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A new method for the numerical solution of systems of nonlinear algebraic and/or transcendental 
equations in Rn is presented. Firstly, this method reduces the dimensionality of the system in such a way 
that it can lead to an iterative approximate formula for the computation of n - 1 components of the 
solution and subsequently it perturbs the corresponding Jacobian by using proper perturbation par- 
ameters. The remaining component of the solution is evaluated separately using the final approximations 
of the other components. This reduced iterative formula generates a sequence of points in Rn-'  which 
converges quadratically to the n - 1 components of the solution. Moreover, it does not require a good 
initial guess for one component of the solution and it does not directly perform function evaluations. 
Thus, it can be applied to problems with imprecise function values. A proof of convergence is given and 
numerical applications are presented. 
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1 INTRODUCTION 

Recently, new methods have been proposed [2-41 for the numerical solution of a 
system of nonlinear algebraic and/or transcendental equations: 

where F = (f,, . . . , f , ) : 9  c Rn + Rn is a continuously differentiable mapping on an 
open neighborhood 9* c9 of a solution X * E ~  of System (1.1). These methods 
incorporate the advantages of Newton and nonlinear SOR algorithms [7]. Specifi- 
cally, although these methods use reduction to simpler one-dimensional nonlinear 
equations, they converge quadratically. 

* Part of the work of the second author was done at the European Organization for Nuclear Research 
(CERN, Geneva) and the National Institute of Nuclear Physics (INFN, Bologna). 
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In this paper, we derive and apply a new iterative procedure, for the numerical 
solution of systems ( l . l ) ,  which also incorporates the advantages of Newton and 
SOR algorithms. The idea behind this method is the reduction of the dimensionality 
of the system as well as the perturbation of the Jacobian of the reduced system, by 
using proper perturbation parameters AJ,j = 1, . . . , n - 1. Although this new pro- 
cedure uses reduction to simpler one-dimensional nonlinear equations, it generates a 
quadratically converging sequence of points in Rn-' which converges to the n - 1 
components of the solution, while a proper choice of the parameters A; accelerates 
the convergence even further. The remaining component of the solution is evaluated 
separately using the final approximations of the others. For this component an 
initial guess is not necessary and it is also at the user's disposal to choose which will 
be the remaining component, according to the problem. Also this method does not 
directly need any function evaluation and it compares favourably with Newton's 
method when it is difficult to evaluate the function values accurately, as well as 
when the Jacobian at the solution is singular or when the Jacobian is ill-condi- 
tioned. 

2 THE NEW METHOD AND ITS CONVERGENCE 

NOTATION 2.1 Throughout this paper Rn is the n-dimensional real space of column 
vectors x with components x, ,  x,, . . . , x,; ( y ; z )  represents the column vector with com- 
ponents y,, y,, . . . , y,, z,, z,, . . . , z,; Pi  f ( x )  denotes the partial derivative o f f  ( x )  with 
respect to the i-th uariable xi; d denotes the closure of the set d and 
f f x l ,  . . . ,  x,-  , , . ,xi+ ,, ... , x,) defines the mapping obtained by holding x, ,  ..., x i -  ,, 
~ ~ + ~ , . . . , x , f i x e d .  

Our interest lies in obtaining a sequence { x P ) , p  = 0,1, . . . of points in R" which 
converges to a solution x* = (xT, . . . , x,*)E 2 of the system (1.1). To do this, we con- 
sider the sets B,, i = 1, . . . , n to be those connected components off; '(0) containing 
x* on which i?,f, # 0, for i = 1, . . . , n respectively. Next, applying the Implicit Func- 
tion Theorem [7,2-41 for each one of the componentsf,, i = 1,. .. , n of F we can find 
open neighborhoods d: c Rn- ' and d;,, c R, i = 1, . . . , n of the points 
y* = (xT, . . . , x,*- ,) and x,* respectively, such that for any y = ( x , ,  . . . , x,- ,) E 2: there 
exist unique mappings cp ,  defined and continuous in dT such that: 

and 

Moreover, the partial derivatives % c p i ,  j = 1, ..., n - 1 exist in d: for each 
cpi,  i = 1,.  . . , n, they are continuous in d? and they are given by: 
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SOLUTION OF NON-LINEAR EQUATIONS 237 1 

Next, working exactly as in [3], we can obtain the following iterative scheme for 
the computation of the n - 1 components of x*: 

where: 

with x,P,' = qi(yP), while after a desired number of iterations of (2.4), say p = m, the 
nth component of x* is approximated by means of the following relation: 

Consider now the mapping: 

- 
A = (i,, ... , in - , ) :  dT c lWn- '  -) lWn-', by 

E.i(y)=-qi(y)+qn(y), i = l ,  ..., n-1, (2.7) 

and denote the corresponding Jacobian by A'; then it is obvious that the iterative 
scheme (2.4) is equivalent to the following one: 

where sP is the solution of the linear system: 

To accelerate the convergence of the iterates(2.8), we perturb the corresponding 
Jacobian matrix using proper perturbation parameters Al,j = 1, ... , n - 1. To this 
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end we consider the mapping: 

where the vector A' of the perturbation parameters AS, j = 1 , .  .. , n - 1, is taken such 
that the inner product (x, A')  = 0, V x E dT. 

