e+03 3.223e+01 5.000e+02 0.000e+00 + 1.028e+03 2.243e+00 5.291e+02 6.513e+00 + 1.007e+03 7.759e+00 5.180e+02 7.197e+01 +
cf24 1.039e+03 1.774e+01 2.000e+02 0.000e+00 + 1.043e+03 7.243e+00 3.313e+02 3.470e+01 + 1.041e+03 4.154e+00 2.000e+02 0.000e+00 +
cf25 1.685e+03 8.853e+00 1.722e+03 6.387e+00 − 1.697e+03 2.288e+00 1.798e+03 5.523e+00 − 1.692e+03 3.666e+00 1.732e+03 3.349e+00 −

Total number of (+/=/−): 16/6/3 17/6/2 13/6/6

for DE/best/1 in two unimodal and six multimodal func-
tions.

Overall, the comparison of each of the original DE mutation
strategies with its proximity-based variant indicates that the
proposed framework significantly improves the explorative
strategies. Exploitative strategies are not improved when the
original strategy is already too greedy and on some hard highly
multimodal functions. Note, however, that in relatively few
of the latter cases the proximity-based framework deteriorates
performance significantly.

B. Comparison Against Other DE Variants

In this subsection, we apply the proximity-based framework
on eight well-known and widely used DE variants. Specifi-
cally, we implement the proximity framework on: 1) the trigo-
nometric differential evolution (TDE) [39]; 2) the opposition
based differential evolution (ODE) [40], [41]; 3) the differen-
tial evolution with global and local neighborhoods (DEGL)
[25], [42]; 4) the balanced differential evolution (BDE) [22];
5) the self-adaptive control parameters in DE algorithm
(jDE) [31]; 6) the adaptive differential evolution with optional
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external archive algorithm (JADE) [18], [26]; 7) the differen-
tial evolution algorithm with strategy adaptation (SaDE) [27],
[43]; and 8) the differential evolution algorithm with random
localization (DERL) [44].

We evaluate the performance of the eight DE variants
and their corresponding proximity-based modifications over
the 30-dimensional version of the CEC 2005 function set.
Table III reports the experimental results for the first six DE
variants, TDE, ODE, BDE, jDE, JADE, and SaDE. The results
show that the proximity framework influences substantially
the performance of TDE, jDE, and ODE. Specifically, in nine
functions the performance of TDE is not significantly different
from that of Pro TDE. In 11 of the 25 functions Pro TDE
achieves a significantly better performance. The benefit from
the proximity framework is evident in the unimodal function
cf5, most of the basic multimodal functions, the two expanded
functions (cf13 and cf14), and in most of the hybrid compo-
sition functions (cf16 − cf20 and cf24). TDE is significantly
better than Pro TDE in only four functions (cf4, cf15, cf22,

and cf25). Overall therefore, TDE is substantially enhanced
through the proximity framework. Note that TDE is based on
DE/rand/1 and the proximity-based framework has been shown
to substantially improve this strategy.

For the opposition-based DE, we observe that the proximity
framework efficiently exploits the population structure and
guides the evolution toward more promising solutions. As
Table III indicates, Pro ODE outperforms ODE in 14 cases and
exhibits similar performance in seven functions. Particularly,
in four out of five unimodal functions Pro ODE produces lower
mean error values. The performance difference is statistically
significant in cf1 and cf5, while in cf2 and cf4 it is not.
Moreover, in basic multimodal and expanded functions Pro
ODE performs either as well as ODE (cf7, cf8, cf10, and
cf13) or significantly better (cf6, cf9, cf11, cf12, and cf14).
On the other hand, ODE is significantly superior only in
four test functions (cf3, cf15, cf22, and cf25). Furthermore,
the proximity framework produces substantial improvement
in the optimization of hybrid composition functions which
are characterized by a huge number of local minima. Pro
ODE significantly outperforms ODE in seven out of 11 hybrid
composition functions, (cf16, cf17, cf19 − cf21, cf23, and cf24).
Note that although the population in ODE changes rapidly,
due to the opposition mechanism, the proximity approach
efficiently exploits the population structure and guides the evo-
lution process successfully toward more promising solutions.

Pro BDE either enhances BDE or performs equally well.
In more detail, BDE is enhanced by the proximity framework
in nine functions (three unimodal and six multimodal), while
the performance of the two is not statistically different in the
majority of functions (13 of the 25 functions). The impact
of the proximity framework is evident in the expanded and
hybrid composition functions (cf13, cf15, cf18−cf20, and cf22).
Moreover, BDE significantly outperforms Pro BDE only in
three functions (cf3, cf14, and cf23).

jDE is substantially enhanced by the proximity framework.
Pro jDE exhibits either significantly better or similar per-
formance in 23 of the 25 functions. Only in cf3 and cf25

jDE significantly outperforms Pro jDE. More specifically, in

the unimodal functions Pro jDE is significantly better in cf3

and cf4 and exhibits similar performance in cf1 and cf2. In
the basic multimodal functions, Pro jDE generally produces
smaller or equal mean error to jDE (cf6 − cf12 except for
cf9) and a significant enhancement in cf6, cf10, and cf11. In
cf12 and cf7 − cf9 the performance of the two algorithms
is not statistically different. In the next two functions (cf13

and cf14), Pro jDE exhibits lower mean error and in cf14 the
difference is statistically significant. Finally, in most of the
hybrid composition functions (cf15 − cf25) Pro jDE clearly
outperforms jDE. The only case where jDE appears superior is
cf25. Recall that jDE utilizes the DE/rand/1 mutation strategy,
which is greatly improved by the proximity framework.

Pro JADE exhibits either similar or better performance in
18 out of the 25 functions. Specifically, Pro JADE achieves
significantly better performance on two unimodal functions
(cf4 and cf5) and four of the hybrid composition functions
(cf19, cf20, cf23, and cf24). JADE outperforms Pro JADE in
seven functions, cf3, cf7, cf10, cf13, cf15, cf22, and cf25, most
of which are multimodal.

Pro SaDE demonstrates either similar or significantly better
performance in 22 functions (cf5, cf9, cf16, cf17, cf19, cf20,

and cf22). As for the previous algorithms, the impact of the
proximity framework is evident mostly in hybrid composi-
tion functions. In five of these functions, Pro SaDE attains
a statistically significant performance improvement. SaDE
significantly outperforms its proximity variant only in three
functions (cf10, cf11, and cf14). The obtained results show
that the proximity framework rarely hinders the performance
of the efficient self adaptive algorithms, such as JADE and
SaDE. Incorporating the proposed framework typically yields
algorithms with similar or better performance, especially in
functions with a multitude of local minima, like the hybrid
composition functions.

