
SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 93–107

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION∗

D. J. KAVVADIAS† , F. S. MAKRI† , AND M. N. VRAHATIS†

Dedicated to the memory of Árpád Elbert (1939–2001)

Abstract. We present a new bisection based method for counting and computing roots of a
function in a given interval. Our method is focused on very large problems, i.e., instances with the
number of roots of the order of hundreds. The method draws its power from the fact that the roots
are expected to be many, and is able to discover a large percentage of them very efficiently. Its
main advantage, apart from its efficiency, is the fact that it requires only the sign of the function
at a certain point and not its actual value. Also, its simplicity makes it a suitable preprocessing
step for reducing the size of the problem, prior to more robust but also more demanding methods.
The algorithm is accompanied by a probabilistic analysis of its behavior, which shows that a simple
existence criterion like Bolzano’s rule can be a powerful tool in the zerofinding process.

Key words. zerofinding, expected behavior, bisection based methods, counting and computing
the roots of a function, very large problems, Riemann’s hypothesis, zeta-function, special functions,
Elbert’s conjecture

AMS subject classifications. 65H05, 65Y20

DOI. 10.1137/S1064827502406531

1. Introduction. In this paper we present a bisection based method for the
problem of counting and computing the simple roots of a single equation:

f(x) = 0(1.1)

in a given interval (a, b) where f : [a, b] ⊂ R → R is continuous. The only computable
information required by the proposed method is the algebraic signs of the function
values. The method is focused on very large instances of the problem (with roots in
the order of hundreds or more).

Pieces of information concerning all of the roots (or a large fraction of them),
as well as all the extrema of a function f : [a, b] ⊂ R → R, are of major importance
in many different fields in science and technology such as mechanics, physical sci-
ences, statistics, and operations research. For instance, the problem of locating local
maxima and minima of a function (or zeros of the derivative of a function) from
approximate measurement results is vital for many physical applications. In spec-
tral analysis, chemical species are identified by locating local maxima of the spectra.
In radioastronomy, sources of celestial radio emission and their subcomponents are
identified by locating local maxima of the measured brightness of the radio sky. Ele-
mentary particles are identified by locating local maxima of the experimental curves
(for a discussion of the importance of the above mentioned problems for applications,
see [28]). The importance of the problem has attracted the attention of many research
efforts, and as a result many different approaches to the problem exist. Regarding
special functions, for example, Lozier [17] and Lozier and Olver [18] have provided a
survey of algorithms and software for the numerical evaluation of special functions.

∗Received by the editors April 30, 2002; accepted for publication (in revised form) November 4,
2004; published electronically August 17, 2005.

http://www.siam.org/journals/sisc/27-1/40653.html
†Department of Mathematics, University of Patras, GR–26110 Patras, Greece, and University of

Patras Artificial Intelligence Research Center, University of Patras, GR–26110 Patras, Greece (djk@
math.upatras.gr, makri@math.upatras.gr, vrahatis@math.upatras.gr).

93

94 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

They have pointed out that the available software for special functions (including the
zerofinding approach) exhibits gaps and defects with respect to the needs of mod-
ern high-performance computing. In particular, the software regarding the zeros of
Bessel functions has a low cumulative score as reported in [17, p. 351], and thus the
computation of the zeros of special functions is an area of particular need.

Apart from its practical significance, the problem of computing zeros of a func-
tion poses theoretical challenges that have attracted the attention of the scientific
community for many years. A characteristic paradigm is the famous Riemann’s hy-
pothesis, which is one of the main open problems of mathematics (and was included
by Hilbert as Problem No. 8 in his famous 1900 list of 23 problems). According to
this hypothesis, all complex roots s1 = �(s1) + i�(s1), s2 = �(s2) + i�(s2), . . . , of
Riemann’s ζ-function (zeta-function)

ζ(s) =

∞∑
n=1

1

ns

(i.e., the values for which ζ(sk) = 0) are located on the straight line �(sk) = 1/2
in the complex plane (except for the known zeros which are negative integers). It is
known that the imaginary parts of the roots of Riemann’s ζ-function are uniformly
distributed. Riemann’s ζ-function has proved to be of fundamental importance not
only in the theory of prime numbers, but also in the higher theory of the Gamma-
function and allied functions. Numerical computation of the roots of the ζ-function
in a specific interval may gather evidence that hopefully will help in resolving the
problem.

In addition, the task of massive calculation of zeros of functions in one variable also
emerges naturally in recently posed problems. Such a problem is Elbert’s conjecture.
More specifically, in [3, p. 75] Elbert pointed out that the density property of the zeros
of Bessel functions plays an important role, and better insight into the distribution of
these zeros is required (see also [11, 12], where Joó dealt with oscillation of circular
membranes). Elbert considered the set

S =
∞⋃

n,k=1

{jnk} =

∞⋃
j=1

{xj},

where jnk is the kth positive zero of the Bessel function of first kind, Jn(x), and
x1 < x2 < · · ·, and he conjectured that [3]

lim sup
j→∞

xj(xj+1 − xj) < ∞.

For results on the massive calculation and more information on the values xj(xj+1 −
xj), see [23].

