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Abstract 

Infinite sequences of period-doubling bifurcations are known to occur generically (i.e. 
with codimension 1) not only in dissipative 1D systems but also in 2D conservative 
systems, described by area-preserving mappings. In this paper, we study a 3D volume- 
preserving, reversible mapping and show that it does possess period 2”(m = 1,2, . . .) 
orbits, with stability intervals whose length decreases rapidly, with increasing m. Varying 
one parameter of the system we find that these orbits always bifurcate out of one another 
with the usual stability exchange and universal properties of period-doubling sequences of 
2D-conservative maps. This raises the interesting question whether these 3D reversible 
maps possess an analytic integral which would render them essentially 2-dimensional. 

1. Introduction 

It is well known that infinite sequences of period-doubling bifurcations occur 

generically and constitute a universal route to chaos in dissipative dynamical 

systems [ 11. Such sequences are observed as one parameter of the system is varied 

(i.e. they are of codimension 1) and their universality is related to the fact that 

locally their dynamics is one-dimensional. 

In the case of 2D area-preserving mappings, period-doubling bifurcations are 

also generic and occur in a very similar way, only with different universal 

constants [2,3]. The two eigenvalues of the Jacobian return matrix of a period 2” 

orbit collide at -1 and split off on the real axis, as a stable 2”+‘-period orbit is 

“born” with its eigenvalues entering the unit circle at +l. 

In higher-dimensional conservative systems, however, the situation is a lot less 

clear. One generally finds that the eigenvalues of a 2” periodic orbit split off the 

unit circle at some point other than -1. This is the so-called phenomenon of 

complex instability [4,5], which is not associated with the simultaneous appear- 
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ante of a stable orbit of twice the period and thus interrupts the period-doubling 
sequence followed by the variation of only one parameter. In recent years, 
however, there have been some interesting results, suggesting that, in 4D 
symplectic mappings, period-doubling bifurcations can be infinitely continued by 
varying 2 parameters of the system [6,7]. 

In this paper, we investigate a 3D volume-preserving, reversible mapping of the 
form 

with 

H(Ul, u2) = u; - u; + /..&uz - qu;> ) (14 

from the viewpoint of its periodic orbits with period 2”, m = 1,2, . . . , their 
stability analysis and bifurcation properties. Such mappings are known to arise, as 
special solutions of certain discretized lattice equations [8,9], as well as in some 
problems of fluid dynamics [lo]. Our main result is that 3D reversible maps like 
(1) possess sequences of 2”-periodic orbits whose initial points form curves in the 

Ul,U2 symmetry plane, with stability intervals which rapidly decrease with 
increasing m. These orbits are connected by period-doubling bifurcations, in 
exactly the same way as in the case of 2D conservative maps. In other words, we 
find, for all values of p tested, that stable period-2”+l orbits appear at points 
where period-2” orbits destabilize while the distances d, between the two points 
of the 2”‘-periodic orbit, at bifurcation, scale as a -“‘, where (YE 4.0180 is the 
universal number of the 2D conservative case [2,3]. 

Moreover, the corresponding distances dk between the pair of points which 
have just bifurcated off the symmetry plane scale as the second universal number 
of the 2D case, i.e. d: a pmm, /3 = 16.36389. . . 

Since our map does possess an integral in the p = 0 case and everything seems 
to vary continuously as a function of p, it would be interesting to study whether 
(1) possesses an analytic integral for all p, which would render this mapping 
essentially 2-dimensional. 

In the process of computing period-2” orbits for our example, we follow an 
approach characterized by two interesting and rather novel features: first we 
derive, for a given value of p, algebraic equations which yield one-parameter 
families of curves, corresponding to each 2”-periodic orbit. These curves consist 
of the points of the orbit which lie on the ur, u2 symmetry plane. 

We then look for intersections of these curves (where bifurcations occur), using 
a recently developed numerical algorithm, which avoids the well-known difficul- 
ties of Newton’s method (as well as those of related classes of algorithms) and 
always converges rapidly to the desired root, within a predetermined accuracy 
[ll-1.51. Combining this procedure with the computation of the stability prop- 
erties of each orbit, we show that it is possible to connect the stability intervals of 
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the 2”-periodic orbits of (l), for m > 2, in a way expected from a universal 
sequence of period doubling bifurcations. 

