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Abstract: Key changes are common in Western classical music. The precise segmentation of a music piece at instances
where key changes occur allows for further analysis, like self-similarity analysis, chord recognition, and several
other techniques that mainly pertain to the characterization of music content. This article examines the automatic
segmentation of audio data into parts composed in different keys, using clustering on chroma-related spaces. To this
end, the k-means algorithm is used and a methodology is proposed so that useful information about key changes can be
derived, regardless of the number of clusters or key changes. The proposed methodology is evaluated by experimenting
on the segmentation of recordings of existing compositions from the Classic-Romantic repertoire. Additional analysis
is performed using artificial data sets. Specifically, the construction of artificial pieces is proposed as a means to
investigate the potential of the strategy under discussion in predefined key-change scenarios that encompass different
musical characteristics. For the existing compositions, we compare the results of our proposed methodology with
others from the music information retrieval literature. Finally, although the proposed methodology is only capable of
locating key changes and not the key identities themselves, we discuss results regarding the labeling of a composition’s
key in the located segments.

The notion of tonality is fundamental in Western
music. Most aspects of tonal analysis are based on
the relations between pitches, provided a context:
the composition’s key. The key specifies a set of
notes (a seven-note subset of the twelve notes of the
chromatic scale) that are perceived as being related,
although the utilization of key differs according to
musical style and historical period, among other
factors. Western classical music typically changes
key, or modulates (in the broadest sense), during
the course of the piece. Content segmentation
and characterization of such music are aided by
identifying the composition’s main key and the
related keys into which it is likely to modulate.
Provided an accurate segmentation of a piece at
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the locations where key changes occur, several
other tasks can be performed more accurately,
such as self-similarity analysis (Chai 2005) and
chord recognition (Lee and Slaney 2007), among
others. Additionally, the availability of an enormous
number of digital music recordings makes musical
content analysis an important tool for automatically
categorizing large data sets. Towards this aim,
the detection of points where key changes occur
can help define the local characteristics of pieces,
providing a basis for further semantic analysis.

There are two main branches of the field of
music information retrieval: research involving
symbolic music representations such as MIDI
data, and research involving nonsymbolic data,
namely, audio. This article examines the automatic
segmentation of audio data, although some concepts
can apply equally to segmentation of symbolic
data. Specifically, the focus here is segmentation
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of a piece into parts composed in different keys,
through clustering on chroma-related spaces. (The
concept of chroma, also known as pitch class,
identifies a pitch in the Western equal-tempered
tuning, disregarding the pitch’s register, i.e., the
octave in which the pitch occurs.) Although the
proposed methodology is capable only of key
segmentation and not labeling (i.e., it locates key
changes but not key identities), we also present
results of labeling via simple template-matching
techniques. The k-means algorithm (Hartigan and
Wong 1979) is used and a methodology is proposed
so that useful information about key changes can
be derived, regardless of the number of clusters or
the number of key changes. The proposed strategy
relies solely on geometric properties of the chroma
space and does not need training, avoiding the
potential hazard of being ineffective on musical
styles different from the ones it has been trained
on.

Experimental results are reported on segmenta-
tion of (1) recordings of real compositions, together
with a comparison between our proposed method-
ology and previous ones, and (2) artificial music
data sets, the construction of which is described
subsequently. The construction of these artificial
pieces is intended to provide an additional tool for
examining the behavior of the proposed approach
under “laboratory” conditions, allowing the anal-
ysis of the model’s capabilities using large data
sets of pieces with predefined structure. With these
artificial data sets, multiple key-change scenarios
were included in order to perform an exhaustive
efficiency assessment of the clustering strategy.
Finally, key labeling of the segmented parts was
applied to the data set of real compositions, with the
goal of providing a robust and accurate framework
for musical content characterization.

Previous Work, Motivation, and Aims

Several approaches have provided significant
insights into the problem of automatic detection
of key changes in audio. Some work has extended
key detection to the detection of local keys, i.e.,
areas within a piece that are composed using

different keys. These approaches can be divided in
two main categories. The first uses a priori infor-
mation about the expected chroma constitution of
keys, either in the form of key templates (Krumhansl
1990; Temperley 2004, 2006), or trained/tuned hid-
den Markov models (HMM) (Chai and Vercoe
2005; Noland and Sandler 2006; Papadopoulos and
Peeters 2009, 2012). The second category includes
methods that explore geometric properties of the
pitch space to detect key changes without prior
information about key templates or expected key
changes (Chuan and Chew 2007; Izmirli 2007;
Chew 2002). Similar techniques have also been
proposed for harmonic segmentation—i.e., divid-
ing a piece of music into a sequence of distinct
chords (Harte, Sandler, and Gasser 2006), instead
of key segmentation discussed in this work. Fi-
nally, a weighted graph approach was also tested
for simultaneous chord and key recognition (Rocher
et al. 2010). Here a larger data set of 174 pieces
was used, but with a small mean number of key
changes (1.69) per piece. This last work, how-
ever, does not report on segmentation accuracy
results.

All works related to localized detection of key
changes utilize the chroma information of a piece
and look for contiguous chroma segments that could
belong to a single key. These chroma segments are
expressed as chroma vectors. These are vectors that
incorporate information about the presence and in-
tensity of the twelve chroma within short segments
of a piece. The HMM-related approaches define the
tonal constitution of each chroma vector (in terms
of HMM, the emission) by associating its probabil-
ity of belonging to a certain key with a transition
probability from the key of the previous vector.
Additional information of higher musical structure
(i.e., chords) has also been utilized to refine key
and key transition probabilities (Papadopoulos and
Peeters 2009, 2012). The work described in Izmirli
(2007) utilizes nonnegative matrix factorization
(NMF) on the chroma matrix V of a piece to produce
a set of patterns W and an activation matrix H,
so that V = WH. The pattern matrix encapsulates
information related to the identity of all keys in
V, and the activation of each pattern, shown in H,
reflects the location of each key. A limitation of
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this methodology is that the number of keys in the
piece needs to be known in advance, so that each
pattern of W corresponds to a key. The advantage
of our methodology, regarding segmentation, is that
there is no necessity for the number of keys to be
known in advance. An additional advantage of our
approach is that when it uses NMF and principal
component analysis (PCA), the number of projecting
dimensions does not have a crucial meaning (i.e.,
does not reflect the number of keys), but serves
entirely as a dimension-reduction mechanism to
facilitate clustering.