The proposed method takes advantage of the abundance of roots, in an attempt
to very inexpensively (in terms of computing resources) locate a large number of roots,
thus reducing the size of the problem. The algorithm almost “blindly” searches for
roots by employing only Bolzano’s existence criterion (see next section). It turns out,
however, that even this simple rule is sufficient to guide the algorithm in discovering
a large proportion of the total set of roots. Thus with very few sign determinations,
the problem can be considerably reduced. But this is already more than could be
expected from such a simple method: While new roots are being discovered, the cost

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 95

gets increasingly high to a point where it becomes unprofitable to continue. The
algorithm stops when a predetermined fraction of the roots has been discovered. This
requires a method of estimating the number of roots as the algorithm proceeds. After
the termination of the algorithm the unsearched parts of the interval must be searched
by a different, more demanding, method. The main advantage of the proposed method
is its simplicity, which follows precisely from the expectation that with high probability
even a simple search for a root will prove successful due to the abundance of roots.

In this paper we also study analytically the expected behavior of the method and
give theoretical justification of its good performance.

We mention that there has been a surge of interest concerning the expected behav-
ior of numerical algorithms [6, 7, 8, 20, 24, 27] and [13, 14]. The traditional approach
in evaluating a numerical method usually involves a number of experiments on a num-
ber of inputs, either of individual interest or randomly constructed by altering certain
parameters of the problem. Very few numerical methods exist that are accompanied
by a robust analysis of their expected behavior.

A by-product of the algorithm is an estimation of the number of roots in an
interval. This problem is interesting on its own, either to a priori evaluate the size of
a problem or, as in this case, to establish a stopping criterion for the method.

Other approaches that have been used, aiming to find all solutions of systems of
equations as well as the global optimum of a function, are based on interval analysis
(see, e.g., [1, 9, 15, 19]). The corresponding existence tool of these methods is the
availability of the range of the function in a given interval, which can be implemented
using interval arithmetic, although range overestimation may occur, and hence effi-
ciency problems must be resolved. This tool will, with mathematical rigor, give either
a “no” or an “unknown” answer. The former case proceeds by subdividing the interval
into two halves and employing additional criteria. The way the evaluation of functions
is encoded influences the answer, which is usually pessimistic (i.e., “unknown”). In
the vicinity of a root, interval Newton methods (see, e.g., [15, 19]) may, however, with
slightly more computational effort, give an unambiguous “yes” answer.

In the next section we give some background material on the bisection method, as
was modified in [29, 30]. In section 3 we briefly discuss the main steps of the algorithm
to present a (central to our analysis) probabilistic result which follows in section 4.
Then in section 5 we give a method for estimating the total number of roots. A more
detailed description of the method, which also refers to the theoretical analysis, is
presented in section 6. We end in section 7 by presenting some conclusions and future
work.

2. Background material. A simple oracle on the existence of a solution of
f(x) = 0 in some interval (a, b) where the function f is continuous in [a, b] is the
following criterion:

f(a) f(b) < 0 or sgn f(a) sgn f(b) = −1,

where sgn is the well-known three-valued sign function. This criterion is known as
Bolzano’s existence criterion. (For a generalization of this criterion to higher dimen-
sions, see [31].) Note that this oracle may introduce a one-sided error; i.e., a positive
response means that at least one root exists, but a negative response may correspond
to the existence of an even number of simple roots.

The simplicity of this criterion is what makes it attractive even though it has the
above disadvantage. Thus it will be our main tool in what follows. More elaborate
relations can give more information on the existence of roots. For example, interval

96 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

analysis uses the range of the function to decide whether a root exists (see, e.g., [15,
19]). Another approach is given in [16]. An even more complicated oracle which gives
the exact number of roots N r is based on topological degree theory using Kronecker’s
integral on a Picard’s extension [10, 21]. This oracle was used in [14] as part of the
first phase of an algorithm for the isolation of all of the simple roots of a function
f(x) in an interval (a, b) and returns the number of roots N r using the formula

N r = −γ

π

∫ b

a

f(x)f ′′(x) − f ′2(x)

f2(x) + γ2f ′2(x)
dx +

1

π
arctan

(
γ [f(a)f ′(b) − f(b)f ′(a)]

f(a)f(b) + γ2f ′(a)f ′(b)

)
,(2.1)

where γ is an arbitrary small real positive constant, i.e., γ � 1. (For a variation of
the CPU time for the computation of N r versus γ, see [36].) It was explicitly shown
by Picard [21, 22] that relation (2.1) is independent of the value of γ.

The algorithm of [14] uses bisection in its second phase to compute the roots.
Specifically, it uses the following simplified version described in [29]:

xi+1 = xi + c sgnf(xi)/2
i+1, i = 0, 1, . . . ,(2.2)

where c = sgnf(a) (b − a). The sequence (2.2) converges to a root r ∈ (a, b) if for
some xi,

sgnf(x0) sgnf(xi) = −1, for i = 1, 2,

Furthermore, the number of iterations ν which are required to obtain an approximate
root r∗ such that |r − r∗| � ε for some ε ∈ (0, 1) is given by

