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Starting from the well-known Newton’s fractal which is formed by the basin of convergence
of Newton’s method applied to a cubic equation in one variable in the field C, we were able
to find methods for which the corresponding basins of convergence do not exhibit a fractal-like
structure. Using this approach we are able to distinguish reliable and robust methods for tackling
a specific problem. Also, our approach is illustrated here for methods for computing periodic
orbits of nonlinear mappings as well as for fixed points of the Poincaré map on a surface of
section.
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1. Introduction

Many problems in different areas of science and
technology can be studied using periodic orbits
of nonlinear mappings or dynamical systems.
For example, such problems appear in Quantum
Mechanics where a weighted sum over unstable peri-
odic orbits yields quantum mechanical energy level
spacings as well as in Statistical Mechanics where a
weighted, according to the values of their Liapunov
exponents, sum over unstable periodic orbits can
be used to calculate thermodynamic averages
[Gutzwiller, 1990; Morriss & Rondoni, 1996; Henry
et al., 2000]. Furthermore, periodic orbits play a
major role in assigning the vibrational levels of
highly excited polyatomic molecules [Vrahatis et al.,
2001a; Perdiou et al., 2002] as well as in Celestial
Mechanics and Galactic Dynamics (see for example

[Kalantonis et al., 2001; Vrahatis et al., 2001b;
Perdios et al., 2002; Kalantonis et al., 2003a,
2003b; Katsanikas & Patsis, 2011; Katsanikas et al.,
2011a; Katsanikas et al., 2011b]). Also, periodic
orbits can be used in the study of the structure
and breakdown properties of invariant tori in the
case of symplectic mappings of direct relevance of
the beam stability problem in circular accelerators
like the Large Hadron Collider (LHC) machine at
the European Organization for Nuclear Research
(CERN). Such a 4-D symplectic mapping can be
found in [Vrahatis et al., 1996; Vrahatis et al.,
1997] which describes the (instantaneous) effect
experienced by a hadronic particle as it passes
through a magnetic focusing element of the FODO
cell type [Bountis & Tompaidis, 1991]. Recently
periodic orbits have been used in cryptography
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for the construction of novel cryptosystems [Vra-
hatis et al., 2010].

In general, analytic expressions for evaluating
periodic orbits of nonlinear mappings or fixed points
of the Poincaré map on a surface of section are
not available. A well-known and widely used effi-
cient approach to compute periodic orbits or fixed
points is to solve a system of nonlinear equations
by using Newton’s method. On the other hand,
Newton’s method as well as Newton-like meth-
ods [Dennis & Schnabel, 1996; Ortega & Rhein-
boldt, 2000], often converge to a solution almost
independently, of the starting guess of the con-
sidered solution. This is obviously a disadvantage
when various other solutions exist nearby, all of
which are needed in the application under con-
sideration. This can be easily verified by study-
ing the basins of convergence of these methods
[Androulakis & Vrahatis, 1996]. It may also hap-
pen that these methods fail due to the nonex-
istence of derivatives or poorly behaved partial
derivatives.

In general, the performance of a method for
computing a specific solution can be studied by the
basin of convergence of the considered method at
the solution. Without loss of generality, if we con-
sider the method at hand as Newton’s method, we
can draw its basin of convergence as follows: In a
given domain, each picture’s element (pixel) cor-
responds to an initial guess of Newton’s method
and takes the color of the solution to which the
method converges, while, if for this initial guess the
method does not converge, after a specific num-
ber of iterations, this element is colored by using
an additional color. As we shall see later, Newton’s
method is unstable since it is sensitive to small per-
turbations of the starting points, and its basin of
convergence has a fractal structure [Barnsley, 1988;
Bountis, 2004].

In 1879, Arthur Cayley asked the following
question:

Given an initial input to which root will
Newton’s method converge?

Thus, Cayley was the first who noticed the diffi-
culties in generalizing Newton’s method to com-
plex roots of polynomials with degree greater than
two, and complex initial values [Cayley, 1879]. The
answer was only fully understood recently and
leads to a beautiful fractal pattern — the so-called
Newton’s fractal.

Definition 1.1. Newton’s fractal is a boundary set
in the complex plane which is characterized by
Newton’s method applied to a fixed polynomial
p(z) ∈ C[z].

In this contribution, we present methods that
can be used for the computation of periodic orbits
and we study their basins of convergence. In the
next section, we outline the problem formulation,
while in Sec. 3, we briefly present methods for com-
puting periodic orbits. In Secs. 4 and 5 we pro-
vide some applications, a discussion for extracting
information from a picture and some concluding
remarks.

2. Problem Formulation

A large variety of methods can be applied to
compute periodic orbits of nonlinear mappings, or
fixed points of the Poincaré map on a surface
of section. The three principal categories of these
methods are:

(1) Methods for computing fixed points
(2) Methods for computing solutions of systems of

nonlinear equations
(3) Methods for computing global minimizers of

objective functions.

2.1. Fixed points approach

The problem of computing periodic orbits of nonlin-
ear mappings (or fixed points of the Poincaré map
on a surface of section) can be tackled by using
fixed points. More specifically, the problem of find-
ing periodic orbits of nonlinear mappings

Φ = (Φ1,Φ2, . . . ,Φn)� : Dn ⊂ R
n → R

n,

of period p amounts to finding fixed points x� =
(x�

1, x
�
2, . . . , x

�
n)� ∈ Dn of period p which satisfy the

following equation:

Φp(x�) = Φ(Φ(· · ·Φ(Φ(x�)) · · ·))︸ ︷︷ ︸
p times

= x�. (1)

2.2. Systems of nonlinear equations
approach

This problem can also be tackled using systems of
nonlinear equations. Finding such a periodic orbit
(or fixed points of the Poincaré map on a surface
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of section) is equivalent to solving the following
equation:

Fn(x) = On,

with

Fn = (f1, f2, . . . , fn)� = Φp − In : Dn ⊂ R
n,

where Φp is given in Eq. (1), In is the n×n identity
matrix and where On = (0, 0, . . . , 0)� is the origin
of R

n. Obviously, the above equation is equivalent
to the following system of equations:



Φp
1(x1, x2, . . . , xn) − x1 = 0,

Φp
2(x1, x2, . . . , xn) − x2 = 0,

...
Φp

n(x1, x2, . . . , xn) − xn = 0.

