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Abstract. The problem of locating and computing with certainty all the simple roots of a twice
continuously differentiable function f : [a, b] ⊂ R → R is studied when some additional information
on the distribution of the roots in the interval is available. The framework is the one proposed by
[SIAM J. Sci. Comput., 17 (1996), pp. 1232–1248], where only the uniform case was examined. This
paper settles some of the problems posed there and generalizes some of its results by considering an
arbitrary distribution of the roots in [a, b]. The theoretical results are accompanied by simulations
in a number of problems of various size.
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1. Introduction. Many problems in different areas of science, such as mechan-
ics, physical sciences, statistics, operations research, etc., are reduced to the problem
of finding all the roots or the extrema of a function in a given interval. The importance
of the problem has attracted the attention of many research efforts and as a result
many different approaches to the problem exist. We briefly mention here the deflation
techniques used for the calculation of further solutions [3] and more recently interval
analysis based methods (see, e.g., [6, 7, 14, 15, 16, 17]) and the method described in
[10].

Evaluating the performance of an algorithm usually involves experimental ob-
servations in known problem instances drawn from the literature and/or randomly
constructed ones. Few analytical estimations of widely accepted performance mea-
sures exist and these mostly concern the worst-case behavior of an algorithm [2, 20].
The worst-case behavior, however, can sometimes be very conservative for real-life
applications, while the expected behavior seems to be a more natural and informa-
tive measure. Contrary to the apparent importance of the expected behavior of an
algorithm, however, even fewer analytical results exist [4]. One reason for this might
be the difficulty inherent in such a study and the lack of a suitable framework.

In [10] a framework for the study of the expected complexity of the problem of
finding with certainty all the simple roots of a function was presented and some re-
sults were shown for the case when the roots are uniformly distributed in the interval.
While this models the situation where no information of the distribution of the roots
is available, it is clearly a severe restriction of the general problem, as sometimes ad-
ditional information about concentrations of roots is available. Such information can
in turn be modeled as a mathematical probability distribution and thus the clustering
behavior can be taken into account.
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In this paper we study a generalization of an algorithm proposed in [10] that
takes into account the probability distribution of the roots. This algorithm is a good
representative of a more general class of algorithms which proceed by subdividing the
interval into smaller intervals until each root is isolated in a subinterval. Classical
methods (e.g., bisection or Newton) are then applied to actually identify the root. All
different competing methods draw some kind of information from an “oracle” on the
existence or not of roots in the interval. Depending on the oracle this information
may vary from complete knowledge of the exact number of roots in the interval to a
mere indication of the existence or not of root(s).

The former method was used, for example, in [10], while the latter is applied in
interval analysis based methods. As might be expected, more informative oracles are,
in general, also more computationally expensive. A central issue that arises is if this
additional information can be exploited to speedup the overall performance of the
method. We mention here that the results and the techniques developed in this paper
also have an impact on the above-mentioned class of methods.

In [10] the expected number of oracle calls required by the algorithm in order to
isolate n roots was given under the assumption that the roots are uniformly distributed
in the given interval. Here we abandon the uniformity assumption and show that
the expected number of oracle calls of the modified algorithm is given by the same
formula (4.1) of [10] for which we study its growth rate and show that it is O(n logn).
In addition, for the case of arbitrary distribution, we give an upper bound of the
expected complexity of the second phase.

Theoretical results are accompanied by numerical ones from which very useful
pieces of information are drawn and new problems are posed for further research.

In section 2 some basic theory of the algorithm described in section 3 is given.
In section 4 we give the theoretical study of the behavior of the algorithm. The last
section includes some simulations and a discussion on the results and poses some open
problems.

2. Preliminaries. A simple oracle on the existence of a solution of f(x) = 0
in some interval (a, b), where the function f is continuous in [a, b], is the following
criterion:

f(a) f(b) < 0 or sgn f(a) sgn f(b) = −1,(2.1)

where sgn is the well-known three valued sign function. This criterion is known as
Bolzano’s existence criterion. Note that this oracle may introduce a one-sided error,
i.e., a positive response means that at least one root exists but a negative response
may correspond to the existence of an even number of simple roots.

Instead of Bolzano’s criterion one may also use the value of the topological degree
of f at origin relative to (a, b), which in this case can be defined as follows:

deg[f, (a, b), 0] =
1

2

(
sgn f(b)− sgn f(a)

)
.(2.2)

Now if deg[f, (a, b), 0] is not zero, we know with certainty that there is at least one root
in (a, b). Note that if deg[f, (a, b), 0] is not zero, then Bolzano’s criterion is fulfilled.
The value of deg[f, (a, b), 0] gives additional information concerning the behavior of
the solutions of f(x) = 0 in (a, b) relative to the slopes of f [24]. For example, if
deg[f, (a, b), 0] = 1 which means that f(b) > 0 and f(a) < 0, then the number of
solutions at points where f(x) has a positive slope exceeds by one the number of
solutions at points at which f(x) has a negative slope.
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Other approaches that have been used successfully to find all solutions of systems
of equations as well as the global optimum of a function are based on interval analysis
(see, e.g., [1, 5, 6, 8, 12, 13, 14, 15, 17]). The corresponding existence tool of these
methods is the availability of the range of the function in a given interval, which can
be implemented very efficiently using interval arithmetic, though accuracy problems
must be resolved. This tool however is error-free when it responds “no,” while a “yes”
answer may be misleading. The positive case proceeds by subdividing the interval into
two halfs and employing additional criteria.