Now, utilizing the mapping (2.10) instead of (2.7) we obtain the following iterative 
scheme for the computation of the n - 1 components of x* :  

where: 

Finally, after a desired number of iterations of the above scheme, say p = m, we can 
approximate the nth component of x* using Relation (2.6). 

Remark 2.1 The perturbation parameters A;, j = 1, . . . , n - 1, can be estimated in 
each iteration from the equation: 

by choosing n - 2 arbitrary parameters and calculating at each iteration the 
(n  - 1)st parameter from (2.13). 

Remark 2.2 The new process does not require the expressions pi but only the 
values x;vi which are given by the solution of the one-dimensional equations 
fi ( ~ 7 ,  . . . , x;- ,;) = 0. So, by holding yP = (x; ,  . . . , x;- ,) fixed, we can solve the equa- 
tions: 

for rf in the interval (a, r + b) with an accuracy E.  Of course, we can use any one of 
the well-known one-dimensional methods [7] to solve the above equations. Here we 
shall use the one-dimensional bisection, since frequently the steps f i  are long and 
also a few significant digits are required for the computations of the roots of Equa- 
tions (2.14). A simplified version of the bisection method can be found in [2-41. 

Remark 2.3 Relative procedures for obtaining x* can be constructed by replac- 
ing xn with any one of the components x, ,  ..., x n -  ,, for example xi ,  and taking 
y = ( x l ,  ..., x i  - 1, xi+ 1, . . . , x,). 
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SOLUTION OF NON-LINEAR EQUATIONS 239 1 

Next, we give a proof of the convergence of the new method described by the 
iterates (2.1 1 )  and Relation (2.6). 

THEOREM 2.1 Suppose that F = ( f , ,  . . . , f,): B c Rn -+ Rn is twice-continuously dif- 
ferentiable on an open neighborhood 9* c 9 of a point x* = (x?,  . . . , x,*) E 9 for which 
F(x*)  = On. Let .Bi, i = 1,.  . . , n be those connected components o f f ;  ' (0 )  containing x* 
on which ?,h # 0 for i = 1 ,  ..., n, respectively. Suppose further that the matrix A,, 
which is obtained from the matrix A, of (2.5) at y* = (xT, ... , x,*- ,), is nonsingular and 
that E = [tij] = A ;  is the rank-1 n - 1 x n - 1 matrix where the vector 
A' = [A;] ,  j = 1 , .  . . , n - 1, determines the perturbation parameters so that the inner 
product ( x ,  A ' )  = 0, V x E B* and 

Then the iterates of (2.11) and Relation (2.6) will concerge to x*, provided the initial 
guess yo = (xy,  . . . , x,O- ,) is suficiently close to y*. Moreover, the iterates yP, p = 
0,1, . . . , of (2.1 1) hace order of convergence two. 

Proof Obviously, the iterates (2.1 1 )  can be written as follows: 

where: 

Using the mapping (2.10) the above scheme can be written in the following form: 

where G' denotes the corresponding Jacobian. For the mapping G, since Rela- 
tion (2.15) holds, by Permutation Lemma (Banach Lemma) [6,7,4],  the matrix G' at 
y* is nonsingular and, consequently, by the well-known Newton's convergence the- 
orem [6,2-41 for an initial guess yo sufficiently close to y*, the iterates yP, p = 
0 ,1 , .  .. of (2.11) converge to y* and the order of convergence is two. 

Suppose now that for some p, for example p = m, we obtain ym = y*. Then, Rela- 
tion (2.6) yields: 
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Thus the theorem is proved. 

3 NUMERICAL APPLICATIONS 

The new method has been applied to several examples of nonlinear systems of 
different dimension. We found that the procedure behaved predictably and reliably 
and its speed of convergence was quite satisfactory. Here we present some typical 
computational results comparing the new scheme of Newton's method and also to 
the dimension-reducing methods [3,4] on three examples for Problem (1.1) (studied 
also in [3,4]), with F = (f,, f2, . . . , f,) given by: 

System (3.1) has two roots r, = (0.1,0.1,0.1) and r, = (-0.1, -0.1, -0.1) within the 
cube [-0.1,0.1]3 and its Jacobian at these roots is nonsingular. However, this 
system has a particular difficulty since the function values at some points (for 
example at points close to the origin) cannot be accurately achieved. On the other 
hand the Jacobian of System (3.2) at its root r=(-0.99990001~10-4, 
- 0.99990001 . 10-4,0.99990001 . is singular. System (3.3), which is a well- 
known test case, (Brown's almost linear system) [5 ] ,  has roots of the form (a, a, a, a, K4) ,  
where a satisfies the equation a4(5a - 6) + 1 = 0 and its Jacobian at these roots is 
nonsingular. The difficulty of this system is that its Jacobian at all the above roots is 
ill-conditioned. For this case we shall present results for the roots r l  = (1,1,1,1, I), 
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SOLUTION O F  NON-LINEAR EQUATIONS 24 1 

r ,  = (0.91635458253385, ... , 1.41822708733080) and r ,  = ( - 0.57904308849412, ..., 
8.89521544247060) reported in the tables. 