ν =
⌈
log(b− a) ε−1

⌉
,(2.3)

where the logarithm in the above relation and also in the rest of the paper is taken
with base two. Instead of the iterative formula (2.2) we can also use the following
one:

xi+1 = xi − c sgnf(xi)/2
i+1, i = 0, 1, . . . ,(2.4)

where c = sgnf(b) (b− a).
The reason for choosing the bisection method is that it always converges within

the given interval (a, b) and is a globally convergent method. Moreover it has a great
advantage since it is worst-case optimal; i.e., it possesses asymptotically the best pos-
sible rate of convergence in the worst case [25, 26]. This means that it is guaranteed to
converge within the predefined number of iterations, and, moreover, no other method
has this property. Therefore, using relation (2.3) it is easy to have beforehand the
number of iterations that are required for the attainment of an approximate root to
a predetermined accuracy. Finally, the bisection method requires only the algebraic
signs of the function values to be computed, as is evident from (2.2) or (2.4); thus
it can be applied to problems with imprecise function values. As a consequence for
problems where the function value follows as a result of an infinite series (e.g., Bessel
or Airy functions), it can be shown [35, 37] that the sign stabilizes after a relatively
small number of terms of the series and the calculations can be sped up considerably.

3. A high level description of the method. Here is an informal description
of the algorithm. For the detailed algorithm, see subsection 6.1. The algorithm
gets as input the fraction of the roots that are required to be computed and begins by

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 97

subdividing the interval into two equal subintervals. Alternatively, it may get as input
a predetermined “budget” of function evaluations. The main body of the algorithm
consists of three steps.

Step 1. A number of subintervals stored from previous steps, enter Step 1. These
subintervals resulted from dividing the original interval, and at the first iteration these
are just the two halves mentioned above. We determine the sign of the function at
the endpoints of these subintervals. Depending on the number of simple roots in
each subinterval, its endpoints will have the same signs (in the case of even roots)
or opposite signs (in the case of odd roots). We therefore have certainty on the
existence of at least one simple root in an interval with opposite signs, so we proceed
in discovering a root in those intervals using the bisection method.

Step 2. Note that at this point our interval has been divided into subintervals
whose endpoints are of the same sign. These subintervals are kept for further exami-
nation if our stopping criterion has not been fulfilled yet. We propose two variants of
a stopping criterion. The first (which we consider to be more interesting and suggest
as the main variant of the algorithm) requires that a fraction of the total number of
roots must be discovered before terminating the algorithm. The second terminates
the algorithm if a predefined budget of function evaluations has expired.

Step 3. If the stopping criterion has not been fulfilled, we subdivide the set of
subintervals with maximum length (among all subintervals that have been stored)
into two halves and go back to Step 1. Otherwise we output the discovered roots and
halt.

Observe that the algorithm uses the function only to compute its sign at specific
points during its execution. Thus, if the sign is available by other means, apart
from a direct calculation (and this mainly refers to an inexact calculation using some
kind of approximation of the function value), the algorithm can still run without any
problem [4, 5, 35, 37]. As a result, the actual problem that the algorithm solves is
that of discovering N hidden points in the interval, using only an oracle that answers
queries of the following form: “Is the number of points in a specific subinterval (a, b)
odd or even?”

4. The distribution of odd subintervals. In this section we find the prob-
ability of having k specific subintervals containing an odd number of roots. The
probability space on which we make our calculations and the whole framework can
be found in [14]. We briefly mention here that we view each root as a random point
in the interval (0, 1). That is, we assume without loss of generality that the given
interval is normalized, i.e., its length is 1. This assumption is followed throughout
this paper. We also make the assumption that the roots are randomly and uniformly
distributed; i.e., intervals of equal length have equal probability of containing a root.
Consequently, the length � of a subinterval also gives the probability of a randomly
chosen point to lie within this subinterval.

Consider the following situation: N points are chosen randomly and uniformly
in the interval (0, 1). Assume that we have chosen m nonoverlapping subintervals all
of the same length �. We view the remaining part of the interval (which may not be
connected) as the (m + 1)-st subinterval.

Let us denote by E the event that each one of k specific subintervals contains an
odd number of roots and the remaining m− k contain an even number of roots. The
following theorem gives the exact probability of the event E.

Theorem 4.1. Assume that in the interval (0, 1), N points have been selected
randomly and uniformly. Assume also that m nonoverlapping subintervals of the same

98 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

length � have been chosen. Then the probability that k specific subintervals among the
m contain an odd number of points is given by the formula

P(E) =
1

2m

∑
S

(
N

S

)
�S(1 −m�)N−S

m∑
j=0

(m− 2j)S
j∑

i=0

(−1)i
(
k

i

)(
m− k

j − i

)
.(4.1)

Proof. We associate with the ith subinterval, i = 1, 2, . . . ,m, a random variable
Xi, i = 1, 2, . . . ,m, that takes the value 1 if the number of points in the subinterval
is odd and 0 if it is even. These variables are identically distributed since we have
assumed that the roots are uniformly distributed and the subintervals have equal
length. The probability of the event E is given by

P(E) = P(Xi1 = 1, . . . , Xik = 1, Xik+1
= 0, . . . , Xim = 0),

where i1, i2, . . . , im is a permutation of the set {1, 2, . . . ,m}. Notice that P(E) is
independent of the specific permutation i1, i2, . . . , im since a point has the same prob-
ability equal to � of being in each of the m subintervals.