A more complicated but completely informative oracle which gives the exact num-
ber of roots N r is based on topological degree theory using Kronecker’s integral on
a Picard’s extension [9, 18]. For the computation of the topological degree, see, e.g.,
[2, 11, 21, 22]. This oracle was used in [10] as part of the first phase of an algorithm
for the isolation of all the simple roots of a function f(x) in an interval (a, b) and
returns the number of roots using the formula

N r = −γ
π

∫ b

a

f(x)f ′′(x)− f ′2(x)

f2(x) + γ2f ′2(x)
dx+

1

π
arctan

(
γ [f(a)f ′(b)− f(b)f ′(a)]

f(a)f(b) + γ2f ′(a)f ′(b)

)
,(2.3)

where γ is a small positive constant. Note that N r was shown to be independent of
the value of γ [18].

The algorithm of [10] uses, in a second phase, bisection in order to compute the
roots. Specifically, it uses the following simplified version described in [23]:

xi+1 = xi + c sgnf(xi)/2
i+1, c = sgnf(a) (b− a), i = 0, 1, . . . .(2.4)

The sequence (2.4) converges to a root r ∈ (a, b) if for some xi, sgnf(x0) sgnf(xi) =
−1, for i = 1, 2, . . .. Also, the number of iterations ν, which are required in obtaining
an approximate root r∗ such that |r − r∗| ≤ ε for some ε ∈ (0, 1), is given by

ν = dlog(b− a) ε−1e,(2.5)

where the logarithm in the above relation and also in the rest of the paper is taken
with base two. Instead of the iterative formula (2.4) we can also use the following
one:

xi+1 = xi − c sgnf(xi)/2
i+1, c = sgnf(b) (b− a), i = 0, 1, . . . .(2.6)

The reason for choosing the bisection method is that it always converges within
the given interval (a, b) and it is a global convergence method. Moreover, it has a
great advantage since it is optimal, i.e., it possesses asymptotically the best possible
rate of convergence [20]. Also, using the relation (2.5) it is easy to have beforehand the
number of iterations that are required for the attainment of an approximate root to
a predetermined accuracy. Finally, it requires only the algebraic signs of the function
values to be computed, as is evident from (2.4) or (2.6); thus it can be applied to
problems with imprecise function values. As a consequence for problems where the
function value follows as a result of an infinite series (e.g., Bessel or Airy functions) it
can be shown [25, 26] that the sign stabilizes after a relatively small number of terms
of the series and the calculations can be sped up considerably.

3. The algorithm. Here we present a generalization of Algorithm find roots of
[10] as a model for studying the effects of different subdivisions of the interval. To allow
complete decision abilities we have employed the Kronecker–Picard integral described
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in the previous section as our oracle. As in [10] the algorithm decides the number of
subdivisions after it has discovered the number of roots in the interval. Its generality
comes from the fact that its decisions can be quite arbitrary: the algorithm may
choose to take full advantage of the (known) number of roots and divide, for example,
into a number of intervals that equal the number of roots or it may ignore most of
the information and divide into a fixed number of subintervals, for example, two. The
only restriction is that the decision must always be the same for a specific number of
roots n. This is shown in the algorithm by denoting the number of subdivisions by
mn. The value of mn is fixed once n is given but it can be quite arbitrary.

The main difference from [10] comes from the way the interval is subdivided
at each step into smaller subintervals. In find roots the subdivision was done into
subintervals of equal length. In the algorithm that follows (which we call gener-
alized find roots) the subdivision creates subintervals Ij , j = 1, 2, . . . ,mn, of equal
probability; that is,

∫
Ij
ϕ(x)dx = m−1

n , where ϕ(x) is the probability density function

of the roots. Note that subdividing into subintervals of equal length under uniform
distribution is, in effect, subdivision into subintervals of equal probability and thus
the current approach generalizes [10].

Algorithm generalized find roots(a, b,S).
{comment: This algorithm locates and computes all the roots of f(x) = 0 in (a, b).
It exploits (2.3) and (2.4). For (2.3) it requires f, f ′, f ′′, γ, and ϕ while for (2.4) it
requires f and ε. The roots are stored in set S.}

01. procedure roots(a, b,N r);
{comment: adds to set S the N r roots of the interval (a, b)}

begin
02. if N r = 1 then find the single root r using the bisection (2.4), set S ←− S ∪ {r}

else
begin

03. j ←− 1;
{comment: this counts the subintervals Ij = (aj , bj)}

04. k ←− 0;
{comment: this counts the computed roots}

05. while k < N r do
begin

06. aj ←− a+
∑j−1
i=1 `(Ii);

{comment: Ij is the jth interval (from the left end) for
which

∫
Ij
ϕ(x)dx = m−1

n ; `(Ii) is the length of interval Ii;

mn is the number of subintervals in which we choose to
divide (a, b), see above}

07. bj ←− aj + `(Ij);
08. Find N r,j , the number of roots in Ij using (2.3);
09. if N r,j > 0 then roots(aj , bj ,N r,j);
10. k ←− k +N r,j ;
11. j ←− j + 1

end {while}
end

end {roots}
begin {generalized find roots}

12. input a, b; {comment: f(a)·f(b) must be nonzero}
13. S ←− ∅; {comment: S is the set of roots in (a, b)}
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14. Find N r,0, the number of roots in (a, b) using (2.3);
15. roots(a, b,N r,0);
16. output S

end. {generalized find roots}
In the above description of the algorithm, the number of roots is revealed by the

use of (2.3). However, as we have already mentioned in the introduction, we shall
henceforth view this step as a “black box” (an oracle), the actual implementation
of which is omitted. Thus the computational complexity of the Algorithm general-
ized find roots is determined by (i) the total number of calls to the oracle and (ii) the
iterations required by the N r bisection calls which will compute the isolated roots.