Besides the key segmentation per se, an additional
motivation of the work presented here is to empha-
size the potential of our methodology from a musical
perspective. Such a task should not be performed
on individual music pieces, however, because this
would restrict the scope of the produced results to
the analysis of these music works. To tackle this
problem, we propose the construction of data sets
of “artificial” music, which incorporate the desired
pre-specified musical structure. This approach en-
ables us to produce a large number of different test
cases with diverse musical characteristics, thereby
allowing a deeper analysis of the effectiveness of a
model under different tonal conditions.

The Proposed Strategy

In the proposed approach we examine the detection
of key changes in musical audio content using clus-
tering. Clustering is a way to separate a collection
of objects into groups, such that objects belonging
to the same group are more similar than objects
of different groups. This technique has been used
in a wide range of applications (Jain, Murty, and
Flynn 1999), with the notion of object similarity
being defined in dependence on a specific problem.
In the proposed application, similarity is measured
in the chromatic tonal domain, calculated for short
musical segments. This section analyzes the pro-
posed clustering methodology for key segmentation
of music recordings. The presentation includes a
parallel demonstration of the tasks described, based
on Dvorak’s Humoresque No. 7, which is composed
in two keys: G-flat major and F-sharp minor.

Feature Representation

In our approach, we use the chroma energy normal-
ized statistics (CENS) (Müller, Kurth, and Clausen
2005), obtained using the Chroma Toolbox (Müller
2010; Müller and Ewert 2011) for MATLAB. The
sampling rate of the pieces that were used for this
research was 44,100 Hz. The methodology of the
Chroma Toolbox, however, uses down-sampled ver-
sions of the signals in order to achieve greater resolu-
tion accuracy at lower frequencies (Müller and Ewert
2011). Thus, with the utilization of a constant-Q
multirate filter centered at the frequency of each
pitch, the chroma profile is evaluated within frames
of 0.1 sec. The CENS representation is a statistically
smoothed transformation of this chroma profile,
achieved through quantization and component-wise
convolution of the chroma profile of each frame with
its neighbors, using a Hanning window. The window
size was selected to be w = 45 frames (4.5 sec) in
order to have largescale tracking of the chroma ac-
tivity, avoiding potential misclassification of frames
caused by articulations or chromatic passages. It
could be argued that the window size should be
relative to the tempo of the piece rather than a fixed
time unit. This would be worth examining in future
research.

In a mathematical sense, the CENS representation
transforms the recorded piece into a real matrix
C ∈ R

12×F , with twelve rows—one for each chroma—
and F columns, with F being the number of time
frames. Our goal is to construct an algorithm that
uses C to detect the time position of key changes
through clustering all frames, not only in the twelve-
dimensional tonal space of C, but also in spaces of
reduced dimension derived using PCA and NMF.

Dimension Reduction in the Chroma Space

Before presenting the proposed approach, we briefly
but rigorously provide a description of the PCA and
NMF dimension reduction techniques and their
parts that are associated with clustering. For the
PCA, we obtain the covariance matrix S of Cc,
which is the centralized per row C matrix (a ma-
trix is centralized per row if we subtract the mean
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Figure 1. Two-dimensional
projections of each frame
of a chroma energy
normalized statistics
(CENS) matrix using
(a) principal component

analysis (PCA) and
(b) nonnegative matrix
factorization (NMF). The
frames presented as black
dots belong to parts of the
piece composed in G-flat

major, and the ones
presented with gray dots
belong to the F-sharp
minor part.

value of the respective row from each element),
by S = Cc · CT

c , S ∈ R
12×12, where the exponent T

denotes matrix transposition. The eigenvectors of
S corresponding to the higher absolute eigenvalues
are called principal components. We denote with Zm
the R

12×m matrix whose columns are eigenvectors
that correspond to the m higher eigenvalues. A
projection of each frame of Cc on the subspace of
the m principal eigenvectors is obtained by the mul-
tiplication P = ZT

m · Cc. Clustering is performed on
the projection vectors P. Alternatively, dimension
reduction using NMF can be accomplished by fac-
torizing the nonnegative matrix C ∈ R

12×F with two
nonnegative matrices Wm ∈ R

12×m and Hm ∈ R
m×F ,

where m< 12, so that C = Wm · Hm. The matrix
Wm concentrates the basic patterns of C, and Hm
provides a linear combination of the basic patterns
for the reconstruction of C. This means that the Hm
matrix has the coordinates of each pattern of C in
the projection space created by Wm, which are the
tonal patterns. Thus, clustering is performed on Hm.

Although dimension reduction will not necessar-
ily lead to a substantial reduction of complexity of
the clustering algorithm, Ding and He (2004) and
Lazar and Doncescu (2009) have shown that in some
cases the utilization of PCA and NMF improves
clustering performance. Additionally, dimension
reduction allows visualizations that clarify the mo-
tivation and functionality of the proposed method.
PCA and NMF have previously been used for finding
the overall key of a piece (Izmirli 2006) and for
estimating the local key (Izmirli 2007). With PCA

projection on the first two principal components and
by utilizing two-dimensional NMF, we may obtain
representations of each frame of C, such as the ones
depicted in Figure 1. Frames that belong in the music
parts composed in G-flat major are depicted in black
dots, and F-sharp minor parts are presented with
gray ones. Clearly, from the visualization provided
by both dimensionality-reduction techniques we
may observe that frames belonging to a different
composition key are “gathered” in a different area.
This is accomplished by the “blurring” effect caused
by the convolution of the chroma vectors applied
on consecutive frames with the CENS algorithm,
because every frame captures tonal characteristics
of its neighboring frames.

Locating Key Clusters

Figure 1 shows that clustering allows us to separate
the two groups of frames that belong to different
keys. Indeed, the application of the k-means cluster-
ing algorithm on the PCA reduced space of Figure 1a
for two clusters is satisfactory, as Figure 2a illus-
trates. A piece may be composed using an arbitrary
number of keys, however, thus a priori assumptions
about the number of clusters cannot be made. If we
apply the k-means algorithm on the same data as-
suming more than two clusters, we may not be sure
about the meaning of the content of each cluster.
Figure 2b illustrates the case where five clusters are
considered.
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Figure 2. Application of the
k-means algorithm expec-
ting two clusters (a) and
five clusters (b) for the data
depicted in Figure 1a. The
vertical dashed lines show
the actual key transitions.

