
Pattern Recognition 87 (2019) 190–202

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Content driven clustering algorithm combining density and distance

functions

Emmanouil K. Ikonomakis a , ∗, George M. Spyrou

b , 1 , Michael N. Vrahatis a

a Computational Intelligence Laboratory (CILab), Department of Mathematics, University of Patras, Patras GR-26110, Greece
b Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, Nicosia 2370, Cyprus

a r t i c l e i n f o

Article history:

Received 12 January 2017

Revised 23 August 2018

Accepted 8 October 2018

Available online 12 October 2018

Keywords:

Clustering algorithms

Density based clustering

Distance based clustering

Evolutionary clustering

Window density function

a b s t r a c t

Density and distance based clustering are two distinct approaches to the same problem. In this contribu-

tion, a novel algorithm is presented in order to exploit the benefits of both approaches. This is achieved,

not by combining those approaches into a single notion, but by utilizing the advantages of each one, de-

pending on what each step of the algorithm aims to achieve. To be precise, the Window Density Function

is utilized to provide regions of high density and hence a region of clusters or a part of a cluster. Affinity

Propagation is, consequently, utilized to provide a group of clusters within such a region. Finally, these

regions are merged to form actual clusters. The proposed methodology is tested on a variety of synthetic

and real-life datasets. The algorithm presented in this contribution outperforms other well-known algo-

rithms, with which it is compared to, in the majority of the datasets used.

© 2018 Elsevier Ltd. All rights reserved.

t

p

m

d

c

A

a

n

a

i

c

f

s

r

t

p

i

a

e
1. Introduction

Clustering is the process of identifying groups (clusters) of ob-

jects within a dataset. There are several approaches to solve this

problem and many of them can be classified depending on their

angle on measuring the proximity of the objects in a cluster. Fur-

thermore, a clustering algorithm can be described as density-based

if it operates based on the density of a region of the dataset or

as similarity-based if it is based on the similarities among the

members of a dataset [1–7] . On the other hand, algorithms can be

classified based on their approach of detecting such clusters. For

example, hierarchical algorithms [8–11] form a tree-like structure

describing the dataset. Alternatively, partitioning algorithms pro-

vide clusterings of the dataset [12–18] . Moreover, new algorithms

have emerged utilizing intelligent optimization methods [19–24] .

As clustering can be approached as an optimization problem, al-

gorithms such as Differential Evolution (DE) [25] , Particle Swarm

Optimization (PSO) [26] and Genetic Algorithms (GA) [27,28] have

been used in order to tackle this problem. Nevertheless, most of

these approaches attempt to cluster a dataset by trying to, simul-
∗ Corresponding author.

E-mail addresses: eki@math.upatras.gr (E.K. Ikonomakis), georges@cing.ac.cy

(G.M. Spyrou), vrahatis@math.upatras.gr (M.N. Vrahatis).
1 George M. Spyrou holds the Bioinformatics ERA Chair Position funded by

the European Commission Research Executive Agency (REA) Grant BIORISE (Num.

669026), under the Spreading Excellence, Widening Participation, Science with and

for Society Framework.

m

c

s

t

d

c

d

https://doi.org/10.1016/j.patcog.2018.10.007

0031-3203/© 2018 Elsevier Ltd. All rights reserved.
aneously, identify the position of all cluster centers. Such an ap-

roach is only possible when the number of clusters can be deter-

ined in advance.

The introduced algorithm, Density and Distance Content-

riven(DeDiCo) Clustering Algorithm has the ability to, automati-

ally, determine the number of clusters without any assumptions.

dditionally, it can determine whether it should use an evolution-

ry optimization algorithm or not. This decision is based upon the

umber of density evaluations that are expected when using such

n algorithm. Therefore, it can adapt its behavior in order to reduce

ts running time. Additionally, given a d dimensional dataset with k

lusters, the evolutionary optimization algorithm used would per-

orm searches in a d dimensional space, instead of the k · d dimen-

ional space, as the vast majority of evolutionary clustering algo-

ithms. The algorithm presented in this work aims to combine dis-

ance with density metrics and therefore provide a new hybrid ap-

roach blending two clustering approaches. Yet, instead of form-

ng a merging of both notions, distance and density are used sep-

rately. Specifically, each notion is used depending on the goal of

ach step of the algorithm. A density based approach can deter-

ine more easily regions of high density and hence identify cluster

ores. On the other hand, a distance based algorithm would require

everal distance evaluations that may lead to a significant compu-

ational cost. Concerning the identification of the closest cluster, a

ensity approach would not be able to address this issue as effi-

iently as a distance based approach.

The algorithm presented in this contribution utilizes the Win-

ow Density Function (WDF) [4,15] and a similarity-based ap-

https://doi.org/10.1016/j.patcog.2018.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.10.007&domain=pdf
mailto:eki@math.upatras.gr
mailto:georges@cing.ac.cy
mailto:vrahatis@math.upatras.gr
https://doi.org/10.13039/501100000783
https://doi.org/10.1016/j.patcog.2018.10.007

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 191

p

t

s

a

s

d

I

r

u

i

h

s

e

3

o

i

D

a

m

a

a

a

r

c

c

A

t

d

p

d

a

c

o

c

m

p

c

g

a

c

I

t

k

S

i

c

2

a

n

t

I

t

m

c

g

d

A

a

p

fi

m

p

2

D

(

D

t

w

D

S

w

D

W

W

v

t

a

h

s

l

t

b

s

n

a

c

e

b

t

t

a

w

t

{

p

s

i

c

v

t

i

m

n

v

roach, Affinity Propagation (AP) [29] . WDF has already been in-

roduced by Tasoulis and Vrahatis [4] . Yet, they identify all clusters

imultaneously, as it is accustomed for most cases in Evolution-

ry Clustering. As mentioned earlier, this increases dramatically the

earch space of the evolutionary algorithm used. In attempt to ad-

ress this, Antzoulatos et al. [15] introduced an algorithm named

UC that iteratively detects the clusters in a dataset. Although this

esolves the problem of the dimensionality of the search space, IUC

tilized evolutionary optimization even if it were computationally

nefficient. Moreover, in the case of arbitrary shaped clusters, IUC

ad to be tuned in a way that resulted in lengthy runs.

On the other hand, AP is very efficient in addressing arbitrary

haped clusters. Unfortunately, AP needs to store three values for

ach pair of data points. For a dataset of n points, this translates to

 · n 2 values, which can have serious implications regarding mem-

ry management.

In short, DeDiCo utilizes WDF to provide an initial cluster-

ng and then relies on AP to crystallize the clusters at hand.

eDiCo uses WDF in order to locate areas of high density, as those

re considered to be the clusters cores. Yet, it does so, by deter-

ining the computationally more efficient approach. The next step

ims at refining the results of the algorithm’s first step. This is

chieved by moving and enlarging the estimated cluster core in

n atempt to better describe a region of higher density. Yet, such a

egion could easily incorporate parts of two or more clusters, de-

reasing the performance of the algorithm. Therefore, a thorough

lustering of the points inside this region is deemed necessary and

P is applied on this region. By applying AP only on fractions of

he dataset, where it is deemed to be useful, its complexity is re-

uced, while its ability to identify arbitrary shaped clusters is ex-

loited. An undesired effect of this approach is to partition the

ataset into several small clusters. Although, this allows the sep-

ration of the adjacent clusters and it also leads to segmenting

lusters. Therefore, a final step of merging the provisional clusters

f close proximity into a larger cluster provides a correction of this

lustering approach. Finally, for performance purposes, some points

ay be left unclustered by the algorithm. If no outliers are ex-

ected, the user may choose to merge those points into the closest

luster.

In general, it can be said that DeDiCo defines high density re-

ions in which AP is applied to refine the clustering. The distance

ttribute of the algorithm is justified as AP is utilized with the Eu-

lidean distance. The proposed method is described in Section 2 .

n Section 3 the datasets used and the methods of experimen-

al evaluation are presented. DeDiCo is compared to other well

nown algorithms, on both synthetic as well as real datasets.

ection 4 presents the results on those datasets as well a deeper

nsight to the results of the experiments. Finally, Section 5 con-

ludes this paper by summarizing the contributions of this work.