4. A study on the behavior of the algorithm. In this section we study the
expected complexity of Algorithm generalized find roots. First, we focus our attention
on the number of times the algorithm calls the oracle, as this is the most demanding
step of the localization phase. We give a recursive formula for the expected number
of oracle calls under a given distribution, which turns out to be the same as the
expected number of oracle calls of Algorithm find roots of [10]. We then bound the
growth rate of this formula and show that it grows asymptotically like O(n logn). We
end our study with a bound on the expected number of iterations under an arbitrary
distribution.

4.1. Definitions and notations. We next describe the framework on which
our analysis is based. The basic assumptions and definitions come from [10].

We consider the number of roots n to be given and we view the n roots as inde-
pendent identically distributed random variables that assume values in the interval
(a, b). The formula for the expected number of oracle calls will, in general, depend on
n which represents the size of the problem and on the given distribution ϕ.

A basic assumption which reflects the limited accuracy of any real computer
model is that we consider our interval to be composed of a large number of small
consecutive subintervals of length δ which we call elementary. Any elementary interval
may contain only one root. Notice that this also guarantees that the algorithm always
terminates after a finite number of subdivisions.

The above discretization suggests a more convenient way of representing intervals,
namely, as sets of the elementary consecutive subintervals which are included in them.
More specifically, consider assigning to each elementary subinterval of I0 an integer
from 1 to µ (where µ is the number of elementary subintervals of I0) in increasing
order from left to right. This suggests representing I0 by the set of consecutive integers
T0 = {l ∈ N: 1 ≤ l ≤ µ}. Similarly, any subinterval Ii of I0 is represented as a set
of consecutive integers, the smallest one being the integer assigned to the elementary
subinterval of its left end and the largest the integer assigned to its right end. In the
rest of the paper we shall use the term “interval” both for a standard interval I and
the corresponding T set when no confusion arises.

In the analysis that follows we shall denote by X a variable representing a set of
integers (or for our purposes a set of roots). If X ⊂ Tl, where Tl is a set of integers
representing interval Il, X is any set of elementary subintervals, i.e., a set of integers
in Tl.

The next definition formally introduces the main object of our study.
Definition 4.1. Let P be the set of all subsets of T0. The function H:X ∈ P →

N maps X to the number of oracle calls that the algorithm will do in order to isolate
the roots represented by the set X. Similarly we define the function H relative to
an interval T denoted by HT (X) and which gives the number of oracle calls that the
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algorithm will do in the specific interval T , that is, in the latter case we count only
oracle calls required for roots inside T .

4.2. Theoretical results. In this section we prove the theoretical results of the
paper. Our first theorem gives the expected number of oracle calls in terms of a
recursive formula. The analysis is based on a simplifying assumption, namely, that all
mn − 1 oracle calls are required in an interval which is divided into mn subintervals.
This is equivalent to replacing the while statement of step 5 by the statement while
j < mn do. A way to remove this assumption which also applies here is described in
[10].

Theorem 4.1. The expected number of oracle calls EϕH(n) required by Algorithm
generalized find roots to isolate all n roots in an interval is independent of the distri-
bution ϕ of the roots. That is, by using the expected number of oracle calls for the
uniform case (Theorem 4.1 of [10]) we have

EϕH(n) = mn
1−n

n∑
k=0

(
n

k

)
(mn − 1)n−kEϕH(k),(4.1)

where EϕH(0) = EϕH(1) = 1 and mn is the number of subintervals into which the
algorithm divides an interval with n roots.

Proof. Let us denote the mn subintervals into which the interval T0 is divided
by Ti, i = 1, . . . ,mn. We shall show the independence from the distribution ϕ by
induction on the number of roots n. That is, we shall show that EϕH(n) = EH(n)
for every n, where by EH(n) we denote the expectation of the oracle calls when the
distribution is uniform.

Clearly EϕH(0) = EϕH(1) = 1, since when no root or a single root is in T0 then
only one oracle call is required, independently of the distribution of roots.

For the induction hypothesis, assume that EϕH(j) = EH(j) for all j ≤ n − 1.
For n ≥ 2, let Xi, i = 1, . . . ,mn be the set of roots that lay in interval Ti. Clearly
|X1|+· · ·+|Xmn | = n. The distribution of the corresponding vector of the cardinalities
of the Xi’s, (|X1|, . . . , |Xmn |) is polynomial, that is,

Prob{|X1| = k1, . . . , |Xmn | = kmn} =
n!

k1! · · · kmn !
mn
−n.(4.2)

This is immediate since the algorithm subdivides the interval T0 into subintervals of
equal probability and therefore Prob{some specific root lies in Ti} =

∫
Ti
ϕ(x)dx =

mn
−1, i = 1, . . . ,mn.
Let X̃ = X1 ∪X2 ∪ · · · ∪Xmn . Note that the total number of oracle calls in an

interval equals the sum of oracle calls in the subintervals into which it is divided. This
follows from the fact that one oracle call is required for the interval, while no oracle
call is required for the last of its subintervals, as the number of roots there can be
determined by subtracting from the total number of roots the number of roots in the
other subintervals. Hence

H(X̃) = HT1(X1) +HT2(X2) + · · ·+HTmn (Xmn).