In section 2, we give the motivation for our choice of 3D mapping (1) and 
describe its volume-preserving and reversibility properties. Section 3 reviews 
certain basic facts about periodic orbits and derives the algebraic equations used 
to obtain the orbits of period 2 and 4, compute their bifurcation points and study 
their stability-instability transitions. 

Section 4 generalizes the results of section 3 to orbits of period 2”, m > 2, and 
demonstrates that their corresponding one-parameter families of curves in the 
ui, u2 plane do intersect, yielding a sequence of bifurcations from period 2” to 
2 m+i, m=3,4,. , . . In these bifurcations the “mother” (2”-)periodic orbit does 
indeed destabilize at the point where the “daughter” (period-2”+‘) orbit begins 
its stability interval. Varying the value of the parameter II, this is seen to occur 
always in a similar way for all p values tested, p = 0.1,0.5,1, etc. 

Finally, section 5 contains a brief description of our numerical methods, with a 
discussion of their advantages over other more standard root-finding procedures. 

2. The 3D mapping: motivation and special properties 

Many physically important partial differential equations in two independent 
variables such as soliton equations, have been studied extensively in the literature 
analytically as well as numerically [16,17]. In the case of numerical investigations, 
discretizing both independent variables one gets difference-difference (AA-) 
equations, which should be solved on the sites of a 2D lattice. Some of these 
difference-difference equations are completely integrable, have soliton solutions 
and are expected to possess regular and predictable dynamics [8,9]. In general, 
however, these systems are not integrable and their solutions have very interest- 
ing and complicated properties [l&-20]. 

Such AA-equations are often written on a 2D lattice in the form 

V I+l,m+l = wLn~ U/+l,m, %1+1) ) (2) 

where the subscripts (I, m) refer to the Zth horizontal and mth vertical site of the 
lattice. For special choices of h, one obtains the well-known AA-SG (Sine- 
Gordon) and the AA-KdV (Korteweg-de Vries) equations [9]. Traveling wave 
solutions (2) can be obtained if we put 

ui,, = n, 3 (3) 

where y1 = z,Z + z2m, with zl, z2 positive integers. 
From (2), using (3), we obtain 

u n+zl+zz = WJ,? u,+,,> u”+J > (4) 

which actually gives the solution of the original initial value problem. This 
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equation is clearly an ordinary difference equation. Thus, we have reduced the 
problem to one defined on a one-dimensional chain [8,9]. 

Eq. (4) can now be written in the form of a (zi + z,)-dimensional mapping T, 

T: (5) 

which is derived (without loss of generality) by putting n = 0 in (4). In fact, the 
map T can be interpreted as follows: given z1 + zz sites on the 1D chain, we can 
find the next one as implied by (4), while the rest are used to move one site 
forward on the chain. 

That map T of eq. (5) can be written in more concise form as 

T: 
u; = u., 

U :,+z2','I ew,17Uz2~ 9 

j=O,l,. . . ,z1+z2-2, zi,zzEZ+ 9 z,+z2=dimT*3. 

The Jacobian matrix of the linearized map and its determinant are 

(6) 

0 1 0 . . . . . . . . . . . . . . . 0 

0 0 1 . . . . . . . . . . . . . . . 0 

DT= i i i 

i 

ah - . . . 
% 

0 
ah 

3 ]det DT( = l-$1 . 

. . . - . . . - . . . 
au*, 

Thus, if we require our mapping to be volume preserving, i.e. with ]det DTI = 1, 
we must choose 

h(% uzl 3 u,*) = *u, +wJ,l, uz,> 7 (7) 

where H is an arbitrary function of u,~, uz2. 
We shall also require that our map be reversible, since one is often interested in 

studying maps with such a symmetry [20,21]. A map T is called reversible, if there 
exists an involution G (i.e. Go G = Z) such that 

ToGoT=G. (8) 

More specifically, we will use the transformation 

G:ul =u zl+z*~lc] 2 j=O,l,. . . ,z,+z,-2. (9) 

This is clearly an involution, since u; = u:~+,~_~_~ =~~+GoG=Z,whereZisthe 
identity map and the double prime denotes the application of G twice. Further- 
more, we require that the reversibility property (8) hold for the map T, with h as 
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in (7) under the involution G, cf. (9). In that case, the function H(u,~, u,J should 

satisfy 

H(Q uZZ) = +H(u Z2) uzl) 7 with h = TU, + H(uZ2, uzl) . (10) 

For a full description of reversibility and properties of reversible maps see 

[20,21]. 

