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Abstract. To improve speaker verification performance, wéeed the well-
known Probabilistic Neural Networks (PNN) to LogaRecurrent Probabilistic
Neural Networks (LRPNN). In contrast to PNNs thasgess no feedbacks,
LRPNNSs incorporate internal connections to the magputs of all recurrent
neurons, which render them sensitive to the contextvhich events occur.
Thus, LRPNNs are capable of identifying time andtisp correlations. A fast
three-step method is proposed for training an LRPT first two steps are
identical to the training of traditional PNNs, wéihe third step is based on the
Differential Evolution optimization method. The femance of the proposed
LRPNNs is compared with that of the PNNs on thé tafstext-independent
speaker verification.

1 Introduction

The speaker verification process, based on ideol#tyn and a sample of speaker's
voice, provides an answer to the unambiguous questls the present speaker the
one s/he claims to be, or not?" The output of téfication process is a binary deci-
sion "Yes"/"No", depending on the degree of sintyabetween the speech sample
and a predefined model for the user, the spealkamslito be. The text-dependent
speaker verification systems examine the mannevhich a specific password or a
system-prompted sequence is pronounced. In théndependent scenario, the talker
is not restricted in any way, and as soon as,déetity claim is provided, s/he is free
to speak in any manner, without imposing any votaguestrictions. In the present
work, we consider the text-independent case.

In short, contemporary speaker verification systanescomposed of a feature ex-
traction stage, which aims at extracting speakeinaracteristics while evading any
sources of adverse variability, and a classificatstage, that identifies the feature
vectors with a certain class. Popular classificattechniques, such dsNearest
Neighbor k-NN) [1], Probabilistic Neural Networks (PNN) [2%nd Gaussian Mix-
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ture Models (GMM) [3], employed in the text-indeplent speaker verification task,

assume context independence among feature vectoested from adjacent speech
frames. It is well known, however, that speech aigmrontain an abundance of short-
and long-term correlations, which if identified cha exploited to enhance speaker
verification performance.

At present, the most popular speech features Liikear Predictive Cepstral Coef-
ficients (LPCC) [4], Mel-Frequency Cepstral Coéaffitts (MFCC) [5], and Perceptual
Linear Prediction (PLP) coefficients [6], used jmeaker recognition tasks, represent
the static spectrum for a given speech frame. Tiuca the dynamics of a speech
signal, in addition to the static parameters thevéod differences\ andA? are widely
used. A more effective approach to exploit intamie correlations is to employ a
classifier sensitive to these correlations. Cléssf of this type include Hidden
Markov Models (HMM) [7], Time-Delay Neural NetworK3DNN) [8], and Recur-
rent Neural Networks (RNN) [9]. Time-delay neuratworks are able to capture the
inter-frame correlations at the cost of a significeacrease of network size and com-
putational requirements, in comparison to theitisteounterparts. Recurrent neural
networks are much more efficient, but suffer framabgity problems, and their train-
ing is computationally more demanding comparedne-{delay neural networks. Here
we focus on Neural Network based classifiers.

Following the introduction of the Probabilistic NauNetwork by Specht [2], nu-
merous enhancements, extensions, and generalizatidhe original model have been
proposed. These efforts aim at improving eitherl&aning capability [12] [13], or
the classification accuracy [15] of PNNs; or altdively, at optimizing network size,
thereby reducing memory requirements and the iegutbmplexity of the model, as
well as achieving lower operational times [17] [18] temporal updating technique
for tracking changes in a sequence of images, basegeriodic supervised and unsu-
pervised updates of the PNN, has been also dei:[agé

In previous work [25], we proposed a locally reemtr global-feedforward PNN-
based classifier, combining the desirable featofelsoth feedforward and recurrent
neural networks. More specifically, we have extehttee original PNN architecture,
proposed by Specht [2], to Locally Recurrent PNIRPINN), in order to capture the
inter-frame correlations present in a speech sjgm#hout imposing a large computa-
tional burden to train the network. In this conttibn, we update the LRPNN archi-
tecture, its training procedure, and provide comensive results.

