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Abstract. The accurate computation of families of periodic orbits is very important in the analysis of
various celestial mechanics systems. The main difficulty for the computation of a family of periodic
orbits of a given period is the determination within a given region of an individual member of this
family which corresponds to a periodic orbit. To compute with certainty accurate individual members
of a specific family we apply an efficient method using the Poincaré map on a surface of section of
the considered problem. This method converges rapidly, within relatively large regions of the initial
conditions. It is also independent of the local dynamics near periodic orbits which is especially useful
in the case of conservative dynamical systems that possess many periodic orbits, often of the same
period, close to each other in phase space. The only computable information required by this method
is the signs of various function evaluations carried out during the integration of the equations of
motion. This method can be applied to any system of celestial mechanics. In this contribution we
apply it to the photogravitational problem.
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1. Introduction

For the analysis of systems of celestial mechanics a central role is played by the
families of periodic orbits which are considered as sets of periodic orbits. In gen-
eral, analytic expressions for evaluating periodic orbits are not available. Also, as it
is well known, the traditional techniques for computing families of periodic orbits
(symmetric or asymmetric) is a time-consuming procedure. The main difficulty for
the computation of a family of periodic orbits of a given period is the determination
of an individual member of this family. In general, this individual member can be
determined using an equilibrium point of the system under consideration. In the
case of symmetric orbits another approach is to create a grid in the (C, x) plane
where C is the Jacobian constant (Markellos et al., 1974). In this case an individual
member can be determined using a constant value of C.

In this paper, we propose a method to easily compute an individual member of
any family, even in cases where the orbit (whether stable or unstable) is asymmetric
and/or highly periodic. Our approach is based on the Poincaré map � on a surface
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of section. We say that X = (x1, x2)
� is a fixed point or a periodic orbit of � if

�(X) = X and a periodic orbit of period p if:

X = �p(X) ≡ �
(
�
(· · · (�(X)) · · · ))︸ ︷︷ ︸

p times

. (1)

From the above it is evident that the problem of computing an individual member of
a family of periodic orbits is equivalent to the problem of evaluating a fixed point of
the Poincaré map. Using this approach, it is difficult to find in the literature efficient
methods for computing periodic orbits with certainty. Also, traditional iterative
schemes such as Newton’s method and related classes of algorithms (Ortega and
Rheinbolt, 1970; Dennis and Schnabel, 1996) often fail to converge to a specific
periodic orbit since their convergence is almost independent of the initial guess.
Thus, while there exist several periodic orbits close to each other, which are all
desirable for applications, it is difficult for these methods to converge to the specific
periodic orbit. Moreover, these methods are affected by the imprecisions of the
mapping evaluations. Also, in general, these methods often fail due to the nonex-
istence of derivatives or poorly behaved partial derivatives (Ortega and Rheinbolt,
1970; Dennis and Schnabel, 1996).

To this end, we use an efficient numerical method for rapidly computing peri-
odic orbits (be they stable or unstable) of any period and to any desired accuracy
(Vrahatis, 1995). This method exploits topological degree theory to provide a cri-
terion for the existence of a periodic orbit of an iterate of the mapping within
a given region. In particular, the method constructs a polyhedron in such a way
that the value of the topological degree of an iterate of the mapping relative to
this polyhedron is ± 1, which means that there exists a periodic orbit within this
polyhedron. Then it repeatedly subdivides its edges (and/or its diagonals) so that
the new polyhedron also retains this property (of the existence of a periodic orbit
within its interior) without making any computation of the topological degree.
These subdivisions take place iteratively until a periodic orbit is computed to a
predetermined accuracy. More details of this method can be found in Vrahatis
(1995).

This method becomes especially significant for the computation of high period
orbits (stable or unstable) where other more traditional approaches (like Newton’s
method, etc.) cannot easily distinguish among the closely neighboring periodic
orbits. Moreover, this method is particular useful, since the only computable in-
formation it requires is the algebraic signs of the components of the mapping.
Thus it is not affected by the imprecisions of the mapping evaluations. Recently,
this method has been applied successfully to various difficult problems (see for
example Drossos et al., 1996; Vrahatis et al., 1996; Vrahatis et al., 1997; Waalkens
et al., 1997; Burić and Mudrinić, 1998; Burić et al., 1998).