We now restrict ourselves to the 3D volume preserving, reversible problem, in 

which the map T has the form 

uo=u1> 

T: 

{’ 

u; = u2 (11) 
u; = u,, + H(q) ~2) , 

where H satisfies the symmetry property, 

H(u,, ~2) = -H(u,, ~1) . (12) 

To obtain the above map we have put z1 = 1, z2 = 2 in (6) and have used (7) and 

(10). The map (11) is reversible with involution G: uh = u2, u; = u,, u; = uo, cf. 

(9). Clearly, the symmetry associated with this involution (i.e. the set of the fixed 

points of G) is the u. = ua plane. 

The 3D volume preserving, reversible map (11) is a simple, nonplanar example 

of the general map (6). However, it is certainly non trivial as we shall see in what 

follows. In fact, 3D volume preserving maps, whether reversible or not, have 

received little attention in the literature. They are interesting because they are 

odd-dimensional (unlike maps related to Hamiltonian systems) and they can be 

visualized in the natural 3D space. Recently, nonuniversality properties of 

invariant tori in such mappings have been investigated [22], while the transport of 

orbits has also been examined in [23]. 

3. Periodic orbits and their stability 

We shall begin our study of map (11) by looking for its periodic orbits and their 

stability. Note first that its fixed points are given by the pair of equations 

ug=ul=u*, H(u,, u2) = 0 . (13) 

This means that the fixed points form a line and are all symmetric (since they lie 

on the symmetry plane u. = uZ). The eigenvalues of the linearized map DT about 

these points are given by 

A,=1 and h,+A,=TrDT-1, /&A, = 1 . (14) 

In the 2D area-preserving case, the eigenvalues of the linearized map DL of a 2D 

map L, about its fixed points are the roots of 

A’-(TrDL)A+l=O, (15) 
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whence two eigenvalues A,, A, satisfy 

A,A, = 1 ) A,+A,=TrDL. 

So they are either both real, with IA, I< 1, iA21 > 1, or both complex with A, = AZ 

(IA11 = \A,1 = l), i.e. they are complex conjugates lying on the unit circle. It is 
obvious that such a system is stable in the latter case, while it is unstable in the 
former. A change of stability occurs when 

A,=A,=leTrDL=2 or A,=A,=-leTrDL=-2. 

In the case of our 3D mapping, we can put Tr DT + 1 in the place of Tr DL and 
follow the above analysis, concerning the eigenvalues A,, A, of (14). 

Now, the 2-cycle points (found by looking for fixed points of T2) are given by 

uo = u2 > -u2 + u1 = H(Ul, u2). (16) 

The first equation implies that all 2-cycles are symmetric, while the second one 
implies that we have a one-parameter family of 2-cycle points. Linearizing the 
map T about an m-cycle, G(n+m’ - a(n), by setting v@) = a’“’ + h@‘, in (6), we find -u 

U(n+1) = DT u(n) 
n 2 IzP)l << 1 ) 

whence, taking the product 

DT’“’ = fi DT, , 

we obtain the matrix of the return map, DT’“‘. In the case m = 2 its eigenvalues 
are easily seen to satisfy 

A, = 1 and A,+A,=A+B+AB-1, A,A, = 1, (17) 

where A = aZG,, ~~~~~~~~~~~~~~ B = aH(x,, ~2)~~~11u1,u2~ (u2, ul, u2), (u,, u2, u,) 
being the 2-cycle, and A + B + AB = Tr(DTC2’). From (17), we see that as with 
the fixed points, one eigenvalue has a magnitude equal to one and the remaining 
two behave as in the 2D, area-preserving case with Tr = A + B + AB - 1 (see 
(15) and (17)). 