Taking the expectation of both sides of the above when the distribution is ϕ and when
it is uniform we must show

Eϕ{HT1(X1) +HT2(X2) + · · ·+HTmn (Xmn)}
= E{HT1(X1) +HT2(X2) + · · ·+HTmn (Xmn)}
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or, equivalently

Eϕ
{

Eϕ
{
HT1

(X1) +HT2
(X2) + · · ·+HTmn

(Xmn) |X1| = k1, . . . , |Xmn | = kmn
}}

= E

{
E
{
HT1

(X1) +HT2
(X2) + · · ·+HTmn

(Xmn) |X1| = k1, . . . , |Xmn | = kmn
}}

,

where the outer expectation is over all sets X̃ = X1 ∪ · · · ∪ Xmn such that |X1| =
k1, . . . , |Xmn | = kmn with k1 + · · · + kmn = n. (Notice that for simplicity, we use
the same notation for the Ti’s and the Xi’s in the left-hand and right-hand sides.)
Every term in the sum of the expectation corresponds to a solution of the equation
k1 + · · · + kmn = n. By the induction hypothesis in every solution into which all
ki’s are less or equal to n − 1, the expected number of oracle calls is independent
of the distribution and hence depends only on the cardinality of roots in a specific
interval. Thus these terms in the left-hand side are equal to the corresponding terms
in the right-hand side. What we are left with is a number of solutions of equation
k1 + · · · + kmn = n (mn to be specific) in which a single ki is equal to n and all
others are zero. The probability of each of these cases is m−nn . Hence the expec-
tation of the left-hand side has the term m−nn [EϕHT1

(n) + · · · + EϕHTmn
(n)] and the

expectation of the right-hand side has the term m−nn [EHT1
(n) + · · · + EHTmn (n)].

These terms correspond to the events where all n roots lie in a single subinterval.
In such a case the algorithm will once again subdivide the interval into mn sub-
subintervals. We may therefore substitute each EϕHTi

(n) of the left-hand side (resp.,

EHTi (n) of the right-hand side) following the same procedure as above and end up

with m2
n terms, call them EϕHTi1i2

(n), 1 ≤ i1, i2 ≤ mn (resp., EHTi1i2
(n)), where

EϕHTi1i2
(n) denotes the expected number of oracle calls in the i2-subsubinterval of the

i1-subinterval in the case where all n roots happen to fall into this subsubinterval.
The probability of these events is m−2n

n . Continuing in the same manner after k levels
of subdivision, the corresponding terms are m−knn

∑
1≤i1,...,ik≤mn EϕHTi1···ik

(n) (resp.,

m−knn

∑
1≤i1,...,ik≤mn EHTi1···ik

(n)). This process continues until there is no subinter-

val containing all n roots, in which case we invoke the induction hypothesis and we
are done. Notice that this will necessarily happen because for some k large enough,
the corresponding subintervals will become smaller than the minimum required to
contain all n roots. (Recall that we have assumed that each elementary subinterval δ
may contain only one root and therefore no interval smaller than nδ may contain all
n roots.) Therefore EϕH(n) = EH(n) for all n. Now using Theorem 4.1 of [10] we get
relation (4.1).

The independence of the expected number of oracle calls from the distribution
suggests a more careful study of relation (4.1). We therefore study the growth rate
of EH(n) with n under the assumption that mn is constant or, more generally, when
mn is allowed to vary with n but always remains less than a constant value mmax.

Theorem 4.2. The expected value of oracle calls required by Algorithm general-
ized find roots in order to isolate n roots (n ≥ 2) is O(n logn) when mn is bounded
from above by a constant value mmax.

Proof. We show that EH(n) ≤ c n log(n + 1) + 1 for some positive constant c
that depends on mmax. Notice that we retain the notation mn, since mn is allowed
to depend on n for the theorem to hold, as long as it remains less than or equal to a
maximum constant value. The proof is by induction on the number of roots n. For
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n = 0 and n = 1 the bound holds and thus also the induction basis. Also for n = 2
some algebraic manipulation yields the value m2 + 1 and thus the theorem also holds,
provided that c ≥ m2

2 log 3 .

Assume that EH(k) ≤ c k log(k + 1) + 1 for all k = 3, . . . , n − 1. We shall show
that it holds for k = n.

By Theorem 4.1 we have

EH(n) = m1−n
n

n∑
k=0

(
n

k

)
(mn − 1)n−k EH(k)

=
mn
n

mn−1
n − 1

n−1∑
k=0

(
n

k

)
1

mk
n

(
1− 1

mn

)n−k
EH(k)

≤ mn
n

mn−1
n − 1

n−1∑
k=0

pk(c k log(k + 1) + 1),

where pk =
(
n
k

)
1
mkn

(
1− 1

mn

)n−k
. Thus,

EH(n) ≤ c mn
n

mn−1
n − 1

log
n−1∏
k=0

(k + 1)kpk +
mn
n

mn−1
n − 1

n−1∑
k=0

pk

≤ c mn
n

mn−1
n − 1

log

(∑n−1
k=0(k + 1)kpk∑n−1

k=0 kpk

)∑n−1

k=0
kpk

+
mn
n

mn−1
n − 1

(
1− 1

mn
n

)
by using the inequality of geometric and arithmetic means and the fact that

∑n
k=0 pk =

1. Therefore we have

EH(n) ≤ c mn
n

mn−1
n − 1

log

(∑n−1
k=0 k

2pk∑n−1
k=0 kpk

+ 1

)∑n−1

k=0
kpk

+
mn
n − 1

mn−1
n − 1

≤ c n log

 n
mn

(
1− 1

mn

)
+ n2

m2
n
− n2

mnn

n(mn−1
n −1)
mnn

+ 1

+mn + 1,

where we have used that
∑n
k=0 kpk = n

mn
and also that

∑n
k=0 k

2pk = n
mn

(
1− 1

mn

)
+

n2

m2
n

. Notice now that the quantity under the logarithm is less than or equal to n
mn

+2.