In this paper, we use this method to compute with certainty individual mem-
bers of families of periodic orbits of the well-known photogravitational restricted
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circular three-body problem, described by Radzievskii (1950). This problem is a
very interesting and useful generalization of the classical gravitational restricted
three-body problem, especially when the third body is extremely small, which
represents the case of interplanetary and interstellar dust where the particles are
strongly affected by the radiation pressure force (Wyatt and Whipple, 1950).

The paper is organized as follows. In the next section, we briefly present the
proposed method for computing within a given box individual members of families
of periodic orbits of a given period. In Section 3, we briefly present the essential
features of the photogravitational problem. Also, in this section we propose a
method for the determination with certainty of the total number of the collinear
equilibrium points of this problem. In Section 4, we apply the proposed method
to the computation of individual members of families of periodic orbits of the
photogravitational problem. The paper ends with some concluding remarks.

2. The Characteristic Polyhedron Criterion and Characteristic Bisection

In this section, we briefly present a method based on the characteristic polyhedron
concept for the computation of periodic orbits. First we implement topological
degree theory to give a criterion for the existence of a periodic orbit within a given
region of the phase space of the system. Then we construct a characteristic poly-
hedron containing this orbit. Using a generalized bisection method, we iteratively
refine this polyhedron to calculate the orbit within a predetermined accuracy. A
detailed description of these procedures can be found in (Vrahatis, 1995).

In general, the problem of finding periodic orbits of period p of dynamical
systems in R

n+1 amounts to fixing one of the variables, say xn+1 =const, and
locating points X
 = (x


1, x


2, . . . , x


n) on an n-dimensional surface of section �t0

which satisfy the equation:

�p(X
) = X
, (2)

where �p = Pt0 : �t0 → �t0 is the Poincaré map of the system. Obviously, this is
equivalent to solving the system:

F(X) = 0, (3)

with F = (f1, f2, . . . , fn) = �p − In, where In is the n × n identity matrix
and 0 = (0, 0, . . . , 0) is the origin of R

n. For example, consider a conservative
dynamical system of the form:

ẋ = f(x, t), (4)

with x = (x, ẋ) ∈ R
2 and f = (f1, f2) periodic in t with frequency ω. In this

case, we can approximate periodic orbits of period p of System (4) by taking as
initial conditions of these orbits the points which the orbits intersect the surface of
section:
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�t0 =
{(

x(tk), ẋ(tk)
)
, with tk = t0 + k

2π

ω
, k ∈ N

}
, (5)

at a finite number of points p. Thus the dynamics can be studied in connection with
a Poincaré map �p = Pt0 : �t0 → �t0 , constructed by following the solutions of
(4) in continuous time.

As it is known, if we have a function F which is continuous on the closure
of a bounded domain D such that there is not any point x on its boundary for
which F(X) = 0 and the topological degree of F at 0 relative to D denoted by
deg [F,D, 0] is not equal to zero, then there is at least one solution of System (3)
within D (Ortega and Rheinbolt, 1970; Lloyd, 1978). This criterion can be used,
in combination with the construction of a suitable n-polyhedron, called the charac-
teristic polyhedron (CP), for the calculation of a solution contained in this region.
Briefly, this can be done as follows. Let Mn be the 2n × n matrix whose rows
are formed by all possible combinations of −1 and 1. Consider now an oriented
n-polyhedron �n, with vertices Vk, k = 1, . . . , 2n. If the 2n × n matrix of signs
associated with F and �n, S(F;�n), whose entries are the vectors:

sgn F(Vk) =
(

sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)
)
, (6)

is identical to Mn, possibly after some permutations of these rows, then �n is
called the characteristic polyhedron relative to F. Also, if F is continuous, then,
under some suitable assumptions on the boundary of �n holds that (Vrahatis and
Iordanidis, 1986):

