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A method for the numerical solution of systems of nonlinear algebraic andlor transcendental equations 
in R" is presented. This method reduces the dimensionality of the system in such a way that it can lead 
to an iterative approximate formula for the computation of n -  1 components of the solution. while the 
remaining component of the solution is evaluated separately using the final approximations of the other 
components. This In - 1)-dimensional iterative formula generates a sequence of points in Rn-'  which 
converges quadratically to n -  1 components of the solution. Moreover, it does not require a good 
initial guess for one component of the solution and it does not directly perform function evaluations, 
thus it can be applied to problems with imprecise function values. A proof of convergence is given and 
numerical applications are presented. 

KEY WORDS: Implicit function theorem. Newton's method, reduction to one-dimensional equations, 
nonlinear SOR, m-step SOR-Newton, imprecise function values, bisection method, 
systems of nonlinear equations. numerical solution. zeros. quadratic convergence. 
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1. INTRODUCTION 

Suppose that F =( f ,, . . . , f n )  : 9 c Rn + Rn is a continuously differentiable mapping 
on an open neighborhood 9* c 2  of a solution x* €9 of the system of nonlinear 
equations 

There is a class of methods for the numerical solution of the above system which 
arise from iterative procedures used for systems of linear equation [7,1&12,14]. 
These methods use reduction to simpler one-dimensional nonlinear equations for 
the components f , ,  f;,...,J, of F. The best-known method of this type is the 
nonlinear successive overreluxation ( S O R )  method which solves the one-dimensional 
equation 

*The work of the second author was done at the Department of Mathematics of Cornell University. 
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206 T. N.  GRAPSA A N D  M. N. VRAHATIS 

for xi  and then sets 

provided that w ~ ( O . 1 1 .  Independent of the value of o the above process is called 
SOR process even though this nomenclature is sometimes reserved for the case 
o> 1 .  Now. a large variety of combined methods can be constructed depending on 
the secondary iteration and the number of steps required for solving (1 .2 ) .  Thus, 
for example. one can obtain the exact nonlinear SOR or m-step SOR-Newton 
process [ l  I ,  141 and so on. Now, if the Jacobian of F at the solution x* of ( 1 . 1 )  is 
an ... //-matrix [ I  l ]  the iterates of the above processes will converge linearly to x* 
provided that w ~ ( 0 , 1 ]  [I I]. 

It is well-known the Newton's method which starting with an initial guess .uO for 
the attainment of an approximation of the solution x* of (1.1) is given by 

Now, if the Jacobian F'(x*)  is nonsingular and F1(x)  is Lipschitz continuous then 
the iterates (1 .4 )  converge quadratically to x* provided the initial guess x0 is 
sufficiently close to x*. The quadratic convergence of Newton's method is 
attractive. However, the method depends on a good initial approximation [ 3 ]  and 
it requires in general n2 + n function evaluations per iteration besides the solution 
of an n x n  linear system. Moreover, the behavior of Newton's method is 
problematic when F'(x*) is singular since in that case (1 .4 )  does not converge 
quadratically and, in general, is not appropriate for approximations of x* with a 
high accuracy. For this reason there are procedures [23 ,24]  which under some 
assumptions (such as rank F'(x*) = n - I )  can attain a highly accurate solution x* 
by enlarging the system ( 1 . 1 )  to one which is at least ( 2 n +  I)-dimensional [23 ,24] .  
Also, Newton's method remains problematic when the values of F cannot be 
accurately achieved. Of course, this problem is common to all iterative procedures 
which directly depend on function evaluations. To overcome it, one may resort to 
generalized bisection methods [2.5,6,17-20,221 since they only make use of the 
algebraic sign of the function involved in the equations. These methods, however 
do not generally attain a quadratic convergence. 

In this paper, we derive and apply a new iterative procedure, for the numerical 
solution of systems of nonlinear algebraic and/or transcendental equations in Rn, 
which incorporates the advantages of SOR and Newton algorithms. The new 
method, which in fact constitutes a generalization of a recent proposed method 
[ 4 ] ,  is derived in such a way that it can maintain the advantages of this method. 
More specifically, although the method in [4 ]  uses reduction to simpler one- 
dimensional nonlinear equations, it generates a quadratically converging sequence 
of points in R which converges to one component of the solution separately from 
the other component. Afterwards the second component is evaluated by one 
simple computation. Also, the method in [ 4 ]  has the advantage that it does not 
require a good initial guess for both components of the solution and does not 
directly perform function evaluations, thus it can be applied to problems with 
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SOLVING NONLINEAR EQUATIONS 207 

imprecise function values. Moreover, it compares favourably with Newton's 
method when the Jacobian at the solution is singular, (without making any 
enlargement of the system), or when it is difficult to evaluate the function values 
accurately. 