Here we shall study a sequence of 2m-cycles, using in our 3D mapping (11) the 
function 

H(u,, u2) = u; - u; + /.+;u, - ufu,) . (18) 
We shall start with the one-parameter family of 2-cycles and then look for 
symmetric period-4 orbits to see how they are connected to the period-2 ones, 
from which they are seen to bifurcate. 

One interesting feature about mapping (ll), with H given by (18), is that it 
possesses an integral at Al. = 0: 

Z = u. + u, + u2 + uf = const. = c (Isa) 

as can be seen by direct iteration of (11). Its curves of period-2” orbits in the 
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v,, v2 symmetry plane can be easily obtained upon solving (Isa) for v0 and 

reducing (11) to a 2D-map: 

v; =v2, v; = c - VI - v2 - v; ) (18b) 

whose 2”-periodic orbits and their bifurcation properties can be followed by 

varying the value of c. In Figs. la, b we have plotted curves of symmetric points 

for some of these orbits in the integrable case Al. = 0 (see also section 4). 

The equation that gives the symmetric period-4 points (i.e. the fixed points of 

the T4 map) is 

-v* + v1 = H(v, + H(u,, v2), vz) . (19) 

Here, as in the case of the period-2 points (19) implies that the period-4 points 

form a one parameter family of curves in the symmetry plane v0 = v2. Applying 

the map T to the first point (vO, ul, v,,) of a symmetric period-4 orbit, we find all 

its points (u,, ul, uz), (ur, u2, x0), (u2, x0, 0 (x0, v2, v,), with 

x,=v,+H(v,,v,). (20) 

Clearly, we see that only two of the points of every symmetric period-4 orbit lie 

on the symmetry plane u. = v2. 

This is illustrated in Figs. la and 2a, where it can be seen that for every 

symmetric point (v,, vl, v2) there is a corresponding one, (vz, x0, v2) each of them 

lying on either side of a period-2. The period-2 and period-4 curves are related to 

each other in the following way: based on eqs. (16) and (19) we introduce the 

functions 

F2(u, > v,) = WJ,, 74 - u, + v2 3 

F4(q, u2) = WV, + H(v,, Q>, $1 - Ul + v2 3 (21) 

where F2(v,, v2) = 0 and F4(v,, v2) = 0 give the one-parameter families of period- 

2 and period-4 points respectively. 

We shall now try to find how the period doubling bifurcation occurs from 

period-2 to period-4. The change in stability of period-2, with h, = A, = -1, 

occurs when 

A,+h,=A+B+AB-l=-2@(A+l)(B+l)=O, 

cf. (17). Furthermore, calculating at that point the derivatives 

(22) 

dF4 -= 
au1 ( 1 g-1 @+1), 

d2F4 aH r32H (B + 1) ) 

1 
-p=Fav2 

1 1 

one finds that such a period doubling bifurcation does take place on the symmetry 

plane from a period-2 to a period-4 orbit, when B + 1 = 0 (we have checked that 

d3F4/dvT #O, when B = -1). 

There is also an alternative way to obtain the above results: note that 

F2(u,, v2) = 0 + F4(u,, v2) = 0, i.e. since F4(u,, v2) = F2(v,, v2) X.,(v,, v2), the 
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Fig. 1. Curves of symmetric points of period-2”’ orbits of map (11) with (18), in the u,, u,(=u,) plane, 
at the integrable case p = 0. (a) Period-l, 2,4 and 8 curves, with doublings occurring at points A, B 
and C (dashed curves denote points where the corresponding orbit is unstable). (b) Magnification of 
the box about point C shown in (a), with period-4,8,16,32 orbits and doublings occuring at points 
C, D and E. 

zeroes of the first factor giving the period-2 points, while the zeroes of the second 
one, X4(u,, uZ), give the period-4 points only. Solving formally F4(u,, uq) = 0 one 
obtains the multivalued function u1 = ul(ul). Then, the derivative du,ldu, is 
defined everywhere, except at the intersection points of period-2 (F4(u,, u2) = 0) 
with period-4 (X4(u,, u2) = 0), where it is undefined. Using this procedure, one 
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2. Same as Fig. 1, in the case w = 0.5, for which no integral is known (similar pictures were 

for other values of EL). (b) Magnification of the box about point C shown in (a). 

finds that the intersection occurs for B + 1 = 0, which is exactly what we have 
found from bifurcation theory. We shall use this procedure below to find the 
intersections between curves of higher periodic orbits. 