deg[F,�n, 0] =
∑

X∈F−1(0)∩ ◦
�n

sgn det JF(X) = ±1 �= 0, (7)

where
◦
�n determines the interior of �n and det JF(X) denotes the determinant of

the Jacobian matrix at X, which implies the existence of a periodic orbit inside
�n. For more details on how to construct a CP and locate a desired periodic orbit
see in (Vrahatis, 1995; Vrahatis et al., 1996). The characteristic polyhedron can
be considered a translation of the Poincaré–Miranda hypercube (Poincaré, 1883;
Poincaré, 1884; Miranda, 1940; Vrahatis, 1989; Kulpa, 1997).

Next, we describe a generalized bisection method that, in combination with the
above mentioned criterion, produces a sequence of characteristic polyhedra of de-
creasing size always containing the desired solution in order to calculate it within a
given accuracy (characteristic bisection). This version of bisection does not require
the computation of the topological degree at each step to secure its nonzero value,
as others do (Kearfott, 1979; Eiger et al., 1984; Vrahatis, 1986; Greene, 1992). It
can also be applied to problems with imprecise function values, since it depends
only on their signs. The method simply amounts to constructing another refined
CP, by bisecting a known one, say �n. We compute the midpoint M of an one-
simplex, e.g. 〈Vi , Vj 〉, which is one edge of �n. Then we obtain another CP, �n∗,
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by comparing the sign of F(M) with that of F(Vi) and F(Vj ) and substituting M
for that vertex for which the signs are identical (Vrahatis, 1995, 1988a,b). Then
we continue with another edge. The number of iterations ζ required to obtain a
refined characteristic polyhedron �n∗ whose longest edge length, �(�n∗), satisfies
�(�n∗)� ε, for some accuracy ε ∈ (0, 1), is given by Vrahatis and Iordanidis
(1986):

ζ = ⌈
log2

(
�(�n)ε−1)⌉ , (8)

where the notation �·� refers to the smallest integer, which is not less than the real
number quoted. Notice that ζ is independent of the dimension n and it has the
same computational cost as the bisection in one-dimension which is optimal and
possesses asymptotically the best rate of convergence (Sikorski, 1982).

3. The Photogravitational Problem

Let us briefly describe the essential features of the photogravitational problem with
the two main bodies having masses m1 = (1 − µ) and m2 = µ with µ� 1/2 and
radiation pressure parameters q1 and q2, respectively, where q1, q2 � 1 (in case of
qi = 1, i = 1, 2 we have the classical gravitational problem). The equations of
motion of the third particle are

ẍ − 2ẏ = x − Q1

r3
1

(x + µ) − Q2

r3
2

(x + µ − 1),

ÿ + 2ẋ = y

[
1 − Q1

r3
1

− Q2

r3
2

]
, (9)

where

µ = m2

m1 + m2
,

Q1 = q1(1 − µ), Q2 = q2µ,

r1 =
√

(x + µ)2 + y2, r2 =
√

(x + µ − 1)2 + y2.

The Jacobian integral of the above system is defined by the following equation:

C = 1

2

(
ẋ2 + ẏ2)− 1

2

(
x2 + y2)− Q1

r1
− Q2

r2
. (10)

For an extended description of the above problem we refer to Simmons et al.
(1985), Ragos and Zagouras (1991) and Markellos et al. (1993).
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3.1. DETERMINATION OF THE TOTAL NUMBER OF THE COLLINEAR

EQUILIBRIUM POINTS

Next, we briefly describe and apply a method for the determination with certainty
of the total number of the collinear equilibrium points of the photogravitational
problem. In the literature there are various efficient methods for the determination
of collinear equilibrium points (Elipe, 1992). Here we present an alternative ap-
proach for the determination of these points. This approach is based on topological
degree theory and can be used in any similar or more complicated problem.