DEGL is inspired from PSO and incorporates the concept
of index neighborhoods [25], [42]. The DEGL algorithm
combines a local and a global mutation model to produce
the mutant individual. In the local model, which promotes
exploration, a neighborhood based on indices is implemented
to select individuals. In the global model, individuals from
the entire population can be selected. Therefore, the proximity
framework, and thus the concept of “real” neighborhoods, can
be incorporated in more than one ways. We denote by Pro
DEGL1 the variant of DEGL in which Pro DE is incorporated
only in the global model. In this case the global model uses
as parents the two individuals closer to the current one, as
given by the proximity framework. A second DEGL variant
(Pro DEGL2) is considered in which the proximity framework
is incorporated in both the local and global models. In this
variant, four individuals are selected through the proximity
framework. To retain the intuition of DEGL, the two individ-
uals closer to the current one are used in the global model, to
promote exploitation, while the other two are utilized in the
local model, to promote exploration.

Table IV summarizes the experimental results for DEGL
and DERL on the 30-dimensional version of the CEC 2005
function set. Both Pro DEGL1 and Pro DEGL2 signifi-
cantly outperform DEGL in 13 and 12 cases, respectively.



112 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

TABLE III

Error Values of the Original TDE, ODE, BDE, jDE, JADE, SaDE Algorithms and Their Corresponding Proximity-Based Variants

Over the 30-Dimensional CEC 2005 Benchmark Set

TDE Pro TDE ODE Pro ODE BDE Pro BDE

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 3.970e−02 2.269e−01 0.000e+00 0.000e+00 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 4.200e−03 1.807e−02 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf3 5.003e+05 2.907e+05 5.462e+05 2.061e+05 = 3.836e+05 1.538e+05 5.639e+05 2.855e+05 − 4.219e+04 3.647e+04 6.101e+04 2.946e+04 −
cf4 6.200e−04 3.149e−03 3.340e−03 3.008e−03 − 2.314e−02 5.476e−02 1.352e−02 2.317e−02 = 1.443e+00 1.020e+01 0.000e+00 0.000e+00 +
cf5 1.159e+03 5.486e+02 8.294e+02 2.541e+02 + 3.889e+02 3.428e+02 1.663e+02 1.741e+02 + 3.288e+02 3.649e+02 5.469e+00 1.676e+01 +
cf6 3.449e+02 2.024e+03 2.942e+01 1.750e+01 + 1.359e+06 6.516e+06 5.773e+01 4.148e+01 + 1.834e+00 2.007e+00 1.276e+00 1.879e+00 =
cf7 4.696e+03 1.837e−12 4.696e+03 1.837e−12 = 4.696e+03 1.837e−12 4.696e+03 1.837e−12 = 4.711e+03 9.901e+01 4.623e+03 1.469e+02 +
cf8 2.095e+01 4.631e−02 2.094e+01 5.047e−02 = 2.095e+01 5.900e−02 2.095e+01 5.184e−02 = 2.093e+01 5.278e−02 2.095e+01 4.741e−02 =
cf9 1.524e+01 1.117e+01 1.386e+01 3.761e+00 = 1.933e+01 7.090e+00 1.605e+01 3.897e+00 + 5.415e+01 3.564e+01 5.095e+01 1.720e+01 =
cf10 1.657e+02 9.457e+00 1.642e+02 9.791e+00 = 3.737e+01 1.559e+01 3.763e+01 1.277e+01 = 8.273e+01 6.000e+01 5.573e+01 2.685e+01 =
cf11 3.938e+01 1.149e+00 3.844e+01 2.311e+00 + 1.739e+01 7.264e+00 7.848e+00 3.340e+00 + 2.839e+01 1.077e+01 2.610e+01 1.158e+01 =
cf12 2.819e+04 3.015e+04 4.222e+03 4.758e+03 + 2.258e+04 2.525e+04 3.071e+03 2.391e+03 + 4.237e+04 9.659e+04 4.344e+04 6.796e+04 =
cf13 1.278e+01 1.747e+00 3.730e+00 2.095e+00 + 2.953e+00 5.820e−01 2.903e+00 6.246e−01 = 6.280e+00 4.015e+00 4.523e+00 3.235e+00 +
cf14 1.333e+01 2.021e−01 1.321e+01 1.943e−01 + 1.326e+01 2.522e−01 1.283e+01 3.995e−01 + 1.274e+01 5.181e−01 1.297e+01 4.022e−01 −
cf15 3.087e+02 1.012e+02 3.860e+02 5.718e+01 − 3.353e+02 1.058e+02 4.201e+02 5.727e+01 − 4.086e+02 7.225e+01 3.738e+02 9.279e+01 +
cf16 2.261e+02 6.978e+01 1.744e+02 8.096e+01 + 9.672e+01 7.248e+01 5.408e+01 1.965e+01 + 2.383e+02 1.574e+02 2.629e+02 1.751e+02 =
cf17 2.609e+02 8.430e+01 1.948e+02 1.212e+01 + 9.586e+01 7.529e+01 7.417e+01 4.456e+01 + 2.323e+02 1.583e+02 2.436e+02 1.653e+02 =
cf18 9.052e+02 1.992e+00 8.897e+02 3.960e+01 + 9.044e+02 9.994e−01 8.762e+02 4.800e+01 = 9.128e+02 1.057e+01 9.085e+02 4.961e+00 +
cf19 9.050e+02 1.434e+00 8.916e+02 3.740e+01 + 9.045e+02 8.907e−01 8.872e+02 4.131e+01 + 9.167e+02 1.841e+01 9.080e+02 2.881e+00 +
cf20 9.054e+02 1.782e+00 8.920e+02 3.755e+01 + 9.045e+02 1.137e+00 8.849e+02 4.292e+01 + 9.128e+02 7.249e+00 9.085e+02 3.227e+00 +
cf21 5.000e+02 2.622e−01 5.000e+02 0.000e+00 = 5.659e+02 1.822e+02 5.060e+02 4.243e+01 + 6.761e+02 2.593e+02 7.878e+02 2.966e+02 =
cf22 8.667e+02 1.598e+01 9.055e+02 8.301e+00 − 8.703e+02 2.011e+01 9.031e+02 1.054e+01 − 8.988e+02 2.739e+01 8.854e+02 2.141e+01 +
cf23 5.000e+02 9.496e−02 5.000e+02 0.000e+00 = 5.825e+02 2.059e+02 5.120e+02 5.938e+01 + 6.359e+02 2.517e+02 7.579e+02 2.874e+02 −
cf24 4.688e+02 3.784e+02 2.000e+02 0.000e+00 + 6.252e+02 3.965e+02 2.000e+02 0.000e+00 + 7.420e+02 3.589e+02 8.825e+02 2.561e+02 =
cf25 1.620e+03 7.223e+00 1.637e+03 8.744e+00 − 1.631e+03 1.115e+01 1.650e+03 7.670e+00 − 1.636e+03 1.029e+01 1.639e+03 1.025e+01 =