The locally recurrent global-feedforward architeetwas originally proposed by
Back and Tsoi [10], who considered an extensiothefMultilayer Perceptron (MLP)
neural network to exploit contextual information.the work of Back and Tsoi, each
recurrent neuron has connections to his own cuaadtdelayed inputs and outputs.
Our approach is based on the locally recurrentajlédedforward architecture. The
locally recurrent layer we propose is similar te tlR synapse [10]. The main differ-
ence is that we consider PNNs instead of MLPs.heuantore, in the proposed net-
work, the input values of each summation unit amrised of (a) the current inputs,
(b) its past outputs, and (c) most importantly, fnevious output values of all the
other neurons in that layer. Broadly speaking,itipeit signal, acting on a recurrent
neuron located in the recurrent hidden layer of RRNN, is a sum of two differences.
The first difference is between the weighted pradliigitof the given class and the sum



of weighted probabilities computed for all the otbiasses. The second difference is
between the weighted past output values of thengivét and the sum of the weighted
past output values of all the other neurons inldyer. Thus, in the proposed architec-
ture, the probability of belonging to a specifiasd is combined with the probabilities
computed for the other classes, and more impoytavith the past values of the out-
puts of the summation units for all classes. Thi®iporation of previous information
enables the LRPNN network to produce improved demite levels, and conse-
guently make a more correct final decision.

In contrast to [14], our approach does not reqteteaining or adaptation of the
PNN parameters during the operational phase — tireeparameters are computed,
they remain unchanged.

The rest of the paper is organized as follows: dnti&n 2, we define the architec-
ture of the LRPNN. In Section 3, a fast three-di@ning method is proposed. In
Section 4, a comparative evaluation of LRPNN'’s gemiance, with that of PNNSs, is
performed, on the task of text-independent speagsfication. The paper ends with
concluding remarks.

2 TheLRPNN Architecture

Although there exist numerous improved versionghef original PNN, which are
either more economical, or exhibit a significargiyperior performance, for simplicity
of exposition, we adopt the original PNN as a stgripoint for introducing the
LRPNN architecture. The enhancement of the PNNii@atore we propose can be
applied to the more advanced PNNSs.

The LRPNN is derived from the PNN by including aden layer, which consists
of summation neurons possessing feedbacks, betiveanadial basis and competitive
layers of the original structure. Thus, in thetfinikdden layer, the LRPNNs, as their
predecessor — the PNNs, implement the Parzen wirgdtvwator by using a mixture
of Gaussian basis functions (see [2] for detalfsan LRPNN for classification ik
classes is considered, the probability densitytfandi(x,) of each clasg; is defined

by (1),

1 1 M 1 T .
fi (Xp) 20258 W, J_Z::1e><p 27 Xp =) p—xj)|, 1=12,..K (1)
wherex;; is thej-th training vector from clasl, x, is thep-th input vectord is the
dimension of the speech feature vectors, lnis the number of training patterns in
classk. Each training vectox; is assumed a center of a kernel function, andesons
qguently the number of pattern units in the firddden layer of the neural network is
given by the sum of the pattern units for all thasses. The variancg acts as a

smoothing factor, which softens the surface defihgdhe multiple Gaussian func-
tions. Instead of the simple covariance mateix,, wherel represents the identity

matrix, the full covariance matrix can be computisthg the Expectation Maximiza-
tion algorithm, as proposed in [11] [12]. For simijty of exposition, we consider



here the simple case, where the value of the vaignidentical for all pattern units
belonging to a specific class, or, it can evenhgesame for all pattern units irrespec-
tive of the class, as it was originally proposedSpgcht [2].

The summation units outpy(x,) of the locally recurrent layer is computed by

K
Yi (xp) =] 1 i (xp) = 2Bk fie (xp)
k=1

izk
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wherefi(x,) is the probability density function of each clés, is the input vectorK
is the number of classel, is the recurrence deptﬁ-,(xp_t) is the normalized past

output for clask; that has been delayed bime steps, and;;; andb;; are weight
coefficients. The outpui(x,) of each summation unit is subject to a reguldiora
transformation:

i (xp) :M,i =1,2,..K 3)

_glsgm(yi (xp))

which retains the probabilistic interpretation bétoutput of the recurrent layer. The
designatiorsgm refers to the sigmoid activation function.

In general, the recurrent layer can be considased form of Infinite Impulse Re-
sponse filter that smoothes the probabilities geteelrfor each class, by incorporating
information about the probabilities computed fdrather classes, and more impor-
tantly, by exploiting one or more past values &f tlutputs for all classes.

Finally, in the third hidden layer, the Bayesiamidon rule (4) is applied to distin-
guish clas;, to which the input vectot, is categorized:

D(xp) = argmaxfyG ¥ (p )} i = 1,.2...K @
|

whereh; is a-prioriprobability of occurrence of a pattern from cl&ssandc; is the
cost function associated with the misclassificattba vector belonging to claks
The conditional probabilitp(k |X ), that all test vectors of a s¥&{x.}, where

p=1,2,...P belong to clask;, is computed by:
Ny
P (ki |x)=XTp’k', i=12,...K (5)

where N, is the number of vectosg classified by (4) as belonging to cldss
prii



Architecture of Locally Recurrent Probabilistic Neural Network
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Fig. 1. Architecture of the Locally Recurrent Probabilistleural Network

In the speaker verification task, the final deaisi® made with respect to a speaker
independent threshold. The speaker is rejected am@ostor when the probability (5)
is below this threshold; otherwise, the speakelesiity claim is accepted.