(2)

2.3. Global optimization approach

The same problem can be addressed through the
global minimization of an objective function. Thus,
finding such a periodic orbit (or fixed points of the
Poincaré map on a surface of section) is equiva-
lent to computing the global minimizer x� = (x�

1,
x�

2, . . . , x
�
n)� ∈ Dn of the following objective func-

tion f : Dn ⊂ R
n → R,

f(x) =
n∑

i=1

(Φp
i (x) − xi)2,

or, more general

f(x) = ‖(Φp
1(x) − x1,

Φp
2(x) − x2, . . . ,Φp

n(x) − xn)�‖,
that is,

f(x�) = 0, for x� ∈ arg min
x

f(x). (3)

2.4. Convergence characteristics
of methods

As we have already mentioned previously, there is
a large variety of methods that can be used to solve
Problems (1)–(3). These methods possess advan-
tages and disadvantages and it is not always evident
which one is more efficient, effective or robust for
a given class of nonlinear mappings. In principle,
these methods are formulated as iterative processes

and three main problems may be associated with
any one method for solving a specific problem,
namely:

(a) Is the method well-defined, that is, can it be
continued to a satisfactory end?

(b) Do the iterates converge to a solution?
(c) How economical is the entire operation?

In most instances only partial answers can be given
to the above questions. Question (b) consists of
three parts:

(b1) The question of whether the iterates converge
to a limit (convergence or divergence).

(b2) The question of whether this limit is in fact a
solution.

(b3) The question of whether for a given initial
guess the algorithm converges to the closest
solution.

Question (c) concerns the computational complex-
ity of the algorithm and it includes the following
sub-questions:

(c1) What is the cost of any one step of the iterative
process?

(c2) How fast does the sequence converge?
(c3) How sensitive (stable) is the process to changes

of the function or the initial data?
(c4) How is the performance of the method in the

presence of noise (impact of imprecise infor-
mation regarding the values of the function)?

2.5. Imprecise information — presence
of noise

To study the impact of imprecise information
(regarding the values of the function), we simu-
late imprecisions through the following approach.
Information about the values of the function f(x)
is obtained in the form of fη(x), where fη(x) is
an approximation to f(x), contaminated by a small
amount of noise η. Thus, the function values are
obtained, for the additive noise case, as [Elster &
Neumaier, 1997]:

fη(x) = f(x) + η,

and for the multiplicative noise case, as [Parsopou-
los & Vrahatis, 2002, 2010]:

fη(x) = f(x)(1 + η), 1 + η > 0,
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where η is a Gaussian noise term with zero mean
and standard deviation σ

η ∼ N (0, σ2),

i.e. relative stochastic errors are used. Suppose
that a normal noise distribution may be regarded
as an approximation of reality based on the
maximum entropy principle [Jaynes, 1979; Beyer,
2000], the probability density function of the noise
reads

p(η) =
1√
2π σ

exp
[
−1

2

( η
σ

)2]
.

Here, to obtain η, we use the method of Box and
Muller [1958], using various noise strengths (stan-
dard deviations) σ. In our approach, the assumption
of the normal distribution is not mandatory. How-
ever, the measurement errors in nature and technol-
ogy are very often modeled using this distribution.
Moreover, most of the mean values of stochastic
processes have this distribution (central limit theo-
rem of statistics) [Beyer, 2001].

2.6. Aim

In this contribution, we try to answer the above
addressed questions relative to the convergence
characteristics of methods by providing experimen-
tal data concerning (b3), (c2), (c3) and (c4). The
other questions can usually be addressed more sat-
isfactorily by theory.

Our approach consists of analyzing and visu-
alizing the convergence behavior of the consid-
ered method. Specifically, using different colors, we
exhibit the regions of convergence to a solution
of a given function. Thus, we are able to study
through images, the advantages and disadvantages
of any method as well as to compare various meth-
ods in order to choose the proper one for a given
problem.

Remark 2.1. If an image has for instance a fractal-
like structure, then the considered method is unsta-
ble since it is sensitive to small perturbations of the
starting points.

3. Methods

In this section, we briefly describe a few methods
that can be used for computing periodic orbits of
nonlinear mappings or fixed points of the Poincaré
map on a surface of section.

3.1. Methods for computing fixed
points

One of the most famous and powerful theorems
of Mathematics is the Banach fixed point theorem
[Banach, 1922].

Theorem 1 (Banach’s Fixed Point Theorem [1922]).
Let Fn = (f1, f2, . . . , fn)� : Dn ⊂ B → Dn, be
defined on a closed subset of a Banach space B.
Assume that Fn is contractive with a factor L < 1,
(Lipschitz constant L such that ‖Fn(x) − Fn(y)‖ ≤
L‖x− y‖, ∀x, y ∈ Dn). Then there exists a unique
x� ∈ Dn such that x� is a fixed point of Fn, i.e.
x� = Fn(x�).

The proof of Banach’s theorem is based on a
simple iteration algorithm defined as follows:

Banach’s Iteration Algorithm:

Choose any starting point x0 from Dn and let

xk+1 = Fn(xk), for k = 0, 1, . . . . (4)

Then

‖xk − x�‖ ≤ Lk‖x0 − x�‖.
Assume that x0 = 0 ∈ Dn, then the relative error
of the kth approximation xk, is estimated by

‖xk − x�‖
x�

≤ Lk.

This bound is sharp. Thus to guarantee that the
relative error is at most ε, ε > 0, the following num-
ber of iterations (function evaluations) are required:

#S = #S(ε, L) =
⌈

log2 ε
−1

log2 L
−1

⌉
.

Fixed point problems with L = 1 and L < 1
appear in the study of nonlinear dynamics. They
model conservative or dissipative systems depend-
ing on whether the mapping is area-preserving or
area-contracting, respectively.

Remark 3.1. Some complexity issues follows:

(a) For a Lipschitz function that is contractive
L < 1 and large dimension n the Banach Sim-
ple Iteration Algorithm (4) is optimal [Sikorski,
2001].

(b) For moderate n and L = 1, the Interior
Ellipsoid Algorithm is optimal [Sikorski, 2001].
It requires cn log2 ε

−1 function evaluations to
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compute an ε-residual approximation x̃ : ‖x̃ −
Fn(x̃)‖ ≤ ε.

(c) The worst-case complexity of computing an
ε-absolute approximation ‖x̃ − x�‖ ≤ ε for
L = 1 is infinite.

(d) For Lipschitz functions with constant L > 1
with respect to the infinity norm, Homotopy
Continuation, Simplicial and Newton-type
Methods for ε-residual solutions exhibit expo-
nential complexity in the worst case and that
the lower bound on the complexity is also
exponential.

3.2. Methods for computing solutions
of systems of nonlinear
equations

The well known and widely used Newton’s method
computes a root of continuously differentiable func-
tions Fn = (f1, f2, . . . , fn)� : Dn ⊂ R

n → R
n.