Total number of (+/=/−): 12/9/4 14/7/4 9/13/3

jDE Pro jDE JADE Pro JADE SaDE Pro SaDE

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf3 2.026e+05 1.062e+05 3.981e+05 2.102e+05 − 9.209e+03 6.153e+03 1.849e+04 1.437e+04 − 2.129e+06 9.490e+05 2.280e+06 9.066e+05 =
cf4 3.440e−03 2.304e−02 1.980e−03 4.048e−03 + 3.805e+00 1.914e+01 0.000e+00 0.000e+00 + 2.000e−05 1.414e−04 2.000e−05 1.414e−04 =
cf5 6.614e+02 3.056e+02 1.230e+02 1.151e+02 + 1.963e+02 5.146e+02 5.896e+01 1.073e+02 + 3.935e+02 2.847e+02 5.505e+01 1.186e+02 +
cf6 3.196e+01 2.660e+01 3.352e+00 2.626e+00 + 2.669e+01 6.501e+01 1.886e+01 3.138e+01 = 1.754e+00 1.999e+00 1.356e+00 1.908e+00 =
cf7 4.696e+03 1.837e−12 4.696e+03 1.837e−12 = 4.648e+03 3.002e+01 4.696e+03 1.837e−12 − 4.696e+03 1.837e−12 4.696e+03 1.837e−12 =
cf8 2.095e+01 4.434e−02 2.095e+01 4.420e−02 = 2.095e+01 5.331e−02 2.086e+01 2.927e−01 = 2.094e+01 6.041e−02 2.095e+01 5.220e−02 =
cf9 1.540e+01 3.587e+00 1.707e+01 4.947e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 4.179e−01 1.156e+00 0.000e+00 0.000e+00 +
cf10 1.075e+02 6.888e+01 3.578e+01 1.258e+01 + 6.315e+01 1.052e+01 8.180e+01 1.261e+01 − 9.844e+01 9.514e+00 1.005e+02 3.254e+01 −
cf11 3.931e+01 1.269e+00 1.263e+01 5.744e+00 + 2.974e+01 1.727e+00 3.009e+01 1.567e+00 = 3.204e+01 3.037e+00 3.374e+01 1.434e+00 −
cf12 1.947e+03 1.930e+03 1.849e+03 1.926e+03 = 2.896e+04 1.125e+04 2.634e+04 1.160e+04 = 2.322e+03 5.755e+03 1.478e+03 1.801e+03 =
cf13 4.404e+00 3.329e+00 2.750e+00 6.322e−01 = 2.481e+00 2.885e−01 3.324e+00 2.646e−01 − 3.705e+00 2.470e+00 2.949e+00 2.189e+00 =
cf14 1.329e+01 1.709e−01 1.313e+01 2.069e−01 + 1.296e+01 2.398e−01 1.291e+01 2.298e−01 = 1.295e+01 2.393e−01 1.306e+01 1.949e−01 −
cf15 3.982e+02 7.427e+01 3.960e+02 2.828e+01 = 3.042e+02 1.431e+02 3.707e+02 1.027e+02 − 3.698e+02 6.718e+01 3.864e+02 6.377e+01 =
cf16 1.204e+02 8.210e+01 6.048e+01 5.013e+01 + 1.509e+02 1.264e+02 1.135e+02 5.004e+01 = 1.248e+02 8.672e+01 6.973e+01 3.617e+01 +
cf17 2.336e+02 6.407e+01 8.945e+01 5.773e+01 + 1.872e+02 1.166e+02 1.454e+02 5.668e+01 = 1.340e+02 4.715e+01 7.203e+01 4.306e+01 +
cf18 8.955e+02 3.579e+01 8.870e+02 4.120e+01 + 9.058e+02 1.692e+00 8.600e+02 5.592e+01 = 8.481e+02 5.721e+01 8.555e+02 5.610e+01 =
cf19 8.968e+02 3.265e+01 8.825e+02 4.428e+01 + 9.053e+02 1.377e+00 8.896e+02 4.534e+01 + 8.787e+02 5.459e+01 8.668e+02 5.513e+01 +
cf20 8.906e+02 4.000e+01 8.824e+02 4.424e+01 + 9.056e+02 1.503e+00 8.959e+02 3.915e+01 + 8.694e+02 5.746e+01 8.515e+02 5.638e+01 +
cf21 5.240e+02 8.221e+01 5.000e+02 0.000e+00 + 5.250e+02 1.080e+02 5.060e+02 4.243e+01 = 5.317e+02 1.330e+02 5.000e+02 0.000e+00 =
cf22 9.060e+02 9.828e+00 9.008e+02 9.866e+00 + 8.723e+02 2.491e+01 8.952e+02 2.224e+01 − 9.138e+02 1.285e+01 9.091e+02 8.996e+00 +
cf23 5.180e+02 7.197e+01 5.060e+02 4.243e+01 = 5.359e+02 1.153e+02 5.000e+02 0.000e+00 + 5.000e+02 0.000e+00 5.000e+02 0.000e+00 =
cf24 2.000e+02 0.000e+00 2.000e+02 0.000e+00 = 2.624e+02 2.137e+02 2.000e+02 0.000e+00 + 2.000e+02 0.000e+00 2.000e+02 0.000e+00 =
cf25 1.634e+03 1.126e+01 1.642e+03 7.715e+00 − 1.642e+03 2.921e+00 1.667e+03 2.929e+00 − 1.633e+03 6.407e+00 1.632e+03 6.282e+00 =

Total number of (+/=/−): 13/10/2 6/12/7 7/15/3
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TABLE IV

Error Values of the Original DEGL, DERL Algorithms and Their Corresponding Proximity-Based Variants Over the

