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Abstract. The techniques used for the numerical computation of families of periodic orbits of
dynamical systems rely on predictor-corrector algorithms. These algorithms usually depend on the
solution of systems of approximate equations constructed from the periodicity conditions of these
orbits. In this contribution we transform the rootfinding procedure to an optimization one which is
applied on an objective function based on the exact periodicity conditions. Thus, the determination
of periodic solutions and families of such orbits can be accomplished through unconstrained optim-
ization. In this paper we apply and compare some well-known minimization methods for the solution
of this problem. The obtained results are promising.
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1. Introduction

The determination of periodic solutions is one of the main tasks in the study of
dynamical systems. Orbits of this kind give significant information about the global
behaviour of a system, especially in conservative dynamical systems where these
orbits are dense in certain parts of the phase space. In these particular systems peri-
odic solutions form families, i.e. groups with infinite number of members which
are represented in the phase space by a continuous line. The study of these families
is also very important since they express the evolution of the characteristics of their
members within this space and form boundaries between regions of different kinds
of motion.

The problem of determining a periodic orbit, which is or is not considered as
a member of a family, refers to the solution of systems of nonlinear equations
expressing the periodicity conditions of the orbit. The most common way to solve
such systems is to apply a rootfinding method. Recently, several rootfinding meth-
ods and combinations of them have been tested for the computation of periodic
orbits (Drossos et al., 1996; Kalantonis et al., 2001; Perdios et al., 2002; Perdiou
et al., 2002). Instead of this consideration, it is also efficient to transform the solu-
tion of the above mentioned nonlinear system to a minimization problem. This is
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achieved by deriving a proper objective function from the periodicity conditions.
Then, one may optimize this function by applying any optimization algorithm.

In this study, we apply some well-known unconstrained optimization techniques
to determine periodic orbits and families in the so-called Robe’s problem. First,
we utilize them for the calculation of fixed points on a surface of section of the
Poincaré map of the corresponding dynamical system and compare their speed of
convergence. Then, we compute the families containing some of these points. The
paper is organized as follows. In the next section we describe the construction of
objective functions by means of the periodicity conditions. In Section 3, we briefly
present some well-known unconstrained optimization methods. In Section 4, we
apply and compare the effectiveness of these methods for the determination of
some periodic solutions of the Robe’s problem. We also use some of the determined
fixed points as initial conditions for the computation of families of periodic orbits.
Finally, in Section 5, we give some concluding remarks.

2. Determination of Periodic Orbits and families

Let us consider a dynamical system expressed by the equations

ẋ = F(x; t),

where x = (x1, x2, . . . , xn), F = (F1, F2, . . . , Fn): R
n+1 → R

n and t is the inde-
pendent variable.

A solution x of this system is periodic of period T , if and only if it satisfies the
condition

x(x0; t = 0) = x(x0; t = T ), (1)

where x0 is the initial point of the orbit at t = 0.
Given a guess x∗

0 of the initial point of a periodic orbit, the necessary corrections
to calculate this point should satisfy the system:

x(x∗
0 + δx∗

0; t = 0) = x(x∗
0 + δx∗

0; t = T ∗ + δT ∗). (2)

The classical method to approximate these corrections is to expand into a Taylor
series up to first order terms, so that

n∑
j=1

∂xi

∂x∗
0j

δ x∗
0j + ∂xi

∂t
δT ∗ = xi(x∗

0; t = T ∗ + δT ∗) − xi(x∗
0; t = 0),

i = 1, . . . , n,

fix one of the δ-corrections and, then, solve the above system (Goudas, 1961;
Shearing, 1960). This procedure should be repeated until (1) is satisfied within
a predetermined accuracy.
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A more efficient approach is to transform (2) into:

f (x∗
0) =

n∑
i=1

(xi(x∗
0; t = 0) − xi(x∗

0; t = T ∗))2

by setting x∗
0 = x∗

0 + δx∗
0 and T ∗ = T ∗+δT ∗, and, then, minimize the objective func-

tion f by using an optimization method. In this way, the overhead of approximating
System (2) by its linear terms is avoided.

Suppose that the initial conditions x0 and the period T of a member of a family
are already known. To find a new member of the family, we have to predict proper
modifications δx0 and δT of these elements so that the solution with initial point
x∗

0 = x0 + δx0 to be periodic of period T ∗ = T + δT . The new orbit should satisfy:

xi(x0 + δx0; t = 0) − xi(x0 + δx0; t = T + δT ) = 0.

The Taylor expansion of the left-hand sides of the above equations to first order
terms gives

δx0i +
n∑

j=1

∂xi

∂x0j

δx0j + ∂xi

∂t
δT = 0, i = 1, . . . , n. (3)

Then, by fixing

n∑
j=1

δx2
0j = d2 = const, (4)

we are able to approximate these δ-modifications by solving (3) and (4) so that the
distance between the initial points of the two periodic solutions remains equal to d.

If this prediction is not satisfactory enough, it can be corrected to give a periodic
solution with initial point x∗

0 and of period T ∗, by minimizing the objective function
f given in (3) together with the function

h(x0) =|
n∑

i=1

(x∗
0i − x01)

2 − d2 | . (5)

The minimization of h ensures that the distance between the initial points of the
two periodic solutions will remain equal to d.

