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We propose a self–adaptive probabilistic neural network model, which incorporates op-
timization algorithms to determine its spread parameters. The performance of the pro-
posed model is investigated on two protein localization problems, as well as on two
medical diagnostic tasks. Experimental results are compared with that of feedforward
neural networks and support vector machines. Different sampling techniques are used
and statistical tests are conducted to calculate the statistical significance of the results.
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1. Introduction

The field of Bioinformatics has rapidly developed during the past few years. A sig-

nificant area of interest in this field is the prediction of protein localization sites

in cells. Numerous systems, including rule–based systems (decision trees, decision

rules), statistical learning systems (naive Bayes, support vector machines) and ar-

tificial neural networks have been used to perform prediction and classification

tasks1,2.

Medicine is another field in which computational intelligence methods are fre-

quently applied to address signal processing and classification tasks. Radiation

therapy treatment planning systems, for example, can be designed and optimized

through soft computing simulation methodologies3. Moreover, artificial neural net-

works have been employed for the investigation of pathological cases, like heart

disease and tumor diagnosis4.

Research in bioinformatics and medical tasks is driven by experimental data.

Typically, there is a vast amount of data but little theory available. To this end

machine learning techniques are extensively applied in these fields. An advantage

of probabilistic neural networks (PNNs) as classifiers is their ability to function
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as an “intelligent memory” so that there is no loss of the available information.

Furthermore, a PNN not only classifies a new pattern but also provides a measure

of the uncertainty of that classification. For example, in a cancer classification task,

a PNN estimates the probability of having a benign or malignant cancer and not

just a true-false answer.

PNNs which were introduced by Specht in 19905, constitute a class of neural

networks that combine some of the best attributes of statistical pattern recognition

and feedforward neural networks. PNNs are the neural network implementation

of kernel discriminant analysis. In contrast to feedforward neural networks that

are black-box systems, PNNs use Bayesian strategies for pattern classification, a

familiar process to decision makers. Moreover, the contribution of each neuron

of the PNN can be calculated, something that is not possible when using FNNs.

The classical PNN can be viewed as an “intelligent memory” since each training

pattern is stored as a neuron of the network6. PNNs require small training times

and produce outputs with Bayes posterior probabilities. These desirable features

come at the expense of larger memory requirements and slower execution speed for

the prediction of unknown patterns5.

PNNs have been implemented in a plethora of Bioinformatics and Medical tasks.

In Ref. 7, a comprehensive study of the capability of PNNs along with a feature

extraction method to perform cancer classification is presented. The experimental

results show that the conjugation of the probabilistic neural network and the fea-

ture selection method can achieve 100% recognition accuracy in the AAL/AML

classification7, and also attain satisfactory results in two colon cancer data sets. In

Ref. 8, PNNs are employed to develop accurate NMR-based metabonomic models

for the prediction of xenobiotic-induced toxicity in experimental animals and their

potential use in accelerated drug discovery programs is highlighted. PNNs have

also been considered for the design of an automatic, reliable and efficient prediction

system for protein subcellular localization which is needed for large-scale genome

analysis9. In Ref. 9, a boosting algorithm and a PNN are integrated into a pre-

diction system which yielded superior prediction performance compared to existing

algorithms. In Ref. 10, PNNs are successfully employed in magnetic resonance im-

age analysis to identify subtle changes in brain tissue quantities and volumes which

are relevant in the diagnosis of neurological diseases.

The performance of PNNs is largely influenced by the spread parameters (see

Subsection 2.1). To alleviate this influence, we propose a self–adaptive PNN model,

which incorporates an optimization algorithm to set the spread parameters of the

network to appropriate values11. The selection of appropriate spread parameters

involves the minimization of a non–differentiable error function. To this end, we

employ only algorithms that do not require gradient information. When consider-

ing PNNs that employ a single spread parameter (homoscedastic PNNs) we con-

sider the golden section search method as well as a swarm intelligence algorithm,

namely the Particle Swarm Optimization (PSO) algorithm. For the PNNs that

employ a number of spread parameters equal to the dimensionality of the input
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space (heteroscedastic PNNs) we consider only the PSO method. The selection of

PSO is based on its efficiency in solving a plethora of applications in science and

engineering3,12,13,14,15,16,17.

The proposed model is applied on two data sets from the field of Bioinformatics,

namely the E.Coli and Yeast data sets18, as well as, on the Breast Cancer19,20

and Diabetes19,21 medical data sets. The performance achieved through different

sampling techniques, namely Stratified Random Sampling , Cross–Validation, and

the Train–Validation–Test Partitioning is also investigated. The performance of the

new model is compared to that of feedforward neural networks (FNNs) and Support

Vector Machines (SVMs) and extensive statistical tests are conducted to justify the

significance of the results.

The paper is organized as follows: in Section 2 the basic concepts of PNNs

and PSO are briefly described. In Section 3 the proposed approach is presented

along with the experimental results, including descriptions of the data sets and the

employed sampling techniques. The paper concludes in Section 4.

2. Background Material

2.1. Probabilistic neural networks

PNNs constitute a supervised neural network model that is widely used in the area

of pattern recognition, nonlinear mapping, and estimation of probability of class

membership and likelihood ratios22. PNNs are closely related to the Bayes classifi-

cation rule23,24 and Parzen nonparametric probability density function estimation

theory5,25, thereby offering a way to interpret the network’s structure in terms of

probability density functions6. The standard training procedure of PNNs requires

a single pass over all the patterns of the training set5. This characteristic renders

PNNs faster to train, compared to FNNs.

The structure of a PNN is similar to that of FNNs, although the architecture of

a PNN is always limited to four layers; the input layer , pattern layer , summation

layer, and output layer , as illustrated in Fig. 1. Let Xi,k ∈ R
n be the ith pattern of

the training set that belongs to category k, with i = 1, 2, . . . , Mk, k = 1, 2, . . . , K,

where Mk is the size of class k, and K is the number of categories. For each Xi,k,

a neuron in the pattern layer of the network is created. The center of the Gaussian

kernel activation function of this neuron is Xi,k. The output of the specific pattern

neuron is connected to the neuron of the summation layer that corresponds to the

class, k, in which the training pattern is classified.