Finding Temporal Contiguity within Cluster
Combinations

The fundamental idea of the key segmentation
strategy presented here is to examine which cluster
combinations are more likely to represent contigu-
ous parts of the piece that are composed in the same
key. By the term cluster combination, we mean
the concatenation of several previously identified
clusters into a larger one. For this, we can rely
on the temporal relations between time frames.
In other words, if a proper cluster combination
contains frames belonging to a single key, their
concatenation would exhibit temporally contiguous
behavior, not sporadically distributed segments.
Temporal contiguity could also be approached with
more-straightforward calculations on chroma val-
ues. For example, future work could incorporate a
single “change point” detection scheme based on
the sequence of chroma vectors (e.g., locating peaks
in the derivative of the chroma vectors).

Accumulation and Gradient Difference Curves

To the end of locating cluster combinations that
incorporate a single key, we examine the temporal
contiguity of all possible cluster combinations. We
do this by forming all possible pairs of complemen-
tary subsets, A and B, of the main superset of all
clusters, S, so that A ∩ B = ∅ and A ∪ B = S. The
selection of every subset should be considered only
once; e.g., if A = X and B = Y at some selection

stage, then at a latter stage we will skip the selection
A = Y and B = X. For example, in Figure 2b we
have a superset of five clusters, S = {1, 2, 3, 4, 5}, for
which we can create 15 different pairs of subsets
with the aforementioned properties, because, if we
assume that the cardinality of S is n, n = |S|, then
the number of different A and B sets is

� n
2 �∑

i=1

(
n
i

)
,

an equation that describes the selection of all
x-tuples up to x = �n

2�. Note that the selection of
x-tuples with x > �n

2� would result in re-selection
of all segmentations, i.e., for x = �n

2� + j we would
have the same selection as for x = �n

2� − j, j ∈
{1, 2, . . . , (�n

2� − 1)}.
Figure 3 depicts two such pairs of complementary

subsets and their temporal representation, together
with the respective accumulation curve (AC) of
each pair. The AC of a cluster subset reflects the
temporal contiguity of the clusters included in this
subset. Outlining the way an AC is estimated, we
first scan the piece from the beginning, frame by
frame. If a frame belongs to cluster subset A, the AC
value is increased by one, otherwise it is decreased
by one. Before scanning the first frame, the initial
AC value is zero. Algorithm 1 in Figure 4 provides a
more rigorous presentation of the AC computation
procedure. The ACs of the cluster subsets depicted in
Figure 3a reveal that when two cluster subsets have
captured parts of the piece composed in different
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Figure 3. Two sets of
cluster combinations and
their respective
accumulation curves
(ACs). Sets (a) A = {1, 4}
and B = {2, 3, 5} exhibit
temporal contiguity,

whereas sets (b) A = {1, 5}
and B = {2, 3, 4} are
temporally noncontiguous.
The vertical dashed lines
show the location of the
actual key changes.

Figure 3

Algorithm 1 AC computation
Input: (i) the total number of frames F , (ii ) cluster labeling of each frame in C clusters
K : [1, F ] → {1, 2, . . . , C} and (iii ) subsets of cluster labels A and B
Output: The AC as a function of frames AC : [1, F ] → Z

1: α ← 0
2: for i = 1 to F do
3: if K(i) ∈ A then
4: α ← α + 1
5: else
6: α ← α − 1
7: end if
8: AC(i) ← α
9: end for

Figure 4. Algorithm for
computing the cluster
accumulation curve (AC).

Figure 4

keys, the locations where the key changes occur
are described by a change of direction between
large monotonic segments. On the contrary, this
interchange is not present if the cluster subsets have
not captured parts in different keys, as illustrated
in Figure 3b. Because all cluster combinations are
examined, an a priori assumption about the number
of clusters is not required, although this may have
an influence on the estimation accuracy.

Given the AC of a pair of cluster subsets, we
construct the gradient difference curves (GDCs),
which indicate the positions where this AC changes
monotonicity, (see Figure 5). As mentioned earlier,
the change in monotonicity would reveal the posi-

tion of a key change, if the parts before and after this
location are sufficiently long. The term sufficiently
long refers to an analysis window of sufficient
length that information on key, rather than chords,
is captured. Previous approaches have addressed
this issue by providing results for different constant
values describing time analysis windows (Izmirli
2007), or the a priori probability that a key change
will not happen (Chai and Vercoe 2005). As in these
two earlier studies, this article reports results of an
experimental procedure to measure the effectiveness
of the proposed approach for different time windows.

The GDC value of a frame f is an estimate of
the absolute difference of the gradients (i.e., slopes)
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Algorithm 2 GDC computation
Input: (i) the total number of frames F , (ii ) a constant integer T and (iii ) an AC as a
function of frames
Output: The GDC as a function of frames GDC : [1, F ] → Z

1: for i = 1 to F do
2: GDC(i) ← 0
3: end for
4: for i = T + 1 to F − T do
5: GDC(i) ←

∣∣∣
(

AC(i)−AC(i−T )
T

)
−

(
AC(i+T )−AC(i)

T

)∣∣∣
6: end for

Figure 5. Algorithm for
computing the gradient
difference curve (GDC) of
the ACs.

Figure 5
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absolute gradient
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f point is interpreted
geometrically as the
tangent of φ.

Figure 6

between two lines, as depicted in Figure 6. Line 1
joins the points [ f − T, AC( f − T)] and [ f , AC( f )],
and line 2 joins [ f , AC( f )] and [ f + T, AC( f + T)].
These three points are marked with circles. The
absolute difference of the gradients of these lines
provides a means for computing the monotonic
behavior of the AC function T frames before and
after a specified frame f . The absolute difference
can be interpreted geometrically as the tangent of
angle φ. The GDC value is bounded in [0, 2], because
the gradient of the AC is bounded in [−1, 1]. The
calculations that produce the GDC variation are
described in Algorithm 2 in Figure 5.