The corresponding iterative scheme can be briefly
described as follows:

Newton’s iterative scheme:
Choose a starting point x0. The iterations for
k = 0, 1, . . . are given by:
Solve the system of linear equations: JFn(xk)sk =
−Fn(xk), for sk.
Set: xk+1 = xk + sk,

where JFn(xk) is the n× n Jacobian matrix:

JFn(xk) =




∂f1(xk)
∂x1

∂f1(xk)
∂x2

· · · ∂f1(xk)
∂xn

∂f2(xk)
∂x1

∂f2(xk)
∂x2

· · · ∂f2(xk)
∂xn

...
...

. . .
...

∂fn(xk)
∂x1

∂fn(xk)
∂x2

· · · ∂fn(xk)
∂xn



.

Newton’s method computes the Jacobian
matrix at every iteration which costs n2 function
evaluations per iteration.

An alternative approach to Newton’s method
is Broyden’s method [Broyden, 1965]. Broyden’s
method belongs to the wide class of quasi-Newton
methods utilized for the numerical solution of n
nonlinear equations in n variables. The class of
quasi-Newton methods, in general does not require

calculations of the true Jacobian matrix JFn(x).
Instead they iteratively construct their own approx-
imation Ak which tends to mimic the behavior of
the true Jacobian matrix as the algorithm proceeds.
Broyden’s method initially computes an estimation
A0 of the Jacobian matrix JFn(x0) at the first itera-
tion and then performs an update at the remaining
iterations. The algorithmic scheme of the Broyden’s
method can be briefly described as follows:

Broyden’s iterative scheme:
Choose a starting point x0 and an estimate A0

of the Jacobian matrix JFn(x0). The iterations for
k = 0, 1, . . . are given by:
Solve the system of linear equations: Ak sk =
−Fn(xk), for sk.

Set: xk+1 = xk + sk,

Set: yk = Fn(xk+1) − Fn(xk),
Update Ak+1 by: Ak+1 = Ak + ((yk −Ak sk)s�k )/
(s�k sk).

It should be noted that special attention
needs to be paid to the initial estimation A0 of
the Jacobian matrix. Generally Ak has to be a
nonsingular matrix. Additionally, based on the con-
vergence analysis of Broyden’s method [Nocedal &
Wright, 2006], the initial approximation A0 of the
Jacobian matrix has to be close enough to the
true Jacobian matrix at the solution. Thus, a good
choice for A0 can be critical to Broyden’s perfor-
mance. To this end, a good choice for A0 can be
either the true Jacobian matrix at the first itera-
tion, or some finite-difference approximation of the
Jacobian matrix at the initial point. The approx-
imation of the Jacobian matrix makes Broyden’s
method to have a lower computational cost in com-
parison to Newton’s method. Broyden’s method
requires n2 functions for the initial computation
of the true Jacobian matrix and n function evalua-
tions at each step. Additionally, it has been proved
that when Broyden’s method is applied to a linear
system, it terminates in 2n steps.

Remark 3.2. In the case where the partial deriva-
tives of f(x) are not available, we can calculate
them using some finite-difference approximation
procedure. Thereby, the partial derivative of f(x)
with respect to xi for i = 1, 2, . . . , n can be approx-
imated as follows:

∂f(x)
∂xi

≈ f(x+ hiei) − f(x)
hi

,
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where hi is a small perturbation of xi and ei is the
ith column of the n × n identity matrix In. Here,
a special attention has to be paid to determine the
value of stepsize hi since a wrong estimation could
lead to large round-off errors [Bräuninger, 1981;
Dennis & Schnabel, 1996; Press et al., 2007]. A sim-
ple rule, when f(x) is assumed to be computed accu-
rately to the machine’s precision epsm, is to perturb
roughly half the digits of xi, with hi = √epsm · xi,
[Dennis & Schnabel, 1996]. This well known rule is
generally satisfactory in practice.

3.3. Minimization methods

A well-known class of algorithms for unconstrained
minimization of functions f(x) in n real variables
f : D ⊂ R

n → R having Lipschitz continuous first
partial derivatives whose gradient

∇f(x) =
(
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

)�
,

is available, is the steepest descent methods [Den-
nis & Schnabel, 1996; Ortega & Rheinboldt, 2000;
Vrahatis et al., 2000] first proposed by Cauchy
[1847]. In the general case, a method in this class
computes at each iteration a descent search direc-
tion, and then decides how far to move along in this
direction.

Specifically, Cauchy’s method utilizes the fol-
lowing iterative scheme:

xk+1 = xk − λk ∇f(xk), for k = 0, 1, 2, . . . (5)

where λk > 0. As it can be observed from this iter-
ative scheme, the Cauchy method starting from x0

at each iteration k moves along the steepest descent
direction −∇f(xk) of the problem at hand with a
stepsize λk. One of its advantages which simulta-
neously can be a disadvantage in specific cases is
that it only requires calculations of the gradient of
the problem at hand and not its second derivatives.
Additionally, in many cases a wrong estimation of
the stepsize λk may prevent its convergence, thus
several methodologies can be provided to automat-
ically adapt λk. One of the well-known and widely
used methodologies is the Armijo method.

Armijo provided in 1966 [Armijo, 1966; Vra-
hatis et al., 2000] a modification of the steepest
descent method which automatically adapts the
stepsize λk of the iterative Scheme (5). Specifi-
cally, according to Armijo’s approach, a stepsize
λk is acceptable for the iterative Scheme (5) at the

iteration k if the following inequality is fulfilled:

f(xk − λk∇f(xk)) − f(xk) ≤ −1
2
λk‖∇f(xk)‖2,

otherwise λk is repetitively subdivided until the
above inequality is fulfilled. In other words, the
Armijo’s method changes the stepsize length in such
a way that it warrants a sufficient decrease in the
objective function f, as measured by the aforemen-
tioned inequality. The reduction in the objective
function f should be proportional to both the uti-
lized stepsize λk and the ‖∇f(xk)‖2.