The generalized method is derived in Section 2 of this paper. In Section 3 we 
give a proof of its convergence and in Section 4 we illustrate it on a number of 
numerical applications. 

2. DERIVATION O F  THE METHOD 

NOTATION 2.1. Throughout this paper R" is the n-dimensional real space of 
column vectors x with components x,,x,, . . . ,xn, (y;z) represents the column 
vector with components y,, y,, . . . , y,, z,, z,, . . . , z,, ai f (x) denotes the partial 
derivative of f ( x )  with respect to the ith variable xi, denotes the closure of the 
set d and j ' (x,,. . . , x i_  ,;,xi+ ,, . . . ,xn) defines the mapping obtained by holding 
XI , . .  . , x ~ - ~ . x ~ +  I? . . , X, fixed. 

The following theorem and corollary will play a central role in the development 
of our analysis. 

THEOREM 2.1. (Implicit Function Theorem). Suppose that F = (f ,, . . . , f,) : 9 c 
Rm x Rn+ R" is defined and continuously differentiable on an open neighborhood 
9' c 9 of a point (xO; yo) = (xy, . . . , xi ,  yy, . . . , y;) E 9 such that F(xO; = 0" and 
that the Jacobian ?( f ,, . . . , ,f,)/?(y,, . . . , y,,) is nonsingular at (xO; Then there 
exist open neighborhoods dl c Rm and d2 c R" ofxO and yo, respectively, such that, 
"for anji x e . 2 ,  there is a unique system on n mappings 4i, i=  1, .. . ,n  defined and 
continuous on a1 such that yi= 4 i ( x ) ~ a ,  for i 1 . .  , n and 
f i (x ,41 (~ ) , .  ..,$,,(x))=O for i=  1 ,..., n and any X E . ~ , .  Moreover the function 
0 =(4,, . . . ,+,) is continuously dijjerentiable in dl and the Jacobian matrix W(x) is 
equal to -B-'C, where C (respectively B) is obtained by replacing yi by cji(x), 
i=  1.. . . , n in the Jacobian matrix [Q;/dx,] (respectively [afi/ayj]). 

Proof See [ I ,  1 11. 

A direct corollary of the above theorem is the following. 

COROLLARY 2.1. Suppose that f : 9 c R" -, R is defined and continuously differenti- 
able on an open neighborhood 9' c 9 of a point x0 = (xy, . . . , x;) ,for which f(xO) = O  
and 13, f ' (xo)  # 0. Then there exist open neighborhoods dl c Rn- ' and d, c R of the 

0 points yo =(.ul, . . . , x ;  ,) und .u; respectively, such thut. ,fir un_y y = 

(x, , .  . . , xn_  ,) E.G', there is a unique mapping 4 defined and continuous on dl such 
that xn=q5(y)~.s?, and f(y;&y))=O for any y ~ , g , .  Moreover the mapping 
4: dl + R has continuous partial derivatives in dl which are given by 
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208 T. N.  GRAPSA AND M. N. VRAHATIS 

Of course, relative corollaries can be obtained using any one of the components 
x,, . . . , x,, for example xi, instead of xn and taking y = ( x , ,  . . . , x i -  , , x i +  ,, . . . , x,). 

Next, we shall implement the above results to derive a method for solving 
systems of nonlinear algebraic and/or transcendental equations in Rn. To do this, 
assume that F = ( f , ,  . . . , , fn)  : 9 c Rn -. Rn is twice-continuously differentiable on an 
open neighborhood 9*c9 of a solution x*=(x : , .  . .,x,*) €9 of the system of 
nonlinear equations 

Our interest lies in obtaining an approximation of x*. So, we consider the sets g i ,  
i =  l , . .  ., n to be those connected components of f ;'(O) containing x* on which 
6, f i  # 0 ,  for i = I , .  . . , n respectively. Next, we apply Corollary 2.1 for each one of 
the components f i ,  i = 1,. . . , n of F. So, according to the above corollary there exist 
open neighborhoods LCYI: c Rn-  and . d S . i c  R,  i =  1,. . . , n of the points y*= 
( x :  ,..., x,*- ,) and x,* respectively, such that for any y = ( x ,  ,..., x n -  , ) E . ~ T  there 
exist unique mappings 4i defined and continuous in . d :  such that 

and 

Moreover there exist the partial derivatives S,4i, j=  I , .  . . , n - 1 in dT for each chi, 
i =  1.. . . , n, they are continuous in .2: and they are given by 