. Density and Distance Content-driven (DeDiCo) clustering

lgorithm

In this contribution, the notion of density is combined with the

otion of distance as parts of an algorithm, which swaps between

he two notions instead of combining these two notions together.

ts main idea is, simply, to identify regions of high density and

o apply distance based clustering to these areas. Additionally, it

erges clusters together by the notion of distance. More specifi-

ally, Density and Distance Content-driven (DeDiCo) Clustering Al-

orithm aims at determining regions of high density within the

ataset. These regions are the base of a cluster or a cluster part.

round these clusters a hyper-rectangle will be formed and moved

s well as enlarged so that a cluster is captured as accurately as

ossible. AP is applied to the points inside this hyper-rectangle and

nal cluster parts are formed. The points clustered with AP are re-
oved from the dataset and the process is repeated until no more

oints are left.

.1. Brief introduction to the notions used by DeDiCo

Before proceeding with a more thorough description of

eDiCo, for completeness purposes the Window Density Function

WDF) [4,15] is briefly described.

efinition 1 (Window) . Let window w α(z) be a d - dimensional or-

hogonal range of size α ∈ R :

 α(z) =

[
z 1 − α

2

, z 1 +

α

2

]
× · · · ×

[
z d −

α

2

, z d +

α

2

]
.

Point z = [z 1 , z 2 , . . . , z d]
� is called the center of w α(z).

Additionally:

efinition 2. Given a dataset S ⊂ R

d , the set S α, z is defined as

 α,z =

{

y ∈ S : z i −
α

2

� y i � z i +

α

2

, ∀ i = 1 , 2 . . . , d

}

.

Practically, S α, z is the set of all points of S inside the window

 α(z).

efinition 3 (WDF) . For the set S with respect to a given α, the

indow Density Function (WDF) is defined as

DF α(z) = | S α,z | .
As W DF α(z) is the number of points of S inside w α(z), it is ob-

ious that WDF is non-negative. Since α remains constant through

he comparison of various WDF values, WDF ’s name is justified

s the denominator of the actual density remains unaltered and

ence the values of the density of a window depend only on the

ize of S α, z .

It has been observed that, for low values of α, WDF has many

ocal maxima, but whilst the value of α increases, WDF reveals

he number of local maxima that corresponds to the actual num-

er of clusters [15] . Yet, as α continues to increase, WDF becomes

moother and the clusters can not be distinguished. This phe-

omenon is visualized in Fig. 1 . In Fig. 1 a small values of α provide

 large number of regions, thereby splitting the clusters in smaller

lusters, while in Fig. 1 d the clusters can not be distinguished.

One approach to find the maxima of WDF is the usage of Differ-

ntial Evolution (DE) [25] . In brief, DE randomly initializes a num-

er (NP) of individuals in the search space, evolves them according

o different operators for their mutation and applies crossover to

hose individuals. The most common operators used for mutation

re:

DE1: v i g = x best
g + F · (x

r 1
g − x

r 2
g)

DE2: v i g = x
r 1
g + F · (x

r 2
g − x

r 3
g)

DE3: v i g = x i g + F · (x best
g − x

r 1
g) + F · (x

r 2
g − x

r 3
g)

DE4: v i g = x best
g + F · (x

r 1
g − x

r 2
g) + F · (x

r 3
g − x

r 4
g)

DE5: v i g = x
r 1
g + F · (x

r 2
g − x

r 3
g) + F · (x

r 4
g − x

r 5
g)

here x i g is called the parent individual and v i g the respective

rial vectors, r 1 , r 2 , r 3 , r 4 , r 5 are randomly selected integers in

1 , 2 , . . . , NP } and r j � = i, j = 1 , 2 , 3 , 4 , 5 . x best
g is the best known

osition observed up to generation g . Finally, F > 0 is called the

caling factor. After that, the crossover operation is applied. That

s, given a random component j of x i g a random number of adja-

ent components is selected. Those components are selected from

i
g while the remaining components are selected from x i g in order

o form an offspring. The offspring will replace its ancestor if it

mproves its fitness. Fitness will be evaluated as - WDF , as DE is a

inimization algorithm. This process is repeated for a user defined

umber of steps (epochs) or until DE reaches a predefined fitness

alue.

192 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

Fig. 1. Using α = 0 . 05 results in many maxima of WDF . Determining the clusters is next to impossible. α = 0 . 1 makes the clusters distinguishable. Small “spikes” still exist.

α = 0 . 2 makes the two clusters of the datasets clearly visible as two distinct regions of higher density. α = 0 . 3 on the other hand, provides a single region of higher density,

making the two clusters almost indistinguishable.

Algorithm 1 A brief overview of DeDiCo .

1: procedure DeDiCo (S)

2: while There are still unclustered points or Maximum num-

ber of iterations is reached do

3: if DE function evaluations are more than the number of

unclustered points then

4: Evaluate the WDF value for each point

5: Select as z the point with the highest WDF value

6: else

7: Use DE in order to find the point z with the highest

density

8: end if

9: Create a window (hyper-rectangle) around z

10: Move this window

11: Enlarge this window

12: Apply AP to the points inside this window

13: Remove the points in the largest clusters returned by AP

14: end while

15: Merge the resulting clusters

16: Add any still unclustered points to the clusters

17: end procedure
2.2. A brief description of DeDiCo

DeDiCo is briefly summarized in Algorithm 1 . It starts by mark-

ing all points as unclustered. Then, the processes of identifying the

region of highest density, of moving and enlarging a window cov-

ering this region and applying AP to this region (steps 3–13) are re-

peated until the termination criterion is fulfilled. The termination

criterion has two conditions. The main condition is to cluster all

points. As this may lead to lengthy runs where only a small num-

ber of points is clustered at each iteration, this condition is relaxed

to having at most 3 points unclustered. The reasoning for this is to

have at least some points so that clustering on those points will

be reasonable. Additionally, in order to address the same issue, the

second condition is not to exceed a maximum number of itera-

tions.

At each iteration, the number of estimated number of function

evaluations used by DE is compared to the number of points re-

maining unclustered (if-clause at line 3). By utilizing an optimiza-

tion algorithm, the position of highest density can be located. Un-

fortunately, this is, computationally, an expensive procedure. In-

stead, computing the WDF value of all unclustered points may be

less expensive. Therefore, a choice is made in order to use the

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 193

s

s

o

t

c

d

t

t

n

2

T

m

a

i

D

p

e

t

I

i

r

i

l

s

2

o

a

p

c

t

r

b

2

a

e

o

p

i

s

M

f

l

c

m

t

2

i

[

i

a

l

t

f

E

p

a

Fig. 2. WDF values over DeDiCo iterations for the yeast dataset. x -axis shows the

number of iterations of DeDiCo when no iteration limit is posed and y -axis shows

the corresponding WDF values for the Glass dataset.

r

h

b

t

m

p

r

u

c

2

n

I

n

o

s

W

1

a

p

s

2

e

o

l

f

b

t

w

a

M

mallest number of WDF evaluations. As the point of highest den-

ity may not be among the points of the dataset, the evaluation

f WDF for only the points in the dataset, produces an error. For-

unately, the movement and enlargement procedures obsolete this

oncern. Once the entire dataset is covered by this iterative proce-

ure, the clusters are considered for merging (line 15). Two clus-

ers are merged iff their centers are less that a user-specified dis-

ance apart. Finally, any unclustered points are clustered to their

earest cluster.