The locations of large changes of monotonicity in
the ACs would result in higher peaks at the GDCs,
reflecting greater absolute differences between the
gradients. By the term large monotonicity changes
we refer to the points where the direction of the ACs
is changing, i.e., from ascending to descending and
vice versa. Segments of large monotonicity indicate
persistence in a tonal trend that is expressed
by a combination of clusters, a fact that might
reveal the existence of a localized key. As we are
interested in detecting regions of large changes of
monotonicity, we define a threshold for minimum
absolute difference in gradients, denoted by m,
above which we consider that a key change has
occurred. Values below this threshold are ignored, as
we assume they contain no important information
about key changes. In Figure 7 we demonstrate this
for the two resulting cluster subsets of Figure 3. For
demonstrational clarity, we have chosen T = 250
and m= 1.5. The m threshold is illustrated with a
horizontal dashed line. The GDC values below m
are illustrated with a thin gray line, and the values
exceeding the threshold are black and thicker.
Figure 7a shows that the respective A and B
subsets provide strong indications for a key change,
approximating the actual locations of the key
changes relatively accurately. On the contrary, in
Figure 7b, no indication of a key change can be
provided.

The content that has surpassed m among all the
GDCs is summed to form a unique curve of GDC
contributions. The sum of the GDCs of all possible
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Figure 7. The ACs together
with the GDCs of the two
sets of cluster
combinations depicted in
Figure 3. The horizontal
dashed line defines the
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cluster subsets provides a curve such as the one
depicted in Figure 8, where locations of potential
key change are shown as positive valued peaks. The
final segmentation is realized at the local maxima
of the GDC curve.

Experimental Settings for Performance
Assessment

As highlighted in previous studies (Chai and Vercoe
2005; Izmirli 2007; Papadopoulos and Peeters 2009),
there is a lack of data sets of musical compositions
that are annotated with key change information.

Table 1. The Works Used as the Real Data
Set, Denoted as R

Mozart - Rondo alla turca (K. 331)
Paderewski - Minuet (op. 14, no. 1)
Rubenstein - Mélodie in F (op. 3, no. 1)
Dvorak - Humoresque No. 7 (op. 101, no. 7)
Mozart - Piano Sonata No. 15 (K. 533)
Schubert - Moments musicaux No. 2 (op. 94, no. 2)

Due to this fact, experimental results are reported
on small sets of pieces that have been manually
analyzed by the respective authors. To address this
issue, we have constructed an artificial data set
with pieces that include a varying number of key
changes between predefined keys. In this way a
thorough examination of the proposed methodology
can be conducted under any key-change scenario,
providing an additional tool towards analyzing the
capabilities of the key-change detection model
with an abundance of test case paradigms for
any given tonal structure. Besides the artificial
data set, we have also included results from
simulations on recorded compositions that were
annotated by the first author. These compositions
are shown in Table 1 and were all performed on
piano. The CENS representation of these pieces,
along with the label annotations, are available at
cilab.math.upatras.gr/maximos/keyChangeDatasets,
as well as on the DVD-ROM portion of the
forthcoming 2013 Computer Music Journal Sound
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and Video Anthology. Different recordings of these
pieces were also used as piano performances in Chai
and Vercoe (2005).

Synthesis of the Artificial Key Change Scenarios

The motivation for creating artificial key-change
scenarios is twofold. First, it provides arbitrarily
large data sets that are automatically labeled,
thereby allowing the extensive examination of
a model’s potential. Second, the fact that these
scenarios have predefined structure allows an
analysis of musical texture to be performed on
numerous test cases, bypassing the narrow scope of
conclusions imposed when analysis is performed on
only a limited number of musical pieces.

Our approach for constructing key-change sce-
narios is quite straightforward: We concatenate
excerpts from different pre-existing pieces that are
known to be in different keys. The concatenation
takes place in the time domain, so that the tem-
poral “blurring” effect of the CENS representation
smooths the chroma trace of the transition between
the concatenated excerpts. The pieces that we used
are piano performances of the 24 fugues from J. S.
Bach’s Well-Tempered Clavier, performed by John
Lewis Grant and available at the Piano Society Web
site (Stöhlbrand, Helling, and Wallaart 2011). These
fugues are composed in the 24 major and minor
keys. The choice to utilize these pieces in piano
recordings was based on several criteria that have
to do with the motivation and aims of this work.
First, large parts of these pieces were composed
in a single key, and (in the edition we consulted)
the key is stated in the title. This facilitated the
key labeling process. Second, the fugues of Bach
incorporate passages of ambiguous tonality that are
not clearly composed in a single key, introducing an
effect of “tonal noise” in the artificial data set. This
amplifies the realism and increases the difficulty of
key separation. Finally, because this work does not
focus on audio-to-symbolic music interpretation,
we choose piano recordings, which offer a relatively
clear high-level transcription. Future work, how-
ever, should incorporate a more diverse collection
of musical styles.

More specifically, to construct an artificial
piece that changes from key A to key B, we
concatenate two parts, the one from the fugue
composed in key A and the other from the fugue
in key B. In order to have an indication that the
parts chosen are mostly composed in the keys
denoted by the fugue title, we demand that this part
matches a key template of the intended key, using
the templates proposed in Temperley (2006) and
linear correlation (Temperley 2004) as a matching
technique. The fact that these parts may elaborate
more than one key (template matching is not perfect)
increases the difficulty of key separation by imposing
the effect of tonal noise mentioned earlier. Thus,
the robustness of the subject methodology may be
tested on a variety of musical tasks captured in
these “noisy” artificial data sets. The concatenation
of more than two parts would result in a multiple
key-change scenario. The length of the parts under
concatenation would also vary, depending on the
needs of the experimental procedure.

The approach we decided on was to give each
of the concatenated parts an equal duration of
30 seconds. We constructed multiple key-change
scenarios: two keys of the same mode (but different
tonic), two keys with different mode (and possibly
different tonics), and two to five keys with random
changes of tonic and mode. In general, the effective-
ness of a key-change detection algorithm may vary,
depending on the distance of the modulating keys.
For the clustering process there is no dependence on
the temporal sequence of keys, as long as within-key
contiguity remains intact. To provide information
about the effectiveness of the proposed strategy in
certain modulations, we also focus on the results
provided by key changes of varying distance, both
with and without change of mode. The notion of
distance between keys is discussed in greater detail
later in this article.