First, we note that the number N r of collinear equilibrium points of Equa-
tion (9) can be considered as the solutions of equation f (x) = 0 where the func-
tion f can be obtained by setting the right hand side of Equation (9) equal to zero
and y = 0. Thus, the following equation can be formulated:

f (x) = x − Q1

|x + µ|3 (x + µ) − Q2

|x + µ − 1|3 (x + µ − 1) = 0. (11)

In general, in cases where a function f : [a, b] ⊂ R → R is two times continuously
differentiable in [a, b] the total number N r of the roots of the equation f (x) =
0 can be obtained by the following scheme (Picard, 1892, 1922; Kavvadias and
Vrahatis, 1996):

N r = −γ

π

∫ b

a

f (x)f ′′(x) − f ′2(x)
f 2(x) + γ 2f ′2(x)

dx +

+ 1

π
arctan

(
γ
[
f (a)f ′(b) − f (b)f ′(a)

]
f (a)f (b) + γ 2f ′(a)f ′(b)

)
, (12)

where γ is a small positive real constant. It was explicitly shown by Picard (Picard,
1892, 1922) that Relation (12) is independent of the value of γ .

Now, since the denominator of Equation (11) vanishes at the points x = −µ and
x = 1−µ we apply (12) to the subintervals [a,−µ−δ], [−µ+δ, 1−µ−δ] and [1−
µ+δ, b] of the interval [a, b], where δ is a small positive real constant proportional
to the relative machine precision. Notice that within the above considered intervals
the required assumptions, regarding the function f, are fulfilled since the points
where the function f is not continuously differentiable are avoided. Obviously,
for the numerical computation of the integral of Equation (12) we can use any
numerical integration technique. Thus, by restricting our study in the case of q1 =
0.5, q2 = 1 and µ = 0.01214 which corresponds to the Earth–Moon system and
using Romberg integration (Press et al., 1992) (where the corresponding derivatives
of Equation (12) have been computed using central finite differences) we have
concluded that the total number of roots of Equatin (11) is three. Once we know
with certainty the exact number of the collinear equilibrium points we can easily
compute them by applying any well-known rootfinding method. Thus, by applying
the traditional bisection method and using the above values q1, q2 and µ we have
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computed the following coordinates of the collinear equilibrium points, L1, L2

and L3:

xL1 = 0.72672723, xL2 = 1.11687297, xL3 = −0.79984490.

3.2. STABILITY OF A PERIODIC ORBIT AND INVARIANT CURVES

In order to compute the stability of a periodic orbit, we can integrate the equations
of motion, for the three-dimensional problem, simultaneously with the equations
of variation for the whole period. Thus, we can compute the indexes ah, bh, ch,
dh and av , bv , cv , dv , respectively (Hénon, 1973; Markellos, 1976). In the case
of asymmetric periodic orbits, an orbit is considered stable if both |sh| < 1 and
|sv| < 1 hold where:

sh = ah + dh

2
, sv = av + dv

2
. (13)

If only one of the above inequalities hold then the orbit is considered horizontally
or vertically stable, respectively (Zagouras and Markellos, 1977; Markellos, 1978).
In the case of symmetric periodic orbits we have:

ah = dh and av = dv.

Thus

sh = ah and sv = av.

Finally, if |sh| = 1 or |sv| = 1 then the stability of the orbit is considered critical.
It is well known that the invariant curves of a system play an important role in

its analysis since they bound the motion of the third particle within their interior.
In order to determine the invariant curves of the photogravitational problem, we set
y = 0 and ẏ > 0 in Equation (10) and we obtain (Hénon, 1966):

ẋ2 < C + x2 + 2Q1

r1
+ 2Q2

r2
.

