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Abstract. This paper describes and analyzes two algorithms for locating and computing with certainty all the
simple roots of a twice continuously differentiable functionf : (a, b) ⊂ R→ R and all the extrema of a three times
continuously differentiable function in(a, b). The first algorithm locates and computes all the simple roots or all the
extrema, while the second one is more efficient in the case where both simple roots and extrema are required.

This paper also gives analytical estimation of the expected complexity of the algorithms based on the distribution
of the roots in(a, b). Here only the case of uniform distribution is examined, which is also the approach to be followed
when no statistical data are available for the function at hand.

The algorithms have been implemented and tested. Performance information for a well-known Bessel function
is reported.
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1. Introduction. It is well known that information concerning all the roots and/or all the
extrema of a function

f : (a, b) ⊂ R→ R(1.1)

is of major importance in many different fields of science and technology.
An immediate method to accomplish this task suggests scanning the interval(a, b) and

applying some rootfinding method for each consecutive root. The method that is employed
here is heavily based on the knowledge of the total number of roots within(a, b). In order
to obtain this information we use results from topological degree theory and especially from
the theory of the Kronecker–Picard integral [24, 25]. This theory gives a formula for the
computation of the total number of roots of a system of equations within a given region. With
this tool in hand one can construct a procedure for the localization and isolation of all the roots
by dividing the given region successively and applying the above formula to these subregions
until the final domains contain at most one root. To our knowledge, the first method to this end
was introduced by Hoenders and Slump [10, 11, 28], who recently reconsidered and applied
Kronecker–Picard theory to calculate the total number of simple roots of a system of nonlinear
equations as well as to calculate the total number of multiple roots of a single equation of any
multiplicity.

Other approaches that have been used successfully to find all solutions of systems of
equations as well as the global optimum of a function are based on interval analysis (see, for
example, [1, 7, 8, 9, 15, 16, 17]). The corresponding existence tool of these methods is the
availability of the range of the function in a given interval, which can be implemented very
efficiently using interval arithmetic, though accuracy problems must be resolved. This tool,
however, reports with certainty only the negative case, i.e., when no roots are in the interval.
The positive case proceeds by subdividing the interval into two halves and employing additional
criteria. This case is common when the function has many extrema but few roots in the interval
of interest. In addition, this tool provides the existence of a root and not their exact number,
which means that more sophisticated decisions (than merely subdividing) cannot be made.
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In this paper we implement Kronecker–Picard theory and give a method for locating
and computing all the simple roots of a twice continuously differentiable function and all the
extrema of a three times continuously differentiable function in an interval(a, b). In addition,
we give analytical expressions of the totalexpectedwork needed in achieving the isolation and
computation of all the roots of (1.1) under certain assumptions that we present in the sequel.
This may prove to be very useful in real life applications since very early estimations of the
total running time of the algorithm are available, contrary to other methods which are totally
unpredictable. Nevertheless, it is important to notice that our analytical results and techniques
also apply to any method that proceeds by repeated subdivisions, giving the expected depth
of the subdivision under the same assumptions. Moreover, the main computational burden of
our method comes from the need of an integration, a problem that has been studied extensively
and for which numerous methods exist.

The rootfinding portion of our method employs a modification of the well-known bisection
method. Alternatively, any one of the one-dimensional rootfinding methods (see [23, 20, 21,
26, 2]) can be used. We use the bisection method for several reasons which we explain in
§2.2, among which is its known behavior concerning the number of iterations required when
we seek the root with a predetermined accuracy.

Here we study the one-dimensional case only. The reason for this restriction is that the
corresponding analysis of our method ton dimensions seems to be quite different.

2. Theoretical aspects.Our algorithms are separated in two phases: (1) the phase of the
localization and the isolation of all the roots, and (2) the rootfinding phase for the computation
of all the roots within a predetermined accuracy.

For the localization phase we use a method of determining the total number of simple
roots of a single equation within a given interval. To this end we briefly exploit degree
theory for determining the exact number of roots of a single equation by computing the value
of topological degree using Kronecker’s integral [19, 3, 29, 22, 13] on Picard’s extension
[24, 25, 10, 28, 11].

For the rootfinding phase we have chosen the bisection method for reasons to be explained
later.

2.1. The topological degree for the computation of the total number of roots and
extrema. Let us first define the notion of the topological degree. Suppose that the function
Fn = (f1, . . . , fn):Dn ⊂ Rn→ Rn is defined and two times continuously differentiable in a
bounded domainDn ofRn with boundaryb(Dn). Suppose further that the roots of the equation
Fn(x) = Θn (Θn = (0, . . . ,0) denotes the origin ofRn) are not located onb(Dn) and they are
simple; i.e., the Jacobian determinant ofFn at these roots is nonzero. Then thetopological
degree ofFn at Θn relative toDn is denoted by deg[Fn,Dn, Θn] and can be defined by the
following sum:

deg[Fn,Dn,Θn] =
∑

x∈F−1
n (Θn)

sgnJFn(x),(2.1)

whereJFn denotes the determinant of the Jacobian matrix and sgn defines the sign function.
The above definition can be generalized whenFn is only continuous [23]. In this

case, Kronecker’s theorem [3, 23] states thatFn(x) = Θn has at least one root inDn if
deg[Fn,Dn,Θn] 6= 0. Furthermore, ifDn = D1

n∪D2
n whereD1

n andD2
n have disjoint interiors

andFn(x) 6= Θn for all x ∈ b(D1
n) ∪ b(D2

n), then the topological degree is additive.
Several methods for the computation of the topological degree have been proposed in the

past few years [29, 22, 13, 14, 30, 31, 4]. Also, deg[Fn,Dn,Θn] can be represented by the
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Kronecker integral, which is closely tied with facts used later and is defined as follows:

deg[Fn,Dn,Θn] = 0(n/2)