The Artificial Data Sets

Three types of artificial data sets were constructed.
The first contains pieces that each have one mod-
ulation between two keys of the same mode; col-
lectively the set contains all possible modulations
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between keys of the same mode. Because our ap-
proach is independent of the order of key change,
only six modulations need to be monitored here,
from one to six semitone steps. For example, a step
of seven semitones from C major to G major would
be the same as a step of five semitones from G major
to C major. The artificial data set of transitions
between keys of the same mode is denoted as A1

same.
For each of the six possible modulations starting
from each of the 24 keys, we randomly chose three
pairs of excerpts from the corresponding fugues, thus
the A1

same incorporates 24 · 6 · 3 = 432 test pieces.
The second artificial data set includes pieces that

have a single modulation between keys of different
mode. Given the independence of key order, we
choose initial segments that belong to a major fugue
and concluding segments that belong to a minor
one. We construct three pieces for each of the twelve
possible semitone step transitions and for all twelve
possible initial keys. We denote this data set as
A1

different, and it contains 12 · 12 · 3 = 432 test pieces.
The third artificial data set comprises pieces with

one to four key changes, thus with at least two and
no more than five keys. The possible combinations
of keys in the multiple key-change scenarios for
three keys and above are overwhelming. So we
create concatenations of parts from random keys
with the constraint that two successive parts should
not be in the same key. The sets that include
these pieces are denoted as An

random, n ∈ {1, 2, 3, 4},
where the superscript n denotes the number of key
changes. For example, the set of pieces with three
key changes is denoted as A3

random. Each one of the
sets An

random, n ∈ {1, 2, 3, 4} includes 100 artificial
pieces. Thus, we have 300 artificial pieces with
more than one key change and an additional set
of 100 pieces with a single random key change.
One may ask why we would need the A1

random set,
because we have already constructed A1

same and
A1

different. The reason is that we first experiment on
finding the optimal T (size of the time window) and
m (minimum threshold) values for the A1

random and
then use these values for analyzing the behavior of
our method under the tonal conditions imposed by
the A1

same and A1
different data sets.

The data sets are available online at cilab.math
.upatras.gr/maximos/keyChangeDatasets.

Results

In this section we report results on three different
types of data. First, we present results on artificial
pieces with one to four modulations between
random different keys (An

random, n ∈ {1, 2, 3, 4}). Then
we report the results on artificial pieces with
single key modulations and with simulations for
transitions between keys with and without change
of mode (A1

same and A1
different). Finally, we report on

results obtained for the six real-world pieces (R).

Accuracy Metrics and Parameter Estimation

For measuring the accuracy of key segmentation,
two criteria are used that are widely used in
music information retrieval (MIR): precision and
recall. Precision describes the number of correctly
identified positions of key change as a percentage all
the positions identified. Recall describes the number
of correctly identified positions, as a percentage of
the the annotated “ground truth” positions of key
change. Strictly speaking, if L is the set of transitions
located by the algorithm and C is the set of the
annotated transitions, then precision is computed
by p = |L ∩ C| / |L| and recall by r = |L ∩ C| / |C|,
where |X| denotes the number of elements in set X.

A good result is described by combined high
values of both precision and recall. In the presen-
tation of the following results we consider the
term accuracy, which is the f -measure, denoted
by fm, provided by precision and recall. Accuracy
is computed as fm = 2pr/(p + r ). We consider a
position of key change to be detected correctly if it
is located within 5 sec before or after the actual key
change. The margin of 5 sec is comparable to the
ones used in previous works (Chai and Vercoe 2005;
Papadopoulos and Peeters 2009).

The simulations on the An
random random and

R data sets are conducted for T values equally
spaced from 50 to 300 frames at increments of
25 frames, and for m ranging from 0.9 to 1.9 at
increments of 0.1. The simulations use the k-means
classifier and assume three to five clusters. All
presented results are the mean values over ten
different clustering simulations with different
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Table 2. Accuracy (f-measure) of Results for the An
random Data Set

Key Changes (n) Clusters Dimensions Accuracy Precision Recall T m

Chroma
1 5 – 0.9700 0.9700 0.9700 275 1.0
2 3 – 0.9233 0.9367 0.9100 250 1.0
3 4 – 0.8677 0.8825 0.8533 250 1.0
4 4 – 0.8421 0.8952 0.7950 275 1.0

PCA
1 5 5 0.9800 0.9800 0.9800 275 1.0
2 3 4 0.9357 0.9467 0.9250 250 1.0
3 4 6 0.8716 0.8835 0.8600 250 1.0
4 4 5 0.8459 0.9005 0.7975 275 1.0

NMF
1 5 3 0.9600 0.9600 0.9600 275 1.0
2 3 4 0.9109 0.9383 0.885 275 1.0
3 4 3 0.8524 0.8955 0.8133 275 1.1
4 5 4 0.8070 0.8303 0.7850 250 1.2

The table shows results when requiring different numbers of clusters, with clustering on the chroma space and on spaces of
reduced dimensions with PCA and NMF.

random centroid initialization. It should be also
noted that in the present work we do not aim to
provide the optimal parameters for the model under
discussion. We aim, rather, to explore the quality of
the results obtained with the utilization of different
parameters. Thus, the presented results provide a
coarse description of the potential of our strategy
and allow for further analysis of its effectiveness
over different tonal conditions.

Artificial Key Change Scenarios

The synthesis of the artificial data sets has been for-
mulated in such a way that a thorough examination
of the strategy under investigation can be carried out
for almost any key-change scenario. We analyze the
responses of our clustering model under two groups
of experimental procedures. The first one examines
the accuracy when a varying number of key changes
occur. The second one examines the accuracy when
only a single change occurs.