30-Dimensional CEC 2005 Benchmark Set

DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 4.700e−03 2.689e−02 =
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf3 4.230e+04 3.707e+04 4.203e+04 2.606e+04 = 3.856e+04 2.575e+04 = 6.926e+04 4.492e+04 8.777e+04 5.098e+04 −
cf4 1.361e+01 4.118e+01 0.000e+00 0.000e+00 + 0.000e+00 0.000e+00 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf5 5.069e+02 5.803e+02 1.907e+01 6.182e+01 + 5.904e+01 3.957e+02 + 1.731e+02 2.921e+02 1.579e+03 4.573e+02 −
cf6 1.196e+00 1.846e+00 1.196e+00 1.846e+00 = 1.515e+00 1.955e+00 = 5.928e+02 1.867e+03 2.568e+06 1.081e+07 −
cf7 4.696e+03 1.177e+00 4.689e+03 8.806e+01 + 4.692e+03 4.524e+01 + 4.696e+03 3.136e−03 4.696e+03 1.837e−12 =
cf8 2.095e+01 4.541e−02 2.094e+01 6.158e−02 = 2.095e+01 3.346e−02 = 2.095e+01 4.599e−02 2.102e+01 4.715e−02 −
cf9 6.477e+01 1.597e+01 3.576e+01 9.749e+00 + 3.801e+01 1.516e+01 + 2.662e+01 8.886e+00 4.498e+01 1.442e+01 −
cf10 7.791e+01 2.079e+01 5.182e+01 1.573e+01 + 5.473e+01 4.157e+01 + 6.202e+01 5.406e+01 5.840e+01 2.172e+01 +
cf11 1.785e+01 3.463e+00 2.008e+01 7.597e+00 = 3.085e+01 1.128e+01 − 3.819e+01 5.133e+00 2.260e+01 5.892e+00 +
cf12 2.529e+04 3.543e+04 2.351e+04 2.413e+04 = 2.233e+04 4.256e+04 = 3.298e+04 3.605e+04 2.360e+03 2.489e+03 +
cf13 6.179e+00 2.930e+00 3.404e+00 2.100e+00 + 6.743e+00 4.258e+00 = 2.931e+00 1.207e+00 4.541e+00 1.509e+00 −
cf14 1.197e+01 4.399e−01 1.244e+01 3.270e−01 − 1.280e+01 4.564e−01 − 1.313e+01 2.643e−01 1.289e+01 4.687e−01 +
cf15 4.310e+02 8.986e+01 3.527e+02 9.868e+01 + 3.619e+02 8.926e+01 + 3.063e+02 9.588e+01 3.842e+02 6.574e+01 −
cf16 2.703e+02 1.760e+02 1.761e+02 1.439e+02 + 1.490e+02 1.425e+02 + 1.166e+02 1.065e+02 1.095e+02 1.070e+02 =
cf17 2.000e+02 1.428e+02 1.601e+02 1.367e+02 + 2.275e+02 1.511e+02 = 2.169e+02 1.276e+02 1.497e+02 1.353e+02 +
cf18 9.221e+02 1.696e+01 9.089e+02 4.928e+00 + 9.083e+02 4.570e+00 + 9.064e+02 2.694e+00 8.982e+02 4.366e+01 +
cf19 9.191e+02 1.667e+01 9.099e+02 6.037e+00 + 9.089e+02 6.152e+00 + 9.065e+02 3.917e+00 8.885e+02 5.047e+01 +
cf20 9.197e+02 1.875e+01 9.098e+02 5.907e+00 + 9.077e+02 2.775e+00 + 9.066e+02 2.320e+00 9.001e+02 4.111e+01 +
cf21 7.547e+02 2.958e+02 6.794e+02 2.554e+02 = 6.633e+02 2.508e+02 = 6.131e+02 2.233e+02 5.678e+02 1.586e+02 =
cf22 9.199e+02 3.919e+01 8.939e+02 2.596e+01 + 8.883e+02 2.518e+01 + 8.741e+02 2.081e+01 9.204e+02 1.503e+01 −
cf23 7.494e+02 2.952e+02 6.771e+02 2.536e+02 = 6.685e+02 2.589e+02 = 5.530e+02 1.645e+02 5.700e+02 1.871e+02 =
cf24 6.554e+02 3.812e+02 7.766e+02 3.460e+02 = 6.728e+02 3.864e+02 = 7.284e+02 3.663e+02 2.000e+02 0.000e+00 +
cf25 1.638e+03 1.150e+01 1.635e+03 1.103e+01 = 1.632e+03 1.120e+01 + 1.622e+03 5.034e+00 1.639e+03 6.131e+00 −

Total number of (+/=/−): 13/11/1 12/11/2 9/7/9

In more detail, Pro DEGL1 and Pro DEGL2 exhibit similar
or significantly better performance in all unimodal functions
(cf1 − cf5) and in most of the basic multimodal functions.
In the expanded functions, DEGL outperforms the proximity
variants in cf14, while in cf13 Pro DEGL1 is superior and
Pro DEGL2 is not statistically different. The main effect of
the proximity framework is once again observed in the hybrid
composition functions. Pro DEGL1 and Pro DEGL2 exhibit
better performance in seven hybrid composition functions,
while their performance is not statistically different from
DEGL in the remaining four. DERL is significantly better
than Pro DERL in the unimodal functions cf3 and cf5. In
the multimodal functions, Pro DERL significantly outperforms
DERL in nine functions, while its performance is significantly
worse than that of DERL in six functions. The DERL mu-
tation operator is based on DE/rand/1 and utilizes as base
vector the best of a set of randomly selected individuals.
Thus, introducing the proximity framework could yield an
overly exploitative approach. However, as the experimental
results show, the proximity framework does not hinder the
dynamics of DERL. On the contrary, Pro DERL in most
of the functions either enhances DERL by exploiting the
resulting population structure (as in DE/rand/1) or exhibits
similar performance. In functions where there are no opti-
mization bounds and the global optimum is located outside the
initialization range (e.g., cf7 and cf25), the local characteristics
of the proximity-based framework do not appear to enhance
performance.