In Tables 1,2 and 3 we exhibit the number of iterations needed to obtain an 
approximate solution of Systems (3.1), (3.2) and (3.3) correspondingly, for required 
accuracy 10-14, by using Newton's method and the iterative scheme (2.1 1 )  and Rela- 
tion (2.6) of this paper, for several starting points xO =(xy,  ..., x:) and values 
A' = [ A ) ] ,  j = 1, . . . , n - 1. We set arbitrary 1? - 2 values of the AS and we calculate 
the remaining (n - 1)st in each iteration in such a way that ( x P ,  A')  = 0. 

In these tables "A"' indicates the vector of the perturbation parameters, "j" the 
coordinate for which the equation ( x P ,  A ' )  = 0 is solved, "IT' the number of iter- 
ations, "FEW the number of function evaluations, "AS" the total number of algebraic 

Table 1 Comparison of Newton's Method with New Dimension-Reducing Method for System (3.1). 

Newton's method Ne\v Dimension-Reducing 

A'=(-0.1,0),  j = 2  

Table 2 Comparison of Newton's Method with New Dimension-Reducing Medthod for System (3.2). 

Newton's method New Dimension-Reducing 
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Table 3 Comparison of Newton's Method with New Dimension Reducing-Method for System (3.3). 

Newton's method New Dimension-Reducing 

A ' =  (0.2,0.2,0.2,0), j = 4 

signs that are required for applying the modified one-dimensional bisection 
method [2-41 and "rim denotes the root to which the corresponding method 
converges. 

We applied the above schemes using Crout's method with partial pivoting for the 
corresponding linear systems. 

From the results shown in the tables we observe that the new method of this 
paper compares favourably with Newton's method. 

Moreover, we have compared the new method with the dimension-reducing 
methods of [3,4] and observed that the number of iterations of the new method is 
less than or equal to the corresponding iterations of the dimension-reducing 
methods. Some of these comparisons are exhibited in Tables 4,5 and 6. 

We have also applied the new scheme to problems with precise function values for 
which the corresponding Jacobian is nonsingular and well-conditioned and 
observed that the number of iterations of the new method is less than or equal to the 
corresponding number of iterations of Newton's method and the dimensional reduc- 
ing methods. 

Table 4 Comparison of Scheme (2.12)-(2.14) of [3] (DR) and Scheme (3.24)-(3.26) of [4] (MDR) using 
A' = (0, - 0.00001), j = 1 with New Dimension-Reducing Method (PDR) using A' = ( -  0.1,0), j = 2 for 
System (3.1). 

D R  M D R  PDR 

x: x; IT F E  AS r ,  IT F E  AS ri IT F E  AS ri 
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Table 5 Comparison of Scheme (2.12)-(2.14) of [3] (DR) and Scheme (3.24)-(3.26) of [4] (MDR) using 
A' = (0, - 3), j = 1 with New Dimension-Reducing Method (PDR) using A' = ( -  0.00001,0), j = 2 for Sys- 
tem (3.2). 

D R MDR PDR 

X? x i  IT F E  AS IT F E  AS IT F E  AS 

Table 6 Comparison of Scheme (2.12)-(2.14) of [3] (DR) and Scheme (3.24)-(3.26) of [4] (MDR) using 
A' = (k0 .2 ,  c0.2,  + 0.2,0), j = 4 with New Dimension-Reducing Method (PDR) using A' = 
(k0 .2 ,  i0.2,0,0) ,  j = 4  for System(3.3). 

DR M D  R PDR 

X: x .up x t  IT F E  AS ri IT F E  AS r i  IT F E  AS r i  

Moreover, we have observed that using different perturbation parameters we are 
able to compute different solutions starting from the same initial guess. For instance, 
consider System (3.1) with the initial guess x0 = ( -  2,2). Taking A' = ( -  2,O) and 
j = 2 we obtain, after six iterations, the solution r , ,  while for A' = ( -  0.1,O) j = 2 we 
get, after six iterations, the solution r,. 

4 CONCLUDING REMARKS 

The method we have analyzed in this paper compares favourably with Newton's 
method, since it has order of convergence two for any values of the perturbation 
parameters AS, while, for proper values of A; the convergence can be significantly 
accelerated. 

Also, although the method of this paper uses reduction to simpler one-dimen- 
sional equations, it converges quadratically to n - 1 components of the solution, 
while the remaining component of the solution is evaluated separately using the 
final approximations of the other components. Thus, it does not require a good 
initial estimate for one component of the solution. Besides, this method does not 
directly perform function evaluations, since it uses the modified one-dimensional 
bisection method [2-41. It only requires correct algebraic signs in finding the vari- 
ous CP,(Y). 

Moreover, it is well-known that Newton's method often converges to a solution 
almost independently of the initial guess, while there exist several solutions close to 
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each other, all desirable for the applications [I ,  8,9]. Applying the new method and 
using various perturbation parameters we are able to compute different solutions for 
the same initial guess. 
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