2πn/2

∫ ∫
b(Dn)

· · ·
∫ ∑n

i=1Aidx1 . . . dxi−1dxi+1 . . . dxn

(f1
2+ f2

2+ . . .+ fn2)n/2
,(2.2)

whereAi is defined by the following determinant:

Ai = (−1)n(i−1)

∣∣∣∣Fn ∂Fn

∂x1
· · · ∂Fn

∂xi−1

∂Fn

∂xi+1
· · · ∂Fn

∂xn

∣∣∣∣ .(2.3)

Now, since deg[Fn,Dn, Θn] is equal to the number of simple roots ofFn(x) = Θn which
give positive Jacobian minus the number of simple roots which give negative Jacobian, then
of course the total numberN r of simple roots ofFn(x) = Θn can be obtained by the value of
deg[Fn,Dn, Θn] if all these roots give the same Jacobian sign. To this end Picard considered
the following extensions of the functionFn and the domainDn:

Fn+1 = (f1, . . . , fn, fn+1):Dn+1 ⊂ Rn+1→ Rn+1,(2.4)

wherefn+1 = y JFn , Rn+1 : x1, x2, . . . , xn, y, andDn+1 is the direct product of the domain
Dn with an arbitrary interval of the realy–axis containing the pointy = 0. Then the roots of
the system of equations

fi(x1, x2, . . . , xn) = 0, i = 1, . . . , n,
y JFn(x1, x2, . . . , xn) = 0

(2.5)

are the same simple roots ofFn(x) = Θn providedy = 0. On the other hand, it is easily seen
that the Jacobian of (2.5) is equal to

(
JFn(x)

)2
, which is always positive. Thus, we conclude

that the total numberN r of roots ofFn(x) = Θn can be given by the following relation:

N r = deg[Fn+1,Dn+1,Θn+1].(2.6)

We consider now the problem of calculating the total number of simple roots off (x) = 0,
wheref : (a, b) ⊂ R→ R is twice continuously differentiable in a predetermined interval
(a, b), wherea andb are arbitrarily chosen such thatf (a) f (b) 6= 0. According to Picard’s
extension we define the functionF2 = (f1, f2):P ⊂ R2→ R2 and the corresponding system

f1(x, y) = f (x) = 0,
f2(x, y) = yf ′(x) = 0,

(2.7)

where the prime denotes differentiation and whereP is an arbitrarily chosen rectangular
parallelepiped in the(x, y)–plane given bya ≤ x ≤ b and−γ ≤ y ≤ γ with γ a small
positive constant.

Now, since the roots are simple, which meansf ′(x) 6= 0 for x ∈ f −1(0), it is easily
seen that the roots of (2.7) in the above-defined region are the same roots as (1.1). Also, since
JF2 = f ′2, the total number of simple zerosN r of the function (1.1) in(a, b) can be given by

N r = deg[F2,P,Θ2].(2.8)

Now, for n = 2, by applying (2.1) and using the relationsdfj = ∂fj
∂x1
dx1 + ∂fj

∂x2
dx2, where

j = 1, 2, we can easily obtain

N r = 1

2π

∮
b(P)

f1df2− f2df1

f1
2+ f2

2 = 1

2π

∮
b(P)

d arctan

(
f2

f1

)
.(2.9)
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Replacingf1 andf2 by virtue of (2.7) and performing the integration in (2.9) we finally get

N r = − 1

π

[
γ

∫ b

a

f (x)f ′′(x)− f ′2(x)
f 2(x)+ γ 2f ′2(x)

dx + arctan

(
γf ′(b)
f (b)

)
− arctan

(
γf ′(a)
f (a)

)]
.

(2.10)
It has been shown by Picard [24, 25] that the relation (2.10) is independent of the value ofγ .

Of course the total numberN e of the extrema off ∈ C3, i.e., x ∈ (a, b) such that
f ′(x) = 0, can be obtained by setting in (2.9)f1 = f ′ andf2 = yf ′′.

Remark2.1. Using (2.10) it is possible that in many applicationsN r can be computed
analytically. If not, one can use numerical integration [26].

The Kronecker–Picard integral can also be applied for the determination of the total
number of multiple roots [5, 32]. Along these lines, Hoenders and Slump gave in [11] a method
for the determination of the total number of multiple roots of a single function. According to
their method, iff : (a, b) ⊂ R → R is ak times continuously differentiable function, then
the total number of zerosN r

m of f (x) = 0 with multiplicity m or higher wherem ≤ k can be
obtained by the value of the topological degree calculated in a parallelepipedP by using in
(2.7) asf1 andf2

f1 = f 2+
m∑
l=1

(
dlf

dxl

)2

,

f2 = yf ′1.
(2.11)

2.2. A modified bisection method.Notation2.1. Throughout this paper the notation
d·e refers to the smallest integer not less than the real number quoted;`(I ) indicates the length
of the intervalI .

It is well known that a solution off (x) = 0 where the functionf is continuous is
guaranteed to exist in some interval [a, b] if the following criterion is fulfilled:

f (a) f (b) ≤ 0.(2.12)

This criterion is known as Bolzano’s existence criterion. Instead of Bolzano’s criterion one
may also use the value of the topological degree off at origin relative to(a, b), which in this
case can be defined as follows:

deg[f, (a, b),0] = 1

2
(sgnf (b)− sgnf (a)) .(2.13)

Now, if deg[f, (a, b),0] is not zero, we know with certainty that there is at least one root in
(a, b). Note that if deg[f, (a, b),0] is not zero, then Bolzano’s criterion is fulfilled. The value
of deg[f, (a, b),0] gives additional information concerning the behavior of the solutions of
f (x) = 0 in (a, b) relative to the slopes off [35]. For example, if deg[f, (a, b),0] = 1,
which means thatf (b) > 0 andf (a) < 0, then the number of solutions at points wheref (x)

has a positive slope exceeds by one the number of solutions at points at whichf (x) has a
negative slope.