We have thus arrived at

EH(n) ≤ c n log

(
n

mn
+ 2

)
+mn + 1.

The proof now rests on showing that c n log( n
mn

+ 2) +mn + 1 ≤ c n log(n+ 1) + 1 or,
equivalently, that

c n log
n+ 2mn

mn(n+ 1)
+mn ≤ 0.

To see this, first observe that the quantity under the logarithm assumes its maximum
value for mn = 2 and n = 3 (the case for n = 2 has been examined), namely, 7/8.
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Since the logarithm is negative for this value, the left-hand side is maximum for the
smallest value of n, that is, 3. Hence, for c ≥ −mmax/[3 log(7/8)] ≥ −mn/[3 log(7/8)],
the inequality holds. Thus the theorem is proved.

In the above proof we have used a loose lower bound for the value of c. More pre-
cise calculations may reduce this bound but this is insignificant since the dominating
term is the n logn. In any case, smaller values of mn result in smaller lower bounds
for c.

The following definition is useful for the analysis of the bisection phase of the
algorithm.

Definition 4.2. Let X̃ be the set of roots and T any subinterval of T0. We
denote by SP[T ; X̃] the set of subintervals of T produced by steps 6 and 7 of Algorithm
generalized find roots that include only one element of X̃.

Using the above definition, the total number of iterations IT involved in the
bisection phase is given by

IT =
∑

T∈SP[T0;X̃]

log
(
`(T ) ε−1

)
.

The above formula involves `(T ) for T ∈ SP[T0; X̃] and ε, i.e., the absolute lengths
of the remaining intervals and the predefined accuracy of the algorithm. By a slight
modification we get the following relation which, contrary to the above, involves the
relative (with respect to the initial interval T0) lengths of the intervals:

IT =
∑

T∈SP[T0;X̃]

log
|T |
|T0| + nlog

(
`(T0) ε−1

)
.(4.3)

The second term depends on the absolute length of the original interval T0 and the
accuracy ε and is independent of the specific pattern of roots X̃. Therefore the
expected value of the iterations IT equals this quantity plus the expected value of
the sum. This sum was called the “characteristic complexity function of phase two”
B(X̃) in [10] and, in essence, represents how many fewer iterations the algorithm will
do with input X̃ compared to the number of iterations of n bisection runs in the
original interval T0. Notice that this sum is a negative number. We shall also need
the “characteristic complexity function” relative to an interval T ′ which is given by

BT ′(X̃) =
∑

T∈SP[T ′;X̃]

log
|T |
|T ′| .

Theorem 4.3. Let the interval T0 contain n roots which are distributed ac-
cording to a given distribution ϕ and let mn be the number of subintervals that Al-
gorithm generalized find roots divides an interval with n roots. Then the expected
value of the characteristic complexity function of phase two, EϕB(n), of Algorithm
generalized find roots, is less than or equal to the expected value of the characteristic
complexity function when the distribution of the roots is uniform. That is,

EϕB(n) ≤ EB(n),

where

EB(n) =
∑

k1+···+kmn=n

n!

k1! · · · kmn !
mn
−n
(

EB(k1)+ · · ·+EB(kmn)
)
−n logmn,(4.4)
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with EB(0) = EB(1) = 0.
Proof. Notice that by Theorem 4.3 of [10] the right-hand side of (4.4) is the

expected value of the characteristic complexity function, EB(n) of Algorithm gener-
alized find roots, when the distribution of the roots is uniform, since in this case the
Algorithm generalized find roots behaves as Algorithm find roots of [10] by always
dividing in subintervals of equal length.

In order to prove the theorem, we use induction on the number of roots n.
For the basis of the induction we observe that for any distribution ϕ, EϕB(0) = 0

since SP[T ; ∅] = ∅. Also EϕB(1) = 0 since when only one root is in an interval, the
whole interval must be searched by the bisection.

For the induction step, assume that EϕB(ν) ≤ EB(ν) holds for all ν ≤ n− 1.
For any n ≥ 2, as in Theorem 4.1 let Xi, i = 1, . . . ,mn, be the set of roots in

intervals Ti, i = 1, . . . ,mn, respectively. Also let X̃ be the total set of roots in T0.
Then

B(X̃) =
∑

T∈SP[T0;X̃]

log
|T |
|T0| =

∑
T∈SP[T1;X1]

log
|T |
|T0| + · · ·+

∑
T∈SP[Tmn ;Xmn ]

log
|T |
|T0| .

For notational simplicity, we denote by λi the ratio |Ti||T0| . Thus, we get

B(X̃) =
∑

T∈SP[T1;X1]

log
|T |λ1

|T1| + · · ·+
∑

T∈SP[Tmn ;Xmn ]

log
|T |λmn
|Tmn |

=
∑

T∈SP[T1;X1]

log
|T |
|T1| + · · ·+

∑
T∈SP[Tmn ;Xmn ]

log
|T |
|Tmn |

+k1 log λ1 + · · ·+ kmn log λmn ,

where k1, . . . , kmn are the numbers of roots in intervals T1, . . . , Tmn , respectively.
Consequently, under the above assumptions

B(X̃) = BT1
(X1) +BT2

(X2) + · · ·+BTmn (Xmn) + Y,(4.5)

where

Y = k1 log λ1 + · · ·+ kmn log λmn .(4.6)

We first show that for the expectation of Y , E(Y ) the following inequality holds:

E(Y ) ≤ −n logmn.(4.7)

To this end we have

E(Y ) =
∑

k1+···+kmn=n

(k1 log λ1 + · · ·+ kmn log λmn)

(
n

k1, . . . , kmn

)
1

mn
n

=

mn∑
i=1

log λi
∑

k1+···+kmn=n

ki
n!

k1! · · · kmn !