In Fig. 1, the architecture of the LRPNN for theseaf two classeKE2) and re-
currence depth onéN€l) is shown. For visualization purposes the Igcadicurrent
layer is magnified. As depicted in Fig. 1, the mbitity density functiond; andf,
computed by the first hidden layer act as inputgtie summation units of the locally
recurrent layer. Both these inputs, as well agitlayed past outputg, and y, of the

two classes are weighted by the weidhisanda;;, respectively. Finally, the current
output valuesy, and y, are passed as inputs to the competitive layerdbeitles the

winning class.

3 TheLRPNN Training

A three-step training procedure for the LRPNN iegwsed. By analogy to the origi-
nal PNN, the first training step creates the actojpblogy of the network. In the first
hidden layer, a pattern unit for each training geés created, by setting its weight
vector equal to the corresponding training vecldre outputs of the pattern units
associated with the claksare then connected to one of the second hiddem faym-
mation units. The number of summation units is etpushe number of classés We
consider a modification of the PNN, where only thbest results are summed to-
gether, withn usually ranging between one and six.

The second training step is the computation of dimothing parametes; for
each class. To this end, various approaches [1§]Have been proposed. Although
other methods can be employed, here we will mertdity the one proposed by Cain
[15] due to its simplicity. According to Cain, ary is proportional to the mean value



of the minimum distances among the training veddassk;:

! Mz (©)
g =A— d",
Mi 2 ik

Wheredj’ki is the smallest Euclidean distance computed betjwdepattern unit of

classk; and all the other pattern units from the sames¢lasdM; is the number of
training patterns in clads. The constantl is usually in the range of 1.1 and 1.4. If
the smoothing parameter is common for all classiéiser it is chosen empirically, or it
is computed by applying (6) on the entire trainiaga set.

The third step is the computation of the weighttheflocally recurrent layer, using
the training data exploited at step one. This igivadent to the minimization of the
error function (7):

K
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where the parameter is the relative cost of detection error for the corresponding
classk;, P(Miss|k;) is the post probability of misclassification of the patenelong-

ing to clas¥k;, andP(k) is the a-priori probability of occurrence the patternslags
ki in the training data set. The valuesR{Miss|k;) are obtained in the following way:

For a given weight vecton={a, b}, the values ofy; are computed, according to (2)
and (3), and then (4) is applied. Finallyp(Miss|k) is computed as
P(Miss|kj )=1- P{; |X ), whereP(; |X) is obtained from (5) for the case of the

training data set.

The minimization of total erroE(w) is achievedby employing the Differential
Evolution (DE) algorithm introduced by Storn and Pric&][2ZThe DE method ex-
ploits a population of potential solutions to probe tharsh space. At each iteration,
called generatiory, three steps, callethutation, recombination, and selection are
performed [21]. First, all weight vectors are randomlyatized. Then at the mutation

step, hew mutant weight vectov§+1 are generated by combining weight vectors,
randomly chosen from the population:

po =y OB ) o) ®

where vx/gl and wéz are two randomly selected vectors, different frm@, vx)gl“St is the

best member of the current generation, and the positive mutatitatanty controls
the magnification of the difference between two weight vectorshérecombination



step, each componejtl,2,...L of these new weight vectors is subjected to a further
modification. A random number [0, 1] is generated, andrifis smaller than prede-

fined crossover constapt thej-th component of the mutant veclvgﬂbecomes—th

component of the trial vector. Otherwise, Al component is obtained from the
target vector. Finally, at the selection step, the trial weiglstors obtained at the
crossover step are accepted for the next generation only if #ddyayreduction of the

value of the error function; otherwise, the previous weighggetained.

4 Experimentsand Results

Our text-independent speaker verification system WCL-1 [23]ardicipant in the
2002 NIST Speaker Recognition Evaluation [23], was used &tfarp to compare
the performance of the LRPNN and the original PNN. In all éxparts, the number
of classeK was fixed K=2), since in the speaker verification task only two classes
are considered — one for the enrolled user and one for the ivellexddel of non-
users (impostors). Since the present study aims at comphendrRPNN architecture
to the classical PNN, rather than optimizing absolute speakéicaton performance,
the smoothing parameter was set to the fixed value of 0.35 for both the classes.