A relative to Armijo’s step length adaptation
strategy consists in accepting a positive stepsize λk

along the direction dk if it satisfies the Wolfe con-
ditions [Wolfe, 1969, 1971]. A step length λk is said
to satisfy the Wolfe conditions if the following two
inequalities hold:

(a) f(xk + λk dk) ≤ f(xk) + c1λk〈dk,∇f(xk)〉,
Armijo Rule

(b) 〈dk,∇f(xk + λk dk)〉 ≥ c2〈dk,∇f(xk)〉,
Curvature Condition

with 0 < c1 < c2 < 1. The above inequality
(a) ensures that the step length λk decreases the
function f “sufficiently” along the search direc-
tion dk, while inequality (b) ensures that the slope
has been reduced sufficiently. Furthermore, inequal-
ities (a) and the following inequality (b̂) together
form the so-called strong Wolfe conditions,

(b̂) |〈dk,∇f(xk + λk dk)〉| ≤ c2|〈dk,∇f(xk)〉|.
Based on Cauchy’s method various other gradi-

ent methods have been proposed. A well known and
widely used class is the conjugate gradient meth-
ods. These methods generate a sequence of points
xk, that tend to approximate a minimizer x� of
the objective function f with the following iterative
scheme:

xk+1 = xk + λk dk,

dk =

{−gk ≡ −∇f(xk), k = 0

−gk + bXk dk−1, k ≥ 1

(6)

where dk is the considered direction along which the
function is minimized, gk ≡ ∇f(xk), λk is selected
to minimize f along the search direction dk, and bXk
is a scalar parameter. The iterative process starts
with an initial point x0 and d0 = −g0. Various
versions of conjugate gradient methods have been
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proposed. Each method corresponds to a different choice of the scalar parameter bXk . A few of the
best-known versions are given below:

bCk = 0 Cauchy [Cauchy, 1847]

bFR
k =

‖gk‖2

‖gk−1‖2
Fletcher–Reeves [Fletcher & Reeves, 1964]

bPR
k =

〈gk, gk − gk−1〉
‖gk−1‖2

Polak–Ribière [Polak & Ribière, 1969]

bHS
k =

〈gk, gk − gk−1〉
〈dk, gk − gk−1〉 Hestenes–Stiefel [Hestenes & Stiefel, 1952]

bPk =
〈gk, (xk − xk−1) − (gk − gk−1)〉

〈dk, gk − gk−1〉 Perry [Perry, 1978]

where 〈·, ·〉 denotes the standard inner product.
Furthermore, two additional optimization

methods that belong to the wide category of vari-
able metric methods or the quasi-Newton family
methods are described below. In this category, it
is assumed that the function to be optimized can
be locally approximated by a quadratic function
around an optimum. Variable metric methods uti-
lize information from the gradient ∇f(xk) and the
Hessian matrix:

Hf (xk) =




∂2f(xk)
∂x2

1

∂2f(xk)
∂x1 ∂x2

· · · ∂2f(xk)
∂x1 ∂xn

∂2f(xk)
∂x2 ∂x1

∂2f(xk)
∂x2

2

· · · ∂2f(xk)
∂x2 ∂xn

...
...

. . .
...

∂2f(xk)
∂xn ∂x1

∂2f(xk)
∂xn ∂x2

· · · ∂2f(xk)
∂x2

n



,

to find an optimum. They do not compute the
Hessian matrix Hf (xk) but iteratively update it
by analyzing successive gradient directions. Strictly
speaking, let us consider the aforementioned itera-
tive scheme [Eq. (6)] and generate the direction dk

with the following equation:

dk = −ψk gk + b∗k dk−1,

in which ψk and b∗k are parameters which are to
be determined. It can be observed that, if ψk =
1, then we have the classical conjugate gradient
methods described above, and it remains to select
a proper update rule for the scalar b∗k. On the
other hand, if b∗k = 0, then we obtain a different
class of algorithms according to the selection of ψk

parameter. In this class, we can let ψk either be
a positive scalar or a positive definite matrix. If
ψk = 1, we have the traditional Cauchy method. If
ψk = Hf (xk)−1, or an approximation of it, then we
get, respectively, the Newton or the quasi-Newton
algorithms applied to Fn = ∇f since the Jacobian
matrix of the gradient is the Hessian matrix,
i.e. J∇f ≡ Hf .

Here, we describe two well-known and widely
used methods of the quasi-Newton class, namely
the DFP (Davidon–Fletcher–Powell) method and
the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
method [Nocedal & Wright, 2006]. The iterative
scheme of both methods is briefly described
below:

DFP’s iterative scheme:
Choose a starting point x0 and an estimate A0

of the Hessian matrix Hf (x0). The iterations for
k = 0, 1, . . . are given by:
Compute the correction sk : sk = −λkA

−1
k ∇f(xk),

where λk satisfies the Wolfe conditions,
Set: xk+1 = xk + sk,

Set: yk = ∇f(xk+1) −∇f(xk),
Update the approximate Hessian matrix Ak+1 by:

Ak+1 =
(
In − yk s

�
k

y�k sk

)
Ak

(
In − sk y

�
k

y�k sk

)

+
yk y

�
k

y�k sk
.

The algorithmic scheme of the BFGS method is
the same as the DFP’s method. BFGS differs from
DFP only in the update rule of the Hessian matrix,
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which is defined by the following equation:

Ak+1 = Ak +
yk y

�
k

y�k sk
− Aksks

�
k Ak

s�k Aksk
.

Other popular update formulas, such as the Sym-
metric Rank 1 (SR1) method, and the Broyden’s
family, as well as a thorough description of the
above methods along with examples, their advan-
tages and disadvantages can be found in [Nocedal &
Wright, 2006].

4. Results

As previously mentioned, our approach consists of
analyzing and visualizing the convergence behavior
of a considered method. Specifically, using differ-
ent colors, we display the regions of convergence
to a solution of a given function, and thus we
are able to immediately observe and compare the
advantages and disadvantages of the methodologies
at hand.

Next we describe how our approach accumu-
lates information in a picture. Firstly, we distin-
guish the solutions of the considered function by
marking them with different colors. Each picture’s
element (pixel) corresponds to an initial guess of the
analyzed method and it is colored according to its
convergence. Specifically, each pixel takes the color
of the solution to which the corresponding method
converges, while, if for this initial guess the con-
sidered method does not converge after a specific
number of iterations, the pixel is colored white. It
is obvious that, if a picture exhibits for instance a
fractal-like structure, then the considered method is
not stable since it is sensitive to small perturbations
of the starting points.

Of course, it is not necessary to know the coor-
dinates of the solutions beforehand, since the con-
sidered iterative scheme is applied for any bounded
domain of starting points and according to its con-
vergence, it saves the coordinates of the solutions.
The first solution can be colored red, the second
green, the third blue and so on. Furthermore, in
order to display how fast the method converges
to a solution for the specific initial point we use
color shades. Dark colors indicate rapid convergence
while lighter ones indicate slow convergence. To this
end, we utilize five different shades per color. Thus,
reading a picture, we are able to see the regions of
rapid convergence. Moreover, by observing that the
colored zones are separated, we can easily answer

the question of whether a solution attracts the
initial guesses close to it or not. Also, using the
output data of this approach, it is possible to com-
pute the radius of convergence of a method to a
specific solution. The radius of convergence is the
longest possible radius of the circle centered at the
solution which contains only starting points which
converge to this solution [Androulakis & Vrahatis,
1996; Drossos et al., 1996].