An input vector, X ∈ R
n, is applied to the input neurons, xi, i = 1, 2, . . . , n,

and is passed to the pattern layer. The neurons of the pattern layer are divided into

K groups, one for each class. The ith pattern neuron in the kth group computes

its output using a Gaussian kernel of the form,

fi,k(X) =
1

(2π)n/2 det(Σ)1/2
exp

(

−
1

2
(X − Xi,k)>Σ−1(X − Xi,k)

)

, (1)
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Fig. 1. A probabilistic neural network.

where Xi,k ∈ R
n is the center of the kernel; Σ, also known as the matrix of spread

(smoothing) parameters, determines the size and shape of the receptive field of the

kernel, and det(Σ) denotes the determinant of the matrix Σ. In his original contri-

bution Specht5 restricted Σ to one global smoothing parameter, σ2. Substituting

Σ = σ2I , where I is the identity matrix, Eq. (1) becomes,

fi,k(X) =
1

(2πσ2)n/2
exp

(

−
‖X − Xi,k‖

2

2σ2

)

.

PNNs that exploit a global smoothing parameter are called homoscedastic. On the

other hand, with the term heteroscedastic PNN we refer to networks that use a

diagonal matrix Σ instead of a scalar (σ2)22.

The summation layer of the network computes the approximation of the condi-

tional class probability functions through a combination of the previously computed

densities,

Gk(X) = wk

Mk
∑

i=1

fi,k(X), k ∈ {1, 2, . . . , K} , (2)

where wk is a positive coefficient standing for the prior probability of class k,

satisfying the relation,

K
∑

k=1

wk = 1 .

An input vector X is classified to the class that corresponds to the summation unit

with the maximum output,

C(X) = arg max
16k6K

{Gk} . (3)
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Note that the prior class probabilities, wk, are problem–dependent, and it may not

always be feasible to estimate them from the training data since the training set

may contain little meaningful information regarding the prior class probabilities26.

In our experiments, we assume that all classes are equiprobable, i.e.,

wk = 1/K, 1 6 k 6 K .

An important feature of PNNs compared to alternative classification methods

is that, when a new input vector is given, the outputs of a PNN correspond to the

conditional posterior probabilities of class membership. This is particularly impor-

tant in bioinformatics and medical applications because a decision threshold can be

set and if all the posterior probabilities are below this threshold the pattern can be

classified as unknown. Moreover, Bayesian confidence intervals can be computed.

Heteroscedastic PNNs can also provide information for feature selection in cases

where the dimension of the problem is large. When the appropriate spread param-

eter that corresponds to the ith variable (feature), σ2
i , is large, it is an indication

that the specific variable is not important in the computation of the outputs of the

PNN, and can be ignored.

A limitation of PNNs is the curse of dimensionality. When the dimension of the

dataset is large, PNNs usually do not yield good results. The performance of PNNs

is also inhibited by the presence of dependent variables in the dataset. Both these

problems can be alleviated to an extent using principal component analysis (PCA)

prior to training the PNN. This procedure yields new variables that are independent

and furthermore quantifies the information content of each new variable. Although

PCA may succeed in reducing the dimensionality, the new variables can be difficult

to interpret.

2.2. Particle swarm optimization

Nature constitutes source of inspiration for the development of new, distributed

optimization algorithms that can address difficult optimization problems regardless

of any special structure and mathematical properties of the underlying objective

function. Evolutionary algorithms have been developed based on ideas that imi-

tate procedures that take place in human DNA and they have been applied with

success in a plethora of applications27. Particle Swarm Optimization (PSO) was

introduced in 1995 by Eberhart and Kennedy28,29. The inspiration for its devel-

opment sprang from the dynamics of socially organized groups of individuals. The

algorithm adheres the five basic principles of swarm intelligence as they were defined

by Millonas30, therefore it is categorized as a swarm intelligence algorithm12.

PSO is a stochastic, population–based optimization algorithm. It exploits a pop-

ulation of individuals to synchronously probe promising regions of the search space.

In this context, the population is called a swarm and the individuals (i.e., the search

points) are called particles . Each particle moves with an adaptable velocity within

the search space, and retains in a memory the best position it ever encountered.

This best position is shared with other particles in the swarm.
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In the global variant of PSO, the best position ever attained by all individuals

of the swarm is communicated to all the particles at each iteration. In the local

variant, each particle is assigned to a neighborhood consisting of prespecified parti-

cles. In this case, the best position ever attained by the particles that comprise the

neighborhood is communicated among them12. Thus, the global variant can be con-

sidered as a special case of the local variant in which, the entire swarm is considered

as the neighborhood of each particle. The most usual neighborhood topology is the

ring topology, where all particles are assumed to lie on a ring, i.e., Z1 is considered

to be the particle that follows immediately after ZN . This topology was adopted in

our experiments.

Assume a d–dimensional search space, S ⊂ R
d, and a swarm consisting of NP

particles. The ith particle is a d–dimensional vector,

Zi = (zi1, zi2, . . . , zid)
> ∈ S.

The velocity of this particle is also a d–dimensional vector,

Vi = (vi1, vi2, . . . , vid)
>.

The best previous position encountered by the ith particle in S is denoted by,

BPi = (bpi1, bpi2, . . . , bpid)
> ∈ S.

Assume gi to be the index of the particle that attained the best previous position

among all particles in the neighborhood of Zi, and t to be the iteration counter.