Random Number of Key Changes

Table 2 presents the accuracy of the proposed
strategy for the An

random, n ∈ {1, 2, 3, 4} data sets when

clustering is performed on the chroma space and
on spaces with reduced dimensions, using either
PCA or NMF. In the latter two cases, the results
that we demonstrate are the best ones among all
possible numbers of reduced dimensions, from one
to six. The column Clusters shows the number of
clusters used. In the case of the single key change,
all clustering schemes provided better results when
five clusters were required. In the case of two
key changes, the best clustering performance was
achieved when three clusters were assumed. In
the cases of three and four key changes, the best
performance was achieved when four clusters were
assumed, except in the case of four key changes with
clustering using NMF. Here, an extremely small
improvement in accuracy (0.0004) was achieved by
using five clusters. The fact that using three and
four clusters produces the best results in the cases
of two and three key changes, respectively, appears
to be related to the number of keys that take part
in the artificial pieces. When the piece has two key
changes it includes three keys, which seem to be
better separated with the use of three clusters. The
same happens in the case of three key changes with
the use of four clusters.

On the other hand, in the case of four key changes
(i.e., where five keys are included in a composition),
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Table 3. Results for the Artificial Data Sets A1
different and A1

same

A1
different A1

same

Semitone Steps Common Tones Accuracy Common Tones Accuracy

1 3 (3) 1 2 1
2 6 (5) 0.8056 5 0.9684
3 2 (3) 1 4 1
4 6 (5) 0.8889 3 1
5 3 (4) 1 6 0.8991
6 4 (4) 1 2 1
7 5 (4) 0.9444 – –
8 2 (3) 1 – –
9 7 (6) 0.7698 – –

10 2 (3) 1 – –
11 5 (4) 1 – –
12 (0) 4 (5) 0.9722 – –

Correlation: −0.8365 (−0.8199) Correlation: −0.8681

The results displayed here are for a single key transition between keys of different and same modes respectively, with
T = 275 and m = 1.0.
The term semitone step refers to the distance between the tonic notes of the two keys, in semitones. The number of
common tones between modulating keys is strongly negatively correlated with accuracy. For the major to harmonic minor
transition study, the number of common tones and the respective correlation are demonstrated in parentheses. For further
analysis on the number of common tones between transitions, the reader is referred to Table 4.

it seems that five clusters cannot separate all five
tonal regions as effectively as four clusters can. In
fact, these five tonal regions cannot be so clearly
separated in any way, because if we try to create
every possible combination between five keys, at
least two of them will share at least six tones. This
means that the chroma traces of at least two keys
will be almost identical, because at least six out of
their seven tones will be the same, producing an
effect that could be described as tonal saturation.
In this case, it seems that the algorithm works
better when these two closely related keys are
considered as a single key. It should be noted that
there are combinations of four keys where the
maximum number of common tones between all
key pairs is four, something that does not create the
aforementioned tonal saturation effect so intensely.
The way that the number of common tones affects
the performance of our approach is analyzed in the
next paragraph, where the accuracy of single changes
between keys with different number of common
tones is measured.

Clustering in spaces of reduced dimensions with
PCA has a mean accuracy ( f -measure) fm = 0.8883,
and it slightly outperforms clustering in the chroma
space (0.8793) and NMF (0.8726). Concerning the
number of dimensions that provided the best results
for PCA and NMF, there is no clear pattern that
indicates the superiority of a specific number
of dimensions. On the other hand, the size of
the window (T) that provided the best results
was always between 250 and 275. The minimum
gradient threshold (m) was mostly at 1.0, except for
two cases where the values 1.1 and 1.2, respectively,
produced better results. It should be noted that in
the case of the artificial pieces the value of T is
related to the length of the concatenated parts (300
frames = 30 sec). Similar results were obtained for
the real-world pieces.

One Key Change

The results of the data sets A1
same and A1

different
are shown in Table 3. Because these results are
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Table 4. The Number of Common Tones Between
Two Keys

Semitone Step Common TonesCircle of Fifths
Distance (d) Major Minor Natural Harmonic

0 0 9 7 6
1 5 2 6 5
2 10 7 5 4
3 3 0 4 5
4 8 5 3 4
5 1 10 2 3
6 6 3 2 3
5 11 8 2 3
4 4 1 3 3
3 9 6 4 4
2 2 11 5 4
1 7 4 6 5

The keys are ordered in clockwise traversal of the circle of fifths.
In the first column, the distance (d) is measured as the minimum
distance when traversing the circle of fifths clockwise or
counter-clockwise. In the second and third columns, distance is
measured in semitones from the tonic of the reference major
scale (column 2) or its relative natural minor scale (column 3).
The fourth column indicates the respective number of common
tones if both keys are major or both are natural minor. The
number of common tones between two keys is 7 − d, except
when d = 6. This formula results in a symmetry of the number
of common tones, when keys are ordered by semitone distance.
Therefore, measurements for rows 8–12 in column 4 of Table 3
are omitted, because they are mirrored by rows 2–6. The fifth
column indicates the number of common tones if the second
key is considered to consist of the notes of the relative harmonic
minor scale.

intended to provide insights into the effectiveness
of the proposed approach in all possible single-
key-change scenarios, we provide results only for
clustering on the chroma space, using five clusters.
A presentation of the results provided with PCA
and NMF is omitted. These latter results are
similar to the ones presented here. For both sets
the values T = 275 and m= 1.0 have been used,
as indicated by the results of A1

random in Table 2,
when clustering is performed on chroma space.
Table 3 also illustrates the number of common
tones between the keys of each transition, and
Table 4 displays all common tones between major
and minor (natural and harmonic) keys when they

are ordered by traversal of the circle of fifths.
For major-to-minor transitions we distinguish
two cases, one for natural minor and one for
harmonic minor. The strong negative correlation
(−0.8681 for A1

same and −0.8365 [−0.8199] for
A1

different) between the number of common tones
and accuracy validates the hypothesis that poorer
performance is expected for less distant keys
(i.e., keys that have a larger number of common
tones).

The lowest accuracy among all single-transition
scenarios is the transition between relative natural
minor and major, which is denoted as the nine
semitone step transition in Table 3. This is an
expected result, because all seven tones are common
in both keys that form the transition, forming
a strong tonal saturation effect, as mentioned
earlier. An additional comment should be made
about the difference in accuracy between the
two-semitone and four-semitone transitions of
the A1

different transitions in Table 3. Because both
transitions lead to keys that share the same number
of common notes, one might expect similar levels
of accuracy. This difference is probably a result
of the different roles that the common notes
play in these two pairs of keys. The common
tones in the two-semitone step transition seem to
incorporate musical coherence between the keys
under modulation, probably reflecting the ii → I
cadence.