Using the value of the topological degree (or, alternatively, Bolzano’s criterion) we are
able to calculate a solution off (x) = 0 by bisecting the intervalI0 = (a, b). So we subdivide
I0 into two intervals(a, c], [c, b) wherec = (a + b)/2 is the midpoint of(a, b) and we
keep the subinterval for which the value of the topological degree is not zero relative to itself
by checking the information on the boundaries. In this way we always keep at least one
solution within a smaller interval. We can continue this procedure in order to approximate
a solution until the endpoints of the final subinterval differ from each other by less than a
fixed amount. This method is called thebisection methodand can be generalized to higher
dimensions [33, 34].
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The main idea in order to locate all the solutionsrj , wherej = 1, . . . ,N r of f (x) = 0
in (a, b), is to subdivide the interval(a, b) and findN r subintervals(aj , bj ) for which the
relation (2.12) is fulfilled. Now, for each one subinterval(aj , bj ) we can apply any method
to compute the root which is included in(aj , bj ). Here we shall use the above-mentioned
bisection method which has been modified to the following simplified version described in
[33, 34]:

xi+1 = xi + sgnf (x0) sgnf (xi) `(I0)/2
i+1, x0 = a, i = 0, 1, . . . .(2.14)

The sequence (2.14) converges to a rootr ∈ (a, b) if, for somexi , sgnf (x0) sgnf (xi) = −1.
Also, the number of iterationsν, which are required in obtaining an approximate rootr∗ such
that|r − r∗| ≤ ε for someε ∈ (0, 1), is given by

ν = dlog2(`(I0) ε
−1)e.(2.15)

Instead of the iterative formula (2.14) we can also use

xi+1 = xi − sgnf (x0) sgnf (xi) `(I0)/2
i+1, x0 = b, i = 0, 1, . . . .(2.16)

The bisection method always converges within the given interval(a, b) and it is a global
convergence method. Moreover, it has a great advantage since it is optimal; i.e., it possesses
asymptotically the best possible rate of convergence [27]. Also, using the relation (2.15) it
is easy to have beforehand the number of iterations that are required for the attainment of an
approximate root to a predetermined accuracy. Finally, it requires only the algebraic signs of
the functions values to be computed, as is evident from (2.14) or (2.16); thus, it can be applied
to problems with imprecise function values.

3. The algorithms. The algorithms are a sort of “guided” form of the bisection method.
They use the outcome of relation (2.10) in order to isolate the roots or extrema by dividing the
initial interval(a, b) into smaller intervals. Algorithmfind roots, described below in “pseudo
Pascal,” first determines the number of roots in the interval by applying (2.10) (step 8) and,
if there are more than one, it divides the interval intomn equal-size subintervals (steps 6 and
7) and proceeds recursively to each of the subintervals. We proposemn to be equal to the
number of roots though there are several issues to be considered here. We discuss this subject
later on.

ALGORITHM find roots(a, b, S);
{comment: This algorithm locates and computes all the roots or all the extrema off (x) = 0
in (a, b). It exploits (2.10) and (2.14). For (2.10) it requiresf, f ′, f ′′, andγ while for (2.14)
it requiresf andε}

01. procedureroots(a, b,N r ); {comment: adds to setS theN r roots of the interval(a, b)}
begin

02. ifN r = 1 then find the single rootr using the bisection (2.14), setS ←− S ∪ {r}
else

begin
03. j ←− 1; {comment: this counts the subintervalsIj = (aj , bj )}
04. k←− 0; {comment: this counts the computed roots}
05. whilek < N r do

begin
06. aj ←− a + (j − 1) b−a

mn
; {comment: mn is the number of subintervals

in which we choose to divide(a, b)}
07. bj ←− a + j b−amn ;
08. FindN r

j , the number of roots inIj using (2.10);
09. ifN r

j > 0 then roots(aj , bj ,N r
j );
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10. k←− k +N r
j ;

11. j ←− j + 1
end {while}

end
end {roots}

begin {find roots}
12. inputa, b; {comment: f (a) f (b) must be nonzero}
13. S ←− ∅; {comment: S is the set of roots in(a, b)}
14. FindN r

0 , the number of roots in(a, b) using (2.10);
15. roots(a, b,N r

0 );
16. outputS

end. {find roots}
Remark3.1. The case where only the extrema are required can be handled by the same

algorithm by replacing the functionf by its first derivativef ′.
In the case where both roots and extrema are required, we can certainly apply the above

method twice forf and f ′, respectively. But since the extrema lie between consecutive
simple roots which are discovered by the first run offind roots (for f ), we now choose to
divide initially at exactly the points of the roots. We next applyfind roots for f ′ for each
subinterval between two consecutive roots. A high-level description of this algorithm follows.