In the paper at hand, we have implemented
eleven algorithms with different characteristics from
the aforementioned principal categories. From the
second category, we have implemented Newton’s
and Broyden’s methods while from the third cat-
egory, we implemented all the algorithms described
above. All the implementations were based on
the Numerical Recipes source code with minimal
modifications [Press et al., 2007].

First, we employ the well known, z3 − 1 = 0,
equation for z ∈ C to visualize the convergence
characteristics of the aforementioned methods.
Specifically considering the corresponding real and
imaginary parts yields the following system of
equations:



f1(x1, x2) = �{(x1 + i x2)3 − 1}
= x3

1 − 3x1x
2
2 − 1 = 0,

f2(x1, x2) = �{(x1 + i x2)3 − 1}
= 3x2

1x2 − x3
2 = 0,

(7)

where i =
√−1. This system has three solutions:

r1 = (1, 0)�, r2 = (−1/2,
√

3/2)� and r3 =
(−1/2,−√

3/2)�.
We have generated starting points in the

[−2, 2]2 rectangle, with a dense grid of 1000 points
per coordinate. For each starting point, we run a
method until it either reaches the maximum num-
ber of 5000 function evaluations, or the distance of
the approximate solution, x�, from a solution, r, is
less than 10−4, i.e. ‖x� − r‖2 ≤ 10−4.

Figure 1 illustrates the basins of convergence
of Newton’s and Broyden’s method, left and right
respectively, to the solutions r1 colored in red, r2
colored in green and r3 colored in blue. Lighter
colors represent more iterations to converge to a
solution. We can observe that both methods exhibit
large basins of fast convergence for each solution.
Newton’s method exhibits a fractal structure
between solutions, while Broyden’s method exhibits
a more stable behavior in the corresponding
areas.
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(a) (b)

Fig. 1. Basins of convergence of (a) Newton’s method and (b) Broyden’s method for System (7).

For the same problem z3 − 1 = 0, we also con-
sider the following objective function:

f(x1, x2) = (�{(x1 + i x2)3 − 1})2

+ (�{(x1 + i x2)3 − 1})2

= (x3
1 − 3x1x

2
2 − 1)2 + (3x2

1x2 − x3
2)

2. (8)

This function has three global minimizers: r1 = (1,
0)�, r2 = (−1/2,

√
3/2)� and r3 = (−1/2,−√

3/2)�
with global minimum f(x1, x2) = 0, which are of
course solutions of the equation z3 − 1 = 0. A con-
tour plot of this objective function is illustrated in
Fig. 2. The shades of the colors ranging from deep
blue to deep red with yellow in between correspond
respectively to function values ranging from small
to large.

Figure 3 illustrates the basins of convergence to
the corresponding global minimizers (solutions) for
the (a) Cauchy, (b) Armijo, and (c) Cauchy method
with strong Wolfe conditions. It is clear that they
exhibit a fast and robust convergence speed with
well shaped basins in the whole area of the con-
sidered rectangle. The Cauchy method with either
constant step (here 0.01) or with strong Wolfe con-
ditions exhibits similar basins of convergence. The
latter method converges in the whole rectangle area
while the former does not converge close to the
rectangle’s corners. Furthermore, Armijo method

exhibits well shaped basins of attraction with fast
convergence speed. It is worth noticing that the
Armijo method converges in the almost whole area
of the considered rectangle and does not exhibit any
fractal structure.

Furthermore, Fig. 4 demonstrates the behav-
ior of the (a) Fletcher–Reeves, (b) Polak–Ribière,
(c) Hestenes–Stiefel and (d) Perry methods respec-
tively. All methods behave in a similar manner and

Fig. 2. Contour plot of the objective function of Eq. (8).
The shades of the colors ranging from deep blue to deep red
with yellow in between correspond respectively to function
values ranging from small to large.
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(a) (b)

(c)

Fig. 3. Basins of convergence of (a) Cauchy’s, (b) Armijo’s and (c) Cauchy’s with strong Wolfe conditions method for
System (7).

exhibit basins of attraction with irregular shapes.
More specifically, Fletcher–Reeves exhibits fast con-
vergence speed in terms of function evaluations
(darker colors), but for many starting points in
the center of the rectangle, it does not converge
to a solution (points in white). On the contrary,

the remaining three methods exhibit many areas
with slower convergence speed but the number of
starting points from which they do not converge
decreases.

Finally, Fig. 5 exhibits the behavior of the
DFP and BFGS methods respectively. Once again
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(a) (b)

(c) (d)

Fig. 4. Basins of convergence of (a) Fletcher–Reeves’s, (b) Polak–Ribière’s, (c) Hestenes–Stiefel’s and (d) Perry’s method for
System (7).

both methods exhibit irregular shaped basins of
convergence with good performance in terms of
convergence speed (dark colors). Additionally, they
illustrate larger basins of convergence than the lat-
ter four methods. BFGS exhibits more well shaped
basins of convergence than DFP, while DFP does

not converge to a solution from several starting
points.

Additionally, we examine the behavior of all
the above methods in the presence of noise. More
specifically, at each function evaluation, noise was
added to the actual function values, for different
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(a) (b)

Fig. 5. Basins of convergence of (a) DFP method and (b) BFGS method for System (7).

values of the noise’s strength (standard deviation).
Here we utilize four different levels of noise strength,
σ = 0.04, σ = 0.10, σ = 0.20, and σ = 0.40. Due to
space limitations we will exhibit only the multiplica-
tive noise case. In this case, experimental results
indicate that in the presence of multiplicative noise,
the most robust, stable and efficient method is the
Armijo method.

To compare Armijo with the classical Newton
method we illustrate in Figs. 6 and 7 their basins of
convergence in the presence of the aforementioned
noise strength levels. Clearly one can observe that
the Armijo method can efficiently and rapidly con-
verge to its closest solution in the presence of high
noise strength levels e.g. when σ = 0.40. In contrast,
at the same noise strength level Newton’s efficiency
declines. It either does not converge to a solution
or converges very slowly (lighter colors with many
white points).

From the other implemented algorithms we
have to distinguish Cauchy with constant step size
and Cauchy with the strong Wolfe conditions. Both
exhibit a behavior similar to that of the Armijo
method, and they can efficiently converge to solu-
tions in the presence of high noise strength levels.
The remaining methods exhibit good behavior only
for low noise strength levels, σ = 0.04 and σ = 0.10.
For higher noise strength levels, most of them do
not manage to converge to a solution within the

prespecified maximum number of function evalua-
tions. In particular, the Broyden method does not
converge to solutions even for low noise strength
values e.g. σ = 0.04. Indicatively, Figs. 8 and 9
exhibit their convergence basins for multiplicative
noise with σ = 0.04.