The arrangement of the N points in the m + 1 subintervals can therefore be
seen as a repetition N times of an experiment with m + 1 possible outcomes, the
first m of which each have probability �, and the last (1 − m�). Let S, 0 � S �
N be the total number of points in the m subintervals. The number of ways the
subintervals i1, i2, . . . , im will contain, respectively, νi1 , νi2 , . . . , νim points is given by
the multinomial coefficient

(
S

νi1 ,...,νim

)
. Hence we get for P(E)

P(E) =
∑
S

(
N

S

)∑(
S

νi1 , . . . , νim

)
� νi1+···+νim (1 −m�)N−(νi1

+···+νim) ,(4.2)

where the inner summation is over all nonnegative integers νi1 , νi2 , . . . , νim satisfying
the conditions νi1 + νi2 + · · · + νim = S with νi1 , νi2 , . . . , νik being odd numbers and
νik+1

, νik+2
, . . . , νim being even. The above equation therefore becomes

P(E) =
∑
S

(
N

S

)
�S(1 −m�)N−S

∑(
S

νi1 , . . . , νim

)
.(4.3)

The proof now rests in finding a more easily computable form for the sum of multi-
nomial coefficients, since the number of different tuples of νi1 , νi2 , . . . , νim that fulfill
the requirements is very large for any reasonable problem size, not to mention for
computing large factorials.

Notice that the sum of multinomial coefficients (which we denote by C(S,m, k))
gives the number of permutations of S out of m distinct objects with repetitions such
that k specific objects are each selected an odd number of times and the remaining
m− k are selected an even number of times.

Let us denote by B(u, v) the number of v-permutations of u objects with repetition
where each object is selected an odd number of times. In [2, p. 227] B(u, v) is given

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 99

by

B(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2v−u+1

u
2 −1∑
j=0

(−1)j
(
u

j

)(u
2
− j

)v

, u even, v even,

0, u even, v odd,

2v−u+1

u−1
2∑

j=0

(−1)j
(
u

j

)(u
2
− j

)v

, u odd, v odd,

0, u odd, v even.

(4.4)

Let us also denote by A(u, v) the number of v-permutations of u objects with repetition
where each object is selected an even number of times. In the same reference, A(u, v)
is given by

A(u, v) =

⎧⎪⎨
⎪⎩

2−u
u∑

j=0

(
u

j

)
(u− 2j)v, v even,

0, v odd.

(4.5)

So if we assume that ν points in total lie in the k subintervals which are expected
to have an odd number of points, the remaining S − ν lie in the remaining m − k
subintervals. We may therefore express C(S,m, k) in terms of A(u, v) and B(u, v) as
follows:

C(S,m, k) =
S∑

ν=k

(
S

ν

)
B(k, ν)A(m− k, S − ν).(4.6)

This sum can now be transformed using (4.4) and (4.5), resulting in

C(S,m, k) =
1

2m

m∑
j=0

(m− 2j)S
j∑

i=0

(−1)i
(
k

i

)(
m− k

j − i

)
.(4.7)

Substituting the above in (4.3) we get (4.1).
When the initial interval is partitioned into m equal subintervals, i.e., when m� =

1, then all N roots must necessarily lie in the m subintervals. Let us denote E′ the
event that k specific subintervals have an odd number of roots under this assumption.
We have the following corollary.

Corollary 4.1. The probability of the event E′ is given by

P(E′) =
1

2mmN

m∑
j=0

(m− 2j)N
j∑

i=0

(−1)i
(
k

i

)(
m− k

j − i

)
.(4.8)

Proof. In this situation there are only m possible outcomes of the experiment,
all of the same probability �. The analysis above that resulted in (4.1) now gives the
above formula.

5. Estimating the total number of roots. Our stopping criterion in the main
variant of the algorithm requires the knowledge of the total number of roots in the
interval. For this purpose, the algorithm, in parallel with its main task of computing
roots, also estimates the total number of roots. The estimation of the total number of

100 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

roots is revised after each iteration, when new roots have been discovered. Hence, at
the beginning of the algorithm there is only a rough estimation of the number of roots,
but as we proceed the additional information allows us to be more accurate in our
prediction. For our estimation method we shall need the following two propositions.

Proposition 5.1. Assume that the total number of roots in the interval is N .
Then the probability podd that a subinterval of length � contains an odd number of
roots is given by

podd =
1 − (1 − 2�)N

2
.(5.1)

Proof. Let peven be the probability that a subinterval of length � contains an even
number of roots. Then clearly podd = 1 − peven. Recall that � is the probability of
having a specific root in an interval of length �. Now

peven = (1 − �)N +

(
N

2

)
�2(1 − �)N−2 +

(
N

4

)
�4(1 − �)N−4 + · · · .

Observe that the right-hand side equals 1
2

[
(x + y)N + (x− y)N

]
= 1

2

[
1 + (1 − 2�)N

]
for x = 1 − � and y = �.

Notice that for a number of roots N on the order of 20 or so, podd is very close
to 1/2 for large enough �. Therefore, roughly half of the intervals have at least one
root. This is natural, since when the number of roots is large, the intervals with odd
roots and the intervals with even roots are expected to be about the same. In such a
case, after computing the roots, it is worthwhile continuing by subdividing the largest
intervals. When, however, we have discovered a number of roots close to the total
(and thus the remaining roots are few), the number of intervals with no roots begins
to increase, and thus the required sign evaluations per root also increase.