1

mn
n

=
n

mn

mn∑
i=1

log λi
∑

k1+···+(ki−1)+

ki+1+···+kmn=n−1

(n− 1)!

k1! · · · (ki − 1)! · · · kmn !

1

mn
n−1

= n log (λ1 · · ·λmn)
1/mn .
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Now, since the geometric mean is always less than or equal to the arithmetic mean,
we get

E(Y ) ≤ n log
λ1 + · · ·+ λmn

mn
= n log

1

mn
,(4.8)

where the equality holds for λ1 = · · · = λmn .
The proof now rests on showing that

Eϕ{BT1
(X1) + · · ·+BTmn (Xmn)} ≤ E{BT1

(X1) + · · ·+BTmn (Xmn)}(4.9)

or, equivalently,

Eϕ
{

Eϕ(B(X1)) + · · ·+ Eϕ(B(Xmn)) |X1| = k1, . . . , |Xmn | = kmn

}
≤ E

{
E(B(X1)) + · · ·+ E(B(Xmn)) |X1| = k1, . . . , |Xmn | = kmn

}
,

where Eϕ is the expectation under ϕ distribution and the outer expectation is over all
sets X̃ = X1∪· · ·∪Xmn such that |X1| = k1, . . . , |Xmn | = kmn with k1+· · ·+kmn = n.
As in Theorem 4.1 we have used the same notation for the Ti’s and Xi’s of the left-
hand and right-hand sides.

For the solutions of k1 + · · · + kmn = n such that all kis are less than or equal
to n − 1, the terms Eϕ{B(Xi) |Xi| = ki} = EB(ki) are less than or equal to the
corresponding terms of the right-hand side by the induction hypothesis. The remain-
ing mn solutions correspond to the cases where all n roots lie in only one of the mn

subintervals. Each one of these events has probability m−nn to occur. These mn solu-
tions contribute the term m−nn [EϕBT1

(n) + · · ·+ EϕBTmn
(n)] to the left-hand side. This

is similar for the right-hand side.
In these cases the algorithm will again subdivide each Ti to mn new subintervals.

Repeating the same procedure as before, we substitute each EϕBTi
(n) by a sum of

terms, some of which are less than or equal to the corresponding terms of the right-
hand side by the induction hypothesis and by relation (4.7) while the remaining
are m−2n

n

∑
1≤i1,i2≤mn

EϕBTi1i2
(n), where Ti1i2 denotes the i2 subsubinterval of the i1

subinterval. Continuing in the same manner after k substitutions we are left with the
sum m−knn

∑
1≤i1,...,ik≤mn

EϕBTi1···ik
(n) in the left-hand side and the term m−knn mk

nEB(n)

in the right-hand side. For these last terms the inequality also holds by the arguments
used in the end of the proof of Theorem 4.1. Thus, the theorem is proved.

5. Simulations, discussion, and further research. In order to understand
the results of the previous sections a number of computer simulations are presented
in Tables 1–3. The simulations were conducted for a number of problem sizes n
and different choices of the number m in which we subdivided an interval. Notice
that for simplicity we have chosen to subdivide an interval into a constant number
of subintervals, i.e., mn was independent from n and this is why in the tables m
appears without the subscript n. The only exception to this was the value N r,j

for mn, i.e., the subdivision of any interval Ij is done into a number of subintervals
equal to the number of the roots that lie in Ij . After m and n were set, a problem
instance was constructed. That is, n points were randomly chosen in the interval
(0, 1) with the distribution of interest. For this purpose we have employed the random
number generator of [19]. Our experiments involved only the uniform and Gaussian
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Table 1
Performance of Algorithm generalized find roots for various problem sizes with uniform distri-

bution.

Theory Simulation
n mn EOC EB EOC EB VOC VB

10 N r,j 16.6 −47.5 16.6 −47.5 3.0 6.6
2 14.4 −45.8 14.4 −45.8 2.9 6.6
3 17.8 −48.8 17.6 −48.7 3.4 6.7

10 32.6 −56.6 32.1 −56.8 7.8 7.7
50 75.1 −66.0 74.7 −66.0 28.4 9.2

20 N r,j 33.6 −116.0 33.6 −116.0 4.3 9.3
2 28.8 −112.4 28.8 −112.4 4.1 9.3
3 35.6 −118.2 35.3 −118.2 4.8 9.5

10 69.7 −136.8 68.7 −136.9 10.8 10.0
50 154.9 −149.7 154.1 −149.8 47.2 15.6

50 N r,j 84.8 −357.3 84.8 −357.4 6.8 14.7
2 72.1 −348.1 72.2 −348.1 6.5 14.7
3 89.0 −362.7 88.1 −362.7 7.6 15.1

10 164.1 −404.7 162.1 −404.7 17.3 17.3
50 534.7 −465.1 531.7 −465.2 72.3 21.3

100 N r,j 170.0 −815.5 170.0 −815.5 9.6 20.9
2 144.3 −796.9 144.2 −796.9 9.2 20.9
3 178.1 −826.2 176.3 −826.2 10.7 21.4

10 329.7 −908.7 324.6 −908.6 24.8 24.5
50 1219.4 −1074.8 1214.3 −1074.6 96.3 22.6

500 N r,j 852.2 −5242.0 851.9 −5241.6 21.3 46.4
2 721.4 −5148.5 721.2 −5148.2 20.4 46.2
3 890.2 −5294.6 881.4 −5294.5 23.7 47.7