As a second test case, we consider the quadratic
area-preserving two-dimensional Hénon’s mapping,
and calculate for each method the basins of conver-
gence for two prespecified periodic orbits. The two-
dimensional Hénon’s mapping can be defined as:

Φ :

(
x̂1

x̂2

)
= R(ω)

(
x1

x2 + g(x1)

)
,

where (x1, x2)� ∈ R
2 and

R(ω) =

(
cosω −sinω

sinω cosω

)
,

where ω ∈ [0, π] is the rotation angle. Here, we
consider the Hénon mapping for cosω = 0.24 and
g(x1) = −x2

1. For this example, we can observe
in the Hénon’s mapping phase plot, illustrated in
Fig. 10(a), that there is a chain of five islands
around the center of the rectangle. The center
points of each island contain a stable elliptic peri-
odic orbit of period five (p = 5). Additionally,
the five points where the islands connect consist
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(a) (b)

(c) (d)

Fig. 6. Basins of convergence of Newton’s method in the presence of noise at strength levels of (a) σ = 0.04, (b) σ = 0.10,
(c) σ = 0.20 and (d) σ = 0.40 for System (7).

of an unstable hyperbolic periodic orbit of period
five [Vrahatis, 1995]. As discussed previously, one
can compute these points by applying a proper
method from the aforementioned three categories.
When a minimization method is applied, we have
to create an objective function and calculate its

global minimizers [Parsopoulos & Vrahatis, 2004].
Thereby, in Fig. 10(b) we illustrate a contour plot of
the Hénon mapping (cosω = 0.24 and g(x1) = −x2

1)
objective function for calculating periodic orbits of
period p = 5. The shades of the colors ranging
from deep blue to deep red with yellow in between
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(a) (b)

(c) (d)

Fig. 7. Basins of convergence of Armijo’s method in the presence of noise at strength levels of (a) σ = 0.04, (b) σ = 0.10,
(c) σ = 0.20 and (d) σ = 0.40 for System (7).

correspond respectively to function values rang-
ing from small to large. When we have computed
one of these points, we can either subsequently
apply the same algorithm with different starting
conditions and find another point of the periodic
orbit or we can iterate the mapping using one of

the computed points as starting point. To produce
the stable periodic orbit, we can iterate the map-
ping using the following starting point: (x1, x2)� =
(0.5672405470221847,−0.1223202134278941)�. The
rotation number of this orbit is σ = m1/m2 = 1/5.
It produces m2 = 5 points by rotating around
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(a) (b)

(c) (d)

Fig. 8. Basins of convergence of (a) Cauchy’s, (b) Cauchy’s with strong Wolfe conditions, (c) Fletcher–Reeves’s and
(d) Polak–Ribière’s method in the presence of noise at the strength level of σ = 0.04 for System (7).

the origin m1 = 1 times. Additionally, to com-
pute the unstable periodic orbit, one can iterate
the mapping using at starting point (x1, x2)� =
(0.2942106885737921,−0.4274862418615337)� [Vra-
hatis, 1995].

Next, we demonstrate the basins of convergence
for both stable and unstable periodic orbits. We
have generated starting points in the [−1, 1]2 rect-
angle, with a dense grid of 1000 points per coordi-
nate. For each starting point, we execute a method
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(a) (b)

(c) (d)

Fig. 9. Basins of convergence of (a) Hestenes–Stiefel’s, (b) Perry’s, (c) DFP method and (d) BFGS method in the presence
of noise at the strength level of σ = 0.04 for System (7).

until it either reaches the maximum number of
5000 function evaluations, or the distance between
it and the approximate solution, x�, is less than
10−4, i.e. ‖x� − xp‖∞ ≤ 10−4. Each periodic orbit
consists of five different points, thus each figure
below will consist of ten different colors one for each

point. Additionally, the white color indicates that
the corresponding starting point does not converge
to any of the ten points within the aforementioned
criteria.

Figure 11 illustrates the basin of convergence
for Newton’s and Broyden’s methods. It is clear
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(a) (b)

Fig. 10. (a) Hénon mapping for cos ω = 0.24 and g(x1) = −x2
1. (b) Contour plot of the Hénon mapping objective function

for calculating periodic orbits with period p = 5, (cos ω = 0.24 and g(x1) = −x2
1).

(a) (b)

Fig. 11. Basins of convergence of (a) Newton’s method and (b) Broyden’s method for computing the stable (sp) and unstable
(up) periodic orbits. Fixed points colors: sp (0.5672,−0.1223), sp (0.5672, 0.4440), sp (0.0173, 0.5800), sp (−0.5585, 0.1560), sp
(0.0173,−0.5797), up (0.2942,−0.4274), up (0.5696, 0.1622), up (0.2942, 0.5140), up (−0.3443, 0.3882), up (−0.3443,−0.2696).
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that Newton’s method produces several wide and
irregular shaped basins of attraction for each point
of the periodic orbits, while Broyden’s method con-
verges only in small areas around each point of the
periodic orbits.

Figure 12 exhibits the basin of convergence
for the Cauchy with constant step size (a), the
Armijo (b), and the Cauchy with strong Wolfe con-
ditions method (c). Here we can observe that when
the methods converge to a point, they produce

(a) (b)

(c)

Fig. 12. Basins of convergence of (a) Cauchy’s, (b) Armijo’s and (c) Cauchy’s with strong Wolfe conditions method for
computing the stable (sp) and unstable (up) periodic orbits. Fixed points colors: sp (0.5672, −0.1223), sp (0.5672, 0.4440), sp
(0.0173, 0.5800), sp (−0.5585, 0.1560), sp (0.0173,−0.5797), up (0.2942,−0.4274), up (0.5696, 0.1622), up (0.2942, 0.5140), up
(−0.3443, 0.3882), up (−0.3443,−0.2696).



September 5, 2011 15:45 WSPC/S0218-1274 02965

Methods for Locating and Computing Periodic Orbits 2097

wide basins of convergence. By comparing the three
methods, one could suggest that Cauchy’s method
with constant step size exhibits the most robust
performance, since it converges to a periodic point
from most of the starting points of the considered

area. Although, there are several starting points
within Cauchy’s basins from which the method does
not converge to any point of the considered peri-
odic orbits. This may be due to a low budget of
function evaluations. By increasing the budget of

(a) (b)

(c) (d)

Fig. 13. Basins of convergence of (a) Fletcher–Reeves’s, (b) Polak–Ribière’s, (c) Hestenes–Stiefel’s and (d) Perry’s method
for computing the stable (sp) and unstable (up) periodic orbits. Fixed points colors: sp (0.5672, −0.1223), sp (0.5672, 0.4440),
sp (0.0173, 0.5800), sp (−0.5585, 0.1560), sp (0.0173, −0.5797), up (0.2942,−0.4274), up (0.5696, 0.1622), up (0.2942, 0.5140),
up (−0.3443, 0.3882), up (−0.3443,−0.2696).
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function evaluations and selecting a proper step size
for the problem at hand it may produce more dense
and wide basins of convergence. The same configu-
ration settings can be employed to both Armijo’s
and Cauchy’s methods with strong Wolfe condi-
tions to enhance their convergence performance.
Both methods produce more robust and dense con-
vergence basins but they do not converge from all
starting points to the considered periodic orbits. A
much larger budget of function evaluations should
enhance their convergence performance and pro-
duce wide regions of convergence from all starting
points, since both the Armijo rule and the strong
Wolfe conditions require a high number of function
evaluations.