ALGORITHM roots extrema(a, b, S ′);
{comment: This algorithm locates and computes all the roots and all the extrema off (x)

in (a, b). It uses (2.10) and (2.14). For (2.10) it requiresf, f ′, f ′′, f ′′′, andγ while for
(2.14) it requiresf, f ′, andε}
begin {roots extrema}

01. FindN e, the number of extrema in(a, b) using (2.10);
02. Apply algorithm findroots; LetS = {r1, . . . , rN r } be its sorted output.
03. Construct the subintervalsIj = (aj , bj ) = (rj−1, rj ), j = 1, . . . ,N r + 1, r0 = a,

rN r+1 = b.
04. E←− N r − 1; {comment: E counts the number of verified extrema}
05. if f ′(a) f ′(r1) < 0 thenE←− E + 1;
06. if f ′(rN r ) f

′(b) < 0 thenE←− E + 1;
07. if E = N e then apply bisection (2.14) (usingf ′) in all Ij . Let S ′ the set of the extrema.

else
begin

08. S ′ ←− ∅;
09. j ←− 1; {comment: this counts the subintervalsIj = (aj , bj )}
10. k←− 0; {comment: this counts the computed extrema}
11. whilek < N e − E + j − 1 do

{comment: whenk + E − j + 1= N e, it is assured that
only one extremum exists in each remaining interval}

begin
12. Apply algorithmfind roots in Ij usingf ′; Let S ′j be its output;
13. SetS ′ ←− S ′ ∪ S ′j ; {comment: S ′j will be the set of the extrema in(aj , bj )}
14. k←− k + |S ′j |;
15. j ←− j + 1

end {while}
16. Apply bisection (2.14) (usingf ′) in all Il for l = j + 1, . . . ,N r ; setS ′ ←− S ′ ∪ S ′l

end
17. outputS ′

end. {roots extrema}
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Returning to algorithmfind rootsand assuming that the number of roots in a subinterval is
always available (say it is given by an “oracle”), it is clear that the computational complexity of
the algorithm is determined by (1) the total number of calls to the oracle and (2) the iterations
required by theN r bisection calls which will compute the isolated roots.

4. The expected complexity of the algorithm.In this section we study the expected
complexity of algorithmfind roots. First, we focus our attention on the number of times the
number of roots has to be found in a given interval, i.e., theaverage number of oracle callsas
this is the most demanding step of the localization phase. The rootfinding phase is dominated
by theaverage number of iterationsof the bisection method.

4.1. Preliminaries, definitions, and notations.The study presented here follows certain
assumptions:

(i) The size of the problem is the total number of roots off (x) in (a, b).
(ii) We view each root off (x) as a random variable having a given distribution in

(a, b). All roots are considered as pairwise independent variables having the same
distribution. In this paper we assume that the distribution isuniform; i.e., it is equally
likely for any point in the interval to be a root.

(iii) The study of the expected complexity of the algorithm isover all possible inputs
to the algorithm, that is, over all possible sets ofn points in the interval(a, b) and,
consequently, independent of the given function.

Assumption (iii) implies only partial knowledge of the properties of the specific function
(the distribution of its roots), which may vary from complete ignorance as to whether the roots
lie (our case) to full knowledge of the roots if the properties of the function are known. Hence,
the analysis is independent of the specific function which merely serves (through Picard’s
integral) as an “oracle” that reveals the number of roots in a specific interval. This models
real life applications where some physical quantity is of interest whose zeros are statistically
independent with known (or suspected) distribution. It is indeed intermediate cases of the form
“the roots are expected around the center of the interval” that are really the most interesting
since this type of knowledge may “tune up” appropriate algorithms that take into account the
additional information and perform better. It is also worthwhile mentioning that the same
analysis applies to any method that isolates the roots by repeated subdivisions of the intervals,
independently of how the oracle is implemented (a good example is interval analysis techniques
for which the main result of§4.2 is a lower bound). In this paper we completely ignore possible
properties off (x) and solve the following combinatorial problem, leaving the more complete
study for future research:

Find the expected number of oracle calls that algorithmfind rootswill require in order to
isolate alln points which are randomly and independently chosen with uniform distribution.

In other words, we want to find the expected value
(
over all possible patterns of appear-

ances ofn roots in the intervalI0 = (a, b)
)

of a functionH which, given a specific pattern
of roots in the interval, returns the number of oracle calls required to isolate each root in a
subinterval (a formal definition follows). Since, however, this function is noncontinuous and
we want to avoid integrating in subintervals, we adopt a simpler approachdiscretizingthe
intervalI0 = (a, b) and summing instead of integrating.

We begin by giving a list of symbols and definitions that we shall need later.
Notation4.1. Let|S| denote the cardinality of the setS. Let [·] denote the integer part of

the number quoted. Notice that [x, y] refers to the closed interval with endpointsx andy.
DEFINITION 4.1. We call resolutionδ of the algorithm a small positive real such that ifx

is a root in(a, b), any point in the interval
[
x − δ

2, x + δ
2

]
is considered to be the rootx.

This definition means that as far as the algorithm is concerned, any two roots less that
δ apart are considered to be one and, as one, are reported by the oracle in (2.10). We next
considerI0 to be divided into a large number of consecutive subintervals of lengthδ which
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we callelementary. Any subdivision ofI0 into small intervals (as stated in steps 6 and 7 of
the algorithm, as well as any subdivision thereof) is considered to take place at points that
are integermultiples ofδ. Going one step beyond, we consider (for simplicity reasons)I0

to be rounded to the smallest integer multiple ofδ, sayµ, such thata + µδ ≥ b. Clearly,
µ = d b−a

δ
e. Consequently, ifm roots are reported by the oracle at step 14 of the algorithm,

steps 6 and 7 will divideI0 with length`(I0) intom intervalsIi, i = 1, . . . , m such that

Ii =
(
a + δ

[
(i − 1)

`(I0)

mδ

]
, a + δ

[
i
`(I0)

mδ

]]
, i = 1, 2, . . . , m.