Then, the swarm is manipulated by the equations31,

Vi(t + 1) = ω Vi(t) + c1 r1

(

BPi(t) − Zi(t)
)

+ c2 r2

(

BPgi
(t) − Zi(t)

)

, (4)

Zi(t + 1) = Zi(t) + Vi(t + 1) , (5)

where i = 1, 2, . . . , NP ; ω is a parameter called inertia weight; c1 and c2 are two

positive constants called cognitive and social parameter, respectively; and r1, r2,

are random vectors that consist of values uniformly distributed within [0, 1]. All

vector operations in Eqs. (4) and (5) are performed componentwise. Alternatively,

the velocity update can be performed through the equation32,

Vi(t + 1) = χ
[

Vi(t) + c1 r1

(

BPi(t) − Zi(t)
)

+ c2 r2

(

BPgi
(t) − Zi(t)

)

]

, (6)

where χ is a parameter called constriction coefficient, giving rise to a different

version of PSO. The best positions are then updated according to the equation

BPi(t + 1) =

{

Zi(t + 1), if f (Zi(t + 1)) < f (BPi(t)) ,

BPi(t), otherwise,

and the indices gi, i = 1, 2, . . . , NP , are updated. The particles are always bounded

in the search space S.
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Although Eqs. (4) and (6) are algebraically equivalent, there are significant

differences regarding the selection of the corresponding parameters. Specifically,

the constriction coefficient is derived analytically through the formula32,

χ =
2κ

|2 − φ −
√

φ2 − 4φ|
, (7)

for φ > 4, where φ = c1 + c2, and κ = 1, based on the stability analysis of Clerc

and Kennedy32,33. On the other hand, the inertia weight, ω, is usually determined

empirically. An initial value close to one and gradually decline towards zero is con-

sidered a good configuration, since it promotes exploration (better global search)

at the beginning and exploitation (refined local search) at later stages of the algo-

rithm’s execution34.

In general, the global variant of PSO exhibits faster convergence rates, although,

in some cases it may reduce the swarm’s diversity very fast, thereby getting trapped

in local minimizers. On the other hand, the local variant, especially when the neigh-

borhood size is small, exhibits superior exploration capabilities at the cost of slower

convergence.

3. The Proposed Approach and Experimental Results

The matrix of spread parameters, Σ, is crucial for the classification accuracy of a

PNN. In our study, we allow Σ to be a diagonal matrix whose entries can differ.

Obviously, in the one–dimensional case, Σ becomes σ2. We refer to the former case

as heteroscedastic PNN, while the latter case is referred to as homoscedastic. For

the homoscedastic case the optimization task is in one dimension, whereas for the

heteroscedastic case the dimension of the optimization problem equals that of the

pattern vectors.

We employ the PSO algorithm to determine σ2 in the one–dimensional case or Σ

in the multidimensional case, while, for the univariate case, the golden section search

method is also used. Specifically, for the PSO method, a swarm of particles, which

are diagonals of matrices Σ, is initialized randomly in [0, 5]d, where d denotes the

dimension of the optimization problem, and the optimization algorithm is performed

for a specific sample taken from the data set at hand. The range in which the

diagonal elements of Σ typically lie is [0, 2], as proposed in (Ref. 35). However, we

extended the range to [0, 5], since preliminary experiments for the multidimensional

case resulted in promising values of the spread parameter that were larger than 2.

The obtained value for the elements of Σ is the best achieved value with respect

to the specific sample. This procedure can be applied for any sample to provide

the corresponding optimal Σ. We call this model self–adaptive probabilistic neural

network (SA–PNN). A pseudocode of the proposed approach is given in Table 1.

As outlined in Table 1, the first stage of the proposed approach is identical to

the training procedure proposed by Specht5. More specifically, for each pattern of

the training set, a neuron in the pattern layer is constructed and the center of its

kernel activation function is set equal to the feature vector. Finally the output of
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Table 1. Pseudocode for the SA–PNN algorithm.

PNN input: Training set Strain = {Xtrain

1
, . . . ,Xtrain

N
} and test set Stest.

PSO input: Swarm size NP , χ, c1, c2, bounding box B = [0, 5]d.

Perform a pass over the training set to construct the PNN.
Set t = 0.
Initialize a PSO swarm, Zi(t) = diag(Σi(t)) ∈ B, Vi(t) ∈ B, i = 1, 2, . . . , NP .
Initialize best positions, BPi(t), i = 1, 2, . . . , NP , and the indices gi.
Do

Update velocities, Vi(t + 1), i = 1, 2, . . . ,NP , using Eq. (4) or Eq. (6).
Update particles, Zi(t + 1) = Zi(t) + Vi(t + 1), i = 1, 2, . . . ,NP .
Constrain each particle Zi(t + 1) in B.
Compute the fitness function: f(Zi(t + 1)).
Update best positions, BPi(t + 1), i = 1, 2, . . . ,NP , and the indices gi.
Update iteration counter, t = t + 1.

While (the maximum number of iterations is not reached)
Write the optimal spread parameter and the corresponding performance

of the PNN on Stest.

the neuron is connected to the summation layer neuron that collects the outputs

of all the pattern neurons that correspond to the same class as that of the specific

training pattern. The only difference is that, at this stage, a matrix Σ need not be

determined by the user. Subsequently, the steps taken by the PSO algorithm are

outlined.

For each particle, Zi = diag(Σi), i = 1, 2, . . . , NP , the leave-one-out misclassi-

fication proportion on the training set is computed and this value is used as the

fitness value f(Zi) of the particle. According to the leave–one–out method, a PNN

is trained using all but one of the patterns from the training set. The excluded

pattern is subsequently used to assess the classification ability of the network. This

process is repeated excluding a different pattern of the training set each time, until

all patterns of this set are excluded once. The leave-one-out method is computa-

tionally very expensive for FNNs as it requires the network to be trained as many

times as the number of training patterns. However, the PNN architecture renders

the application of the leave-one-out procedure very simple. It is sufficient to exclude

the output of the pattern layer neuron, fi,k, that corresponds to the “left-out” pat-

tern, Xi,k, from the summation that takes place at the corresponding neuron, Gk,

in the summation layer. The adaptation process is terminated when a maximum

number of iterations is reached.

The proposed model was evaluated on two data sets from the field of Bioinfor-

matics, namely the E.coli and the Yeast data set, as well as, on the Cancer and

Diabetes medical data sets. The spread parameter was determined using PSO with

swarms of 5 and 10 particles for the one–dimensional and multidimensional case, re-

spectively, that were evolved for 50 iterations. The local variant of the algorithm was

used, as it exhibited better performance, compared to the global variant, due to its

enhanced exploration capability. The particles were constrained in the range [0, 5]d,

since this is the range of interest regarding the values of the elements of Σ. Both
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the constriction coefficient and the inertia weight PSO version were considered. In

the constriction coefficient version, the default parameter values, c1 = c2 = 2.05,

χ = 0.729, were used32. An upper bound, Vmax, on the absolute value of the com-

ponents of the velocity vectors of the particles was also used and set to 0.3, in order

to hinder the particles from possible bouncing on the bounds of the search space. In

the inertia weight version, the inertia weight was initialized to 1.0 and it gradually

declined towards 0.1 throughout the first 75% of the available iterations (i.e., for

37 iterations). Then it remained fixed to the value 0.116.