Thus, using the following equation:

ẋ = ±
(
C + x2 + 2Q1

r1
+ 2Q2

r2

)1/2

, (14)

where

r2
1 = (x + µ)2 and r2

2 = (x + µ − 1)2,

we can obtain the corresponding invariant curves.
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4. Results

Let us apply the proposed method to the photogravitational problem described by
Equation (9). To produce the surface of section of the problem, we take successive
sections of an orbit with the straight line y = 0, along the positive direction of the
flow (ẏ > 0). In particular, we have taken the initial conditions (x, 0, ẋ, ẏ) where
the value of ẏ is computed using Equation (10) for a given value of C. Each section
can be depicted as a point in the (x, ẋ) plane. The transition from one section to
another can be considered as a transformation in the (x, ẋ) plane. Notice that, this
particular transformation is well defined only if the Jacobian constant has a specific
value. It is evident that a periodic orbit of period p intersects the x-axis 2p times.
Obviously, in the simple case where p = 1 the orbit will be represented in the
(x, ẋ) plane by a single point and thereupon a p periodic orbit is represented by p

points.
To compute successively the intersection points with the surface of section,

we can choose a value of the Jacobian constant C and by keeping this value
fixed we can integrate numerically Equation (9), using for example the Bulirsch–
Stoer algorithm with proper adaptive step-size control (Stoer and Bulirsch, 1980;
Press et al., 1992). These points are exhibited in Figure 1(a)–(c) for several ini-
tial conditions with arbitrarily chosen Jacobian constants CL2 = −2.31058003,
CL1 = −1.95810456 and CL3 = −1.90743262, respectively.

Furthermore, in Figure 1(a)–(c) we plot the corresponding invariant curves us-
ing Relation (14). From these figures we observe that the motion of the third
particle is bounded within regions which are changed as the Jacobian constant C

varies. The area of these regions expands as the value of C is increased. This can
be easily observed in Figure 1(a)–(c). More specifically, in Figure 1(a), where the
surface of section for CL2 is depicted, we observe that the motion is restricted
in four separate regions. As the value of C is increased these regions tend to be
unified. In Figure 1(b), where the surface of section for CL1 is plotted, the four
separate regions of Figure 1(a) have become three and, finally, in Figure 1(c) where
the surface of section for CL3 is depicted, there are only two separate regions of
bounded motion. Our experience is that, by further increasing the value of C these
regions are unified.

In Figure 2 we exhibit a magnification of the region enclosed in box A of Fig-
ure 1(a). We can easily distinguish that there are several periodic orbits of various
periods. For example, we can observe that the points marked by P1, P2, P3, P4 and
P5 determine a periodic orbit of period 5. Also in this figure we observe that around
this period–5 periodic orbit there are other periodic orbits of higher periods.

To compute the periodic point of the period–5 orbit using the proposed charac-
teristic bisection method, we use a small box surrounding a point of the orbit, say
for example, the point P1 and by proper successive refinements of this box we cal-
culate the desired point. For example, by taking the box [−3.8,−3.2]× [0, 0.1] we
have computed the included periodic point P1 = (−3.60825836, 0.05089673)� .
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Figure 1. Surface of section points and the corresponding invariant curves of System (9) with para-
meters q1 = 0.5, q2 = 1, µ = 0.01214, for (a) CL2 = −2.31058003, (b) CL1 = −1.95810456 and
(c) CL3 = −1.90743262.
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Figure 2. Magnification of box A of Figure 1.

In the case of the unstable periodic point we use also a box around a region where
a periodic point of the desired periodic orbit is expected to exist.

After one periodic point of the orbit has been computed, the method can be
applied to obtain easily all the other points of the same period to the same accur-
acy. More specifically, the method checks whether each mapping iteration gives a
periodic point (of the same period) to the predetermined accuracy. If so, the method
continues with the next iteration, otherwise it applies the process of subdivisions to
a smaller box which contains the approximate periodic point. The vertices of this
small box can be easily selected by permuting the components of the approximate
periodic point. Using this approach we have computed all the periodic points of
this orbit with coordinates:

P2 = (−2.88487215, 0.15609264)� ,

P3 = (−1.57785783, 0.00000000)� ,

P4 = (−2.88487215,−0.15609264)� ,

P5 = (−3.60825831,−0.05089673)� .