Suppose now that xO = ( x y , .  . . , x:)  is an initial approximation of the solution x* 
where = ( x y , .  . . , xjj- ,) E ,2T, then using Taylor's formula we can expand the 
4i( y),  i  = I , .  . . , n about where y = ( x , ,  . . . , xn - ,). So, we can obtain that 

Now, using the relationships (2.3) and (2 .5)  we form the following system of 
equations, 

where xfqi = 4 i ( y o ) ,  i  = 1,. . . , n are the corresponding solutions of the one- 
0 dimensional equations of one unknown f i (xy, .  . . , xn-  ,;) = 0 ,  i = I , .  . . , n. 

Next, from the nth equation of the above set of equations we can obtain that 
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SOLVING NONLINEAR EQUATIONS 209 

By substituting (2.8) in the Eqs. (2.7) we obtain the following system of n- 1 linear 
equations 

which, in matrix form, becomes 

where 

Assuming that A, is nonsingular, the solution y  of the linear system (2.10) gives a 
new approximation of the first n- 1 components of the solution x* of (2.1) and 
finally, by replacing y  in (2.8) we can approximate the nth component of x*. Thus 
in general we can obtain the following iterative scheme for the computation of the 
n - 1 components of x* 

y p + l = y P + ~ p l V p ,  p=O,l,  ..., 

where 

y P = [ x f ] ,  i = l ,  ..., n-1, 

Finally, after a desired number of iterations of the above scheme, say p=m,  using 
(2.8) we can approximate the nth component of x* using the following relationship 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f P
at

ra
s]

 A
t: 

13
:5

5 
3 

D
ec

em
be

r 2
00

7 

T. N. GRAPSA A N D  M .  N. VRAHATIS 

Of course, relative procedures for obtaining x* can be constructed by replacing x, 
in Corollary 2.1 with any one of the components x,, . . . , xn- ,, for example xi, and 
taking y = (x , ,  . . . , x, . ,, x, + ,, . . . , x,). 

We would like to mention here that the above process does not require the 
expressions 4, but only the values x:qi which are given by the solution of the 

P one-dimensional equations fi(xy,. . . , x i _  ,, .) = 0. So, by holding yP=(x7, . . . ,x,- 
fixed we can solve the equations 

for rf in the interval (3 .  r + j) with an accuracy 6. Of course. we can use any one of 
the well-known one-dimensional methods [ l l ,  13,14,16] to solve the above 
equations. Here we shall use the one-dimensional bisection, (see [2,15] for a 
discussion of its advantages), since frequently the steps /3 are long and also few 
significant digits are required for the computations of the roots of the Eqs. (2.15). 
A simplified version of the bisection method can be found in [17,19-221. For 
completeness. we shall give here a brief description of this method. Hence, to solve 
an equation of the form 

where $: [y , ,  y,] c R + R is continuous, a simplified version of the bisection 
method leads to the following iterative formula 

tk + = t k  + sgn $ ( t o ) .  sgn $(tk).  h/2k+ I ,  k = 0, 1 , .  . . , 

with to  = y , and h = y, - y l  and where for any real number u, 

-1, if u<O, 

1 ,  if a>O. 

Of course, (2.17) converges to a root t* E ( y ,  - y,) if for some t,, k = 0, I ,  
that 

sgn $(to). sgn $(tk) = - 1. 

(2.17) 

(2.1 8) 

holds 

(2.19) 

Also, the minimum number of iterations p, that are required in obtaining an 
approximate root i such that It - t* / 5 E, for some E E (0 , l )  is given by 
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SOLVING NONLINEAR EQUATIONS 211 

where the notation [ v ]  refers to the least integer that is not less than the real 
number v. 

For a geometric interpretation of the new method and a corresponding 
illustration of the main differences between Newton's method and new method, we 
refer the interested reader to [4]. 

3. A PROOF OF CONVERGENCE 

We shall give in this section a proof of the convergence of the new method 
described by the iterates (2.12) and the relationship (2.14). To this end the 
following theorem will be needed. 