The performance of the SA–PNN for different sampling techniques was inves-

tigated using the Stratified Random Sampling and the λ–Fold Cross–Validation

sampling techniques, as well as, a Train–Validation–Test partitioning of the data

set. Statistical tests were performed to determine whether one of the considered

sampling techniques yields a superior performance. Furthermore, the performance

of the resulting SA–PNN was compared to that of a 7-16-8 FNN for the E.coli

dataset36, an 8-16-10 FNN for the Yeast case36, an 8-4-2-2 FNN for the Breast Can-

cer dataset19, and an 8-2-2-2 FNN for the Diabetes dataset19. All the FNNs were

trained using the well–known and widely used Resilient Backpropagation (Rprop)

method37. The choice of this technique was based on its efficiency and effective-

ness on several problems. For a brief exposition of FNNs and the Rprop training

algorithm refer to Appendix A.

3.1. Description of the data sets

A brief description of the considered data sets is provided below.

The E.coli Data Set: The goal for the E.coli data set is to predict the cellular

localization sites of E.coli proteins18,38. There are 8 cellular sites, namely the cy-

toplasm (cp); inner membrane without signal sequence (im); periplasm (pp); inner

membrane with uncleavable signal sequence (imU); outer membrane (om); outer

membrane lipoprotein (omL); inner membrane lipoprotein (imL) and inner mem-

brane with cleavable signal sequence (imS). The attributes are the McGeoch and

Von Heijne recognition techniques for the signal sequence, the presence of charge

on N–terminus of predicted lipoproteins, and 3 different scoring functions on the

amino acid contents, predicted either as an outer or an inner membrane, cleavable

or uncleavable sequence signal. The size of the data set is 336 without any missing

values and all variables are continuous.

The Yeast Data Set: The objective is similar to the E.coli data, i.e., determine the

cellular localization of the Yeast proteins18,38. There are 10 sites, namely the CYT

(cytosolic or cytoskeletal); NUC (nuclear); MIT (mitochondrial); ME3 (membrane

protein, no N–terminal signal); ME2 (membrane protein, uncleaved signal); ME1

(membrane protein, cleaved signal); EXC (extracellular); VAC (vacuolar); POX

(peroxisomal) and ERL (endoplasmic reticulum lumen). The same attributes with

the E.coli data set are considered, including additionally the nuclear localization
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information. Thus, there are 8 continuous inputs of 1484 instances without missing

values.

The Breast Cancer Data Set: This data set was provided by the University

of Wisconsin hospitals in 199219,20. There are two possible classes for each record:

benign or malignant. The input features are the uniformity of cell size and shape;

bland chromatin; single epithelial cell size; and mitoses. So there are 9 continuous

inputs and 699 instances. Also, there are no missing values.

The Pima Indians Diabetes Data Set: This data set was provided by the

John Hopkins University in 199221. It concerns the Pima Indians diabetes and the

input features are the diastolic blood pressure; triceps skin fold thickness; plasma

glucose concentration in a glucose tolerance test; and diabetes pedigree function.

The classification is performed regarding the exhibition of diabetes signs of the

patient based on the criteria of the World Health Organization. The 8 inputs are

all continuous without missing values and there are 768 instances. The aim is to

classify whether someone is infected by diabetes or not, therefore, there are two

classes.

3.2. Description of the sampling techniques

The considered sampling techniques are described below.

Stratified Random Sampling: In Stratified Random Sampling (SRS), a data

set of size N is divided in K non–overlapping subpopulations, called strata, each

containing the Nk patterns that belong to class k ∈ {1, 2, . . . , K} (where K is the

total number of classes present in the dataset), with,

K
∑

k=1

Nk = N .

A random sample of size αk, is selected from each stratum independently. The final

stratified random sample which is used as training set by the classifiers has size α,

where,

α =

K
∑

k=1

αk ,

while the rest of the data form the test set. Proportionate allocation uses a constant

sampling fraction, αk/Nk, for each stratum.

λ–Fold Cross–Validation: According to this technique, the initial set of data is

divided into λ parts of approximately equal size. Subsequently, each of the λ subsets

is used as the test set, while the other subsets form the training set. The average

error across all λ trials is computed. The 4–Fold and 10–Fold Cross–Validation

techniques36, denoted as 4–CV and 10–CV, respectively, were used in our experi-

ments.
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Table 2. Test set classification accuracy percentage for E.coli data set.

Sampling Model Mean Median St.Dev. Min. Max. CI low CI up

PNN 86.33 86.75 2.28 80.72 89.76 85.26 87.39
GSS 86.42 86.14 2.18 82.53 89.76 85.40 87.44
PCU 86.39 86.75 2.10 82.53 90.36 85.40 87.37

SRS PIU 85.72 86.14 3.33 74.70 90.36 84.16 87.28
PCM 81.42 81.33 5.27 70.48 90.36 78.95 83.88
PIM 81.78 81.93 4.65 74.70 90.96 79.60 83.95
FNN 7–16–8 85.39 84.94 2.40 81.33 90.36 84.27 86.52
SVM 69.67 69.28 2.58 64.46 74.10 68.46 70.88

PNN 86.86 86.76 0.72 85.42 88.10 86.52 87.20
GSS 86.73 86.76 0.90 84.52 88.10 86.30 87.15

PCU 86.79 86.76 0.58 85.42 87.80 86.51 87.06
4-CV PIU 86.77 86.90 0.67 85.12 88.10 86.46 87.08

PCM 83.44 82.89 1.62 81.25 86.31 82.68 84.20
PIM 83.07 82.89 2.48 79.17 87.50 81.90 84.23
FNN 7–16–8 85.98 86.01 1.00 83.04 87.20 85.51 86.45
SVM 75.00 75.00 0.79 72.02 75.89 74.63 75.37

PNN 85.48 85.54 3.92 77.11 91.57 83.65 87.32
GSS 86.45 85.54 2.79 81.93 91.57 85.14 87.75
PCU 86.33 86.14 3.21 80.72 92.77 84.82 87.83