This choice was motivated by our intention to evaluate theopeaince gain that is
solely attributed to the ability of the LRPNN architecturexploit inter-frame corre-
lations. Any difference in the smoothing parameter in the epatiye experiments
might influence the performance of the classifiers, and consegumadl our conclu-
sions. The locally recurrent layer’s weights were computed &@emmon set of data
for all enrolled speakers. To speed up the computation progessetained only
10000 training vectors — namely, the first 5000 feature vedtreach of the two
classes.

Common training and testing protocols were followed inealberiments. Fifty
male speakers, extracted from the PolyCost v1.0 telephone-speatieisrecognition
corpus [24], were enrolled as authorized users. The trairdtay domprised of ten
utterances, containing both numbers and sentences, obtaineth&dinst session of
each speaker. In average, about 17 seconds of voiced speech per spealesail
able for training each user model. All the enrolled users'itigaisiata were then com-
bined for building a common reference model. Utterances frotheall4 male speak-
ers (50 users + 24 unknown to the system) available in tabata were used to per-
form test trials. Each user model was tested by 4 target figaisthe second session
of the corresponding enrolled user, and by 292 trials fboth unknown impostors
and pseudo-impostors. About 1.3 seconds of voiced speedegpartterance were
available. The actual amount of voiced speech in the particularwialsn the range
of 0.4 to 2.1 seconds. Impostor trials from oppositespexakers were not performed.

In the first speaker verification experiment, the LRPNN irsitaplest form, with
recurrence depth ondl£1), was compared with the original PNN. Fig. 2 presents the
normalized distribution of the scores for the enrolled ugtashed line) and the im-
postors (solid line). The considerable spread of both uaatsimpostors’ scores for
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Fig. 2. Speaker verification score distribution for the: (a) Phd (b) LRPNN

the PNN case, shown in Fig. & (is obvious. In contrast, as Fig. [& @demonstrates,
the LRPNN classifier produces a smaller deviation from the male for both the
users and the impostors. In 62 % of the cases a zero probfdriihe impostor trials
was produced, which is a major improvement compared to the 88a¥ted trough
the traditional PNN. Moreover, the LRPNN exhibited a sigaifit concentration of
the enrolled users’ scores at the maximum probability pdiahe (about 60 % of all
trials), in contrast to the simple PNN for which the userass were spread out over a
much wider area in the upper part of the scale. Therefore, notr@jbr concentra-
tion of the score distributions, but also a clearer separafitime two classes, and a
decrease of the overlapping area were observed.

Next, we studied the influence of the recurrence diptlrer the speaker verifica-
tion performance achieved by the LRPNN architecture. Comparativisrésat con-
trast the LRPNN and the PNN error rates are presented in Table 1.

Table 1. The Equal Error Rate for the LRPNN for various recurrereggtdvalues,
contrasted to the performance of the original PNN

Architecture Number of weights in EER [%)]

the recurrent layer

Original PNN - 3.50
LRPNN (N=1) 8 3.24
LRPNN (N=2) 12 3.03
LRPNN (N=3) 16 2.50
LRPNN (N=4) 20 3.50

As expected, wheN increases — the Equal Error Rate (EER) decreases, because a
larger part of the inter-frame correlation can be identified abdexjuently exploited.
The major increase of the EER, observedNe# is mainly due to the insufficient
amount of training data. The number of weight coefficienthénrecurrent layer de-



pends in linear manner td, but for largeN larger training datasets are required.
When data are scarce, the neural network becomes overspecializedraimihg set
and is unable to generalize on unknown data. A second impardastraint on the
recurrence depth is the size of the time window. For large vafudshe time win-
dow could spread across two or more phonemes, and even adlaislesyln this
case, the neural network becomes sensitive to the linguistieniafion carried by the
training data. This can be very useful in the case of speech reongoi text-
dependent speaker verification, but in the context of text-indiemee, it decreases
the speaker verification performance.

A guantitative assessment of the relative reduction of the eates demonstrates
the significant advantage of using the LRPNN architecture. Fampbe, when com-
pared to the original PNNhe LRPNN with recurrence depi={1, 2, and 3}, gains a
relative reduction of the error rate by more than 7 %, 13 %28, respectively.

Conclusion

Introducing the Locally Recurrent Probabilistic Neural Netwoske, extended the
original PNN architecture to exploit the inter-frame correlationong the feature
vectors extracted from successive speech frames. Moreover, a fasttéréining

method for LRPNNs was proposed. Comparative experimentaltsetrl text-

independent speaker verification were presented. They demonstratesig@rior
performance of the LRPNN architecture over the original PNMelAtive reduction
of the error rate by more than 28 % was observed for recurreptieM:3. The pro-

posed approach can be employed by the more sophisticated verfdioasNN.
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