.3. An in-depth analysis of DeDiCo

After this brief description, DeDiCowill be analyzed in detail.

he first step is to check whether DE will be invoked. It must be

entioned that DeDiCo can utilize any evolutionary optimization

lgorithm, yet the following description is based on DE. The choice

s based on whether it is computationally more expensive to use

E or not. The estimated number of function evaluations is the

roduct of number of individuals times the maximum number of

pochs DE is allowed to run. If this product is less or equal than

he number of unclustered points in the dataset, then DE is used.

n this case, DE searches the space of the dataset in order to min-

mize the function - WDF (line 3). In case the number of points is

elative low and DE is not selected for use, the WDF of each point

s evaluated and the point z with the highest WDF value is se-

ected. A window w α, S (z) is formed around z . This window is then

ubjected to movement and enlargement.

.3.1. The movement procedure

The Movement procedure moves z to coincide with the mean

f the points inside the current window. This process is repeated

s long as the movements of z add, significantly to the number of

oints in the window. That is, the number of points added to the

luster by the movement must exceed the initial number of points

imes a coefficient VT ∈ [0, 1]. VT stands for Variation Tolerance and

epresents a fraction of points under which, changes in points can

e considered negligible.

.3.2. The enlargement procedure

As a next step, w α(z) is enlarged in order to capture as much

s possible of the detected cluster. This is achieved by enlarging

ach side of w α(z) by a fraction MS ∈ [0, 1]. An enlargement over

ne dimension is accepted only if it adds a significant number of

oints in the window. That means that the density of the window

s not allowed to drop. In order to maintain at least the same den-

ity to w α(z) when enlarging one of its dimension by a fraction of

S, the number of points in it must be also increased by the same

raction. Otherwise, the enlargement is discarded and w α(z) is en-

arged over the next dimension. If at least one enlargement is ac-

epted, the process is repeated on the new window. If no enlarge-

ent is accepted over any dimension, the enlargement procedure

erminates.

.3.3. Applying AP

Once window w α, S (z) has been moved and enlarged, the points

nside it are presented to AP. AP was introduced back in 2007

29] and has gained a lot of attention since then [18,30–35] . AP

s a similarity based iterative algorithm that exchanges “messages”

mong the points in the dataset until clusters are formed and no

onger changed. Additionally, a matrix is formed in order to cap-

ure the similarity between each pair of points. As mentioned be-

ore, in this contribution the negated Euclidean distance is used.

ach diagonal element of this matrix is named self-similarity or

reference and represents the suitability of the respective point as

 cluster’s exemplar.
AP’s preference is controlled by parameter APQ ∈ [0, 1], which

epresents the percentile of the sorted similarity matrix. Once AP

as produced the clusters for this dataset subset, these are sorted

y size and are returned from the largest to lowest up to the point

hat APRT% points are returned.

As some windows have only a small number of points, using AP

ay be redundant. For example, clustering windows with only one

oint, is not reasonable. Therefore, parameter APUT is an integer

epresenting the minimum number of points necessary in order to

se AP. In this case all points are clustered together as a single

luster.

.3.4. Determining the end of the iterative procedure

If there are not enough points left in the dataset or a maximum

umber of iteration is reached, this iterative process is terminated.

t must be mentioned that this iteration limit is not to avoid infi-

ite loops. After the first experiments, it has been observed that

nly a small number of iterations provide windows that have a

ignificant number of points. As seen in Fig. 2 , the first observed

DF value for α = 0 . 1 is 46, yet at iteration 4 it has dropped to

. Therefore, it is unnecessary to perform the algorithm’s iterations

nd hence they are limited via the Iterations parameter. The ap-

roach to cluster the remaining points of the dataset will be de-

cribed below.

.3.5. The merging procedure

Once this iterative process is completed, all clusters are consid-

red for merging as described earlier. As AP only considers a part

f the complete dataset, the clusters formed by the main iterative

oop of DeDiCo are not indicative of the actual clusters. There-

ore, these clusters are considered for merging. This is achieved

y evaluating the centers (means) of each cluster. As a first step,

he distances among the clusters’ centers are evaluated. Clusters

ith centers less than a fraction of the Maximal Diagonal apart

re merged. The Maximal Diagonal (MaxDist) is defined as:

axDist =

√

d ∑

i =1

(H i − L i)
2

194 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

Fig. 3. The Flame dataset after the iterative process of DeDiCo, but prior to merging. The plot focuses on a specific region of the dataset. The cluster means are annotated

as stars and named C1, C2, C3 and C4.

3

3

w

f

u

c

d

a

C

h

m

i

t

t

A

T

[

o

p

f

[

o

m

t

where

H =

[
max

i =1

{
S i
}
, max

i =2

{
S i
}
, . . . , max

i = d

{
S i
}] �

,

L =

[
min

i =1

{
S i
}
, min

i =2

{
S i
}
, . . . , min

i = d

{
S i
}] �

.

The above mentioned fraction is the parameter MergeCoeffi-

cient (MC ∈ [0, 1]). If a cluster is not close enough to any other

cluster, then it is given a new id. If it is close enough to other clus-

ters, the choice of its id is not straightforward. In case that none

of the clusters to be merged has an id, a new id for all of them

is generated and assigned to them. Finally, if at least one of the

other clusters has already an id, the smallest id is selected and

assigned to all of the clusters to be merged as well as any other

cluster that may share an id with those clusters. For the example

of Fig. 3 , the distances for cluster centers C1, C2, C3 and C4, anno-

tated in 3 b, are 2.82, 2.93 and 4.84, while MaxDist is 19.13. The

ratios of the distances over MaxDist are 0.15, 0.15 and 0.25. This

means that setting MC to values lower than 0.15, the cluster rep-

resented by C2 will not be merged with any other clusters. On the

other hand, setting MC to values higher than 0.25 will result in

merging all the clusters, as they will all receive the same id as the

upper cluster. Setting MC as 0.19 will merge clusters represented

by C1 and C4 with C2. When the distance between C1 and C3 is

examined (Fig. 3 c), C1 will be merged and hence all four clusters

will be assigned to the same id. Finally, the points that have not

been clustered up to this point, are appended to a cluster depend-

ing on which cluster’s center is closer to them.
. Evaluation process

.1. Datasets

The used clustering algorithms are compared on synthetic as

ell as real world datasets. The synthetic datasets were retrieved

rom https://cs.joensuu.fi/sipu/datasets/ . All of them have been

sed in other publications.

These datasets were selected due to the fact that they provide

hallenges to clustering algorithms. For example, the Aggregation

ataset (Fig. 4 a, [36]) has two clusters which have points that form

 line between them, making them almost indistinguishable. The

ompound dataset (Fig. 4 b, [37]) has two challenges. On the first

and, two clusters on the top left are close together. Although this

ay pose a problem in the proper configuration of the algorithms,

t should not prevent an algorithm from identifying these two clus-

ers. On the other hand, on the right of the image as well as on

he lower left part, two clusters are found, one inside the other.

dditionally, on the right two clusters, only the density differs.

he Pathbased dataset (Fig. 6 , [38]) and the Flame dataset (Fig. 5 a,

39]) have similar issues. In these datasets there is not a single line

f points that confuses clustering algorithms but rather the close

roximity of some clusters, making a good parameter choice vital

or the success of an algorithm. Finally, the R15 dataset (Fig. 6 b,

40]) has some of its clusters well separated. Unfortunately, some

f them are close and two of them have mixed points. The points

arked as members of one cluster reside among points belonging

o other clusters and are hardly possible to be clustered correctly.

https://cs.joensuu.fi/sipu/datasets/

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 195

Fig. 4. The datasets retrieved from Joensuu (1/4).

Fig. 5. The datasets retrieved from Joensuu (2/4).