3. Optimization Methods

There is a large variety of optimization algorithms for the computation of the
minima of an objective function f : D ⊂ R

n → R (Dennis and Schnabel,
1996; Polak, 1997). Since each of these algorithms possesses advantanges and
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disadvantages, it is not always obvious which one is proper for the solution of a
specific class of problems. For example, the so called conjugate gradient methods,
such as Fletcher-Reeves (FR) and Polak-Ribiere (PR) require storage of order n but
they are very sensitive to rounding off errors. On the other hand, the quasi-Newton
and variable metric methods, e.g. Davidon-Fletcher-Powell (DFP) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithms, are very stable and they converge
superlinearly but they need storage of order n2. The well known Newton’s method
enjoys the quadratic convergence but it requires storage of order n2 and needs the
calculation of the Jacobian matrix of f. To avoid this calculation one may utilize
Broyden’s method which, however, converges superlinearly. In this paper we test
the behaviour of BFGS, DFP, Newton and Broyden. These methods are briefly
described below.

BFGS AND DFP METHODS

Consider the following set of objective functions:

g(x) = (g1(x), g2(x), . . . gn(x)).

Minimizing all these functions simultaneously is equivalent to the minimization of

f (x) =
n∑

i=1

g2
i (x).

An efficient algorithm for the optimization (Dennis and Schnabel, 1996) of a func-
tion f is the following:

xk+1 = xk − λkAk∇f (xk), k = 0, 1, 2, . . . ,

where

Ak+1 = Ak + rk(rk)�

(rk)�qk
− Akq

k(qk)�Ak

(qk)�Akqk
+ γ (qk)�Akq

kuk(uk)�,

uk = rk

(rk)�qk
− Akq

k

(qk)�Akqk
,

rk = xk+1 − xk, qk = ∇f (xk+1) − ∇f (xk),

Ao is an arbitrary symmetric and positive definite matrix, usually taken to be the
identity matrix, and λk is the optimal length in the direction pk = −Ak∇f (xk).

For γ = 1 we obtain BFGS method, while for γ = 0 we get DFP.



APPLICATION OF OPTIMIZATION METHODS 585

NEWTON’S AND BROYDEN’S METHODS

Consider the following set of equations:

g(x) = 0, (6)

where g = (g1, . . . , gn) and x = (x1, . . . , xn). Then, solving System (6) is equiva-
lent to the minimization of the objective function

f (x) = 1

2
gg

The Newton step for the above system is:

xk+1 = xk − J −1
k g(xk), k = 0, 1, 2, . . .

where Jk is the Jacobian matrix of g evaluated at xk. This step is a descent direction
for f because:

∇f k(−J −1
k g(xk)) = (g(xk)Jk)(−J −1

k g(xk)) = −g(xk)g(xk).

The Broyden step for solving System (6) is:

xk+1 = xk + sk, k = 0, 1, 2, . . . ,

where

sk = B−1
k g(xk), Bk+1 = Bk + ((g(xk+1) − g(xk)) − Bks

k)(sk)�

(sk)�sk
,

and B0 is usually taken to be equal to the identity matrix. In this method, the matrix
B is used as an approximation of the Jacobian matrix J.

In all cases, a line-search technique can be additionally utilized in order to
ensure the convergence of these methods. More specifically, if pk is a descent dir-
ection of the objective function at the current iterate xk , namely ∇f (xk)�pk < 0,
the line-search consists in determining a step-size λk > 0 along pk, so that the next
iterate xk+1 = xk +λkpk satisfies the strong Wolfe conditions (Wolfe, 1969; Wolfe,
1971):

f (xk+1) ≤ f (xk) + c1λ
k∇f (xk)�pk,

∇f (xk+1)�pk ≥ c2∇f (xk)�pk. (7)

where c1, c2 are constants such that 0 < c1 < c2 < 1.
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4. Applications

The above mentioned methods have been applied to several dynamical systems for
the computation of periodic orbits and families. In the following we present some
results related to a type of restricted three-body problem which was introduced by
Robe (1977). Recently, the interest of many researchers has been attracted by this
problem (see Perdios, 1985; Giordano et al., 1991; Hallan and Rana, 2001, among
others). This dynamical system describes the behaviour of a small solid sphere of
infinitesimal mass and of density ρ moving under the gravitational influence of a
body, consisting from a spherical rigid shell m1 which is filled with a homogeneous
incompressible fluid of mass m∗ and density ρ∗, and a mass point m2 which is
positioned outside this shell. We assume that m2 moves on a circular orbit around
m1. Then, if we express the elements of the problem in a rotating dimensionless
coordinate system Ox1x2, whose Ox1-axis always contains the two primaries with
O being their center of mass, the motion of the small particle is described by the
system:

ẋ1 = x3, ẋ2 = x4,

ẋ3 = 2x4 + Vx1, ẋ4 = −2x3 + Vx2,
(8)

where

V = 1

2
(x2

1 + x2
2 ) + µ√

(x1 + µ − 1)2 + x2
2

− K

2
[(x1 + µ)2 + x2

2 ]

and

µ = m2

m1 + m∗ + m2
, k = 4π

3

(
ρ∗

m1 + m∗ + m2

)(
1 − ρ∗

ρ

)
.