Real-World Pieces

The best results provided by the T and m values
examined for each clustering space in the case of
real pieces, R, are displayed in Table 5. They are
grouped according to the space in which cluster-
ing is performed with the k-means algorithm. The
best segmentation performance was achieved for
clustering in the chroma space, using four clusters.
The accuracy achieved for all the examined T and
m values, together with label accuracy (discussed
later), are exhibited in Figure 9 (in a subsequent
section). When clustering in the chroma space uses
four clusters, for a large time window (T = 275)
and a low minimum absolute gradient threshold
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Table 5. Accuracy (f-measure) for the R Data Set

Clusters Dimensions Accuracy Precision Recall T m

Chroma Space
3 – 0.7340 0.6409 0.8583 175 1.1
4 – 0.8601(0.16) 0.8619 0.8583 275 1.1
5 – 0.8292 0.8290 0.8167 275 1.1

PCA
3 2 0.7609 0.8333 0.7000 250 1.4
4 6 0.8252(0.16) 0.7944 0.8583 275 1.1
5 3 0.8108 0.7750 0.8500 225 1.4

NMF
3 1 0.7764 0.8714 0.7000 175 1.2
4 4 0.7628 0.7589 0.7667 150 1.5
5 5 0.7896(0.26) 0.7643 0.8167 275 1.0

The table shows results when requiring different numbers of clusters, with clustering on the chroma space and on
spaces of reduced dimension with PCA and NMF. Best results are highlighted in boldface.

(m= 1.1), an f -measure of 0.8601 was reached, with
a precision of 0.8619 and recall at 0.8583. Both
dimensionality-reduction techniques failed to yield
better results for the R data set than the results
achieved in the chroma space, regardless of the
number of reduced dimensions. A combination of
inversely related T and m values (i.e., large T with
small m and vice versa) seems to produce better
segmentation results. This relation that is demon-
strated graphically with the white diagonal line in
Figure 9a.

Comparison with Other Methodologies

To better understand the capabilities of the proposed
methodology, we use a comparison with some basic
types of algorithms for detecting key changes. These
include a typical template matching approach and
two HMM models: a basic HMM scheme and the
approach presented in Chai and Vercoe (2005). The
template matching algorithm assigns to each frame
the key with the highest correlation to the respective
key template proposed in Temperley (2006). Both
HMM models incorporate an initial prior probability
for each key (Pr ), a transition probability matrix
between keys (Tr ), and a probability measure
that associates each emission (frame) with all

keys. For both HMM approaches, the initial prior
probability indicates the probability that a piece
begins with a certain key. This probability is
adjusted as the uniform distribution among all
24 keys.

The transition probability matrix is different
in the two HMM approaches. The basic HMM
technique incorporates a transition matrix that
assumes a higher probability for a key not to
change, whereas equal probabilities are assumed
for all other possible key transitions. This approach
yields a transition matrix with larger values in the
diagonal elements and smaller in the off-diagonal el-
ements. Among several value combinations tested,
the ones that produced the best results are diag-
onal values of 0.9886 and off-diagonal values of
0.0004. Furthermore, the probability that relates
each frame to a key is obtained by correlation-
template matching (using the Temperley templates)
with a linear transformation of the [−1, 1] cor-
relation range to [0, 1]. The approach taken by
Chai and Vercoe also assumes a greater probabil-
ity that a key does not change, reflecting larger
diagonal elements for the transition probability
matrix, but does not consider equal probabili-
ties for changes between same and different key
modes (i.e., major and minor). This results in
a transition probability matrix of the following
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Table 6. Comparison of Results Achieved by our Approach and the Other
Methodologies Considered in this Article

Accuracy Precision Recall

Template based 0.1063(0.06)+ 0.0571 1.0000
Simple HMM 0.7000(0.31)= 0.6319 0.8417
Chai HMM 0.6281(0.27)+ 0.5784 0.7417
Clustering 0.8601(0.16) 0.8619 0.8583

The table displays segmentation accuracy (f-measure), precision, and recall for our approach and
the other methodologies considered, while using the R data set. Standard deviation across all
pieces is noted in parentheses, with the + and = symbols indicating statistically significant
differences with the clustering strategy for α = 0.15. The best results are highlighted in boldface.

form:

Tr =

12 major︷ ︸︸ ︷ 12 minor︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b · · · b d c · · · c

b a · · · b c d · · · c
...

...
. . .

...
...

...
. . .

...

b b · · · a c c · · · d

d c · · · c a b · · · b

c d · · · c b a · · · b
...

...
. . .

...
...

...
. . .

...

c c · · · d b b · · · a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

12 major

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

12 minor

where a = d = 0.996 · (1 − 10−20) and b = c = 0.004 ·
10−20, values that are seen to produce the best results
in Chai and Vercoe (2005). The formulation in that
study incorporates two transition matrices, one for
key prediction (12 × 12) and one for mode prediction
(2 × 2). Since we consider these transitions to be
independent, we have merged these two matrices
in a single 24 × 24 matrix that includes the product
of the respective probabilities. The elements on the
diagonal 12 × 12 blocks of the matrix correspond
to the probabilities of modulations between keys
of the same mode, while the off-diagonal blocks
correspond to modulations from major to minor or
vice versa. Each emission (frame) is associated with
a key using its cosine distance with a binary key
template. A binary key template is a vector with
twelve elements that incorporates unit values for
the tones that are active in the respective key and

zeros for the inactive tones. The cosine distance is
measured as dcos =< a, b > /(||a|| ||b||), where < ·, · >

denotes the inner product. Cosine distance returns
values in the range [0, 1].

Table 6 compares our proposed methodology with
the the other methodologies studied in this article,
in terms of segmentation accuracy on the R data set
of real-world pieces. The clustering strategy provides
the best accuracy with a considerably higher preci-
sion than the other techniques. The template-based
approach yields the absolute recall score, but with
an extremely low precision. This fact indicates that
the technique provides a profusion of segmentation
points, most of which are false. The recall values are
similar for the HMM techniques and ours. Further-
more, to evaluate whether the differences between
the f -measure results of the proposed and the other
techniques are statistically significant, we apply
a two-sided Wilcoxon signed-rank test (Wilcoxon
1945). The null hypothesis in the test is that the
f -measures compared are independent samples
from identical continuous distributions with equal
medians. The null hypothesis is rejected at the
15% significance level for the Chai/Vercoe HMM
approach and at the 1% level for the template-based
approach, while it was not rejected for the simple
HMM approach.