In the above we adopt the convention that all subintervals be open from the left and closed
from the right, thus avoiding a point belonging in more than one subinterval at each level
of subdivision. Unifying these conventions, we consider the initial intervalI0 to be I0 =
(a, a + µδ].

The above discretization suggests a more convenient way of representing intervals, namely,
as sets of the elementary consecutive subintervals which are included in them. More specif-
ically, consider assigning to each elementary subinterval ofI0 an integer from 1 toµ in
increasing order from left to right. This suggests representingI0 by the set of consecutive
integersT0 = {l ∈ N: 1≤ l ≤ µ}. The representation of a subintervalIi is

Ti =
{
l ∈ T0:

[
(i − 1)

`(I0)

mδ

]
+ 1≤ l ≤

[
i
`(I0)

mδ

]}
.

Analogous relations hold for any subinterval ofI0. For our study,T0 is the sample space with
each of its points a candidate of being a root. In the sequel we shall use the term “interval”
both for a standard intervalI and its correspondingT set when no confusion arises. Similarly,
extending Notation 2.1, we denote by`(T ) the length of the corresponding standard interval
I .

In the analysis that follows we shall denote byX a variable representing a set of integers
(or, for our purposes, a set of roots). IfX ⊂ Tl , X is any set of elementary subintervals, i.e.,
a set of integers inTl . In the context described above, the probability of a setX of cardinality
k, denoted by Prob{X}, is the probability of choosing thek elementary subintervals that
correspond to thek roots. For example, if the distribution of the roots is uniform, then the
probability of a specificX set is

(
µ

|X|
)−1

. Using the above, we are now ready to formally define
the functionH .

DEFINITION 4.2. Let S be the set of all subsets ofT0. The functionH :X ∈ S → N
mapsX to the number of oracle calls that the algorithm will do in order to isolate the roots
represented by the setX. Similarly, we define theH function relative to an intervalT denoted
byHT (X) and which gives the number of oracle calls that the algorithm will do in the specific
intervalT ; that is, in the latter case we only count oracle calls required for roots insideT .

Remark4.1. If the intervalT0 is divided inmn subintervals,Ti, i = 1, . . . , mn, the number
of oracle calls inT0 is clearlyHT0 = 1+∑mn

i=1HTi − 1 = ∑mn
i=1HTi . The “1” comes from

the initial oracle call which returns the number of roots inT0 and the “−1” from the fact that
no oracle call is required to obtain the number of roots of the last interval since this can be
obtained by subtracting from the total number the sum of the roots in the rest of themn − 1
subintervals. The same relation holds for the value of theH function of any interval. Note
that here we assume that allmn − 1 oracle calls will be required in the while loop of step 5.

4.2. Theoretical results.We now study the expected behavior of our algorithm begin-
ning from the first stage, where the roots are isolated each in an interval by its own. Specifically,
we study theexpected number of oracle callsrequired for this task as a function of the number
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of rootsn. Observe that the number of intervals into which we choose to divide can be either
constant or a function ofn. By nwe denote the total number of roots in the given interval (n is
theN r

0 of step 14 of the algorithmfind roots.) In any case, deciding the value ofmn is based
only onn, and this is the reason why we denoted the number of subdivisions subscribed byn.
As stated in Remark 4.1, the approach that follows assumes that allmn − 1 calls are required
in an interval which is divided intomn subintervals. This is equivalent to replacing the while
statement of step 5 by the statementwhile j < mn do. This is done for simplicity reasons and
it is removed after the next theorem is proved.

THEOREM4.1. Suppose that the algorithm findroots divides any intervalT0 with n roots
intomn subintervalsTi, i = 1, . . . , mn. Then the expected number of oracle calls required by
the algorithm to isolate alln roots is given by the formula

EH(n) = mn1−n
n∑
k=0

(
n

k

)
(mn − 1)n−kEH (k)(4.1)

or, equivalently,

EH(n) =
∑

k1+···+kmn=n

n!

k1! · · · kmn !
mn
−n
(
EH(k1)+ · · · + EH(kmn)

)
,(4.2)

whereEH(0) = EH(1) = 1.
Proof. We shall show first (4.2). Clearly,EH(0) = EH(1) = 1 since, when no root or a

single root is inT0, then only one oracle call is required. Forn ≥ 2 letXi, i = 1, . . . , mn be
the set of roots that lay in intervalTi . Clearly,|X1| + · · · + |Xmn | = n. The distribution of the
corresponding vector of the cardinalities of theXi ’s (|X1|, . . . , |Xmn |) is polynomial; that is,

Prob{|X1| = k1, . . . , |Xmn | = kmn} =
n!

k1! · · · kmn !
mn
−n.(4.3)

This is immediate since Prob{some specific root lies inTi} = mn−1 because of the uniform
distribution of the roots in(a, b).

Let X̃ = X1 ∪X2 ∪ · · · ∪Xmn . By Remark 4.1 we have

H(X̃) = HT1(X1)+HT2(X2)+ · · · +HTmn (Xmn).
Taking the expectation [6] of both sides of the above we have

E{H(X̃)} = E{HT1(X1)+HT2(X2)+ · · · +HTmn (Xmn)}(4.4)

= E
{
E
{
HT1(X1)+HT2(X2)+ · · · +HTmn (Xmn) |X1| = k1, . . . , |Xmn | = kmn

}}
,

where the outer expectation is over all setsX̃ = X1∪· · ·∪Xmn such that|X1| = k1, . . . , |Xmn | =
kmn with k1+ · · ·+ kmn = n. Now, the expectation ofHTi (Xi) whereXi runs over all possible
choices of sets inTi with |Xi | = ki depends only on the cardinalityki ofXi . We may, therefore,
simplify our notation and denote byEH(ki) the expectationE{HTi (Xi)}. Note that we have
also dropped the subscriptTi since the expectation does not depend on the specific interval
either, as the distribution is uniform. Using linearity in the inner conditional expectation and
the above observation we get

EH(n) = E
{
EH(k1)+ · · · + EH(kmn) |X1| = k1, . . . , |Xmn | = kmn

}
.