Tables V–VI summarize the experimental results of all the
DE variants and their corresponding proximity-based modi-
fications on the 50-dimensional versions of the CEC 2005

function set. As expected, almost all variants exhibit similar
behavior with the 30-dimensional versions of the function set.
The proximity-based framework clearly enhances TDE, ODE,
jDE, and DERL in the majority of functions. As previously,
Pro BDE either enhances BDE or performs equally well,
while Pro SaDE attains an equal performance in most of the
functions and only in three cases exhibits a statistically sig-
nificant performance improvement (cf2, cf9, and cf17). On the
other hand, JADE outperforms the proximity variant in nine
functions, most of which are hybrid composition functions. Pro
JADE, on the other hand, demonstrates superior performance
in three multimodal and two hybrid composition functions
(cf9, cf11, cf12, cf14 and cf21, cf23, respectively). Pro DEGL1
exhibits a statistically significant better performance in three
cases (cf3, cf4, and cf24) and attains similar performance in the
rest of the function set. Finally, Pro DEGL2 exhibits improved
performance in four functions (the unimodal cf4, cf5 and
the hybrid compositions cf19, cf22), while DEGL outperforms
the second proximity-based framework in four multimodal
and two hybrid functions (cf10, cf11, cf13, cf14 and cf16, cf17,
respectively).

Finally, in Fig. 7 we present convergence graphs for six of
the 50-dimensional CEC 2005 benchmark functions, namely,
cf3, cf4, cf9, cf11, cf12, and cf13. The graphs illustrate median
solution error value curves for all DE variants considered
in this section obtained from 100 independent simulations.
As previously mentioned, the graphs indicate that in most
cases the proximity-based framework either enhances the
convergence of a strategy or behaves similarly to it. There
are relatively few cases where the proximity-based framework
significantly deteriorates performance.



114 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

TABLE V

Error Values of the Original TDE, ODE, BDE, jDE, JADE, SaDE Algorithms and Their Corresponding Proximity-Based Variants

Over the 50-Dimensional CEC 2005 Benchmark Set

TDE Pro TDE ODE Pro ODE BDE Pro BDE
cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 5.940e+03 1.444e+03 3.557e+02 1.047e+02 + 7.460e+03 2.530e+03 5.941e+02 2.662e+02 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf3 9.855e+07 1.957e+07 5.295e+06 1.308e+06 + 8.271e+07 1.869e+07 1.116e+07 2.407e+06 + 6.150e+05 2.114e+05 5.689e+05 2.085e+05 =
cf4 1.513e+04 3.408e+03 2.280e+03 6.947e+02 + 1.960e+04 3.996e+03 3.989e+03 1.512e+03 + 1.488e+01 3.475e+01 3.547e+01 1.015e+02 =
cf5 1.478e+03 5.389e+02 2.330e+03 2.324e+02 − 2.104e+03 7.673e+02 2.322e+03 4.177e+02 − 1.603e+03 7.517e+02 1.887e+03 8.151e+02 =
cf6 3.549e+01 6.305e−01 3.783e+01 1.624e+01 − 6.609e+01 2.913e+01 7.917e+01 3.460e+01 − 3.987e−01 1.208e+00 1.037e+00 1.767e+00 −
cf7 6.195e+03 4.594e−12 6.196e+03 4.036e−02 − 6.195e+03 4.594e−12 6.213e+03 2.356e+00 − 6.195e+03 1.282e−02 6.194e+03 6.550e+00 =
cf8 2.113e+01 3.215e−02 2.113e+01 4.420e−02 = 2.114e+01 3.628e−02 2.114e+01 3.377e−02 = 2.114e+01 3.483e−02 2.114e+01 3.557e−02 =
cf9 3.348e+02 1.260e+01 1.850e+02 2.245e+01 + 2.231e+02 2.711e+01 1.767e+02 1.806e+01 + 2.455e+02 1.099e+02 1.028e+02 4.449e+01 +
cf10 3.599e+02 1.226e+01 3.477e+02 1.316e+01 + 1.331e+02 1.109e+02 1.900e+02 1.322e+02 − 3.501e+02 1.945e+01 1.484e+02 1.177e+02 +
cf11 7.315e+01 1.217e+00 7.273e+01 1.291e+00 = 4.370e+01 2.283e+01 1.154e+01 3.315e+00 + 7.278e+01 1.301e+00 6.139e+01 1.966e+01 =
cf12 5.022e+05 5.360e+05 1.428e+04 8.611e+03 + 8.331e+05 7.064e+05 1.126e+04 8.078e+03 + 1.873e+05 3.140e+05 1.306e+05 1.905e+05 =
cf13 3.178e+01 1.524e+00 2.657e+01 1.212e+00 + 2.348e+01 1.955e+00 1.789e+01 2.686e+00 + 2.820e+01 2.372e+00 9.629e+00 7.790e+00 +
cf14 2.331e+01 1.420e−01 2.296e+01 1.663e−01 + 2.320e+01 1.884e−01 2.286e+01 2.150e−01 + 2.318e+01 2.144e−01 2.308e+01 2.586e−01 =
cf15 2.000e+02 2.230e−03 3.840e+02 5.481e+01 − 2.282e+02 7.003e+01 3.880e+02 4.799e+01 − 3.254e+02 6.195e+01 3.517e+02 7.057e+01 −
cf16 2.724e+02 2.770e+01 2.447e+02 8.253e+00 + 1.315e+02 8.142e+01 1.354e+02 9.116e+01 = 2.890e+02 5.498e+01 1.659e+02 1.079e+02 +
cf17 2.887e+02 2.024e+01 2.685e+02 1.105e+01 + 1.994e+02 7.025e+01 2.609e+02 4.309e+01 − 3.127e+02 6.154e+01 2.425e+02 1.287e+02 +
cf18 9.134e+02 1.552e+00 8.908e+02 9.505e+01 + 9.156e+02 5.774e−01 8.859e+02 5.414e+01 + 9.215e+02 5.931e+00 9.254e+02 8.857e+00 −
cf19 9.133e+02 1.512e+00 8.956e+02 4.831e+01 + 9.156e+02 5.922e−01 8.813e+02 5.637e+01 + 9.217e+02 1.165e+01 9.215e+02 8.476e+00 =
cf20 9.129e+02 1.429e+00 9.030e+02 4.199e+01 + 9.157e+02 4.992e−01 8.907e+02 5.148e+01 + 9.228e+02 6.646e+00 9.223e+02 5.959e+00 =
cf21 1.002e+03 7.508e−01 5.000e+02 0.000e+00 + 1.005e+03 1.342e+00 5.060e+02 4.243e+01 + 1.008e+03 3.070e+01 1.009e+03 5.803e+01 −
cf22 9.024e+02 2.782e+00 9.561e+02 1.176e+01 − 9.078e+02 2.700e+00 9.637e+02 1.068e+01 − 9.286e+02 2.880e+01 9.243e+02 2.344e+01 =
cf23 1.002e+03 8.619e−01 5.000e+02 0.000e+00 + 1.005e+03 1.214e+00 5.000e+02 0.000e+00 + 1.013e+03 8.372e+00 9.921e+02 8.810e+01 =
cf24 1.036e+03 1.393e+00 2.000e+02 0.000e+00 + 9.692e+02 2.292e+02 2.000e+02 0.000e+00 + 8.690e+02 3.379e+02 8.193e+02 3.572e+02 +
cf25 1.684e+03 3.518e+00 1.702e+03 4.503e+00 − 1.690e+03 1.776e+00 1.714e+03 3.084e+00 − 1.676e+03 1.051e+01 1.674e+03 1.149e+01 =