To quantify the above, consider the random variables Xi, i = 1, . . . ,m, introduced
in the previous section. These variables are not independent since, for example, if
m = N + 1 and we know that Xi = 1 for i = 1, 2, . . . ,m − 1, the event Xm = 0 has
probability 1; i.e., the probability of an Xi taking a certain value is influenced by the
values of the other variables. This dependency is, however, very weak for large values
of N in the sense that the joint probability distribution function of the Xi’s is very
close, yet not equal, to the product of the marginal distribution functions.

If the number of roots in any of the subintervals were independent from the
number of roots in the other subintervals, then the probability of the event E (see
the previous section) would be given by the formula p2 = (podd)k(1− podd)m−k. This
follows from the observation that the probability of having odd roots is podd for all
subintervals of length �, which along with the assumption of independence gives the
above. What we show next is that the exact probability p1 of E as given by (4.1) is
actually very close to p2. We demonstrate this by comparing p1 and p2 numerically.

In Table 5.1 we have included a small fraction of extensive numerical comparisons
of p1 and p2 for several values of the parameters N,m, k, and �. To reduce the size
of the table, we present here results for � fixed to a typical value of m/0.8. The
results show that p1 and p2 are close enough to be considered equal for the purpose
of estimating the number of roots N .

It is therefore a satisfactory approximation to consider the Xi’s as independent
Bernoulli random variables with probability given by (5.1). The following is a straight-
forward estimation of this probability.

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 101

Table 5.1

Numerical comparison of p1 and p2 for several values of the parameters N,m, and k.

N m k p1 p2

100 20 2 0.952×10−6 0.953×10−6

100 20 15 0.959×10−6 0.959×10−6

100 50 5 0.367×10−14 0.404×10−14

100 50 40 0.246×10−15 0.268×10−15

100 120 12 0.101×10−27 0.153×10−26

100 120 70 0.333×10−41 0.514×10−40

500 100 10 0.808×10−30 0.808×10−30

500 600 60 0.816×10−134 0.161×10−133

1000 200 40 0.152×10−64 0.454×10−64

1000 200 160 0.596×10−60 0.596×10−60

1000 500 100 0.213×10−145 0.390×10−145

1000 500 400 0.393×10−156 0.104×10−155

Proposition 5.2. Assume that in a family of m nonoverlapping subintervals all
of the same length �, k subintervals have opposite signs at their endpoints. Then, with
probability at least (1 − α), for any α between 0 and 1, the probability podd that any
subinterval of length � has an odd number of roots is between

plower � podd � pupper,

where

plower =
k − zα/2

√
k(m−k)

m

m
,

and

pupper =
k + zα/2

√
k(m−k)

m

m
,

where zα/2 is a constant which can be determined from

Prob(−zα/2 � Z � zα/2) = 1 − α,

where Z is a random variable having the standard normal distribution.
Proof. Consider the m subintervals. Let Xi be a random variable assuming

value 1 if the ith subinterval has opposite signs and 0 otherwise, i = 1, . . . ,m. By the
discussion above, the Xi, i = 1, . . . ,m, are considered to be independent Bernoulli ran-
dom variables B(1, podd). A confidence interval for podd with approximate confidence
coefficient (1 − α) is given by

k

m
− zα/2

√
k
m

(
1 − k

m

)
m

� podd � k

m
+ zα/2

√
k
m

(
1 − k

m

)
m

,

which proves the proposition.
For example, when α = 0.05, then zα/2 = 1.96. We use the above confidence

interval to estimate podd and then use (5.1) to estimate N . This is done by computing

102 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

two values for N , calling them Nlower and Nupper. The first is computed by solving
the equation (with respect to N)

plower =
1 − (1 − 2�)N

2
,(5.2)

and the second is computed by solving the equation

pupper =
1 − (1 − 2�)N

2
.(5.3)

Notice that in some cases Nupper and even Nlower can be infinite. This will happen
when insufficient data are available for determining exact values for the confidence
interval. But for our purposes this is immaterial: in either of these cases we continue
subdividing the intervals.

When after some iterations, both ends of the confidence interval are well defined,
we choose some preferable value for N . A good choice seems to be (Nlower+Nupper)/2.
Or, we may decide to be on the safe side and choose N to be Nupper. Whichever we
choose, we use it to decide whether it is time to terminate.

6. The method and its theoretical analysis. In this section we study the
expected behavior of the algorithm as a function of the problem size N and the
required fraction of roots λ. Our assumption is that, using the method described in
the previous section, we know the total number of roots N , even though this can
only be determined approximately within the confidence interval. Knowing N , the
algorithm will run until a fraction λ of the roots has been discovered, i.e., λN roots.
Clearly λ can vary from values close to 0, resulting in a quick termination of the
algorithm, to values close to 1, which increase the cost of discovering new roots to
forbiddingly high levels, after a large percentage has been discovered. Such values
of λ will render the algorithm very costly and should not be used. We next give the
expected cost of the algorithm for specific λ. To this end, we first give a technical
definition that facilitates our analysis.

Definition 6.1. We call iteration number of the algorithm the integer i such
that the length � of the subintervals with an even number of roots that have maximum
length, is such that � = 2−i.