THEOREM 3.1. Suppose that F =( f ,, . . . , f,): &c R k - +  Rk is twice-continuously difler- 
entiable on an open neighborhood Q* c & of a point x* =(x:, . . . , x:) E & for which 
F(x*) = Ok and F1(x*) nonsingular. Then the iterates xp, p = 0,1, .  . . of Newton's 
method 

will converge to x* provided the initial guess x0 is sufficiently close to x*. Moreover 
the order of convergence will be two. 

Proof' See [9,13, 161. 

We note here that the condition that F'(x) be Lipschitz continuous in b*, 
(which we assumed in Section l), is ensured since the component functions f of F 
are all twice-continuously differentiable. We now proceed with the following 
convergence result. 

THEOREM 3.2. Suppose that F = ( f  ,, . . . , f,): 9 c W" + Rn is twice-continuously dif- 
ferentiable on an open neighborhood 9 *  c 9  of a point x* =(x:,. . . , x,*) € 9  for 
which F(x*) = O". Let ai, i = 1 , .  . . , n be those connected components of f ;  ' (O) ,  
containing x* on which d, f i  # 0  for i = 1,. . . , n respectively. Then the iterates of (2.12) 
and the relationship (2.14) will converge to  x* provided the matrix A, which is 
obtained from the matrix A, of' (2.12) at x* is nonsingular and also provided the 
inirial guess yo = (xy ,  . . . , xji- ,) is sufficiently close to y* = (x:, . . . , x,*- ,). Moreover 
the iterates yP, p = O,1,. . . of (2.12) have order of convergence two. 

Proof Obviously, the iterates (2.12) can be written as follows 

where 
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V P = [ v i ] = [ x i . ' - x ~ ~ ~ ,  i =  1 ,..., n -  1, 

or using (2.3)  and (2 .5)  we can form W p  and Vp as follows 

W p =  [ w i j ]  = [ a , 4 i ( y p )  - d j & ( y P ) ] ,  i, j =  I , .  . . , n-  1 ,  

Consider now the mapping, 

Then for the above mapping A and for k = n -  1 the conditions of Theorem 3.1 are 
fulfilled. Consequently, the iterates yP, p=O, 1 , .  . . of (2.12) converge to y* and the 
order of convergence is two. 

Suppose now that for some p, for example p=m, we obtain ym= y*. Then from 
the relationship (2.14) we can obtain that 

Thus the theorem is proven. 0 

4. NUMERICAL APPLICATIONS 

The new method described in Section 2  has been applied to random problems of 
varying dimensions. Our experience is that the procedure behaved predictably and 
reliably and the results were quite satisfactory. We present here some typical 
computational results obtained by Newton's method and the iterative procedure 
(2.12)-(2.14) applied to the following systems 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f P
at

ra
s]

 A
t: 

13
:5

5 
3 

D
ec

em
be

r 2
00

7 

S O L V I N G  NONLINEAR E Q U A T I O N S  

System (4.1) has two roots rl=(O.l,O.l,O.l) and r2=(-0.1, -0.1, -0.1) within 
the cube 1-0.1. 0.11, and its Jacobian at these roots is nonsingular. However, this 
system has a particular difficulty since the function values at some points, for 
example at points close to origin, cannot be accurately achieved. On the other 
hand, the Jacobian of system (4.2) at its root r=(-0.99990001.10~4, 
-0.99990001 , 0.99990001 . is singular while the system (4.3) is a 
well-known test case, (Brown's almost lineur system) [6,8]. It has roots of the form 
(a, a, a, a, rr -4) ,  where a satisfies the equation a4(5a - 6) + 1 = 0, and its Jacobian at 
these roots is nonsinguiar. Tile difficiiiiy uf this systeiii is that iis Jacobiaii at a:: 
the above roots is ill-conditioned. For this case we shall present results for the 
roots r ,  = ( I ,  1, 1, 1, I), r, =(0.91635458253385,. . . , 1.41822708733080) and r, = 

( - 0.57904308849412,. . . , 8.8952 1544247060) which are reported in the following 
tables. 

In Tables I ,  2 and 3 we exhibit the number of iterations that are required in 
obtaining an approximate solution of the systems (4.1), (4.2) and (4.3) correspond- 
ingly, for requiring accuracy lo-' and 10 l 4  respectively, by applying Newton's 
method and the iterative scheme (2.12)-(2.14), for several starting points xO= 
(x:, . . . .sf). In these tables "8" indicates the requiring accuracy, "N" indicates the 
number of iterations, "FEW indicates the number of function evaluations, " A S "  
indicates the total number of algebraic signs that are required for applying the 
iterative scheme (2.17) and "rim denotes the root to which the corresponding 
method converges. 