Key Segmentation versus Key Label Accuracy

Our method has the goal of providing an accurate
segmentation of a piece at locations where key
changes occur. The correct key labeling of the
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Figure 9. Graphical
representation of (a) fm

and (b) l for the R data set
and for all tested T and m
values, when clustering is
performed on chroma

space requiring four
clusters. The diagonal in
(a) shows the combina-
tions of T and m for which
better results are provided.

segmented parts is another major area of research.
Table 7a shows two results obtained by clustering
in the chroma space requiring four clusters on the
R data set, and the labeling accuracy achieved by
the other techniques examined. For the clustering
setup, different combinations of T and m values have
been examined, and the resulting segments have
been labeled by matching the templates proposed
by Temperley (2006) with linear correlation. The
labeling accuracy of a piece is measured as the
fraction of frames that are labeled with the correct
key divided by the total number of frames. This
value is denoted by l. The best fm and l were
produced for different pairs of T and m values.
The best labeling results yielded by the clustering
strategy slightly outperform the ones performed
by other techniques and are very similar to the
ones produced by the simple HMM approach. The
fact that different T and m values give best fm and
l results seems counterintuitive, because better
segmentation is expected to lead to a better labeling
accuracy. In some cases, however, it seems that
labeling accuracy (l) is relatively independent of
segmentation accuracy ( fm). This is evident in the
graphical representations in Figures 9a and 9b, where
higher fm is depicted for T and m combinations
different from the ones that provide higher l values.

The last comment is further amplified by the
findings in Table 7b, which presents the correlation
between f -measure and label accuracy for different
values of T and m. This reveals that label and

segmentation accuracy are weakly correlated in
some cases, a fact that brings up the question of
which measure is more important. Although it
seems reasonable that bad segmentation should
result to bad labeling, the paradigm of the template-
based approach provides a counterexample. As seen
in Table 7a, the template-based approach gives poor
segmentation with moderate labeling accuracy. This
is an extreme example of over-segmentation with
relatively accurate key matching. This is probably
caused by segmenting small parts and mislabeling a
small portion of them, an action that yields many
false-positive segments. At the same time it results
in relatively few falsely labeled parts, a fact that
strongly affects segmentation accuracy but affects
labeling accuracy to a smaller extent.

Conclusions

This article has introduced a novel method based
on clustering for locating positions of key change in
recordings of musical audio. This method relies only
on geometric properties of musical segments within
the chroma space. Its effectiveness is based on the
temporal contiguity of successive segments. The
temporal contiguity imposed by different cluster
combinations within a time window T has been
measured with the formulation of two curves,
namely the accumulation curve and the gradient
difference curves. Among all the GDCs, the values

Kaliakatsos-Papakostas et al. 67



Table 7. (a) Best fm and l and (b) correlation of fm and l

T m fm l T m Correlation

Proposed, Best fm 275 1.1 0.8601 0.6457 275 1:0.1:1.9 0.17
Proposed, Best l 150 1.3 0.6981 0.7229 150 1:0.1:1.9 −0.18
Template based — — 0.1063 0.4916 50:25:275 1.1 0.50
Simple HMM — — 0.7000 0.7096 50:25:275 1.3 0.69
Chai HMM — — 0.6281 0.5222

(a) Best fm and l (b) fm and l correlation

(a) Shows fm and l among all the examined approaches. (b) Displays correlation of fm and l for various
values of T and m. The notation α : x : β represents the set of numbers from α to β with an increment
step of x.

that exceeded a predefined threshold m provided
indications about a key change. Well chosen T and
m values allow the accurate detection of arbitrary
numbers of key changes.

For assessing the performance of our method we
have not only used real-world compositions, but
we also constructed artificial data sets consisting
of pieces that include a predefined number of key
changes. The advantage offered by artificial data sets
is the possibility of constructing arbitrarily large,
automatically annotated data sets. Artificially com-
posed pieces in these data sets have predefined struc-
tures, and thus constitute test cases that potentially
cover a wide range of possible key-change scenarios.
The proposed key-segmentation technique has not
only been tested on artificial data sets—a procedure
that highlighted its strengths and weaknesses in
certain musical circumstances—but has also been
tested on real-world pieces with promising results.
More specifically, with the real-world pieces the ac-
complished segmentation accuracy (0.8601) is better
than the one demonstrated by HMMs (around 0.70).
Results have also been calculated when clustering
is performed on spaces of reduced dimensions with
PCA and NMF for all data sets. Here, no overall
improvement could be found.

It is evident that a greater number of real-world
pieces is needed to reach stronger conclusions.
A large annotated data set, including pieces from
different genres, would aid the MIR community
in developing a more solid basis for the evaluation
of key-change detection algorithms. The artificial
pieces that we used in this work should not be

considered a substitute for complete compositions.
Rather, they are used as an experimental procedure
that helps to reveal the behavior of the model under
certain tonal conditions. The formulation of proper
settings for key-change scenarios with artificial
pieces would most likely lead to useful observations
about the functionality of a method, even if the
results are not exactly the same with real-world
pieces.

Among the future steps for improving the pre-
sented work is the fine-tuning of estimates for all
the parameters incorporated in our methodology
(i.e., T, m, and number of clusters, or number of di-
mensions in the case of PCA and NMF) for different
data sets. The results presented here indicate that
the combination of a large time window (T ∼ 275
frames, 27.5 sec) and a low threshold value (m∼ 1.1)
produces optimal results for the examined data set
of real pieces. The use of different clustering algo-
rithms could also improve the overall performance
of the initial clustering stage. Moreover, a clustering
algorithm that automatically adjusts the number
of clusters could provide better results, since the
number of expected clusters seems to have an im-
pact on segmentation accuracy, as shown in Table 2.
Furthermore, different algorithms for measuring the
temporal contiguity of clusters can be proposed.
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