The reason for this definition is that at Step 1 of the algorithm, after dividing
the intervals, we would typically expect some subintervals to have an even number
and some to have an odd number of roots. If at some stage of execution of the
algorithm all previous executions of Step 1 gave subintervals of both types or only
even ones, then the iteration number i would coincide with what one would normally
expect as iteration, since one execution of the three steps results in dividing the length
of the largest subintervals by 2. But there is also the possibility that the intervals
entering Step 1 are all of odd roots. In this case all subintervals would be further
divided by bisection in Step 1 in the same “ordinary” iteration. We therefore give the
above definition to relate the length of the largest even subintervals with the iteration
number. Notice that the event of having all subintervals with an odd number of roots
has small probability (actually it could only happen with some meaningful probability
in the first few iterations). Therefore the iteration i as described above is an integer
very close to the “ordinary” iteration. Note also that if the algorithm is in iteration i,
then the effect on the original interval is the same as directly dividing it into 2i equal
subintervals and executing bisection in those subintervals that have an odd number
of roots.

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 103

The next theorem gives the expected number of odd subintervals and hence the
expected number of discovered roots in iteration i.

Theorem 6.1. Assume that the interval (0, 1) has been partitioned into m equal
subintervals. Then the expected number of those that contain an odd number of roots
is

Ed =
mN − (m− 2)N

2mN−1
.(6.1)

Proof. The probability of getting, after the division into m subintervals, k odd
subintervals is given by

(
m
k

)
P(E′). E′ is the event where, after the division into

m subintervals, k specific intervals have an odd number of roots and the remaining
m − k have an even number. This event was formally defined in section 4 where its
probability also was derived and is given by (4.8). Hence we have

Ed =

m∑
k=0

k

(
m

k

)
P(E′)

=
1

2mmN

m∑
k=0

k

(
m

k

) m∑
j=0

(m− 2j)N
j∑

i=0

(−1)i
(
k

i

)(
m− k

j − i

)

=
1

2mmN

m∑
j=0

(m− 2j)N
(
m

j

) j∑
i=0

(−1)i
(
j

i

) m∑
k=0

k

(
m− j

k − i

)
.

Now the rightmost sum is easily seen to be (m− j)2m−j−1 + i2m−j . By substituting
and after some algebraic manipulations, the theorem follows.

Assume now that a fraction λ of the roots is required. In the ith iteration we
have m = 2i and by substituting we get that the iteration where this is achieved, on
average, is the solution rounded above, for i, of the equation

λN =
2iN − (2i − 2)N

2i(N−1)+1
.(6.2)

Table 6.1 gives the solution of (6.2) for various values of N and λ.

Table 6.1

Iteration and expected work for achieving a fraction of roots λ.

N

100 500 1000 5000

i w i w i w i w

0.5 7 776 10 3508 11 6515 13 25522

λ 0.7 8 1093 11 5175 12 9650 14 37146

0.9 10 1919 13 11313 14 21724 16 83230

0.95 11 2898 14 19203 15 37454 17 144998

As for the expected work for achieving the fraction λ, notice that at iteration i,
where d odd subintervals have been discovered, (2i + 1) sign determinations are re-
quired to split the interval into 2i subintervals, and if d of those are odd, then bisec-
tion will be applied to each of them, requiring log(�/ε) additional sign determinations
where � is the length of the subinterval. But � = 2−i, and i is the solution of (6.2).
Hence, we have the following corollary.

104 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

Corollary 6.1. The expected work for discovering a fraction λ of the roots is
given by

w = 2i + λN log
�

ε
+ 1 ≡ 2i − λN(i + log ε) + 1,(6.3)

where i is the solution of (6.2).
Table 6.1 also gives the value of the expected work for various values of N and λ.
Another interesting aspect of the behavior of the algorithm is the increase of the

work per root as a function of the iteration. Since an exact calculation of this seems
to be hard, we approximate it as follows.

Let Edi be the expected number of discovered roots by the end of iteration i. Then,
the expected number of discovered roots in iteration i+ 1 is Edi+1 − Edi . Also, using
Corollary 6.1, the expected work in iteration i+1 is 2i−(i+log ε)(Edi+1−Edi)−Edi+1 .
We approximate the expected work per root in iteration i + 1 by the fraction of the
expected work in iteration i+1 divided by the expected number of discovered roots in
the same iteration. We call this fraction E∗

i+1. By the above discussion this is given
by

E∗
i+1 =

2i − Edi+1

Edi+1
− Edi

− i− log ε.(6.4)

In Figure 6.1 we plot E∗
i for N = 1000 and ε = 10−6 as a function of i. We have

chosen to present the plot as a continuous curve, even though i is an integer, to
better demonstrate its shape. It is interesting to note that the expected cost per
root (as approximated by E∗) first decreases slightly and, after reaching a minimum,
subsequently increases rapidly. The first part of the plot is explained since in the first
iterations, discovering odd intervals is easy (about half of the intervals are odd), but
computing the roots in those intervals costs more to the bisection (computing a root in
an interval requires one more sign determination than in an interval of half the length).
The subsequent rapid increment is caused by the fact that after some iteration, the
odd intervals are becoming rare and increasingly more function evaluations are spent
dividing an even interval and getting two even subintervals. After that point the
behavior of the algorithm deteriorates rapidly and it soon becomes inefficient. This
is the point to stop execution.

6.1. A detailed description of the proposed algorithm. In this section we
give a detailed description of the proposed algorithm based on the previous results
and analysis. The algorithm takes as input the desired fraction of the roots, λ.