Fig. 6. The datasets retrieved from Joensuu (3/4).

u

/

h

d

w

t

d

i

d

s

d

i

a

f

i

a

3

t
The considered real datasets are among the most commonly

sed datasets and were retrieved from the UCI repository (http:

/archive.ics.uci.edu/ml/). The major challenge that arises is their

igher dimensionality. The Iris dataset [41] is a 4-dimensional

ataset with sepal length, sepal width, petal length and petal

idth as arguments. Each of the 3 classes responds to one of

hree types of the plant Iris. The Wine dataset is a 13-dimensional

ataset which features represent measurements from a chem-

cal analysis of wines belonging to three cultivars. The Glass

ataset is a 9-dimensional dataset containing glass attributes that

hould be sufficient to identify the type of glass. The Wisconsin
ataset [42] is a 9-dimensional dataset with cell characteristics for

dentifying breast cancer cells. Banknote is a dataset based on im-

ges of genuine and forged of banknote-like specimens [43] . Its 4

eatures are based on wavelet transformed images as well as the

mages’ entropy. The final utilized dataset is called Yeast and uses 8

ttributes in order to classify yeast proteins into 10 classes [43,44] .

.2. Computational experiments

There are two methodologies to evaluate the results of a clus-

ering algorithm. If the information of each point’s cluster assign-

http://archive.ics.uci.edu/ml/

196 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

Table 1

An exhaustive list of all parameters of DeDiCo. NP is the num-

ber of individuals used by DE. itermax is the number of epochs

for DE. F is the mutation parameter for DE. CR is DE’s crossover

parameter, named probability of recombination. All other pa-

rameters are described in the text.

Parameter Abbreviation

NP –

itermax –

strategy –

F –

CR –

Iterations –

Modification Step MS

Merge Coefficient MC

Variation Threshold VC

Alpha α

AP Use Threshold APUT

AP Quantile APQ

AP Return Threshold APRT

Table 2

Percentile values for the Flame dataset.

Percentile 0th 10th 20th 30th 40th

Value −217.81 −94.40 −72.43 −57.36 −45.31

Percentile 50th 60th 70th 80th 90th 100th

Value −35.12 −25.92 −17.47 −10.26 −4.28 0

v

e

s

t

s

e

m

e

d

m

r

m

p

t

c

m

d

f

w

s

t

r

a

b

h

r

b

m

Y

e

v

a

r

p

F
ment (ground truth) is at hand, one may use external validation

measures, usually derived from classification. Yet, such knowledge

is rarely available with the exception of some synthetic datasets or

actual preprocessed datasets. On the other hand, internal valida-

tion measures [45–47] require no knowledge of the actual cluster-

ing. Unfortunately, such measures can rarely be used for evaluating

the performance of clustering algorithms in the case of randomly

shaped sets as they favor a specific form of clusters [48] . There-

fore, the external criterion V-measure [49] was used in order to

evaluate the performance on a set of datasets where each point’s

cluster assignment is known. The calculation of V-measure is based

on the notions of Homogeneity and Completeness as introduced by

Rosenberg and Hirschberg [49] . Homogeneity measures the degree

by which the algorithm’s clusters consist solely of members of a

single cluster of the ground truth. On the other hand, Complete-

ness measures whether the members of a cluster of the ground

truth are clustered together into a single cluster or not.

DeDiCo is compared to the algorithms k -means, DBSCAN

and AP as well as the algorithm introduced by Rodriguez and

Laio [17] which will be abbreviated as FSDP. The motivation for

using those algorithms is the attention these algorithms have re-

ceived. Despite its preference to spherical clusters, k -means could

be the most used algorithm in data clustering. Therefore, its results

are presented as benchmark values. DBSCAN has not been studied

as much as k -means. Yet, it is a well-known density based algo-

rithm, capable of detecting arbitrary shaped clusters as well as out-

liers. Furthermore, AP is used as it is a component of DeDiCo and

therefore, it is used to test the improvement contributed from

DeDiCo’s other procedures. Finally, FSDP can be considered as a

state of the art algorithm.

k -means, DBSCAN, AP and DeDiCo were run 100 times. k -means

uses random initialization for the cluster centers. DeDiCo can be a

stochastic algorithm. Therefore, it is necessary for it to run mul-

tiple times. AP, on the other hand, is deterministic by its nature.

Yet, its implementations add some noise in order to avoid degen-

erate cases. As a consequence, it was deemed necessary to run AP

100 times as well. Finally, DBSCAN may produce varying results if

presented with a different succession of points. Although this phe-

nomenon is considered rare, DBSCAN also ran 100 times, each time

with a different permutation of the points of the dataset so that

the points in the dataset are presented to it in a different order. As

V-measure does not handle outliers, the points not clustered (out-

liers) were monitored. All results reported have no outliers.

k -means does not require any parameter aside from the num-

ber of clusters. Therefore, k is provided with the known value of

the cluster number. Similarly, FSDP was provided with parame-

ters that result in the predefined number of clusters. To be pre-

cise, the authors of [17] provide a method of determining the al-

gorithm’s two parameters, namely ρ and δ. ρ expresses the den-

sity around a point and δ the distance to the nearest point of in-

creased density. As the authors advise, a ρ − δ plot is created and

the ρ0 and δ0 values are selected so that for only k points it holds

that ρ ≥ρ0 and δ ≥ δ0 , where k is the number of clusters in the

dataset. DBSCAN ran on a large range of values for the radius of

the hypersphere. More precisely, for radii ranging from 0.0 0 01 to

0.5 of the largest distance among points, 100 permutations of the

dataset were created. This was done in order to address the fact

that changing the order the points are presented to DBSCAN may

alter the clusters returned. The desired number of points in the

hypersphere is kept constant as advised Ester et al. [1] . The rea-

son for testing a large number of radii is to ensure that DBSCAN is

tested exhaustively. Its relatively low running times make this fea-

sible. AP ran for a variety of preference values based on different

percentiles of the values of the similarity’s matrix. Fig. 8 depicts

the similarities measured for the flame dataset. For example, set-

ting the preference to q = 0 . 1 , corresponds to the 10th percentile’s
alue. In the case of the Flame dataset, this value is −94 . 40 . For the

xperiments, the 0 th , 10 th , . . . , 100 th percentile were used. Table 2

hows the values for each percentile for the Flame dataset.

DeDiCo has 13 parameters and so fine-tuning can be a laborious

ask. Therefore, through the trial and error approach a small sub-

et of values for each parameter was selected. Over these values,

xhaustive search was performed. Initial experimentation deter-

ined the range of those values. By selecting as few as 3 values for

ach parameter would result in 3 13 experimental setups for each

ataset. Additionally, DeDiCo is a stochastic algorithm and hence

ust be executed 100 times for each of the 13 datasets. This would

esult in an unfeasible number of experiments. Therefore, experi-

ental experience must be used to create smaller ranges for each

arameter and even set some of them to specific values. Through

his process, successfully determining the appropriate number of

lusters was also a contributing factor, aside of achieving high V-

easure values.

The first observation was that the majority of DE’s parameters

o not have an important impact on DeDiCo’s performance. There-

ore, DE’s scaling factor was set to 0.6 and the crossover constant

as set to 0.8. The number of parameters was 10-fold the dimen-

ionality of each dataset. Parameters such as strategy could be set

o any value. The main reason for this is that although these pa-

ameters affect the performance of DE, DeDiCo utilizes DE only as

 part (if at all) and its other mechanisms can overcome a possi-

ly compromised performance of DE. The main parameters that do

ave an effect on DeDiCo prove to be MS, MC, VT, α and the AP

elated parameters APQ and APRT.

By examining the parameters for which DeDiCo achieved its

est performance on each dataset, the following remarks can be

ade. MS ranged in [0.01, 0.06] with the exception of Glass and

east. Therefore, an initial value in this range is suggested. As MS

xpresses the change between consecutive enlargements, its low

alues are well justified by the fact that larger values would cause

 window enlargement to incorporate a nearby cluster and hence

elying more on AP to distinguish those clusters.

MC also shows a stability as it ranged in [0.05, 0.2] with 0.1

roviding the best results for 5 and 0.15 for another 3 datasets.

or MC the range [0.05, 0.2] is suggested as an initial range. MC

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 197

r

t

a

e

M

w

t

a

b

f

m

b

t

f

a

A

l

t

i

a

c

P

a

a

h

n

r

fl

s

p

i

l

d

t

i

s

s

m

p

o

f

v

A

f

e

4

6

g

d

s

d

S

t

a

S

s

f

t

Table 3

V-measure and time used for the synthetic datasets.