TVT PIU 86.08 86.14 3.92 79.52 92.77 84.25 87.92
PCM 81.69 81.93 5.33 71.08 90.36 79.19 84.18
PIM 82.41 81.93 5.48 71.08 92.77 79.85 84.97
FNN 7–16–8 85.06 86.14 3.57 78.31 90.36 83.39 86.73
SVM 68.07 67.47 6.19 55.42 78.31 65.18 70.97

Train–Validation–Test Partitioning: The practice of partitioning the data set

into three components is standard in the neural network literature39. In the context

of SA–PNN, we construct the network using the patterns of the train set. The opti-

mization algorithm, subsequently, determines the matrix, Σ, of spread parameters

by minimizing the leave–one–out misclassification error on the training set, while

the misclassification error on the validation set is monitored at each iteration of the

algorithm. In order to avoid over–training the network, when an increase on the

validation error for µ subsequent iterations is observed, the algorithm stops and

returns as Σ, the matrix that yielded the lowest error on the validation set. We

denote this technique by TVT.

3.3. Presentation of the results and statistical analysis

In Tables 2–5 the mean (Mean), median (Median), standard deviation (St.Dev.),

minimum (Min.), maximum (Max.), and 95% confidence interval (CI low, CI up)

of the success rates (in percentage terms) for the E.coli, Yeast, Breast Cancer and

Diabetes data sets, are reported for each sampling technique and for all the im-

plemented methods. The methods employed are: the classical homoscedastic PNN,

homoscedastic PNN optimized by golden section search (GSS), homoscedastic PNN
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Table 3. Test set classification accuracy percentage for Yeast data set.

Sampling Model Mean Median St.Dev. Min. Max. CI low CI up

PNN 57.79 57.37 1.55 55.48 61.16 57.06 58.51
GSS 56.29 57.24 5.93 31.80 59.68 53.51 59.06
PCU 57.73 57.51 1.59 54.13 60.89 56.99 58.48

SRS PIU 57.73 57.44 1.60 54.13 60.89 56.98 58.48
PCM 58.01 58.80 1.71 53.99 60.08 57.21 58.81
PIM 57.66 57.98 1.73 52.64 60.22 56.85 58.47
FNN 8–16–10 55.99 56.22 1.89 52.10 59.40 55.10 56.87
SVM 39.30 39.58 1.03 37.21 40.60 38.81 39.78

PNN 58.37 58.25 0.57 57.13 59.58 58.10 58.63
GSS 58.87 58.73 0.43 58.28 59.76 58.67 59.08

PCU 58.84 58.82 0.39 58.08 59.64 58.66 59.02
10-CV PIU 58.87 58.86 0.33 58.21 59.51 58.72 59.03

PCM 58.86 58.90 0.69 57.61 60.04 58.53 59.18
PIM 58.92 58.89 0.77 57.41 60.05 58.56 59.28
FNN 8–16–10 55.55 55.55 0.68 54.32 56.81 55.24 55.87
SVM 42.97 42.99 0.32 42.38 43.80 42.82 43.12

PNN 57.38 57.43 1.92 54.32 61.08 56.48 58.28
GSS 55.69 57.70 7.30 33.78 61.62 52.27 59.11
PCU 57.70 57.43 2.10 54.32 61.62 56.72 58.69

TVT PIU 57.76 57.57 2.25 54.05 61.89 56.71 58.81
PCM 57.89 57.70 2.62 52.70 61.89 56.67 59.12
PIM 57.50 56.89 2.38 53.24 61.62 56.39 58.61
FNN 8–16–10 55.46 56.08 2.33 48.65 58.11 54.37 56.55
SVM 40.03 39.59 3.40 35.14 48.65 38.44 41.62

optimized by constriction coefficient PSO (PCU), homoscedastic PNN optimized

by inertia weight PSO (PIU), heteroscedastic PNN optimized by constriction coef-

ficient PSO (PCM), heteroscedastic PNN optimized by inertia weight PSO (PIM),

feedforward neural network (FNN) and C–support vector machines (SVM). Note

that by classical homoscedastic PNN we refer to a PNN whose single smoothing

parameter, σ2, was the one that yielded the best training set classification accuracy

out of 250 points equally distributed in the range [0, 5]. The choice of 250 points

was made to render comparable the outcomes of this approach with those of PSO

(5 particles for 50 iterations).

For a better visual presentation of the obtained results we also provide box–

and–whiskers plots (boxplots) in Figs. 2–5. The boxplot is a diagram for conveying

location and variation information about a certain variable. The median of attained

classification accuracies is displayed as a horizontal line and a box is drawn between

the first and third quartile of observations. Then, the minimum and maximum

values that lie into the range with center the median and length 1.5 multiplied by

the interquartile range are connected to the box. If a value lies outside this range,

then it is considered as an outlier and displayed as a dot.

As previously mentioned, a powerful feature of PNNs is that Bayesian confi-

dence intervals for the class membership probabilities can be estimated. This infor-
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Table 4. Test set classification accuracy percentage for Cancer data set.

Sampling Model Mean Median St.Dev. Min. Max. CI low CI up

PNN 96.22 96.28 0.70 94.56 97.71 95.89 96.55
GSS 96.15 96.13 0.79 94.84 97.71 95.78 96.52
PCU 96.20 96.42 0.82 94.56 97.42 95.82 96.58

SRS PIU 96.20 96.13 0.78 94.56 97.42 95.84 96.57
PCM 94.71 94.84 1.44 90.26 96.56 94.04 95.39
PIM 95.11 95.27 1.23 92.26 97.13 94.54 95.69
FNN 9–4–2–2 95.40 95.42 0.98 93.41 97.42 94.94 95.86
SVM 96.73 96.71 0.72 95.70 98.28 96.40 97.07

PNN 95.83 95.85 0.32 95.13 96.71 95.68 95.98
GSS 95.92 95.86 0.27 95.42 96.42 95.80 96.05

PCU 95.83 95.78 0.26 95.42 96.28 95.70 95.95
10-CV PIU 95.85 95.85 0.23 95.42 96.14 95.74 95.96

PCM 95.13 95.14 0.46 94.42 96.28 94.91 95.34
PIM 94.96 94.99 0.61 94.13 96.27 94.67 95.24
FNN 9–4–2–2 95.93 96.14 0.91 92.56 97.14 95.50 96.36
SVM 96.79 96.85 0.18 96.42 97.14 96.71 96.88