Figures 13 and 14 illustrate the convergence
characteristics of the remaining six optimization
algorithms. As it can be observed, they produce
very unstable basins of convergence with many
irregular shapes without any distinguishing pattern.
Specifically, Fletcher–Reeves method does not con-
verge to a periodic orbit point from the major-
ity of the starting points. On the contrary, the
rest of the algorithms converge fast to a peri-
odic orbit point in a very unstable manner. From
all considered algorithms in these two figures,
the BFGS method exhibits the most promising

performance, since it produces the most wide basins
of convergence.

In the presence of noise, almost all methods in
this example either do not converge to a periodic
orbit point, or do not exhibit a robust basin of con-
vergence for any one of the points. Indicatively, here
we provide convergence plots for the four best meth-
ods and only for the strength noise level of σ = 0.04.
Figure 15 illustrates the basins of convergence in the
presence of noise for (a) Newton, (b) Armijo, (c)
Hestenes–Stiefel and (d) Fletcher–Reeves method.
As it can be observed, Newton maintains most of its
initial basin’s shapes, Armijo can accurately locate
the fixed points only in a small basin around the
corresponding periodic orbit point, while Hestenes–
Stiefel and Fletcher–Reeves converge to a periodic
orbit point without any robust, or stable manner.
In the presence of a higher strength noise level, the
majority of the considered algorithms do not exhibit
any well shaped basin of convergence.

Remark 4.1. Although we have used here the two-
dimensional Hénon map for illustration, a large
variety of mappings can be used, including the
Beam–Beam Map, the Standard Map, the Gin-
gerbreadman Map, the Predator–Prey, as well as,
higher dimensional maps including the Lorenz Map,

(a) (b)

Fig. 14. Basins of convergence of (a) DFP method and (b) BFGS method for computing the stable (sp) and unstable (up)
periodic orbits. Fixed points colors: sp (0.5672,−0.1223), sp (0.5672, 0.4440), sp (0.0173, 0.5800), sp (−0.5585, 0.1560), sp
(0.0173,−0.5797), up (0.2942, −0.4274), up (0.5696, 0.1622), up (0.2942, 0.5140), up (−0.3443, 0.3882), up (−0.3443,−0.2696).
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(a) (b)

(c) (d)

Fig. 15. Basins of convergence of (a) Newton’s, (b) Armijo’s, (c) Hestenes–Stiefel’s and (d) Fletcher–Reeves’s method for
computing the stable (sp) and unstable (up) periodic orbits in the presence of noise with σ = 0.04. Fixed points colors: sp
(0.5672,−0.1223), sp (0.5672, 0.4440), sp (0.0173, 0.5800), sp (−0.5585, 0.1560), sp (0.0173,−0.5797), up (0.2942,−0.4274), up
(0.5696, 0.1622), up (0.2942, 0.5140), up (−0.3443, 0.3882), up (−0.3443,−0.2696).
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(a) (b)

Fig. 16. (a) A Poincaré surface section of Duffing’s oscillator for α = 0.05 and β = 2. (b) Contour plot of the Poincaré surface
section of Duffing’s oscillator objective function for calculating periodic orbits with period p = 1, (α = 0.05, β = 2).

the Rössler Map and Hénon’s 4-Dimensional Sym-
plectic Map, among others.

Remark 4.2. For a visualization in higher dimen-
sions, we can consider a bounded domain of starting
points of the two-dimensional subspace E2 of R

n

spanned by the following two vectors: {emax, emin},
where emax, emin are the eigenvectors correspond-
ing to the extreme eigenvalues of the Hessian of
the objective function f at a minimum x�,∇2f(x�).
More specifically, we can apply the aforementioned
algorithms for points x = x� + y ∈ R

n, with y =
c1e

max + c2e
min, c1, c2 ∈ R, by taking a grid of the

values of c1 and c2 which determine the coordinates

of a pixel for illustration. Since ∇2f is a real and
symmetric matrix, all eigenvalues and eigenvectors
are real and the eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. Thereby the values
of c1 and c2 taken by a grid into an orthogonal par-
allelepiped represent an orthogonal parallelepiped
subset of E2. The main reason for the choice of
this two-dimensional subspace is that it reveals use-
ful information. It is well known that, studying
the sensitivity of the solution to small changes in
a sufficiently small neighborhood of x�, the direc-
tions of the principal axes of the elliptical contours
(n-dimensional ellipsoids) will be given by the eigen-
vectors of ∇2f, while the lengths of the axes will be

(a) (b)

Fig. 17. Basins of convergence of (a) Newton’s method and (b) Broyden’s method for computing periodic orbits with period
p = 1, of the Poincaré surface section of Duffing’s oscillator (α = 0.05, β = 2). Fixed points colors: red color for (−1.0245, 0.0)
fixed point, blue color for (0.9746, 0.0) fixed point, white color for no convergence.
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inversely proportional to the square roots of the cor-
responding eigenvalues. Hence, a variation along the
eigenvector corresponding to the maximum eigen-
value will cause the largest change in f, while the
eigenvector corresponding to the minimum eigen-
value yields the least sensitive direction. Thus,
we can apply the aforementioned algorithms to
this subspace and study their behavior for various
directions, including the “extreme ones”. For more
information about the visualization procedure in
higher dimensions we refer the interested reader to
[Androulakis & Vrahatis, 1996; Androulakis et al.,
1997; Parsopoulos et al., 2008].

Remark 4.3. In the case of the nonexistence of
derivatives or poorly behaved partial derivatives,
various derivative-free methods can be used (see

for example [Parsopoulos & Vrahatis, 2003; Giorgi
et al., 2004; Conn et al., 2009]).

The experimental analysis continues with the
third and final test case. In this case, we consider
a Poincaré surface of section for the conservative
Duffing’s oscillator and calculate for each method
the basins of convergence for two prespecified
periodic orbits. More specifically, the conservative
Duffing’s oscillator [Drossos et al., 1996] can be
described by the following equation:

ẍ = x− x3 + α cos βt,

which can be written as:{
ẋ1 = x2,

ẋ2 = x1 − x3
1 + α cos βt.