V-measure CPU time (sec)

Max Mean Std Max Mean Std

Aggregation

AP 0.8671 0.8671 0 8 4.1404 2.4810

k -Means 0.8765 0.6957 0.0705 6 4.3308 1.4828

DBSCAN 08894 0.8894 0 4 1.2549 1.3212

DeDiCo 0.9924 0.9924 0 10.5956 10.3931 0.0740

FSDP – 0.9957 – – 30.7613 –

Compound

AP 0.7713 0.7713 0 4 1.9031 1.2923

k -Means 0.8197 0.5995 0.1048 5 3.1900 1.9871

DBSCAN 0.8061 0.8061 0 2 0.7701 0.7704

DeDiCo 0.8523 0.8523 0 1.7080 1.5953 0.0238

FSDP – 0.58770 – – 7.7874 –

Flame

AP 0.5384 0.5384 0 3 1.3406 1.1253

k -Means 0.4685 0.4262 0.0282 1 0.4938 0.5010

DBSCAN 0.8896 0.7991 0.0910 2 1.6724 0.4785

DeDiCo 0.9359 0.9359 0 1.3119 1.2323 0.0130

FSDP – 0.6328 – – 0.0528 –

Jain

AP 0.4396 0.4396 0 7 4.0675 2.1805

k -Means 0.3690 0.3611 0.0067 1 0.5294 0.4998

DBSCAN 0.9111 0.7713 0.0456 5 1.9922 1.7334

DeDiCo 1 1 0 2.6640 2.5069 0.0246

FSDP – 0.50522 – - 6.74551 –

Table 4

V-measure and time used for the synthetic datasets.

V-measure bf CPU time (sec)

Max Mean Std Max Mean Std

Pathbased

AP 0.5525 0.5525 0 9 5.6483 3.0206

k -Means 0.5489 0.5376 0.0165 2 1.0067 0.9451

DBSCAN 0.7615 0.6214 0 13 4.2694 3.5770

DeDiCo 0.6652 0.6586 0.0058 2.8874 2.4381 0.1048

FSDP – 0.8794 – – 0.0929 –

R15

AP 0.9942 0.9942 0 14 6.9859 4.3308

k -Means 0.9395 0.7874 0.0497 14 8.0765 4.6688

DBSCAN 0.9128 0.9050 0.0142 12 5.8372 3.5347

DeDiCo 0.7372 0.7372 0 6.4003 5.7274 0.3785

FSDP – 0.9942 – – 18.0879 –

Spiral

AP 0.4936 0.4936 0 26 13.4512 7.9564

k -Means 0.0013 0.0 0 06 0.0 0 02 2 1.3227 0.9480

DBSCAN 1.0 0 0 1.0 0 0 0 2 1.0097 0.8143

DeDiCo 0.4704 0.4704 0 2.1254 2.0432 0.0155

FSDP – 1.0 0 0 – – 4.9603 –

a

d

d

C

f

k

i

t

h

t

p

s

l

l

a
epresents the eagerness of the algorithm to merge nearby clus-

ers. Setting MC to much larger values would merge clusters that

re further apart, recanting the contribution of the previous steps,

specially AP. It is suggested to show moderation when increasing

C.

VT ranged in [0.0 0 01, 0.0 0 08] with the exception of Flame,

here VT was 0.1. In 7 datasets VT was 0.0 0 01. As this parame-

er encaptures the tolerance in number of points changed through

 movement or enlargement step, its value depends on the num-

er of points in the dataset as well as on how precise those two

unctions may be. Should those two steps terminate only when al-

ost no change in the number of points is observed, VT should

e set to a low value. If the number of points rises significantly,

his value may need to be reduced in order to have the same ef-

ect. On the other hand, by setting VT to larger values, the user

llows for a brief movement/enlargement procedure and relies on

P and merging to refine the clustering results. This can be trans-

ated to compromising performance in order to improve regarding

he computational effort. Empirically, VT is best refined by chang-

ng its value by powers of 10 and further refine its values once the

ppropriate power has been determined.

One of the most influential parameters, α, usually was 0.1 or

lose to 0.1 for the synthetic datasets, with only exception the

athbased dataset, where it was 0.6. Such a large value indicated

 difficulty of DeDiCo to rely on movement and enlargement

lone in order to capture the clusters in this dataset. On the other

and, on real datasets, α had values over 0.4. A possible expla-

ation is that with the rise of dimensionality and not respective

ise to the number of points, the increased sparcity starts to in-

uence the contribution of the WDF function, as it measures den-

ity. Therefore, larger values are needed so that larger areas are

robed in order to provide a range of WDF values. One exception

s the Banknote dataset, where the number of points is among the

argest used and the dimensionality of 4 is relatively small. For this

ataset α was 0.15. Another exception is the Glass dataset. Yet, for

his dataset MS is the largest used. Therefore, α’s small initial value

s compensated by MS’s large value. That is, DeDiCo starts with a

mall α value and significantly increases it to reach appropriate

izes.

Finally, the values of ARQ and APRT are the hardest to deter-

ine. Their values ranged in their entire validity range. Yet, ARQ

rovided the best results for values larger than 0.6 for the majority

f the datasets. Notably, for no dataset its maxima was used. Un-

ortunately, a similar conclusion cannot be drawn for APRT, whose

alues are distributed fairly uniform in [0.1, 0.9] and is unrelated to

PQ. Other parameters are mainly used to prevent the algorithm

rom degenerate states, like the APUT, which was fixed to 6 for all

xperiments.

. Results and discussion

The V-measures for all algorithms are reported in Tables 3–

 . The results prove that DeDiCo outperforms the compared al-

orithms in most datasets. More specifically, on most synthetic

atasets, DeDiCo is not overwhelmed by the difficulties in each

uch dataset, while even reaching a perfect score for the Jain

ataset. On the contrary, AP is significantly outperformed by DB-

CAN as well. R15 is an exception. Here AP provides the best clus-

ering by reaching an almost perfect score. Finally, Spiral (Fig. 7 a) is

 unique dataset considering the layout of its clusters. Besides DB-

CAN and FSDP, which score a perfect score, all other algorithms

truggle. Especially, k -means fails, as expected, to provide a satis-

actory clustering.

Moving to real-life datasets, DeDiCo still manages to surpass

he other algorithms in 3 datasets. k -means, AP and DBSCAN man-
ge to provide the best clustering in only 1 dataset each. In these

atasets, DeDiCo is still able to provide the second best clustering.

Finally, DeDiCo may not be the fastest algorithm, yet its stan-

ard deviation is the lowest in 11 out of 13 datasets. Concerning

PU time, k -means, closely followed by DBSCAN and FSDP, are by

ar the best performing algorithms. Unfortunately, in the case of

 -means this does not correspond to an elevated performance, as

ts V-measure mean is significantly inferior, with the exception of

he Wisconsin dataset. DBSCAN’s times are also very low, yet, they

ave a larger standard deviation. FSDP can achieve impressive CPU

imes which, occasionally, are accompanied by good results.

The present experiments above indicate that DeDiCo can out-

erform other clustering algorithms on a variety of datasets. From

ynthetic datasets like Aggregation and Jain, to the well known real

ife Iris dataset, DeDiCo improves the performance. Additionally, its

arge number of parameters make it versatile and allow DeDiCo to

dapt to a large number of different kind of problems. Its running

198 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

Table 5

V-measure and time used for the real-life datasets.