Total number of (+/=/−): 16/3/6 14/3/8 6/15/4
jDE Pro jDE JADE Pro JADE SaDE Pro SaDE

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.
cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 5.202e+03 1.486e+03 3.205e+02 1.146e+02 + 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 2.280e−03 8.545e−03 7.400e−04 1.426e−03 +
cf3 2.977e+07 5.744e+06 8.036e+06 2.123e+06 + 4.436e+04 1.485e+04 4.297e+04 1.864e+04 = 7.179e+05 1.007e+06 7.824e+05 1.043e+06 =
cf4 1.654e+04 3.218e+03 2.437e+03 8.128e+02 + 3.160e−01 4.134e−01 3.186e−01 4.411e−01 = 9.778e+01 9.835e+01 6.641e+01 5.384e+01 =
cf5 4.206e+03 5.088e+02 2.225e+03 3.025e+02 + 1.055e+03 5.485e+02 1.829e+03 4.126e+02 − 1.992e+03 4.256e+02 1.949e+03 5.185e+02 =
cf6 4.178e+01 8.910e+00 4.230e+01 2.131e+01 − 4.692e+00 1.736e+01 1.039e+01 3.460e+01 = 1.137e+01 1.044e+01 1.148e+01 1.390e+01 =
cf7 6.311e+03 1.596e+01 6.199e+03 5.581e−01 + 6.193e+03 1.840e+00 6.195e+03 2.840e−02 − 6.195e+03 4.594e−12 6.195e+03 4.594e−12 =
cf8 2.113e+01 3.807e−02 2.114e+01 3.461e−02 = 2.114e+01 3.251e−02 2.099e+01 3.929e−01 = 2.113e+01 3.458e−02 2.113e+01 3.974e−02 =
cf9 3.716e+02 1.409e+01 1.433e+02 1.523e+01 + 3.352e+01 2.591e+00 2.771e+01 2.209e+00 + 6.148e+00 1.266e+01 6.610e−01 3.443e+00 +
cf10 3.843e+02 1.600e+01 3.528e+02 1.360e+01 + 1.935e+02 2.060e+01 1.992e+02 1.795e+01 = 6.342e+01 1.287e+01 6.226e+01 1.204e+01 =
cf11 7.330e+01 1.008e+00 7.245e+01 1.500e+00 + 6.208e+01 1.777e+00 6.029e+01 1.733e+00 + 6.634e+01 1.485e+00 6.613e+01 2.047e+00 =
cf12 1.473e+05 1.928e+05 9.893e+03 7.099e+03 + 1.768e+05 7.105e+04 9.446e+04 5.969e+04 + 8.781e+03 7.092e+03 7.336e+03 7.223e+03 =
cf13 3.260e+01 1.322e+00 2.237e+01 2.333e+00 + 9.211e+00 4.784e−01 9.142e+00 5.252e−01 = 8.571e+00 4.416e+00 6.900e+00 3.452e+00 =
cf14 2.309e+01 1.410e−01 2.307e+01 1.778e−01 = 2.284e+01 2.983e−01 2.263e+01 2.552e−01 + 2.284e+01 1.803e−01 2.281e+01 1.746e−01 =
cf15 4.000e+02 0.000e+00 3.960e+02 2.828e+01 = 2.569e+02 8.661e+01 3.800e+02 6.061e+01 − 3.881e+02 4.800e+01 3.961e+02 2.830e+01 =
cf16 2.716e+02 7.979e+00 2.485e+02 9.086e+00 + 1.437e+02 4.007e+01 1.437e+02 1.738e+01 − 4.912e+01 1.003e+01 4.846e+01 8.343e+00 =
cf17 3.059e+02 1.163e+01 2.723e+02 9.956e+00 + 1.896e+02 3.737e+01 1.918e+02 3.403e+01 = 1.241e+02 6.634e+01 9.361e+01 5.921e+01 +
cf18 9.145e+02 3.417e+01 8.855e+02 5.390e+01 + 9.206e+02 2.983e+00 9.264e+02 4.370e+01 − 9.041e+02 5.208e+01 9.050e+02 5.392e+01 =
cf19 9.141e+02 3.402e+01 8.904e+02 5.133e+01 + 9.211e+02 5.326e+00 9.318e+02 2.823e+01 − 9.084e+02 4.736e+01 8.973e+02 9.973e+01 =
cf20 9.167e+02 2.982e+01 8.876e+02 9.554e+01 + 9.207e+02 2.755e+00 9.325e+02 3.630e+01 − 9.152e+02 4.183e+01 9.105e+02 4.935e+01 =
cf21 5.000e+02 0.000e+00 5.000e+02 0.000e+00 = 8.523e+02 2.330e+02 5.000e+02 0.000e+00 + 5.000e+02 0.000e+00 5.000e+02 0.000e+00 =
cf22 9.796e+02 1.055e+01 9.568e+02 1.117e+01 + 8.987e+02 9.075e+00 9.486e+02 1.398e+01 − 9.608e+02 6.429e+00 9.603e+02 6.543e+00 =
cf23 5.000e+02 0.000e+00 5.000e+02 0.000e+00 = 8.103e+02 2.455e+02 5.000e+02 0.000e+00 + 5.000e+02 0.000e+00 5.060e+02 4.243e+01 =
cf24 2.000e+02 0.000e+00 2.000e+02 0.000e+00 = 2.000e+02 0.000e+00 2.000e+02 0.000e+00 = 2.000e+02 0.000e+00 2.000e+02 0.000e+00 =
cf25 1.728e+03 2.883e+00 1.709e+03 2.859e+00 + 1.684e+03 2.182e+00 1.711e+03 4.235e+00 − 1.687e+03 3.898e+00 1.687e+03 4.170e+00 =

Total number of (+/=/−): 17/7/1 6/10/9 3/22/0

C. Computational Cost of the Proposed Framework

Several real-world problems implement computer based
simulations that demand resource-intensive evaluations of the
objective function, e.g., large-scale finite element analysis,
computational fluid dynamics, engineering design problems,
or demanding industrial applications [81]. Such simulations
can be computationally expensive requiring from minutes to
hours to evaluate a candidate solution.