1. Divide the interval into two equal subintervals. Set i = 1 and m = 2.
2. Let A be the set of subintervals with opposite signs at their endpoints and

let k be its cardinality, i.e., k = |A|. Let B be the set of subintervals with the
same signs at their endpoints.

3. Find one root in each interval in A using bisection (2.2) or (2.4). As bisection
proceeds, it leaves out intervals with an even number of roots. Add those
into set B.

4. Estimate the total number of roots using relations (5.2) and (5.3), where plower

and pupper are given in Proposition 5.2. In these equations take � = 2−i, where
i is the number of the current iteration, and use the parameters m = 2i and
k defined above.

5. If both Nlower and Nupper are finite, check whether d � λN . N = (Nlower +
Nupper)/2, and d is the number of discovered roots up to this point.

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 105

0

5

10

15

20

25

30

35

w
or

k
pe

r
ro

ot

2 4 6 8 10 12
iteration

Fig. 6.1. Expected work per root vs. iteration (N = 1000).

6. If the criterion is not fulfilled or at least one of the N is infinite, then replace
in B each subinterval of largest size by its two halves. Set i = i + 1 and
m = 2i and go to step 2.

7. If the stopping criterion of step 5 is fulfilled, then output the roots and ter-
minate.

A useful observation that helps in improving the efficiency of the code (though it is
not our goal to give implementation details here) is that set B is best implemented
as a heap, i.e., a data structure that allows easy insertions and removals of its items
and, what is most important, easy location of the largest element (in constant time).
This is needed in steps 3 (insertion) and 6 (find max and removal). Actually, B is
best viewed as a set consisting of subsets, where each subset contains subintervals of
the same size. These sets are kept sorted by the heap structure, to minimize access
time to the largest ones, as required in step 6.

The subdivision into intervals which are fractions that are a power of two is
justified as follows: Recall that after we identify an interval with opposite signs at its
endpoints, we proceed in discovering a root using bisection (this is step 3 above). But
this has the side effect that these intervals will be subdivided further in the process of
discovering the root. Now if we choose the initial subintervals to be a power of two,
all of these subdivisions that emerge from bisection can be used in the future should
the algorithm proceed to subsequent iterations, and thus some sign determinations
can be saved. Moreover, this simplifies our arithmetic since each subinterval may be
represented not by two real numbers but by its left endpoint and its size, which, in
turn, may be represented by two integers, the exponents of actual numbers.

7. Conclusion and further research. As a conclusion, we have addressed the
problem of computing the roots of a function when the number of roots is very large.
This is a formidable problem with many applications in various fields of science. It
seems possible, however, to attack the problem precisely by taking advantage of its
size. To this end we have presented an algorithm that effectively discovers roots
using an almost “blind” search up to a point where the original size of the problem
has been greatly reduced. Then, more robust and expensive methods can be used
to completely solve the problem. We have also given theoretical justification of its
good performance, based on a probabilistic framework. The main advantages of the

106 D. J. KAVVADIAS, F. S. MAKRI, AND M. N. VRAHATIS

proposed methodology are its simplicity, which results in fairly simple programming,
and its efficiency, which increases with the problem size.

There are several possible directions to which this work may be extended. One
very natural one is to consider an arbitrary distribution of roots, along the lines
of [13]. An interesting problem in this case is to transform the method of estimating
the number of roots that we presented here, in a way that takes into account the given
distribution.

Moreover, there is no reason to limit the search space to a single dimension. With
appropriate assumptions and, most of all, an appropriate existence criterion similar
to Bolzano’s, for instance, the Poincaré–Miranda hypercubes, Sperner simplices, or
the characteristic polyhedra [16, 29, 30, 31, 32, 33, 34], it might be possible to extend
the method to higher dimensions.

Finally, the most interesting extension is, of course, to apply the algorithm on a
natural, real problem like the ones mentioned in the introduction.

Acknowledgment. The authors wish to thank the anonymous referees for their
constructive comments, suggestions, and valuable criticisms, which helped us to im-
prove the paper.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] Ch. Charalambides, Enumerative Combinatorics, CRC Press Ser. Discrete Math. Appl.,
Chapman & Hall/CRC, Boca Raton, FL, 2002.

[3] Á. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials,
J. Comput. Appl. Math., 133 (2001), pp. 65–83.

[4] I.Z. Emiris, B. Mourrain, and M.N. Vrahatis, Sign methods for counting and computing
real roots of algebraic systems, Rapport de recherche 3669, INRIA (Institut National de
Recherche en Informatique et en Automatique), Sophia Antipolis, France, 1999.

[5] I.Z. Emiris, B. Mourrain, and M.N. Vrahatis, Sign methods for enumerating solutions of
nonlinear algebraic systems, in Hellenic European Research on Computer Mathematics
and its Applications (HERCMA 2001), Vol. 2, E.A. Lipitakis, ed., L.E.A. Press, Athens,
2001, pp. 469–473.

[6] S. Graf, R.D. Mauldin, and S.C. Williams, Random homeomorphisms, Adv. Math., 60
(1986), pp. 239–359.

[7] S. Graf and E. Novak, The average error of quadrature formulas for functions of bounded
variation, Rocky Mountain J. Math., 20 (1990), pp. 107–716.