V-measure CPU time (sec)

Max Mean Std Max Mean Std

Wine

AP 0.4241 0.4241 0 2 1.1290 0.8068

k -Means 0.4484 0.4131 0.0796 2 1.1173 0.8021

DBSCAN 0.3032 0.1707 0.0538 10 2.0731 3.3768

DeDiCo 0.4786 0.4786 0 3.0255 2.1801 0.1020

FSDP – 0.4863 – – 0.0278 –

Iris

AP 0.7980 0.7980 0 2 0.8943 0.7494

k -Means 0.7582 0.6994 0.1128 2 1.3245 0.9490

DBSCAN 0.7337 0.7337 0 1 0.6624 0.4743

DeDiCo 0.8334 0.8174 0.0198 2.4691 1.9985 0.1938

FSDP – 0.7650 – – 0.0178 –

Glass

AP 0.4689 0.4689 0 10 2.3219 2.8201

k -Means 0.4277 0.2903 0.0822 5 1.6279 1.4212

DBSCAN 0.3976 0.3125 0.6950 4 0.9490 0.8438

DeDiCo 0.4 96 8 0.4710 0.0137 2.4282 2.0469 0.1378

FSDP – 0.4326 – – 0.0525 –

Wisconsin

AP 0.4485 0.4459 0.0027 8 2.3865 2.2030

k -Means 0.7546 0.7512 0.0034 1 0.3377 0.4733

DBSCAN 0.7122 0.4057 0.2103 4 1.4549 0.8583

DeDiCo 0.6646 0.6078 0.0146 10.8226 7.7820 1.5362

FSDP – 0.0548 – – 21.6805 –

Table 6

V-measure and time used for the real-life datasets.

V-measure CPU time (sec)

Max Mean Std Max Mean Std

Banknote

AP 0.3589 0.3589 0 18 8.0021 5.5438

k -Means 0.0303 0.0303 0 1 0.3365 0.4727

DBSCAN 0.7289 0.7108 0.0109 10 4.2713 2.1237

DeDiCo 0.6756 0.6660 0.0335 43.8663 38.6501 3.5987

FSDP – 0.3544 – – 5.6776 –

Yeast

AP 0.3835 0.3833 0 1461 732.0459 421.3157

k -Means 0.2775 0.1882 0.0424 9 6.0647 2.8813

DBSCAN 0.0544 0.0430 0.0049 19 1.9149 3.4244

DeDiCo 0.2912 0.2889 0.0012 65.6905 62.7165 1.1823

FSDP – 0.0657 – – 101.839 –

Fig. 7. The datasets retrieved from Joensuu (4/4).

Fig. 8. Histogram for Flame datasets similarities. The horizontal axis represents the

similarity values, while the vertical axis has their frequency. Vertical lines represent

the 0 th , 10 th , . . . , 100 th percentile.

t

O

m

f

s

a

i

p

S

I

o

a

w

a

i

(

c

k

t

n

d

t

o

s

p

i

t

t

l

t

r

m

t

p

o
imes can also be adapted by allowing the invoking of DE or not.

n large datasets the use of DE or any other evolutionary opti-

ization algorithm should be encouraged so that the number of

unction evaluations is kept to a minimum. On the other hand, on

mall datasets, DE should be bated in order to keep running times

s low as possible.

Three datasets have been selected in order to communicate the

nfluence of DE into DeDiCo. According to a common practice, DE’s

arameter NP was set to be 10 times the dataset’s dimensionality.

imultaneously, the number of epochs varied, as seen in Figs. 9–11 .

t is evident than the usage of DE cannot surpass the performance

f DeDiCo without it. In general, its performance is lower with DE

nd only for the Aggregation dataset it can match its performance

ithout DE. On the other hand, times can be influenced by the us-

ge of DE. For the Aggregation dataset (Fig. 9 b), DeDiCo with DE

s significantly slower. On the contrary, for the Pathbased dataset

 Fig. 10 b), DeDiCo needs approximately the half time with DE in

omparison to DeDiCo without DE. Finally, in the case of the Ban-

note dataset (Fig. 11 b), the number of epochs influences DeDiCo’s

imes. An explanation for the decrease of DeDiCo’s time when the

umber of epochs increases could be that the number of iterations

ecreases, as dataset’s regions with higher density are visited and

herefore, the total number of iterations decreases.

Regarding the other steps of DeDiCo, a comparison was made

n some of the datasets. Aggregation, Pathbased and Flame were

elected due to the fact that they have clusters in relatively close

roximity which can be difficult to distiguish. Jain was used as it

s an easy dataset, which should be easily addressed by a clus-

ering algorithm. Iris is a dataset commonly used for testing clus-

ering performance. Wine, Glass and Wisconsin datasets were se-

ected due to the fact that they contain only few points in rela-

ion to their dimensionality. The four main steps of DeDiCo were

emoved in order to encapture their influence. Movement, enlarge-

ent, merging and AP were removed and the resulting modifica-

ions run on the parameters which resulted in the best results, as

resented in Tables 3–6 . Obviously those values were selected in

rder to provide the best results for the original proposed algo-

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 199

Fig. 9. Aggregation dataset: Red line indicates the mean performance when DE is not utilized, blue line is when DE is utilized. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Pathbased dataset: Red line indicates the mean performance when DE is not utilized, blue line is when DE is utilized. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Banknote dataset: Red line indicates the mean performance when DE is not utilized, blue line is when DE is utilized. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

200 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

Table 7

Influence of DeDiCo’s various steps in its performance. DeDiCo is the proposed algorithm’s

performance. DeDiCo without movement indicates that the movement step was deactivated

from the proposed algorithm. Similarly, the enlargement, the merging and the AP step were

deactivated. Values under 10 −4 are presented as zero.

V-measure for DeDiCo and its modifications

DeDiCo DeDiCo DeDiCo DeDiCo DeDiCo

As Without Without Without Without

proposed movement enlargement merge AP

Aggregation Max 0.9924 0.9198 0 0.6664 0

Mean 0.9924 0.9198 0 0.6664 0

Std 0 0 0 0 0

Pathbased Max 0.6630 0.6630 0.5714 0.4681 0.0598

Mean 0.6630 0.6630 0.5714 0.4681 0.0598

Std 0.0 0 02 0.0 0 02 0 0 0

Flame Max 0.9359 0.8523 0.2360 0.3373 0

Mean 0.9359 0.8523 0.2360 0.3373 0

Std 0 0 0 0 0

Jain Max 1 1 0 0.3644 0

Mean 1 1 0 0.3644 0

Std 0 0 0 0 0

Iris Max 0.8334 0.8334 0.7837 0.5692 0.6699

Mean 0.8174 0.8205 0.7800 0.5692 0.6699

Std 0.0137 0.0117 0.0032 0 0

Wine Max 0.4786 0.4786 0.4292 0.3484 0.0623

Mean 0.4786 0.4786 0.4292 0.3484 0.0623

Std 0 0 0 0

Glass Max 0.4 96 8 0.4 94 9 0.1097 0.4047 0

Mean 0.4710 0.4688 0.0965 0.4047 0

Std 0.0137 0.0117 0.0032 0 0

Wisconsin Max 0.6646 0.5815 0.5613 0.2598 0.5532

Mean 0.6078 0.5815 0.5315 0.2523 0.0163

Std 0.0146 0 0.0163 0.0031 0

s

m

5

i

g

a

w

t

b

t

n

u

i

v

f

s

f

b

h

i

g

a

r

v

g

p

h

r

s
rithm and not necessarily for its modifications. Yet, the purpose

of this comparison is to indicate the influence of each step in the

final result and not provide the best performance for each modi-

fication. The results are presented in Table 7 . From this Table the

limited influence of the movement procedure must be noted. In

the case of the Jain, the Pathbased and the Wine datasets, move-

ment did not provide any improvement to the final result. For the

remaining datasets, the movement step did contribute to the final

performance. On the other hand, the merge step proved its signif-

icance. Even more influential are the steps of enlargement and AP

as when they are removed, the resulting algorithm cannot provide

a clustering with a V-measure higher than 10 −4 for many datasets.

Once more it must be stressed that the modifications ran on the

parameters that provided the best clustering in the comparative

experiments and they were not reconfigured to provide the best

clustering for the modifications. This depicts the contribution of

those steps on the best result.

On the used datasets here, DeDiCo clearly outperforms its com-

petition. As a second best, DBSCAN, in general, is a good choice

as it provides a constantly high performance. AP outperforms the

other algorithms in only three datasets.