PNN 95.09 95.40 1.68 91.95 97.70 94.30 95.87
GSS 95.32 95.69 1.56 91.95 97.13 94.58 96.05
PCU 95.49 95.98 1.47 92.53 97.13 94.80 96.18

TVT PIU 95.49 95.69 1.41 93.10 97.13 94.83 96.15
PCM 95.72 95.98 1.36 93.10 97.13 95.08 96.36
PIM 95.55 95.40 1.34 93.68 98.28 94.92 96.17
FNN 9–4–2-2 95.37 95.11 2.17 90.23 98.85 94.36 96.39
SVM 96.21 96.55 1.32 93.68 98.85 95.59 96.83

mation can be used to assess the degree of confidence with which a classification is

performed and to reject classifications with very low posterior probability. In the

current study, instead of exploiting this feature, we use the maximum estimated

posterior probability to classify patterns of the test set, using Eq. (3). We adopt

this approach to render the results obtained by PNNs directly comparable to those

obtained by FNNs and SVMs.

Regarding the stratified sampling technique (SRS), the size of the random sam-

ple for each stratum, in all experiments, was set to 50% of the size of the correspond-

ing class. In the TVT sampling technique, µ was set to 5. The highest maximum

values in all data sets were obtained using TVT.

The level of significance in all statistical tests is set to 0.05. To choose which

statistical tests are applicable in our experimental design, a Kolmogorov–Smirnov

test for the normality assumption40 was applied to each run. The test showed that

all the runs were normally distributed indicating that parametric tests should be

used for the statistical comparison of the results. For the comparisons of the different

methods applied to each dataset, the “corrected resampled t–test” is used41,42. This

test takes into account the underestimation of the variance since the training and

test samples that were created by resampling overlap and, hence, they are not

independent. The same holds for the k–fold cross–validation comparisons where
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Table 5. Test set classification accuracy percentage for Diabetes data set.

Sampling Model Mean Median St.Dev. Min. Max. CI low CI up

PNN 73.19 73.05 1.74 69.01 76.82 72.38 74.00
GSS 71.76 72.79 3.95 65.10 78.65 69.91 73.61
PCU 73.59 73.31 2.08 68.75 78.65 72.62 74.57

SRS PIU 73.40 73.18 2.01 68.75 78.65 72.46 74.34
PCM 73.96 74.09 1.87 70.83 77.08 73.08 74.83
PIM 74.05 73.83 2.10 70.05 77.86 73.07 75.03
FNN 8–2–2–2 76.58 76.56 1.55 73.44 78.91 75.85 77.30
SVM 73.45 73.44 1.22 70.57 75.52 72.88 74.02

PNN 74.07 73.97 0.75 73.04 75.65 73.72 74.42
GSS 73.26 73.44 1.11 71.09 75.14 72.75 73.78

PCU 74.13 74.16 0.82 72.64 75.78 73.74 74.51
10-CV PIU 74.12 74.09 0.77 72.79 75.52 73.76 74.48

PCM 75.29 75.53 0.72 73.95 76.05 74.95 75.63
PIM 75.11 75.07 0.87 73.45 76.69 74.70 75.51
FNN 8–2–2–2 76.38 77.02 1.51 71.89 77.87 75.68 77.09
SVM 76.42 76.44 0.39 75.51 76.95 76.24 76.60

PNN 72.67 73.56 3.60 62.83 79.06 70.98 74.36
GSS 72.46 73.82 3.71 62.83 76.96 70.73 74.20
PCU 72.93 73.04 1.76 69.63 75.92 72.11 73.75

TVT PIU 72.72 73.04 1.92 69.11 75.92 71.82 73.62
PCM 74.32 74.35 2.89 69.11 79.58 72.97 75.67
PIM 74.21 74.35 3.19 69.11 79.06 72.72 75.71
FNN 8–2–2-2 76.83 76.96 1.93 73.30 79.58 75.93 77.74
SVM 73.35 74.08 3.83 61.78 78.53 71.56 75.14

the “corrected repeated k–fold CV t–test” is applied. To compare the different

sampling techniques on each dataset, a Kruskal–Wallis median test40 is performed.

This test is used due to the heterogeneity in the variances of each sampling technique

(a Bartlett test was conducted), and it is equivalent to the Analysis of Variance

(ANOVA) test.

If there is no statistically significant difference in pairwise statistical comparisons

between methods, then only the minimum p–value is reported because this p–value

shows the comparison of the two methods that have the greatest non significant

difference. Similarly, the maximum p–value is reported when there are statistically

significant differences between methods, as it reports the pair of methods that have

the smallest statistically significant difference.

3.4. Comparisons of methods

E.coli Dataset: As reported in Table 2 for the E.coli dataset, the classification

accuracy of SVMs is substantially lower than that of PNNs and FNNs, irrespective

of the sampling technique employed. This can be immediately derived also from

Fig. 2. For the SRS sampling technique, utilizing pairwise t–tests, we compare the

mean performance of SVMs with that of all other methods and observe that the
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differences in mean accuracy are statistically significant. The maximum p–value

for this series of comparisons is 0.038 and corresponds to the comparison of mean

classification accuracy of SVM and PCM. The pairwise t–tests performed on all

combinations of the other methods (excluding SVMs) did not yield a statistically

significant difference in their mean performance.

For the CV sampling technique, the worst performance is achieved by SVMs

with maximum p–value in all pairwise t–tests less than 0.001. Performing pairwise

t–tests among all the other considered methods, three groups of methods with

respect to mean classification accuracy were identified. The first and best group is

comprised by all the homoscedastic PNNs and the FNN; the second group contains

heteroscedastic PNNs, while the third consists of the SVM.

Using the TVT sampling technique similar results to SRS were obtained. Again,

the only method that yields a statistically significant poor performance was the

SVM. The maximum p–value was 0.032 and corresponds to the comparison of SVM

with PIM. At this point we would like to point out that the maximum performance

attained for the E.coli data set and TVT sampling is 92.77%, and it compares

favorably with the results obtained for this dataset through a data selection method

proposed in Ref. 43.