Note that, from the sequence in which these points are created on the (x, ẋ) plane,
we are able to infer the rotation number of this orbit. In general, periodic orbits can
be identified by their winding or rotation number σ , which is defined as follows:
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σ = n1

n2
, n1, n2 ∈ N, (15)

where n1, n2, are two positive integers which indicate that the orbit has produced
n2 points, by rotating counterclockwise around the origin n1 times (Greene, 1979;
Vrahatis, 1995). In particular for the above periodic orbit of period 5 the value of
the rotation number is

σ = n1

n2
= 4

5
,

indicating that the orbit has produced n2 = 5 points by rotating counterclockwise
around the origin n1 = 4 times. The values of rotation numbers for all the peri-
odic orbits given here are exhibited in Table I. These values have been computed
utilizing a simple angle counting procedure which we have created for this purpose.

Magnifying box B of Figure 2, we observe, in Figure 3, the existence of a
periodic orbit of period 13 that is marked by O13. This orbit is surrounded by a
group of four islands indicating the existence of another periodic orbit of period 52.
Also, in this picture we can distinguish four islands around the period–35 periodic
orbit, which is marked by O35. It is evident that, the period of one of these islands
is p = 35 × 4 = 140. It is worth noticing that this particular periodic orbit of
period 140, required 108 rotations around the origin. Thus, in this case the value of
the rotation number of this orbit is σ = 108/140.

We have also examined the effect of small perturbations to the initial conditions
of unstable periodic orbits. For instance, by perturbing with a value δx = 10−5

the x coordinate of the unstable periodic orbit of period 4 (listed in Table I) and
marked by U4 in Figure 4(a) we observe that the iterations of the perturbed orbit
diffuse away from the point U4 surrounding also the stable orbit of period 4. The
same phenomenon occurs if we perturb any other unstable periodic orbit of Table I
as we can observe for example, in Figure 4(b), where 15 000 points are depicted
of the perturbed unstable periodic orbit of period 9 (U9). Its x coordinate has been
correspondingly perturbed with the value δx = 10−5.

In Table I we exhibit several fixed points of periodic orbits of period p on the
Poincaré surface of section for System (9) using the value of the Jacobian con-
stant CL2 = −2.31058003. Also, in this table we give the corresponding rotation
numbers σ as well as the elapsed CPU time t in seconds on a Personal Computer
(Pentium III, Xeon at 550 MHz) required for their computation with an accuracy
of ε = 10−8. In addition, in this table we give the stability indexes sh, sv as
they are defined in Relations (13) as well as the symmetry identification of the
corresponding orbit.
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TABLE I

Fixed points of periodic orbits of period p on the Poincaré surface of section for System (9)
using Jacobian constant CL2 = −2.31058003 and their rotation number σ ; CPU time t in
seconds required for their computation within accuracy ε = 10−8; stability indexes sh, sv
and symmetry identification Sym. (‘S’ denotes symmetry while ‘A’ denotes asymmetry)