A possible explanation for the predominance of DBSCAN can be

the nature of the Flame and the Pathbased datasets. They both

contain clusters in very close proximity. On the other hand, the

Spiral dataset provides a significant challenge since all three clus-

ters are similar in density and shape. DBSCAN was able to clus-

ter all points perfectly. This highlights its increased ability to cap-

ture arbitrary shaped clusters. Selecting DeDiCo over AP is a ra-

tional choice, as it requires significantly less memory by applying

AP only to a fraction of the dataset. One may argue that in some

cases AP may run on almost the entire dataset. Yet, such cases may

be avoided by better parameter selection. Especially α, VT and MS

seem to significantly affect the final window size to which AP is

applied. Moderate values for those parameters result in relatively
 e
mall window and hence allow fast executions of AP with low

emory requirements.

. Conclusion – Future work

The algorithm presented in this work has the ability to mod-

fy its execution based on the dataset size. It can decide at any

iven step to utilize an evolutionary optimization algorithm such

s DE or not. Moreover, DeDiCo uses both the notion of density as

ell as the notion of distance. Yet, the algorithm does not combine

hem into a single metric, but uses them separately. Thereby, the

enefits of each approach can be exploited, without compromising

he clustering process by creating a new concept that merges those

otions.

DeDiCo has proven to outperform the algorithms that were

sed in this work, in the majority of the experiments. Despite be-

ng a stochastic algorithm, its performance has a remarkably low

ariance. This also holds for its running times. As DeDiCo outper-

orms AP in the majority of the datasets, this algorithm does not

imply incorporate a successful algorithm, but provides a novel

ramework that exploits AP and more specifically its distance-

ased approach to create more refined clusters. All datasets used

ave been selected as each of them introduces difficulties regard-

ng clustering. The majority of the synthetic datasets has issues re-

arding the proximity of the clusters. Yet, DeDiCo enables it to

djust to each dataset and therefore outperforms the other algo-

ithms. In addition, the real-life datasets on which DeDiCo pro-

ides better V-measure values, have a small number of points re-

arding their dimensionality. On datasets with a high number of

oints, the algorithm’s ability to adapt its behavior allows it to

ave a smaller computational cost in comparison to other algo-

ithms that reside on interactions among all points, like AP. On

maller datasets, DeDiCo is computationally more efficient than

volutionary clustering algorithms. Density and distance based

E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202 201

c

t

o

t

a

f

s

i

T

w

t

D

t

r

s

p

o

o

i

A

m

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

E

l

c

a

i

D

B

B
lustering algorithms are affected by the curse of dimensionality if

here are not sufficient points [50] . DeDiCo was successfully tested

n datasets where the dimensionality is relatively high regarding

he number of points such as the wine, the Wisconsin, the yeast

nd the glass datasets.

However, still some issues remain to be addressed. Mainly, the

act that it has a notable number of parameters which posed a

ignificant problem in parameter fine-tuning. Those contribute to

ts success, as it can adapt to perform well on each given dataset.

herefore, special care must be taken in order to provide a frame-

ork for parameter tuning. Some parameters may be ignored in

his process. For example, in a small dataset, parameters regarding

E may be left with their default values, as DeDiCo can select not

o use DE as it would be computationally more expensive.

DeDiCo was compared on both synthetic and well analyzed

eal-life datasets. Since clustering is a topic with significant re-

earch activity, it is must be expected that DeDiCo will be com-

ared with novel methods. Further studies will be conducted by

ur groups in order to investigate the algorithm’s performance in

pen real-life problems as arise in fields such as clustering in med-

cal images and molecular expression data as well.

cknowledgments

We thank the anonymous reviewers for their constructive com-

ents, which helped us to improve the manuscript.

eferences

[1] M. Ester , H.P. Kriegel , J. Sander , X. Xu , A density-based algorithm for dis-

covering clusters in large spatial databases with noise, in: Proceedings of
2nd International Conference on Knowledge Discovery and Data Mining, 1996,

pp. 226–231 .
[2] Y. Zhu , K. Ming Ting , M.J. Carman , Density-ratio based clustering for discover-

ing clusters with varying densities, Pattern Recognit. 60 (2016) 983–997 .

[3] K. Mahesh Kumar , A. Rama Mohan Reddy , A fast DBSCAN clustering algorithm
by accelerating neighbor searching using groups method, Pattern Recognit. 58

(2016) 39–48 .
[4] D.K. Tasoulis , M.N. Vrahatis , The new density function for efficient evolutionary

unsupervised clustering, in: IEEE Congress on Evolutionary Computation, CEC
2005, 3, IEEE Press, 2005, pp. 2388–2394 .

[5] Y. Kim , K. Shim , M.-S. Kim , J.S. Lee , DBCURE-MR: An efficient density-based

clustering algorithm for large data using mapreduce, Inf. Syst. 42 (2014) 15–35 .
[6] A. Bryant , K. Cios , RNN-DBSCAN: a density-based clustering algorithm using

reverse nearest neighbor density estimates, IEEE Trans. Knowl. Data Eng. 30
(6) (2018) 1109–1121 .

[7] Z. Liang , P. Chen , Delta-density based clustering with a divide-and-conquer
strategy: 3DC clustering, Pattern Recognit. Lett. 73 (2016) 52–59 .

[8] G. Karypis , H.E. Han , V. Kumar , CHAMELEON: a hierarchical clustering algo-

rithm using dynamic modeling, Computer 32 (1999) 68–75 .
[9] A. Kobren , N. Monath , A. Krishnamurthy , A. McCallum , A hierarchical algo-

rithm for extreme clustering, in: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, in: KDD ’17,

2017, pp. 255–264 .
[10] R.L. Cilibrasi , P.M. Vitányi , A fast quartet tree heuristic for hierarchical cluster-

ing, Pattern Recognit. 44 (3) (2011) 662–677 .

[11] S. Li , W. Li , J. Qiu , A novel divisive hierarchical clustering algorithm for geospa-
tial analysis, Int. J. Geo-Inf. 6 (1) (2017) 19 .

[12] J.B. MacQueen , Some methods for classification and analysis of multivari-
ate observations, in: Proceedings of the fifth Berkeley Symposium on Math-

ematical Statistics and Probability, 1, University of California Press, 1967,
pp. 281–297 .

[13] D.K. Tasoulis , D. Zeimpekis , E. Gallpoulos , M.N. Vrahatis , Oriented k -windows:

a PCA driven clustering method, in: L. M, K. A., V. Z. (Eds.), Advances in Web
Intelligence and Data Mining, Springer, 2006, pp. 319–329 .

[14] P. Alevizos , D.K. Tasoulis , M.N. Vrahatis , Parallelizing the unsupervised
k -windows clustering algorithm, in: Lecture Notes in Computer Science, 3019,

2004, pp. 225–232 .
[15] G.S. Antzoulatos , E.K. Ikonomakis , M.N. Vrahatis , Efficient unsupervised clus-

tering through intelligent optimization, in: IASTED 2009, Artificial Intelligence
and Soft Computing (ASC), 2009, pp. 21–28 .

[16] M. Pavan , M. Pelillo , Dominant sets and pairwise clustering, IEEE Trans. Pattern

Anal. Mach. Intell. 29 (1) (2007) 167–172 .
[17] A . Rodriguez , A . Laio , Clustering by fast search and find of density peaks, Sci-

ence 344 (6191) (2014) 14 92–14 96 .
[18] G. Gan , M. Kwok-Po Ng , Subspace clustering using affinity propagation, Pattern

Recognit. 48 (4) (2015) 1455–1464 .
[19] X. Peng , Y. Wu , Large-scale cooperative co-evolution using niching-based mul-
ti-modal optimization and adaptive fast clustering”, Swarm Evol. Comput. 35

(2017) 65–77 .
20] M. Gong , L. Jiao , L. Wang , L. Bo , Density-sensitive evolutionary clustering, in:

11th Pacific-Asia Conference in Advances in Knowledge Discovery and Data
Mining, 38, 2007, pp. 507–514 .