The Jacobi integral of this dynamical system is:

1

2
(ẋ2

1 + ẋ2
2 ) − V = C,

where C is the Jacobi constant. This integral can be used, among others, for the
determination of the zero velocity curves which bound the regions of the space of
coordinates where the motion of the small particle is permitted.

The localization of periodic orbits of this problem can be based on the con-
struction of Poincaré surfaces of section. In Figure 1 we present such a surface
together with the projection of the zero velocity curves for map of System (8)
for µ = 0.5,K = 0.2 and C = 1.2. The construction of this surface has been
achieved by fixing the values of the Jacobi integral and x2 = 0, then, by integrating
System (8) for several initial conditions and calculating successive intersections
of the corresponding solutions with O−x1x3 plane (Kalantonis et al., 2001). A
magnification of a region of this surface is given in Figure 2. In this magnification
we can distinguish several fixed points which correspond to periodic solutions.
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Figure 1. A surface of section of a Poincaré map of System (8) for µ = 0.5, K = 0.2 and C = 1.2.

Figure 2. A magnification of a specific region of the surface of section presented in Figure 1.
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TABLE I

Fixed points of periodic orbits of several periods on the Poincaré surface of
section given in Figure 2 together with the time (in msecs) required for their
computation: t1 corresponds to DFP, t2 to BFGS, t3 to Newton and t4 to
Broyden

p Fixed Point (x1, x3) t1 t2 t3 t4 Stability

1 (–3.12086833, 0.00000000) 30 28 9 7 S

1 (–0.73265839, 0.00000000) 12 13 5 4 S

1 ( 0.17354678, 0.00000000) 29 34 5 6 S

2 (–0.83732621, 0.30053937) 37 36 9 10 S

2 (–0.74343532, 0.12226822) 67 39 7 9 U

5 (–1.24572111, 0.00000000) 128 121 25 33 S

5 (–1.25536828, 0.11460568) 121 121 27 34 U

7 (–1.06780854, 0.00000000) 297 254 47 36 S

7 (–1.07545470, 0.07023601) 284 225 41 49 U

7 (–1.80720005, 0.00000000) 361 288 56 82 S

7 (–1.73575887, 0.02598722) 255 255 65 65 U

9 (–1.02098781, –0.05884154) 306 237 60 53 S

9 (–1.01336326, 0.00000000) 342 284 53 59 U

TABLE II

Some members of the family containing the periodic solution
presented in the second entry of Table I

N x1 x4 C T

1 –0.50359696 0.00602327 1.24998696 5.04339668

2 –0.73265839 0.37042827 1.20000000 5.05567615

3 –1.10468168 0.90274199 0.95542709 5.11918795

4 –1.50260874 1.41625999 0.55034448 5.23655000

5 –1.94790671 1.94297237 0.00842447 5.41293149

We have calculated some of these points by utilizing DFP, BFGS, Newton’s and
Broyden’s methods. The results together with the computational time used by each
of these methods are presented in Table I. In all test runs the initial conditions used
are accurate to 2 decimal digits. We have seen that all methods succeed to converge
to the desired solution within accuracy ε ≤ 10−8.

We have also calculated, via the proposed predictor-corrector scheme and the
above mentioned methods, the families containing these solutions. In Tables II and
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TABLE III

Some members of the family containing the periodic solution presen-
ted in the third entry of Table I

N x1 x4 C T

1 –1.99622722 3.19281348 –6.25626942 4.18301976

2 –0.49238116 1.49938880 –0.99806184 2.90158513

3 0.17354678 1.34261366 1.20000000 0.97085450

4 0.47279680 4.09470114 20.02807328 0.03440645

5 0.49409593 8.98618121 88.66971825 0.00375675

Figure 3. Characteristic curves of the families containing the second and third periodic solutions
presented in Table I.

III we give some members of the families containing the second and third solutions
appearing in Table I. The characteristic curves (C, x1) of these families are shown
in Figure 3. Both families consist of plane and Ox1-symmetric orbits.

5. Conclusions

In this contribution, the problem of the computation of periodic solutions of dy-
namical systems is treated as an unconstrained optimization problem. More spe-
cifically, the set of nonlinear equations expressing the periodicity conditions is
transformed to an objective function whose minima correspond to the periodic
orbits of the considered system. The minimization of this function can be accom-
plished through any optimization technique. Here, we use the well-known DFP and
BGFS as well as two techniques based on Newton’s and Broyden’s methods. In all
cases, a line-search technique is additionally utilized to ensure the convergence of
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these methods. This procedure is applied to the computation of periodic orbits and
families of the so-called Robe’s problem.

We note that all the above mentioned methods are efficient. A comparison
between the computational speed of these methods shows that, as expected, New-
ton’s method is superior to the others. The speed of Broyden’s method is close to
that of Newton’s while the convergence behaviour and speed of BFGS are better
than those of DFP.
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