From the results shown in the tables we observe that the new method is seen to 
be superior to Newton's method for all the above cases (4.1)-(4.3). We observe 
also that the new method converges quadratically and that it converges to the 
same root when a different accuracy is used. 

We also applied the scheme (2.12)-(2.14) to problems with precise function 
--.. 1 r-- ... L:..L ,,A:,, ..,,L;-, ...,, ,,,,.,,.. ,, .., ,nPil~pnnA;t;,,,p~ 
V ~ I L I C S  I V L  W I I ~ L I I  L I I C  L U L I G S P U L I U I I I ~  JaLvv~a~r  w a a  uvua;u5u!ur uud v v b l i - b u t t u r t t u l l r u  

and we observed that the number of iterations of the new method was less than or 
equal to the corresponding number of iterations of Newton's method. 

J C M  E 
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Table 1 Results for system (4 1) 

R i e ~   ton‘^ method 
- -- - 

Scheme ( 2  12)-(2 14) 
-- 

Y: 1: Y: - 10' & =  1 0 - l A  & = l o - '  E =  10-1" 

- -  - 

N F E  r, N F E  r, N F E  AS r, N F E  AS r, 
- - - 

4 -2  1 38 456 r ,  33 396 r, 4 36 120 r, 5 45 150 r ,  
-2  - 0 5  0 2  71 772 r, 32 384 r, 5 45 150 r, 6 54 180 r, 
- 2 2 2 30 360 r, 31 372 r, 5 45 150 r, 6 54 180 r, 
-1  -2  0 6  50 600 r ,  51 612 r, 4 36 120 r, 5 45 150 r, 
I - 2  1 28 336 r, 29 348 r, 4 36 120 r2 5 45 150 r, 
- 0 5  0 5  - 0 5  25 300 r, 26 312 r, 5 45 150 r, 6 54 180 r, 

0 4  0 5  0 5  47 564 r, 53 636 r, 6 54 180 r, 7 63 210 r, 
0 5  - 0 5  2 27 324 r, 28 336 r, 4 36 120 r, 5 45 150 r, 
0 5  2 1 33 396 r 2  54 648 r, 5 45 150 r, 6 54 180 r, 
2 -2  -2 27 324 r2 43 516 r, 4 36 120 r, 5 45 150 r, 
5 2 -2  29 348 r, 38 456 r ,  6 54 180 r, 7 63 210 r, 

10 2 2 38 456 r, 39 468 r, 7 63 210 r2 8 72 240 r, 

Table 2 Results for system (4.2) 

--- 

r = lo- '  = 1 0 1 4  

N F E  N f6 
- -- - -- - 

34 408 35 420 
30 360 31 372 
42 504 43 516 
31 372 32 384 
23 276 26 312 
44 528 45 540 
28 336 30 360 
39 468 40 480 
17 444 38 456 
46 552 47 564 
41 492 42 504 
47 564 48 576 

Scheme (2.12)-(2.14) 

t =  l o - '  E ,  10- ' 4  
-- -- 

N F E  AS N F E  AS 
- -- 

3 27 90 4 36 120 
2 18 60 3 27 90 
7 63 210 8 72 240 
2 18 60 3 27 90 
2 18 60 3 27 90 
2 18 60 3 27 90 
2 18 60 3 27 90 
3 27 90 4 36 120 
7 63 210 8 72 240 
6 54 180 7 63 210 
6 54 180 7 63 210 
2 18 60 3 27 90 

-- 

Table 3 Results for system (4.3) 

Newton's method 
-- 

Scheme (2.12)-(2.14) 
- -- -- -- - -. 

YY Y; X: Y! Y: & = l o - '  E =  l o L 4  E =  lo - '  E =  10-14 
- -- - 

N F E  r, N F E  r, N F E  AS r, N F E  AS r, 
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5. CONCLUDING REMARKS 

The method we have analysed in this paper compares favourably with Newton's 
method when the Jacobian of F at the root of the system (1.1) is singular or ill- 
conditioned or when the values of the components of F cannot be accurately 
achieved. 

Also although our method uses reduction to simpler one-dimensional equations, 
it converges quadratically to n - 1 components of the solution, while the remaining 
component of the solution is evaluated separately using the final approximations 
of the other components. Thus it does not require a good initial estimate for one 
component of the solution. 

Moreover, the method does not directly perform function evaluations, and also 
using the iterative scheme (2.17) it rcquires only their algebraic signs to be correct 
in finding the various di(y).  
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