[21] J. de Andrade Silva , E.R. Hruschka , J.a. Gama , An evolutionary algorithm for
clustering data streams with a variable number of clusters, Expert Syst. Appl.

67 (2017) 228–238 .

22] S. Paterlini , T. Krink , Differential evolution and particle swarm optimisation in
partitional clustering, Computational Stat. Data Anal. 50 (2006) 1220–1247 .

23] S. Das , A. Abraham , A. Konar , Automatic clustering using an improved differ-
ential evolution algorithm, IEEE Trans. Syst. Man Cybern. 38 (2008) 218–237 .

[24] L. Li , L. Jiao , J. Zhao , R. Shang , M. Gong , Quantum-behaved discrete multi-ob-
jective particle swarm optimization for complex network clustering, Pattern

Recognit. 63 (2017) 1–14 .

25] R. Storn , K. Price , Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces, J. Glob. Optim. 11 (4) (1997)

341–359 .
26] J. Kennedy , R.C. Eberhart , Particle swarm optimization, in: Proceedings of IEEE

International Conference on Neural Networks, 4, 1995, pp. 1942–1948 .
[27] D.E. Goldberg , Genetic algorithms in search, optimization and machine learn-

ing, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989 .

28] J.H. Holland , Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, U

Michigan Press, 1975 .
29] B.J. Frey , D. Dueck , Clustering by passing messages between data points, Sci-

ence 315 (2007) 972–976 .
30] Z. Wei , Y. Wang , S. He , J. Bao , A novel intelligent method for bearing fault di-

agnosis based on affinity propagation clustering and adaptive feature selection,

Knowl. Based Syst. 116 (2017) 1–12 .
[31] L. Sun , C. Guo , C. Liu , H. Xiong , Fast affinity propagation clustering based on

incomplete similarity matrix, Knowl. Inf. Syst. 51 (3) (2017) 941–963 .
32] L. Sun , C. Guo , Incremental affinity propagation clustering based on message

passing, IEEE Trans. Knowl. Data Eng. 26 (11) (2014) 2731–2744 .
[33] N.M. Arzeno , H. Vikalo , Semi-supervised affinity propagation with soft in-

stance-level constraints, IEEE Trans. Pattern Anal. Mach. Intell. 37 (5) (2015)

1041–1052 .
34] F. Shang , L. Jian , J. Shi , F. Wang , M. Gong , Fast affinity propagation clustering:

a multilevel approach, Pattern Recognit. 45 (1) (2012) 474–486 .
[35] P. Li , H. Ji , B. Wang , Z. Huang , H. Li , Adjustable preference affinity propagation

clustering, Pattern Recognit. Lett. 85 (2017) 72–78 .
36] A. Gionis , H. Mannila , P. Tsaparas , Clustering aggregation, ACM Trans. Knowl.

Discov. Data 1 (1) (2007) 4 .

[37] C.T. Zahn , Graph-theoretical methods for detecting and describing gestalt clus-
ters, IEEE Trans. Comput. 20 (1) (1971) 68–86 .

38] H. Chang , D.-Y. Yeung , Robust path-based spectral clustering, Pattern Recognit.
41 (1) (2008) 191–203 .

39] L. Fu , E. Medico , Flame, a novel fuzzy clustering method for the analysis of dna
microarray data, BMC Bioinform. 8 (1) (2007) 1 .

40] C.J. Veenman , M.J.T. Reinders , E. Backer , A maximum variance cluster algo-
rithm, IEEE Trans. Pattern Anal. Mach. Intell. 24 (9) (2002) 1273–1280 .

[41] R.A. Fisher , The use of multiple measurements in taxonomic problems, Ann.

Eugen. 7 (2) (1936) 179–188 .
42] W.H. Wolberg , M.O. L. , Multisurface method of pattern separation for medical

diagnosis applied to breast cytology, in: Proceedings of the National Academy
of Sciences, U.S.A., 87, 1990, pp. 9193–9196 .

43] M. Lichman, UCI Machine Learning Repository, 2013.
44] P. Horton , K. Nakai , A probabilistic classification system for predicting the cel-

lular localization sites of proteins, in: In Proceeding of the Fourth International

Conference on Intelligent Systems for Molecular Biology, 1996, pp. 109–115 .
45] D.L. Davies , D.W. Bouldin , A cluster separation measure, IEEE Trans. Pattern

Anal. Mach. Intell. 1 (2) (1979) 224–227 .
46] J.C. Dunn , Indices of Partition Fuzziness and the Detection of Clusters in Large

Data Sets, Fuzzy Automata and Decision Processes, Elsevier, New York, 1977 .
[47] P. Rousseeuw , Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53–65 .

48] H. Xiong , Z. Li , Clustering validation measures, in: C.C. Aggarwal, C.K. Reddy
(Eds.), Data Clustering, CRC Press, 2013, pp. 571–605 .

49] A. Rosenberg , J. Hirschberg , V-measure: a conditional entropy-based external
cluster evaluation measure., in: Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, 7, 2007, pp. 410–420 .

50] T. Hastie , R. Tibshirani , J. Friedman , The Elements of Statistical Learning,

Springer Series in Statistics, Springer New York, Inc., 2001 .

mmanouil K. Ikonomakis received his Master’s degree on “Computational Intel-

igence” in 2009 from the Department of Mathematics, University of Patras. He is
urrently working towards his Ph.D. degree at the same department. He is the co-

uthor of 6 peer reviewed publications and has over 260 citations. His research
nterests include Data Clustering, Medical Imaging and Evolutionary Optimization.

r. George M. Spyrou holds a BSc on Physics and MSc’s on Medical Physics and
ioinformatics. During his PhD he worked on breast cancer imaging. He is the

ioinformatics ERA Chair Holder and the Head of the Bioinformatics Group at the

http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0037
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0037
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0041
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0041
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0042
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0042
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0042
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0043
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0043
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0043
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0046
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0046
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0047
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0047
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0047
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30351-0/sbref0049

202 E.K. Ikonomakis et al. / Pattern Recognition 87 (2019) 190–202

P

U

r

2

a

d

o

l

Cyprus Institute of Neurology and Genetics. He has taught courses and supervised
MSc and PhD students in Postgraduate Programs at the University of Athens, at the

Aristotle University of Thessaloniki and at the Democritus University of Thrace. His
work includes computational methods that act as bridges between molecular biol-

ogy, systems biology and molecular medicine, exploiting computational intelligence
and high performance computing for multi-omics network analysis, systems bioin-

formatics and in silico drug discovery. He has authored over 160 scientific publica-
tions in peer reviewed journals and international conference proceedings.
rofessor Michael N. Vrahatis obtained a Ph.D. in Mathematics in 1982 from the
niversity of Patras, Greece. He is founder of the Computational Intelligence Labo-

atory of the same department which he has been directing since its beginning in
004. He has been teaching at the undergraduate level for more than 33 years and

t the post graduate level of more than 24 years. Several of his doctoral and/or post-
octoral students serve as full professors, associate professors, assistant professors

r lecturers in Greece and England. He has published more than 400 scientific pub-
ications. According to Google Scholar his work has been cited over 14,0 0 0 times.

	Content driven clustering algorithm combining density and distance functions
	1 Introduction
	2 Density and Distance Content-driven (DeDiCo) clustering algorithm
	2.1 Brief introduction to the notions used by DeDiCo
	2.2 A brief description of DeDiCo
	2.3 An in-depth analysis of DeDiCo
	2.3.1 The movement procedure
	2.3.2 The enlargement procedure
	2.3.3 Applying AP
	2.3.4 Determining the end of the iterative procedure
	2.3.5 The merging procedure

	3 Evaluation process
	3.1 Datasets
	3.2 Computational experiments

	4 Results and discussion
	5 Conclusion - Future work
	 Acknowledgments
	 References