LOCATING AND COMPUTING ALL THE ROOTS AND EXTREMA 1241

Using (4.3) we finally obtain

EH(n) =
∑

k1+···+kmn=n

n!

k1! · · · kmn !
mn
−n
(
EH(k1)+ · · · + EH(kmn)

)
.

In order to show (4.1), observe that the above equation may be written as

EH(n) =
n∑
k=0

(
n

k

)
mn
−k ∑

k1+···+ki−1
+ki+1+···+kmn=n−k

(
n− k

k1, . . . , ki−1, ki+1, . . . , km

)
mn

k−nEH (k)

=
n∑
k=0

mn
−k
(
n

k

)(
1

mn
+ · · · + 1

mn

)n−k
EH (k),

wheremn − 1 fractions are added. Equation (4.1) now follows easily.
Remark4.2. Solving (4.1) with respect toEH(n) results in the following formula which

can be used to obtain numerical values forEH(n):

EH(n) =
(
mn

n−1− 1
)−1

n−1∑
k=0

(
n

k

)
(mn − 1)n−kEH (k).(4.5)

An interesting question is raised as to whether we can remove recursion from (4.1). It
turns out that recurrences of the above form are very difficult to handle. We were unable to do
so in the general case, that is, whenm is a function ofn, or even in the casem = n, which is
particularly interesting. However, whenm is constant, we reduced (4.1) to a known recurrence
solved in [18] by the use ofbinomial transformations.This is done by finding a recurrence
for the sequenceE′H (k) = EH(k)−1, k = 0, 1, . . . . By employing the techniques described
in [18, p. 501] we can show that forn ≥ 2

E′H (n) = (m− 1)
n∑
k=2

(
n

k

)
(−1)k(k − 1)mk−1

mk−1− 1
.(4.6)

Observe thatm is referred to without a subscript since the above hold whenm is a constant.
We conclude the study of the first phase by examining the complexity of the algorithm

find rootsas stated originally, that is, when step 5 includes the conditionk < N r . Then we
may be able to save several oracle calls if all the roots fall into the first few intervals and,
consequently, it is unnecessary to call the oracle for the rest of the intervals. In order to
calculate how much we overestimated the expected complexity in Theorem 4.1, observe that
in (4.4) the expectation is over every possibleX̃ with cardinalityn. But if X̃ totally falls in
intervalsT1 toTi , algorithmfind rootswill not require oracle calls for the lastmn− i intervals.
So the expectation was overestimated by(mn− i)×Prob{X̃ totally falls in intervalsT1 toTi}.
For example, wheñX is totally included in the first interval, then a term( 1

mn
)n(mn − 1) must

be subtracted. Similarly, an additional(mn − 2)
(
( 2
mn
)n − ( 1

mn
)n
)

must be subtracted wheñX

is totally included in the first two intervals. The subtracted( 1
mn
)n is the probability ofX̃ to

fall totally in the first interval and was already counted in the term( 1
mn
)n(mn− 1). Hence, we

must decrease (4.1) by

mn∑
i=1

[(
i

mn

)n
−
(
i − 1

mn

)n]
(mn − i) =

mn−1∑
i=1

(
i

mn

)n
.

We, therefore, have the following theorem.
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THEOREM 4.2. The expected number of oracle calls of algorithm findroots is given by

EH(n) = m1−n
n

n∑
k=0

(
n

k

)
(mn − 1)n−kEH (k)−

mn−1∑
i=1

(
i

mn

)n
.(4.7)

Proof. The proof follows immediately from Theorem 4.1 and the above discussion.
We next proceed to the study of the second phase of the algorithm when all the roots have

been isolated, each in its own interval. This second phase consists of a number of bisections
that are applied in those intervals. Our task, therefore, requires the definition of a complexity
function that will capture the actual work of the second phase, like theH function defined
above. A promising approach might be to use theaverage lengthof then intervals that are
searched by bisection. (Note here that we are talking about the average length of the intervals
of a specificrun of the algorithm and not over every possible run. Should we accept this
approach, we must next calculate theexpected average lengthof the intervals.) But there is a
subtle point here. The actual average case work of the bisection is logarithmically related to
the length of the interval in which it is applied (see§2). This means that if we want to estimate
the work of the second phase, the average (the arithmetic mean, to be precise) length of the
intervals is not the best measure. In fact, it is not difficult to see that thegeometric meanis
a quantity proportional to the total number of iterations required. Seeking for an appropriate
complexity measure we give the following definition.

DEFINITION 4.3. Let X̃ be the set of roots andT any subinterval ofT0. We denote by
SP[T ; X̃] the set of subsets ofT into which the algorithm will divideT and that include one
element ofX̃.

In other words, SP[T ; X̃] is the set of subintervals ofT produced by the algorithm each
containing a single root and to which bisection must be applied. Observe now that the total
number of iterations IT, involved in phase two, is given by

IT =
∑

T ∈SP[T0;X̃]

log2

(
`(T ) ε−1

)
.

The above formula has the disadvantage that it involves the absolute length of the intervals
that remains after phase one, which makes it inappropriate for a recursive relation. By a slight
modification we get the following relation which, contrary to the above, involves the relative
(with respect to the initial intervalT0) lengths of the intervals:

IT =
∑

T ∈SP[T0;X̃]

log2
|T |
|T0| + nlog2

(
`(T0) ε

−1
)
.(4.8)

Observe that if we manage to estimate the average value of the sum, then finding the expected
number of iterations is a trivial task. Therefore, we focus our attention to this sum which we
call the “characteristic complexity function of phase two” and define it as follows.