10 1642.7 −5714.7 1622.2 −5714.5 54.9 54.5
50 3852.5 −6165.9 3837.0 −6165.2 206.2 66.2

distribution with different values of mean µ and standard deviation σ. (Notice that
the specific values of σ of the Gaussian distribution were such that the “tails” of
the distribution outside (0, 1) were negligible.) These n points represented the roots
of a hypothetical function. Then Algorithm generalized find roots was applied with
the constructed instance as an input while the oracle for an arbitrary interval was a
simple counting of the points that lay in the given interval. For each pair of n and
m, 1000 instances were constructed and the number of oracle calls and the value of
the complexity function B were counted for each of the 1000 runs. Recall that B
is the sum of the logarithms of the absolute lengths of the intervals into which the
roots were isolated. But since the original interval was taken to be of length one, B
is actually how many fewer iterations were required compared to n bisection runs in
the same interval. Then the expected number of oracle calls (EOC) and the expected
value of B (EB) were calculated and exhibited in the tables as the average of these
1000 values.

In Table 1 the performance of Algorithm generalized find roots for uniformly dis-
tributed roots is summarized. Notice that this case is exactly the case of Algorithm
find roots of [10] since when the roots are uniformly distributed generalized find roots
reduces to find roots. For verification, Table 1 also includes the EOC and EB as calcu-
lated by (4.1) and the right-hand side of relation (4.4). Slight differences between the
experimental and theoretically expected are due to the limited number of experiments
and unavoidable imperfections of the random number generator. Further information
on the behavior of the algorithm is reported in the last two columns of Table 1, in
which the variance of the oracle calls (VOC) and of B (VB) are included.

Table 2 summarizes a number of experiments of Algorithm generalized find roots
to Gaussian distributed roots with various choices of mean and standard deviation.
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Algorithm generalized find roots applied to Gaussian distributed roots.
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n mn EOC EB EOC EB EOC EB EOC EB EOC EB

10 N r,j 16.6 −56.0 16.6 −58.8 16.6 −67.9 16.6 −80.3 16.6 −89.7
2 14.5 −53.9 14.5 −56.6 14.5 −65.4 14.5 −77.5 14.5 −86.7
3 17.6 −56.9 17.6 −59.7 17.6 −68.7 17.6 −81.0 17.6 −90.4

10 31.9 −65.4 31.9 −68.3 31.9 −77.6 31.9 −90.2 31.9 −99.7
50 74.5 −75.2 74.5 −78.2 74.5 −87.9 74.5 −100.9 74.5 −110.7

20 N r,j 33.5 −133.4 33.5 −139.4 33.5 −158.4 33.5 −183.9 33.5 −203.3
2 28.7 −129.3 28.7 −135.1 28.7 −153.8 28.7 −179.1 28.7 −198.2
3 35.0 −135.3 35.0 −141.2 35.0 −160.2 35.0 −185.6 35.0 −205.0

10 68.0 −154.3 68.0 −160.4 68.0 −179.7 68.0 −205.4 68.0 −225.0
50 151.1 −167.2 151.0 −173.3 151.0 −192.9 151.0 −218.9 151.0 −238.6

50 N r,j 84.2 −402.8 84.2 −418.3 84.2 −467.3 84.2 −532.6 84.2 −582.0
2 72.0 −393.6 71.9 −408.9 71.9 −457.5 71.9 −522.4 71.9 −571.6
3 87.8 −408.3 87.8 −423.8 87.8 −472.7 87.8 −537.8 87.8 −587.1

10 161.6 −450.7 161.7 −466.4 161.7 −515.7 161.7 −581.2 161.7 −630.8
50 528.5 −510.4 528.1 −526.0 528.1 −575.3 528.1 −640.8 528.1 −690.4

100 N r,j 169.7 −909.1 169.6 −940.6 169.6 −1039.5 169.6 −1170.8 169.6 −1270.2
2 144.0 −890.2 143.9 −921.3 143.9 −1020.0 143.9 −1150.9 143.9 −1250.2
3 175.7 −918.9 175.7 −950.4 175.7 −1049.2 175.7 −1180.4 175.7 −1279.7

10 323.3 −1002.1 323.1 −1033.6 323.1 −1132.8 323.1 −1264.3 323.1 −1363.8
50 1216.3 −1168.8 1215.6 −1200.6 1215.6 −1300.0 1215.6 −1431.7 1215.6 −1531.4

500 N r,j 853.3 −5721.2 853.1 −5880.9 853.1 −6379.8 853.1 −7039.8 853.1 −7539.2
2 721.2 −5625.4 721.6 −5786.3 721.6 −6284.8 721.6 −6944.5 721.6 −7443.7
3 881.9 −5772.3 881.4 −5931.7 881.4 −6430.4 881.4 −7090.4 881.4 −7589.7

10 1624.7 −6194.6 1624.7 −6355.7 1624.7 −6855.0 1624.7 −7515.3 1624.7 −8014.9
50 3841.8 −6643.9 3841.5 −6804.8 3841.5 −7304.4 3841.5 −7965.1 3841.5 −8464.9
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Table 3
Algorithm find roots applied to Gaussian distributed roots.