In the proposed framework, individuals are evolved using
information contained in the affinity matrix. The computa-
tional complexity of the proximity framework depends on the
update of this matrix. In the worst case where all individuals
in the current population have been evolved, a situation that
rarely occurs, the computational cost amounts to computing

(
NP2−2·NP

2

)
distances between individuals. This is due to the

symmetric property of the distance measure.
Strictly speaking, in a pre-specified D-dimensional problem

f , let the computational cost of a function evaluation be
equal to c units of real computation time, while the cost of
computing a distance between two individuals is d = κ ·c units
of real computational time. Thus, the computational cost per
generation of an original DE strategy is CostDE = NP · c,
while the worst case scenario for the computational cost
of the corresponding proximity variant yields CostProDE =
NP ·c+ NP2−2·NP

2 ·κ ·c. In a real case, the number of distances
that have to be computed depends on the successful mutations
of the algorithm (selection rate), which in turn depends on
the phase of the evolution process and on the problem at
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TABLE VI

Error Values of the Original DEGL, DERL Algorithms and Their Corresponding Proximity-Based Variants Over the

50-Dimensional CEC 2005 Benchmark Set

DEGL Pro DEGL1 Pro DEGL2 DERL Pro DERL

cfi Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

cf1 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 0.000e+00 0.000e+00 =
cf2 0.000e+00 0.000e+00 0.000e+00 0.000e+00 = 0.000e+00 0.000e+00 = 8.963e+01 3.880e+01 6.240e+00 3.064e+00 +
cf3 2.311e+05 1.032e+05 1.930e+05 1.254e+05 + 2.779e+05 1.146e+05 = 9.126e+06 2.847e+06 2.669e+06 9.487e+05 +
cf4 1.574e+00 9.501e+00 1.080e−01 2.747e−01 + 6.760e−03 2.000e−02 + 1.096e+03 4.822e+02 2.769e+02 1.767e+02 +
cf5 2.093e+03 6.840e+02 2.231e+03 7.426e+02 = 1.625e+03 5.690e+02 + 5.091e+02 5.252e+02 1.413e+03 3.605e+02 −
cf6 1.356e+00 1.908e+00 8.771e−01 1.668e+00 = 1.116e+00 1.808e+00 = 3.104e+01 2.123e+01 2.337e+01 1.838e+01 +
cf7 6.195e+03 4.594e−12 6.195e+03 4.594e−12 = 6.195e+03 4.594e−12 = 6.195e+03 4.594e−12 6.195e+03 1.769e−02 +
cf8 2.113e+01 3.917e−02 2.114e+01 2.969e−02 = 2.113e+01 4.002e−02 = 2.114e+01 3.786e−02 2.113e+01 3.547e−02 =
cf9 7.620e+01 1.706e+01 7.937e+01 2.040e+01 = 1.176e+02 8.655e+01 = 3.356e+02 1.219e+01 4.334e+01 9.757e+00 +
cf10 1.031e+02 6.612e+01 9.239e+01 2.767e+01 = 2.974e+02 8.587e+01 − 3.655e+02 1.137e+01 3.174e+02 6.714e+01 +
cf11 6.290e+01 1.360e+01 6.138e+01 1.363e+01 = 6.994e+01 1.013e+01 − 7.270e+01 1.510e+00 7.138e+01 2.010e+00 +
cf12 5.781e+04 4.566e+04 6.316e+04 6.160e+04 = 6.091e+04 8.453e+04 = 1.058e+05 1.012e+05 6.119e+03 6.169e+03 +
cf13 6.063e+00 4.361e+00 5.413e+00 1.426e+00 = 2.473e+01 5.094e+00 − 3.130e+01 1.342e+00 4.939e+00 1.142e+00 +
cf14 2.262e+01 3.180e−01 2.255e+01 3.143e−01 = 2.296e+01 2.719e−01 − 2.336e+01 1.936e−01 2.304e+01 1.517e−01 +
cf15 3.443e+02 7.724e+01 3.443e+02 5.944e+01 = 3.180e+02 6.749e+01 = 2.040e+02 2.828e+01 3.800e+02 6.061e+01 −
cf16 1.264e+02 1.061e+02 1.630e+02 1.388e+02 = 2.327e+02 7.620e+01 − 2.649e+02 1.951e+01 2.202e+02 4.425e+01 +
cf17 1.629e+02 1.271e+02 1.943e+02 1.344e+02 = 3.024e+02 5.909e+01 − 2.921e+02 2.843e+01 2.650e+02 1.144e+01 +
cf18 9.267e+02 1.172e+01 9.278e+02 7.720e+00 = 9.238e+02 8.560e+00 = 9.121e+02 9.224e−01 9.027e+02 4.188e+01 +
cf19 9.282e+02 7.646e+00 9.277e+02 7.849e+00 = 9.229e+02 9.567e+00 + 9.119e+02 4.105e−01 8.706e+02 1.271e+02 +
cf20 9.278e+02 9.662e+00 9.291e+02 8.160e+00 = 9.233e+02 1.250e+01 = 9.120e+02 7.366e−01 8.954e+02 4.819e+01 +
cf21 9.791e+02 1.317e+02 9.497e+02 1.747e+02 = 9.909e+02 1.060e+02 = 1.002e+03 1.215e+00 5.000e+02 0.000e+00 +
cf22 9.329e+02 2.361e+01 9.277e+02 2.429e+01 = 9.216e+02 2.083e+01 + 9.037e+02 3.273e+00 9.495e+02 1.364e+01 −
cf23 9.869e+02 1.088e+02 9.347e+02 1.765e+02 = 9.951e+02 8.296e+01 = 1.002e+03 1.029e+00 5.000e+02 0.000e+00 +
cf24 7.521e+02 4.004e+02 6.808e+02 4.118e+02 + 8.364e+02 3.613e+02 = 1.036e+03 1.759e+00 2.000e+02 0.000e+00 +
cf25 1.671e+03 8.121e+00 1.669e+03 6.051e+00 = 1.669e+03 8.034e+00 = 1.682e+03 6.184e+00 1.693e+03 4.987e+00 −

Total number of (+/=/−): 3/22/0 4/15/6 19/2/4

hand. One can estimate the ratio CostProDE/CostDE to obtain
an estimate of the computational overhead of the proximity
framework.