DEFINITION 4.4. Let X̃ be a set of roots in a specific instance of the problem. The
“characteristic complexity function” of phase two is defined by

B(X̃) =
∑

T ∈SP[T0;X̃]

log2
|T |
|T0| .

Similarly, we define the functionB relative to an intervalT ′ and denote it byBT ′ to be

BT ′(X̃) =
∑

T ∈SP[T ′;X̃]

log2
|T |
|T ′| .

Our next task will be to calculate the expected value ofB.
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THEOREM 4.3. Suppose that the algorithm divides an intervalT0 with n roots intomn
subintervals. Then the expected value of the characteristic complexity function is given by the
formula

EB(n) = mn1−n
n∑
k=0

(
n

k

)
(mn − 1)n−kEB(k)− nlog2mn(4.9)

or, equivalently,

EB(n) =
∑

k1+···+kmn=n

n!

k1! · · · kmn !
mn
−n
(
EB(k1)+ · · · + EB(kmn)

)
− n log2mn,(4.10)

whereEB(0) = EB(1) = 0.
Proof. First observe thatEB(0) = 0 since SP[T ; ∅] = ∅. Also, EB(1) = 0 since

when only one root is in an interval, the whole interval must be searched by the bisection.
For anyn ≥ 2 let, as in Theorem 4.1,Xi, i = 1, . . . , mn be the set of roots in intervals
Ti, i = 1, . . . , mn, respectively. Also, let̃X be the total set of roots inT0. Then

B(X̃) =
∑

T ∈SP[T0;X̃]

log2
|T |
|T0| =

∑
T ∈SP[T1;X1]

log2
|T |
|T0| + · · · +

∑
T ∈SP[Tmn ;Xmn ]

log2
|T |
|T0|

=
∑

T ∈SP[T1;X1]

log2
|T |
|T1| − k1 log2mn + · · · +

∑
T ∈SP[Tmn ;Xmn ]

log2
|T |
|Tmn |

− kmn log2mn,

wherek1, . . . , kmn are the numbers of roots in intervalsT1, . . . , Tmn , respectively. Conse-
quently, under the above assumptions

B(X̃) = BT1(X1)+ BT2(X2)+ · · · + BTmn (Xmn)− n log2mn.(4.11)

The key observation in (4.11) is, once again, that the expectations of theB functions are
independent of the intervals in which they are applied and depend only on the cardinalities
of the correspondingX set. Moreover, the subtracted termn log2mn is independent of theX
sets. Hence, by taking the expectations of both sides of (4.11) we may apply the same line of
thought as in Theorem 4.1 and obtain (4.10). Proving (4.9) is then completely analogous to
proving relation (4.1).

Remark4.3. Solving (4.9) with respect toEB(n) we get the following formula which
may be used to obtain numerical values forEB(n):

EB(n) = 1

mnn−1− 1

n−1∑
k=0

(
n

k

)
(mn − 1)n−kEB(k)− nmnn−1log2mn.(4.12)

COROLLARY 4.4. The expected number of iterations required by the algorithm in order
to compute alln roots is given by the formula

IT = EB(n)+ nlog2

(
`(T0) ε

−1
)
.(4.13)

Proof. The proof follows from (4.8) and Theorem 4.3.EB(n) must be computed from
(4.12).
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FIG. 1. The function(5.1) for c = 0, a = −100, andb = 100.

5. An example and numerical applications.We illustrate our method and analysis on
a parametric problem based on a well-known function also studied in [10]:

f (x) = J0(x)+ J1(x)+ c,(5.1)

whereJ0 andJ1 indicate the zero-order and first-order Bessel functions [26], respectively, and
c a constant, where

Jn(x) =
∞∑
k=0

(−1)k
(x/2)2k+n

k!(n+ k)! , n = 0, 1, . . . .(5.2)

Function (5.1) was selected as this and related functions attract the attention of several re-
searchers. Moreover, it possesses some nice properties which make it especially suitable for
our purposes. It has a large number of roots which means that arbitrarily large rootfinding
problems may be generated, restricted only by the boundaries of the interval. Also, the roots
of the function are within a small neighborhood almost equally spaced, which, in turn, results
in a performance of the algorithm close to that predicted by the analytical estimations. Finally,
as it is obvious from Figure 1, by varying the constantc we can, in effect, raise or lower the
function relative to thex–axis and, consequently, “move” the roots toward one end of the
interval and study the results in the performance of the algorithm. We applied the algorithm
find roots for various intervals in order to compute the corresponding roots. The behavior of
the algorithm for the extrema is analogous.

Using the relations

J ′0(x) = −J1(x),

J ′1(x) = J0(x)− 1

x
J1(x),

(5.3)

we are able to find the derivatives used in (2.10) as functions ofJ0(x) andJ1(x) which, in
turn, may be computed using, for example, the routines of [26].
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TABLE 1
Computer runs and behavior of the algorithm findroots for various instances of the problem.