(µ, σ)

(
1

2
,

1

8

) (
2

5
,

1

10

) (
1

5
,

1

20

) (
2

25
,

1

50

) (
1

25
,

1

100

)
n mn EOC EB EOC EB EOC EB EOC EB EOC EB

10 N r,j 18.7 −57.1 18.4 −60.2 18.3 −70.4 20.5 −82.7 19.4 −93.4
2 16.2 −55.6 16.0 −58.0 17.0 −68.0 18.2 −81.6 19.2 −91.6
3 18.5 −57.6 20.0 −61.4 19.7 −71.5 20.7 −84.2 22.6 −94.9

10 36.1 −67.5 35.7 −70.6 34.6 −80.0 37.4 −92.9 36.7 −103.8
50 90.6 −75.6 93.1 −79.2 109.9 −92.8 115.0 −108.5 98.6 −116.1

20 N r,j 36.9 −135.1 35.9 −141.3 34.9 −161.2 35.4 −187.3 40.0 −207.4
2 30.3 −131.4 31.1 −137.6 32.1 −157.6 32.8 −184.2 33.8 −204.2
3 36.6 −136.7 37.7 −143.7 37.1 −163.4 38.4 −189.3 40.1 −210.2

10 67.3 −154.2 66.9 −160.4 67.1 −180.2 71.0 −208.0 67.9 −226.8
50 208.9 −177.3 219.2 −186.3 232.0 −211.6 190.0 −232.0 159.1 −224.4

50 N r,j 92.8 −405.6 89.8 −421.2 85.7 −470.8 85.8 −537.2 88.0 −587.5
2 73.4 −395.6 74.8 −412.2 75.8 −462.2 75.9 −527.5 76.9 −577.5
3 90.4 −410.7 90.4 −426.7 90.2 −476.1 92.1 −542.4 92.9 −592.9

10 167.8 −453.7 169.5 −470.8 168.8 −520.2 166.3 −584.6 170.5 −636.9
50 575.8 −530.1 559.9 −545.3 467.8 −580.7 403.7 −628.2 447.2 −679.6

100 N r,j 187.5 −912.1 180.6 −943.1 171.1 −1042.4 169.6 −1174.8 171.3 −1275.4
2 145.8 −892.3 146.6 −924.7 147.6 −1024.7 148.1 −1155.9 149.1 −1255.9
3 178.3 −921.8 178.4 −953.9 178.6 −1053.3 180.6 −1185.9 180.6 −1286.1

10 339.1 −1012.0 336.9 −1043.2 328.4 −1137.0 338.7 −1274.9 337.9 −1375.4
50 997.2 −1141.7 934.9 −1162.3 812.1 −1231.1 904.9 −1365.1 1087.1 −1498.7

500 N r,j 963.9 −5724.1 992.8 −5879.4 882.6 −6375.9 845.6 −7038.0 846.3 −7539.3
2 722.4 −5625.5 723.1 −5786.4 724.1 −6286.4 726.8 −6947.9 725.8 −7447.9
3 883.2 −5772.2 883.0 −5932.1 884.6 −6432.2 885.7 −7093.8 885.6 −7593.8

10 1659.9 −6204.8 1676.6 −6375.1 1678.3 −6880.1 1628.9 −7510.7 1677.6 −8036.1
50 4278.8 −6638.8 4507.1 −6829.5 5392.0 −7502.2 5542.6 −8273.3 4679.7 −8636.1
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The independence of the expected number of oracle calls to the distribution is exhib-
ited as the entries for the same problem instance remain unchanged in all columns
labeled EOC. This can also be verified by comparing the corresponding entries of
Tables 1 and 2. A cross checking of the columns, where the bisection is reported (the
ones labeled EB) with the corresponding columns of Table 1, verifies Theorem 4.3,
that is, the bisection phase performs worst when the distribution is uniform. But the
results of this table go a step further as they reveal a quantitative nature of this fact.
That is, distributions with smaller deviation result in better performance in the bisec-
tion phase. This seems to be a more general fact and also holds for all distributions
which differ from the uniform in the sense that they possess a “clustering” behavior.

Table 3 records the performance of Algorithm find roots of [10] (that is, equal sub-
divisions of intervals) applied to instances with Gaussian distributed roots. This table
shows an interesting and possibly practical fact, namely, the performance of find roots
(which by construction ignores the distribution of roots) to arbitrarily distributed in-
stances is not dramatically worse than the performance of generalized find roots for
small m. Taking into account the difficulty of dividing an interval into equiprobable
subintervals, this may suggest that it might be better to ignore the distribution and
always subdivide into two equal subintervals. Indeed, in all cases Algorithm gener-
alized find roots performs better in terms of the EOC when the subdivision is done
into two subintervals. This seems to justify choices made by other methods such as
interval analysis that divide the interval into two halfs. Additional advantage of this
fact is the relative simplicity of the oracle call; an algorithm need not have the ex-
act number of roots in an interval and consequently, the corresponding oracle can be
simplified. Taking into account the previous observation and this fact, we conclude
that we can also safely ignore the distribution and assume uniformity without much
loss in efficiency. In addition the columns reporting the variances also suggest that
for m = 2 the algorithm presents smaller deviation both in the localization and in
the root-finding phase, i.e., it is more predictable. In conclusion, Algorithm find roots
when implemented with m = 2 identifies clusters of roots almost as rapidly as gen-
eralized find roots and subsequently its subdivisions concentrate where roots are in
abundance.

We stress however that this holds when m = 2. For larger values of m when
required (for example, in a parallel implementation of the algorithms), Algorithm
generalized find roots is clearly better than find roots.

These observations and especially the case of m = 2 need theoretical justification
which poses an interesting theoretical problem. To show that always dividing by 2
independently of the number of roots for n ≥ 2 results in a better performance than
any other choice of the number of subdivisions. This would in effect show that oracles
reporting more than two roots in an interval do not offer more useful information for
discovering all the roots.
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