Yeast Dataset: On the Yeast dataset the performance of the SVMs is relatively

low, as reported in Table 3 and depicted in Fig. 3. It is also worth noting that the

relative performance of the heteroscedastic PNNs was much better compared to

that on the E.coli dataset.

For the SRS technique, no statistically significant differences between the mean

accuracies of the methods were identified, with the only exception being the SVM

whose performance was found statistically inferior to all other methods (maximum

p–value 0.010 from the comparison with GSS). For the CV technique three groups

were again identified. These groups were (in descending order of mean performance)

the PNNs, the FNN and the SVM. The maximum p–values from all pairwise t–tests

between all the methods of one group and those of the immediately inferior group

(in terms of mean accuracy) are PIM–FNN with p–value 0.001 and FNN–SVM

with p–value less than 0.001. For the TVT technique, the only method that has

a statistically different mean performance from all the others is SVM (SVM–GSS

with maximum p–value 0.013).

Breast Cancer: From the results reported in Table 4 and Fig. 4 it is evident that

all methods performed quite well and especially SVMs. An important difference

from the previous datasets was that there are only two classes in the Breast Cancer

dataset, while in the E.coli and Yeast datasets there are eight and ten classes,

respectively. For the SRS technique, no method exhibited a statistically superior

performance (minimum p–value 0.199 corresponding to the t–test of FNN–SVM).

For the CV technique, the SVM exhibited a statistically superior performance over

the other methods (maximum p–value 0.011 from the comparison between PNN
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Fig. 2. Boxplots of classification accuracies on test set for E.coli dataset
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Fig. 3. Boxplots of classification accuracies on test set for Yeast dataset
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Fig. 4. Boxplots of classification accuracies on test set for Breast Cancer dataset
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Fig. 5. Boxplots of classification accuracies on test set for Diabetes dataset
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and SVM). Finally, for the TVT technique, there was no statistically significant

difference between the methods (minimum p–value equal to 0.104 for PCU–SVM).

Diabetes Dataset: As it can be observed from Table 5 and Fig. 5, in most cases,

the best performance was achieved by the FNN, although there were no significant

differences. For the SRS technique, no statistically significant differences were iden-

tified (minimum p–value = 0.124 for FNN–SVM). For CV, we have statistically

significant differences between the homoscedastic PNNs and the FNN, as well as,

the SVM (maximum p–value = 0.022 for FNN–GSS). For the TVT there were a

statistically significant difference between the performances of FNN and both PCU

and PIU (p–value 0.011 for PCU and p–value 0.015 for PIU).

3.5. Comparison of the sampling techniques

In order to check if there is homogeneity on the variances on the three sampling

techniques on each dataset, a Bartlett test40 was conducted taking into account the

mean accuracy of the methods on each sample. In all datasets, there was hetero-

geneity in the variances of the sampling techniques, so an ANOVA test of equality

of means is not applicable (all p–values where less than 0.001). Consequently, the

non–parametric Kruskal–Wallis test of equality of medians was performed.

E.coli Dataset: For the E.coli dataset, comparing the three sampling techniques

we see that there is statistically significant difference among them (p–value 0.011).

Conducting pairwise comparisons, there is a statistically significant superiority of

CV compared with SRS (p–value less than 0.001) as well as with TVT (p–value less

than 0.001). However, SRS and TVT yield the same performance (p–value equal to

0.070).

Yeast Dataset: The same findings also hold for the yeast dataset, where there is

difference between all the sampling techniques (p–value less than 0.001). Similarly,

CV is superior to both SRS (p–value less than 0.001) and TVT (p–value equal

to 0.007), although there is no statistically significant difference between SRS and

TVT (p–value equal to 0.914).

Breast Cancer Dataset: On the contrary, for the breast cancer data set, there is

no statistically significant difference among all three sampling techniques (p–value

equal to 0.997).

Diabetes Dataset: Similarly to E.coli and Yeast, for the diabetes dataset there is

a statistically significant difference among all sampling techniques (p–value equal

to 0.004). The CV technique differs from SRS and TVT with p–value equal to 0.002

and 0.008, respectively. Between SRS and TVT, there is no statistically significant

difference (p–value equal to 0.071).

Summarizing the findings, we see that the CV technique yields superior perfor-

mance in three out of the four test problems considered, compared to SRS and TVT.
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It should be noted, however, that the CV technique exploits 90% of the available

data for training in each sample, compared to 50% used by the the SRS and TVT.

Also, the computational cost is more than 10 times greater, since 10 PNNs are con-

structed for each sample. The training sets are also substantially larger compared

to the ones from SRS and TVT.

4. Conclusions

PNNs are recognized as a powerful classification tool in numerous Bioinformat-

ics and Medical applications7,8,9,10. In contrast to other established classification

methodologies, like FNNs and the k-nearest neighbor method, PNNs are capable

of providing a measure of confidence for the classification, which is highly desirable

from the point of view of the practitioner. In this paper, a self–adaptive model

for probabilistic neural networks (PNN) was proposed. The proposed approach in-

corporates an optimization algorithm to find appropriate spread parameters for

the PNN with respect to the resulting classification accuracy. The effectiveness of

the proposed model is assessed on the E.coli and Yeast data sets from the field of

Bioinformatics, as well as, on the Cancer and Diabetes datasets from the field of

medicine, with promising results.

From the obtained experimental results, it appears that the selection of an ap-

propriate spread parameter for the homoscedastic PNN significantly enhances its

performance and renders its classification accuracy comparable to the alternative

classification methods considered, namely feedforward neural networks and sup-

port vector machines. In particular, support vector machines produced a relatively

worse performance on the two multi–class classification tasks. On the contrary, their

performance was marginally superior to that of the other classifiers on the binary

classification task of Breast Cancer prediction. On the Diabetes binary classifica-

tion task, the performance of both SVMs and PNNs was satisfactory, but the best

performing method when using cross–validation proved to be the FNN.