In this paper, we employed the CEC 2005 benchmark func-
tion set. To quantify the overhead of the proximity framework
on these functions, we compute CostDE and CostProDE using the
worst case scenario, in which each update of the affinity matrix
involves the computation of all of its elements. The computed
median value of the ratio for the CEC 2005 benchmarks is
approximately 1.0834. The nature of the functions in the CEC
2005 benchmark set is such that the computational cost of DE
algorithms is mostly determined by function evaluations. In
such cases the implementation of the proximity framework is
highly recommended, because it can yield significant improve-
ments in the quality of the solutions, with a relatively small
computational overhead. The overhead is reversed when the
cost of a function evaluation is small relative to the cost of
computing the affinity matrix. To demonstrate this behavior,
we have computed the ratio CostProDE/CostDE for the functions
in the YAO benchmark set [75]. The ratio is very high, with the
median value approximately equal to 9.5351. In such cases,
the proximity framework can only be justified if the improve-
ment in the quality of the solutions is highly valued by the
user.

D. Overall Performance

We conclude the presentation of the experimental results, by
providing a summarizing comparison over all the benchmark
functions. To this end, we utilize the empirical cumulative
probability distribution function (ECDF ) of the normalized
mean error (NME ).

The NME measure attempts to capture the relative perfor-
mance of an algorithm against the best performing algorithm
on a particular function. Specifically, for an algorithm A on a
function f is computed as the ratio of the mean error (ME )
achieved by A on function f , over the lowest ME on f

achieved by any of the considered algorithms (denoted as
ME best)

NMEA,f =
ME

ME best + ε

where ε = 1 is a small real constant number used to avoid
zero values in the denominator. Therefore, smaller values of
NME correspond to better performance.

The ECDF of NMEs for a number of algorithms nA and a
number of functions nf is a cumulative probability distribution
function defined as

ECDF (x) =
1

nA × nf

nA∑
i=1

nf∑
j=1

I(NME i,j � x)

where I(·) is the indicator function. In other words, the ECDF
measure captures the empirical probability of observing an
NME value smaller or equal to x.

First, we compute the NME for all considered algorithms
over all the functions. We then separate the algorithms into
two sets, the original DE algorithms and the Pro DE variants,
and compute the ECDF for each set. This enables a summa-
rizing comparison of the algorithms in the two sets, as larger
values of ECDF for the same argument correspond to better
performance.

Fig. 8 illustrates the ECDF of NMEs for all the original
DE mutation operators versus their proximity-based variants
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Fig. 7. Convergence graph (median curves) for the state-of-the-art DE variants over the 50-dimensional cf3, cf4, cf9, cf11, cf12, and cf13 CEC 2005 benchmark
functions. The horizontal axis illustrates the number of generations, and the vertical axis illustrates the median of solution error values over 100 independent
simulations.

for the CEC 2005 function set. The proximity framework
exhibits a great potential on the CEC 2005 function set.
The proximity DE mutation strategies significantly outperform
the corresponding original DE mutation strategies in most
cases. Despite the fact that the two very exploitative strategies,
DE/current-to-best/1 and DE/best/2 and their Pro DE variants,
yield high mean error values, the Pro DE ECDF curve is
almost always above that of the original DE strategies. In
general, Pro DE mutation strategies produce two orders of
magnitude less NME than the original DE mutation strate-
gies, i.e., the Pro DE curve reaches unity at approximately
NME ≈ 2000 while the DE curve at NME ≈ 900 000.

Fig. 9 demonstrates the ECDF curves of NME for the
considered state-of-the-art DE variants and their proximity-
based modifications for the CEC 2005 function set. The
ECDF curve of the proximity-based modifications of the
state-of-the-art DE variants, during the initial stages, is
below that of original algorithms’ ECDF curve. How-
ever, notice that the proximity-based ECDF curve reaches
unity in two orders of magnitude less NME than
the original state-of-the-art DE variants. Specifically, the
proximity-based ECDF curve reaches unity at approximately
NME ≈ 104, while the state-of-the-art DE variants curve at
NME ≈ 106.
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Fig. 8. Empirical cumulative probability distribution of normalized mean
error of all DE algorithms against the corresponding proximity-based frame-
works over the CEC 2005 benchmark functions.

Fig. 9. Empirical cumulative probability distribution of normalized mean
error of all state-of-the-art DE variants against the corresponding proximity-
based frameworks over the CEC 2005 benchmark functions.

VII. Concluding Remarks

It has been recognized that during the evolutionary process
of the DE algorithm a clustering structure of the population of
individuals can arise. In this paper, we attempted to take advan-
tage of this characteristic behavior to improve the performance
of the algorithm. To this end, we substituted the uniformly
random selection of parents during mutation. We proposed a
probabilistic selection scheme that assigns probabilities that
are inversely proportional to the distance from the mutated
individual. The proposed proximity-based scheme is generic,
as it is independent of the mutation strategy. In this paper, we
have applied it to the original DE mutation strategies and a
number of state-of-the-art DE variants.

The experimental results show that the proposed frame-
work improves significantly excessively exploratory mutation
strategies since it promotes the exploitation of some areas
of the search space. For exploitative mutation strategies the
proximity scheme does not lead to great benefits. However,
even for these strategies, the proximity-based framework very
rarely deteriorates their performance. The incorporation of the
framework in eight state-of-the-art DE variants with different
dynamics exhibited either substantial performance gains, or
statistically indistinguishable behavior. Moreover, the main
impact of the proposed framework was observed in high
dimensional multimodal functions like the hybrid composition

functions of the CEC 2005 test set. Finally, the self-adaptive
parameter mechanisms of state-of-the-art DE variants are not
inhibited by the incorporation of the proximity framework.

This performance improvement comes at an additional com-
putational cost due to the computation of pairwise distances
between individuals. This cost can be substantial when the
cost of the function evaluation is trivial. In such cases, the
utilization of the proximity framework can only be justified,
if the improvement in the quality of the obtained solutions is
highly valued by the user. On the contrary, when a function
evaluation is computationally or otherwise costly, the compu-
tational overhead is negligible.

The effect of dimensionality and different population sizes
on the performance of the proposed framework is an important
aspect which we intend to study further in future work.
Another interesting aspect which will be considered is the
effect of proximity on structured populations.
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adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.
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