p Fixed point σ t sh sv Sym

1 (0.93717344, 0.00000000) 1 1 0.924068 0.924723 S

1 (1.11150338, 0.00000000) 1 1 −0.225994 0.367130 S

1 (−2.10504200, 0.00000000) 1 1 −0.320791 −0.341787 S

1 (−0.18431881, 0.00000000) 1 1 0.836302 0.836922 S

1 (0.32311727, 0.00000000) 1 1 −0.737989 −0.748571 S

3 (0.16581940, 0.00000000) 2/3 3 0.954434 0.999713 S

3 (0.43782960, 0.00000000) 2/3 2 1.049516 0.997775 S

4 (−2.98416804, 0.00000000) 3/4 1 0.665597 0.999959 S

4 (−2.82606292, 0.05524204) 3/4 2 1.601737 0.980688 A

5 (−1.57785783, 0.00000000) 4/5 2 0.421337 0.999965 S

5 (−3.65008738, 0.00000000) 4/5 2 3.916594 0.966065 S

7 (−2.47322591, 0.00000000) 5/7 3 0.989496 0.989421 S

7 (−1.84329896, 0.00000000) 5/7 4 1.010509 0.988807 S

7 (0.09075069, 0.00000000) 5/7 8 0.988499 0.995896 S

7 (0.46640390, 0.00000000) 5/7 7 1.011501 0.995794 S

9 (−3.44436456, 0.00000000) 7/9 6 1.015720 0.975509 S

9 (−1.62423304, 0.00000000) 7/9 5 1.753103 0.975804 S

11 (−2.62914789, 0.00000000) 8/11 5 0.967173 0.969919 S

11 (−1.78051126, 0.00000000) 8/11 5 1.032966 0.969198 S

13 (−3.32141447, 0.00000000) 10/13 5 −0.074102 0.957174 S

13 (−1.63525729, 0.00000000) 10/13 8 2.452893 0.947995 S

17 (−3.27000405, 0.00000000) 13/17 6 −0.858363 0.912913 S

17 (−1.64026111, 0.00000000) 13/17 8 3.259311 0.901168 S

19 (−2.71020057, 0.00000000) 14/19 12 0.911912 0.870039 S

19 (−1.75442473, 0.00000000) 14/19 13 1.088462 0.869368 S

22 (−3.36990585, 0.00000000) 17/22 6 0.570365 0.869416 S

22 (−3.05346495, −0.07823604) 17/22 13 1.852898 0.868464 A

23 (−2.71984195, 0.00000000) 17/23 11 0.806463 0.775248 S

23 (−1.75154707, 0.00000000) 17/23 19 1.194401 0.774477 S

25 (−1.59026031, 0.00000000) 20/25 11 0.915142 1.000485 S

25 (−1.56733859, 0.00000000) 20/25 12 1.082528 1.000320 S

32 (−1.72895845, 0.00000000) 24/32 13 0.899478 0.966856 S

32 (−3.16205619, 0.00000000) 24/32 14 1.093301 0.970232 S

35 (−3.35824891, 0.00000000) 27/35 9 −0.074700 0.675224 S

35 (−1.63329154, 0.00000000) 27/35 15 −2.703773 0.674002 S
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TABLE I

(continued)

p Fixed point σ t sh sv Sym

36 (−2.75989136, 0.00000000) 27/36 18 0.103799 0.820277 S

36 (−3.20216680, 0.00000000) 27/36 18 1.793506 0.832127 S

52 (−2.99324919, 0.06747215) 40/52 20 0.837158 0.370871 A

52 (−3.33276884, 0.00000000) 40/52 20 1.085981 0.377574 S

140 (−3.03248329, 0.05557997) 108/140 63 0.163394 −0.984141 A

140 (−3.35744012, 0.00000000) 108/140 85 1.190881 −0.984347 S

Figure 3. Magnification of box B of Figure 2.

5. Epilogue

In this paper, we have proposed a method for computing with certainty individual
members of families of periodic orbits of a given period within a given box using
the Poincaré map on a surface of section. We have used this method to compute in-
dividual members of families of periodic orbits of the photogravitational restricted
circular three-body problem and we have succeeded in computing symmetric and
asymmetric periodic orbits of various periods and stability characteristics.
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Figure 4. Perturbations with the value δx = 10−5 of the x coordinate of two unstable periodic obits,
(a) 15 000 points of the perturbed periodic point U4 of period–4 periodic orbit and (b) 15 000 points
of the perturbed periodic point U9 of period–9 periodic orbit.
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According to the proposed method, we have used a box around a region where
a periodic point of the desired periodic orbit is expected to exist and by proper
successive refinements of this box we have calculated the periodic point included.
Thus, this method becomes especially significant for the computation of high period
orbits (stable or unstable) where other more traditional approaches cannot easily
distinguish among periodic orbits which are close neighbours. The only informa-
tion needed for this refinement is the algebraic signs of various function evaluations
on the vertices of the considered box and thus it is not affected by the imprecisions
of the mapping evaluations. The only limitation of the proposed method is that it
is dependent upon the integration method which is used to calculate the algebraic
signs required.

After one periodic point of the orbit has been computed, the method can easily
obtain all the other points of the same period to the same accuracy. From the se-
quence in which these points are created on the (x, ẋ) plane, we have also identified
the rotation number of the corresponding orbit.
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