[8] S. Graf, E. Novak, and A. Papageorgiou, Bisection is not optimal on the average, Numer.
Math., 55 (1989), pp. 481–491.

[9] E.R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[10] B.J. Hoenders and C.H. Slump, On the calculation of the exact number of zeros of a set of

equations, Computing, 30 (1983), pp. 137–147.
[11] I. Joó, Exact Controllability and Oscillation Properties of Circular Membranes, Dissertation

for the title doctor of science, Budapest, Hungary, 1992.
[12] I. Joó, On the control of a circular membrane I, Acta Math. Hungar., 61 (1993), pp. 303–325.
[13] D.J. Kavvadias, F.S. Makri, and M.N. Vrahatis, Locating and computing arbitrarily dis-

tributed zeros, SIAM J. Sci. Comput., 21 (1999), pp. 954–969.
[14] D.J. Kavvadias and M.N. Vrahatis, Locating and computing all the simple roots and extrema

of a function, SIAM J. Sci. Comput., 17 (1996), pp. 1232–1248.
[15] R.B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1996.
[16] B. Mourrain, M.N. Vrahatis, and J.C. Yakoubsohn, On the complexity of isolating real

roots and computing with certainty the topological degree, J. Complexity, 18 (2002), pp.
612–640.

[17] D.W. Lozier, Software needs in special functions, J. Comput. Appl. Math., 66 (1996), pp.
345–358.

EFFICIENTLY COMPUTING MANY ROOTS OF A FUNCTION 107

[18] D.W. Lozier and F.W.J. Olver, Numerical evaluation of special functions, in Mathematics of
Computation 1943–1993: A Half-Century of Computational Mathematics, Proc. Sympos.
Appl. Math. 48, W. Gautschi, ed., AMS, Providence, RI, 1994, pp. 79–125.

[19] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, UK, 1990.

[20] E. Novak, K. Ritter, and H. Woźniakowski, Average-case optimality of a hybrid secant-
bisection method, Math. Comp, 64 (1995), pp. 1517–1539.

[21] E. Picard, Sur le nombre des racines communes à plusieurs équations simultanées, J. Math.
Pures Appl. (4e série), 8 (1892), pp. 5–24.

[22] E. Picard, Traité d’analyse, 3rd ed., Gauthier–Villars, Paris, 1922, chap. 4.7.
[23] V.P. Plagianakos, N.K. Nousis, and M.N. Vrahatis, Locating and computing in parallel all

the simple roots of special functions using PVM, J. Comput. Appl. Math., 133 (2001), pp.
545–554.

[24] K. Ritter, Average Case Analysis of Numerical Problems, Lecture Notes in Math. 1733,
Springer-Verlag, Berlin, 2000.

[25] K. Sikorski, Bisection is optimal, Numer. Math., 40 (1982), pp. 111–117.
[26] K. Sikorski, Optimal Solution of Nonlinear Equations, Oxford University Press, New York,

2001.
[27] J.F. Traub, G.W. Wasilkowski, and H. Woźniakowski, Information–based complexity, Aca-

demic Press, New York, 1988.
[28] K. Villaverde and V. Kreinovich, A linear-time algorithm that locates local extrema of

a function of one variable from interval measurements results, Interval Computations, 4
(1993), pp. 176–194.

[29] M.N. Vrahatis, Solving systems of nonlinear equations using the nonzero value of the topo-
logical degree, ACM Trans. Math. Software, 14 (1988), pp. 312–329.

[30] M.N. Vrahatis, CHABIS: A mathematical software package for locating and evaluating roots
of systems of nonlinear equations, ACM Trans. Math. Software, 14 (1988), pp. 330–336.

[31] M.N. Vrahatis, A short proof and a generalization of Miranda’s existence theorem, Proc.
Amer. Math. Soc., 107 (1989), pp. 701–703.

[32] M.N. Vrahatis, An efficient method for locating and computing periodic orbits of nonlinear
mappings, J. Comput. Phys., 119 (1995), pp. 105–119.

[33] M.N. Vrahatis, A generalized bisection method for large and imprecise problems, in Scientific
Computing and Validated Numerics, G. Alefeld, A. Frommer, and B. Lang, eds., Akademie
Verlag, Berlin, 1996, pp. 186–192.

[34] M.N. Vrahatis, Simplex bisection and Sperner simplices, Bull. Greek Math. Soc., 44 (2000),
pp. 171–180.

[35] M.N. Vrahatis, T.N. Grapsa, O. Ragos, and F.A. Zafiropoulos, On the localization and
computation of zeros of Bessel functions, Z. Angew. Math. Mech., 77 (1997), pp. 467–475.

[36] M.N. Vrahatis, O. Ragos, T. Skiniotis, F.A. Zafiropoulos, and T.N. Grapsa, RFSFNS :
A portable package for the numerical determination of the number and the calculation
of roots of Bessel functions, Comput. Phys. Comm., 92 (1995), pp. 252–266; erratum,
Comput. Phys. Comm., 117 (1999), p. 290.

[37] M.N. Vrahatis, O. Ragos, F.A. Zafiropoulos, and T.N. Grapsa, Locating and Computing
Zeros of Airy Functions, Z. Angew. Math. Mech., 76 (1996), pp. 419–422.