PNNs were never ranked as the worst among the three considered classification

methods. For the E.coli and the Yeast datasets, their performance was particularly

good. Statistically significant superiority in the performance of PNNs is identified

using the cross–validation sampling technique for these two datasets. An important

finding is that heteroscedastic PNNs, which are considered to be more powerful

classifiers than their homoscedastic counterparts, do not exhibit a statistically su-

perior performance compared to homoscedastic PNNs. On the E.coli dataset, using

the cross–validation sampling technique the homoscedastic PNNs exhibit a statis-

tically significant superior performance compared to heteroscedastic PNNs. This

finding can be attributed to the phenomenon of overfitting (over–training) which

is frequently encountered in neural network applications. In these cases, the opti-

mization algorithm was capable of detecting a point that yielded a particularly low

classification error on the training set, but which did not produce a satisfactory

performance on the test set.
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The method employed to obtain a suitable spread parameter for the homoscedas-

tic PNNs appears to bear a small impact on the resulting classification accuracy, as

can be derived from the comparison between PSO and the golden section method.

The sampling method that yielded statistically significant superior performance

was λ–fold cross–validation. This finding, however, can be attributed to the larger

training set size that is employed by this method, compared to stratified random

sampling and train–validation–test set partitioning. In the context of PNNs, a larger

training set size imposes larger computational and storage requirements for the con-

struction and training of PNNs, and yields lower response times for the classification

of new pattern vectors.

Future work will include the application of different evolutionary computation

algorithms, like Differential Evolution and Evolution Strategies, on the problem of

determining the optimal spread parameters of PNNs. Criteria for avoiding over-

fitting in the case of the multidimensional optimization problem will also be in-

vestigated. Furthermore, a generalization of the proposed self–adaptive scheme to

determine all the elements and not only the diagonal entries of the matrix of spread

parameters will be considered.

Acknowledgment

We would like to thank the editors and the anonymous reviewers for their valuable

comments and suggestions. We thank European Social Fund (ESF), Operational

Program for Educational and Vocational Training II (EPEAEK II) and particularly

the Programs IRAKLEITOS and PYTHAGORAS, for funding the above work.

Appendix A: Feedforward Neural Networks and

the Rprop Algorithm

FNNs have been widely used in pattern recognition tasks and they are considered

to be very powerful classifiers compared to classical algorithms, such as the nearest

neighbor method. More specifically, FNNs have proved capable of finding a good

classifier based on a limited, and generally small, number of training examples.

This capability, also referred to as generalization, is of particular interest from a

pattern recognition point of view, since a large set of parameters is estimated using

a relatively small data set.

In FNNs, the inputs form an input layer, while the output neurons form the

output layer. All other neurons are assigned to a number of hidden layers. Each

neuron in a layer is fully connected to all neurons of the next layer. This structure

renders it possible to describe FNNs with a series of integers that represent the

number of neurons at each layer. For example a network with a topology 4-5-5-1 is

a network with 4 inputs at the input layer, two hidden layers with 5 neurons each,

and an output layer with a single neuron.

The computational power of neural networks derives from their capability to

adapt to specific problems. Two critical parameters for the successful application
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of FNNs are the appropriate selection of network architecture and the training

algorithm. The problem of identifying the optimal network architecture for a specific

task remains up to date an open problem. The efficient supervised training of FNNs

is a subject of considerable ongoing research and numerous algorithms have been

proposed to this end. Supervised training amounts to the global minimization of the

network error function. The rapid computation of a set of weights that minimizes

this error is a difficult task since, in general, the number of network weights is

large and the resulting error function generates a complex surface in the weight

space. Next, a brief exposition of the Resilient backpropagation (Rprop) algorithm

is provided.

Rprop is a local adaptive learning scheme performing supervised training of

FNNs. To update each weight of the network, Rprop exploits information concerning

the sign of the partial derivative of the error function. The size of the weight change,

∆wij , is determined by a weight-specific update-value, ∆
(t)
ij :

∆w
(t)
ij =



































−∆
(t)
ij , if

∂E(t)

∂wij
> 0,

+∆
(t)
ij , if

∂E(t)

∂wij
< 0,

0, otherwise,

(8)

where ∂E(t)/∂wij denotes the summed gradient information over all patterns of

the training set. The second step of the Rprop algorithm is to determine the new

update–values,
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(9)

where, 0 < η− < 1 < η+, i.e., each time the partial derivative with respect to wij

changes its sign, which is an indication that the last update was too big and the

algorithm has jumped over a local minimum, the update-value ∆
(t)
ij is decreased

by η−. If the derivative retains its sign, the update–value is slightly increased to

accelerate convergence in shallow regions.

Regarding the five parameters of Rprop that were used in our experiments,

(1) the increase factor was set to η+ = 1.2;

(2) the decrease factor was set to η− = 0.5;

(3) the initial update–value is set to ∆0 = 0.07;

(4) the maximum step, which is used in order to prevent the weights from becoming

too large, was ∆max = 50;
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(5) the minimum step, which is used to avoid too small weight changes, was ∆min =

10−6.

The error goal for the Rprop was set to 10−2, and it was applied for 500 epochs, as

proposed in Ref. 44.

Appendix B: Support Vector Machines

Support Vector Machines is a classification method based on separating hyper-

plane classifiers. This method is used particularly in binary classification tasks

with promising results, but also in multiclass classification45,46. We state briefly

the motivation of this method for binary tasks.

Each instance from the training set consists of a pair, (xi, yi), where xi ∈ R
n

is the feature vector of the ith instance and yi its class label, yi ∈ {−1, 1}, i =

1, 2, . . . , Nt, where Nt is the size of the training set. SVMs require the solution of

the optimization problem,

min
w,b,xi

=
1

2
wT w + C

Nt
∑

i=1

ξi , (10)

subject to the constraints,

ξi > 0, i = 1, 2, . . . , Nt (11)

yi

(

w>ϕ(xi) + b
)

> 1 − ξi, i = 1, 2, . . . , n, (12)

where C > 0 is a regularization constant. This particular version of SVM is called

C–SVM.

The function ϕ in Eq. (12) maps the training vectors xi into a higher dimensional

space. Then, SVMs try to find a linear separating hyperplane with the maximal

margin in this higher–dimensional space. The kernel function of the SVM is given

by K(xi, xj) = ϕ(xi)
>ϕ(xj). In our study, we used as kernel function the Radial

Basis Function,

K(xi, xj) = exp(−γ‖xi − xj‖
2) .

The parameter γ is called the kernel parameter and it was set equal to 1/n, where

n is the number of features.
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