(a) (b)

(c)

Fig. 18. Basins of convergence of (a) Cauchy’s, (b) Armijo’s, and (c) Cauchy’s with strong Wolfe conditions method for
computing periodic orbits with period p = 1, of the Poincaré surface section of Duffing’s oscillator (α = 0.05, β = 2). Fixed
points colors: red color for (−1.0245, 0.0) fixed point, blue color for (0.9746, 0.0) fixed point, white color for no convergence.
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For the aforementioned dynamical system, we con-
sider the Poincaré surface of section for the param-
eter values of α = 0.05 and β = 2. Figure 16(a)
illustrates the phase plot of this surface, in the
[−1.6, 1.6] × [−1.2, 1.2] rectangle, while Fig. 16(b)
illustrates a contour plot of the Poincaré surface
of section of Duffing’s oscillator objective func-
tion for calculating periodic orbits with period
p = 1. The shades of the colors ranging from deep
blue to deep red with yellow in between corre-
spond respectively to function values ranging from
small to large. For this example, we can observe
two distinct islands along the x2 = 0 axis. The
center points of each island correspond to fixed
points of period one (p = 1). Once again we
can easily compute these two points by applying

a proper method from the aforementioned three
categories. The two center points correspond to
r1 = (x1, x2)� = (−1.024572461190486, 0.0)� , and
r2 = (x1, x2)� = (0.9746253482044169, 0.0)� . To
this end, we exhibit the basins of convergence for
these two fixed points in the [−1.6, 1.6]× [−1.2, 1.2]
rectangle. In this example, the utilized grid of start-
ing points consists of 500 points per coordinate. For
each starting point, we run a method until it either
reaches the maximum number of 5000 function eval-
uations, or the distance between a fixed point r and
the approximate solution, x�, is less than 10−3, i.e.
‖x� − r‖2 ≤ 10−3. Here, the white color depict-
ing that for the corresponding starting point the
method did not converge to any of the two fixed
points within the aforementioned criteria.

(a) (b)

(c) (d)

Fig. 19. Basins of convergence of (a) Fletcher–Reeves’s, (b) Polak–Ribière’s, (c) Hestenes–Stiefel’s, and (d) Perry’s method
for computing periodic orbits with period p = 1, of the Poincaré surface section of Duffing’s oscillator (α = 0.05, β = 2). Fixed
points colors: red color for (−1.0245, 0.0) fixed point, blue color for (0.9746, 0.0) fixed point, white color for no convergence.



September 5, 2011 15:45 WSPC/S0218-1274 02965

Methods for Locating and Computing Periodic Orbits 2103

(a) (b)

Fig. 20. Basins of convergence of (a) DFP method, and (b) BFGS method for computing periodic orbits with period p = 1,
of the Poincaré surface section of Duffing’s oscillator (α = 0.05, β = 2). Fixed points colors: red color for (−1.0245, 0.0) fixed
point, blue color for (0.9746, 0.0) fixed point, white color for no convergence.

Figures 17–20 demonstrate the basins of con-
vergence to the fixed points for all the considered
methods. It can be observed that the Newton, as
well as the Cauchy, the Armijo and the Cauchy with
strong Wolfe conditions method exhibit stable and
robust performance in terms of wide basins of con-
vergence. The Cauchy method with constant step-
size, λk = 0.01, yielded the most stable and robust
performance, as it converges to the fixed points from
almost every starting point in the considered area.

More specifically, Fig. 17 illustrates the basins
of convergence of Newton’s and Broyden’s methods,
left and right respectively. Newton’s method pro-
duces two wide and stable basins of convergence in
about two thirds of the examined area, while in the
center of the figure there is a wide area where New-
ton’s method does not converge to a fixed point. On
the contrary, Broyden’s method does not converge
to any of the fixed points in the majority of the
considered area. In Fig. 18, it can be observed that
Armijo’s method and Cauchy with strong Wolfe
conditions method behave similarly, and produce
wide and stable basins of convergence. Addition-
ally, Cauchy’s method with constant stepsize (here
λk = 0.01) converges to the fixed points in almost
all of the considered area. There is a limited num-
ber of initial points at the top right and at the bot-
tom left corner from which Cauchy’s method cannot
converge to any of the two fixed points.

Furthermore, Fig. 19 illustrates the basins of
convergence for the Fletcher–Reeves, the Polak–
Ribière, the Hestenes–Stiefel, and the Perry

methods. As in the previous examples, all four
methods converge to the two fixed points for the
majority of the starting points but not in a sta-
ble manner, since they produce wide basins of con-
vergence with irregular shapes, that contain many
discontinuous areas within their basins. Among the
four methods of Fig. 19, we can observe that the
Polak–Ribière, the Hestenes–Stiefel, and the Perry
method, exhibit more dense convergence areas.
Also, the Polak–Ribière method converges faster
than the other three methods (many points with
darker colors). Figure 20 exhibits the basins of con-
vergence for the DFP and BFGS methods. Once
more, although they produce wide basins of conver-
gence, all basins have irregular shapes with many
discontinuous areas within their basins. Finally, for
this example in the presence of noise the majority
of the tested algorithms did not converge to any of
the fixed points. We therefore do not provide fig-
ures for this case. The only exception was Newton’s
method which exhibited some convergence areas for
the lowest noise strength level, σ = 0.04.

5. Synopsis

In summary, we have presented an approach to
distinguish reliable and robust methods for tack-
ling a specific problem. To this end, we construct
and display the “geometry” of the corresponding
basins of convergence of the considered methods at
the specific solution. By studying the structure of
these basins of convergence, we are able to answer
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the following questions that, in general, cannot be
addressed more satisfactorily by theory, namely:

(1) The question of whether for a given initial guess
the method converges to the closest solution.

(2) How fast does the method converge to different
solutions?

(3) How sensitive (stable) is the process to changes
of the function or the initial data?

(4) How is the performance of the method affected
by the presence of noise (impact of imprecise
information regarding the values of the func-
tion)?

First, we apply our approach to form the basins
of convergence of methods applied to z3 − 1 = 0 for
z ∈ C and we succeed in finding methods for which
the corresponding basins of convergence do not
exhibit a fractal-like structure. Also, this approach
has been illustrated here for methods for comput-
ing periodic orbits of nonlinear mappings as well as
for fixed points of the Poincaré map on a surface
section.

In general, using our methodology, by visualiz-
ing the performance of various methods we are able
to trace reliable and robust methods for a given
class of problems which possess similar characteris-
tics by analyzing a specific problem of this class.
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