Function a b N r OC IT EOC EIT
J0(x)+ J1(x) −1000 1000 636 636 26712 1027.9 25438.4
J0(x)+ J1(x) −100 100 63 63 2646 101.1 2521.5
J0(x)+ J1(x) 0 100 31 31 1302 49.3 1241.9
J0(x)+ J1(x)− 0.125 −100 100 50 67 2194 80.0 2018.0
J0(x)+ J1(x)− 0.125 0 100 25 32 1205 39.6 1009.4
J0(x)+ J1(x)− 0.125 0 200 25 40 1611 39.6 1034.4
J0(x)+ J1(x)− 0.125 0 300 25 43 1760 39.6 1049.1
J0(x)+ J1(x)− 0.15 −100 100 34 50 1522 54.2 1392.4
J0(x)+ J1(x)− 0.15 0 100 17 25 933 26.7 696.2
J0(x)+ J1(x)− 0.15 0 200 17 29 1202 26.7 713.2
J0(x)+ J1(x)− 0.15 0 300 17 31 1302 26.7 723.1

Using bisection for this kind of problem has the advantage that only signs need to be
computed, which can be achieved by considering relatively few terms of (5.2).

The results for locating and computing all the zeros are summarized in Table 1. The
columns labeleda andb indicate the endpoints of the searched interval; the columns labeled
N r , OC, and IT show the number of computed roots within(a, b), the number of oracle calls,
and the number of iterations required by the algorithmfind roots, respectively. The two final
columns EOC and EIT indicate the values of (4.7) and (4.13) for the same parameters.

As it is evident from Table 1, the predictions from (4.7) and (4.13) are closer to the actual
performance in the cases where the pattern of the roots has a certain degree of “asymmetry”
that captures the possible variations from uniformity.

6. Discussion and open problems.Let us now focus our attention on the results of§4
and discuss the expected behavior of the algorithm as described by (4.7) and (4.12). The first
equation describes the behavior of phase one of the algorithm as a function ofn, the number
of roots. In Figure 2 we plot (4.7) for various values ofmn, the number of subintervals in
which we divide. It is clear that the expected number of calls decreases when we decrease the
number of subintervals with a minimum reached formn = 2. An interesting choice seems to
bemn = n since the curve for this case remains close to the curve ofmn = 2.

The reverse holds for the number of iterations of phase two which is plotted in Figure
3. There we plot (4.12) since this is actually the expected number of iterations “saved” by
this method (this is represented by the negative sign of theEB values) compared withn
bisections on the intervalT0. When the actual number of iterations is desired, then the term
n log2

(
`(T0) ε

−1
)

must be added. It is clear, therefore, that what we save must be compared
with this last term. Figure 3 shows that the saved iterations grow roughly like−10n (for
mn = 2). The added term depends on the quantity`(T0) ε

−1. Assuming a value of 1012

reasonable for this term, i.e., 12 significant digits (this corresponds to 12 decimal digits for
the normalized casè(T0) = 1), we see that the added term grows like 40n. Hence, we save
about 25% of the iterations. Less demanding accuracy, for example, for`(T0) ε

−1 = 106,
results in a savings of about 50%. (At this point one may wonder whether the negative part of
(4.13) exceeds, in absolute value, the positive part for suitable`(T0) andε. This is not the case
since the analysis above presumes that each subinterval is greater thanε, the desired accuracy.
Hence, (4.13) holds for sufficiently smallε.)

It is clear, therefore, that the total complexity of the algorithm is a combination of the
complexities of phases one and two. A central issue is the choice ofmn: phase one requires
smallmn, if possible two, but phase two requires largemn. A reasonable choice (which is also
the one proposed in the algorithms) seems to bemn = n.
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FIG. 2. Expected number of oracle calls by virtue of(4.7) for various values ofmn.

FIG. 3. Expected number of iterations saved by virtue of(4.12)for various values ofmn.

Every “real life” estimation, however, heavily depends on the way the “oracle” is imple-
mented. The central part of (2.10) is clearly the integral. If the integral can be implemented
in a nontime-consuming way (for example, when the analytical form can be found or an effi-
cient numerical method can be applied), then phase one will be less demanding and we must
concentrate on phase two by increasing themn value. If, however, this is not the case, then
probably small values ofmn would be preferred. In any case, the integral must be computed
with an error of, at most, 0.5 since it is known that (2.10) returns an integer. This suggests
that relatively few function evaluations will be necessary. And, most importantly, the imple-
mentation of the oracles for the subintervals can take into account the function evaluations
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that have already been computed for the oracle of the divided interval. This last observation
suggests that numerical values should be stored and reused for the oracles of higher levels
of subdivision. Such an approach could dramatically reduce the total number of function
evaluations for the oracles implementation. The full exploitation of this idea and the trade-off
between phases one and two will be presented in a future publication.

Several other open problems remain to be examined in different directions. A first direc-
tion is to apply the method for more general distributions of the roots. This will, first of all,
broaden the class of problems for which the analytical estimations apply. Next, one may apply
the same techniques and derive complexity bounds for other methods on the same problem
along the lines of Theorems 4.1 and 4.3. But we also feel that there are several things to be
examined here in the algorithm itself. For example, if we expect the roots to be concentrated
around the middle of the interval, then clearly more refined subdivisions must take place there,
while close to the boundaries the subdivision can be sparser. That is, we believe that the al-
gorithm itself can be guided if the distribution of the roots is known, in order to improve its
performance. Results on this direction will be reported in [12].

Furthermore, preliminary investigations suggest that the algorithms can be generalized
to higher dimensions to locate and compute with certainty all the simple roots of equations
F(x) = (0, 0, . . . ,0) whereF = (f1, f2, . . . , fn): (a, b)n ⊂ Rn → Rn, as well as all the
extrema of functionsf : (a, b)n ⊂ Rn→ R.

Finally, we would like to point out the possibilities of efficient parallelization of the
algorithm, thus exploiting the tremendous capabilities of modern parallel computers. This
opens a totally new subject where all the discussed problems should be reexamined in the light
of massive parallelism.
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