It should be clear that there are points belonging to periodic orbits, which lie 
off the symmetry plane u,, u2 of Figs. la and 2a. For instance, every period-2 lies 
entirely in the symmetry plane, but only half of the points of a symmetric period-4 
lie in this plane. So, when a period-2 point (u2, ul, u2) bifurcates on the symmetry 
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plane to give two period-4 points, its corresponding point (ul, u2, ur) bifurcates 
off the symmetry to give the remaining two period-4 points. This is often called 
symmetric period doubling in reversible maps [20]. 

Stability of the 4-cycles is determined by the eigenvalues of the matrix 

DTc4’ = fi DTi . 

Here, the following remark is in order: as we have seen, the 2-cycles and 4-cycles 
discussed above are not isolated. Moreover, since we have even period cycles it is 
known (see [24] p. 17) that they should always possess an eigenvalue equal to +l. 
This is indeed verified for our map. Using this fact, we can find that the 
eigenvalues of this map are A, = 1 and the A,, A, solutions of the equations 

h,+A,=-(A+B+C+D)+ABCD+(BD(C+A)+A2D+BC2+AC 

+BD-1, 

A,A, = 1 , (23) 

where 

CS awl, x2) aff(x,, x2) 
8x1 , DE 

“2.X0 ax* *o.uz 

We see that the eigenvalues A,, A, behave as in the 2D area preserving case for 
the 2-cycles. So, we obtain a stable 4-cycle when 

]A,+A,]<2, 

with the period-doubling bifurcation condition given by 

A,+A,=-2e(A+B+BC-l)(C+D+AD-l)=O, 

cf. (23). We now extend these results to orbits of higher period. 

(24) 

4. Orbits of period 2”, m > 2 

Let us investigate further the period doubling scenario by calculating symmetric 
period-8 and period-16 orbits. The symmetric period-8 points (i.e. fixed points of 
the map T* with u0 = u2) are given by the equation 

Fs(ul, u2) = (T6), - (T4)o = 0, (25) 

where the notation (Tk), refers to the u0 component of the map Tk. From this 
equation, we expect again a one parameter family of curves, every point of which 
belongs to a period-8 cycle, as we had found in the case of the period-2 and 
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period-4 orbits. Note that Eq. (25) also gives the period-2 and the symmetric 

period-4 points, i.e. it includes the factors F2(u,, u2), F4(u,, uZ). 

The above situation is depicted in Figs. lb and 2b for periods 4,816 and 32. 

There are obviously intersections among the one parameter families of periodic 

curves. To find exactly where these intersections occur, we use the theory of the 

previous section. First, we solve formally eq. (25) to get u1 = u1(u2). Since the 

derivative du,ldu, is indefinite at the intersection points this implies that 

A+B+BC-1-O 

is the condition for a period-8 curve to intersect a curve of period-4. 

(26) 

By direct comparison of Eq. (26) with (24), we find that the change in stability 

of a 4-cycle does indeed coincide with the bifurcation (on the symmetry plane), of 

an orbit of period 8. Moreover, this appears to happen independently of the value 

of CL, as all the curves of the period 2” orbits change smoothly and continuously 

when p is varied (see Figs. 1 and 2). 

We should emphasize here that every symmetric g-cycle also has only two 

points on the symmetry plane, while the remaining 6 lie off the ul, u2 plane. This 

is because only one point of the cycle period-doubles symmetrically, every time, 

while the other period doubles off the symmetry plane [2,3]. The stability of a 

period-8 cycle is again determined by the eigenvalues of the product of the 

Jacobian matrices of the map evaluated at each of the eight points of the cycle. 

Finally, the equations that give the symmetric period-16 and period-32 points are 

Pk+l(U1, II*) = (T2k+2)o - (Tqo = 0 ) k=3,4. (27) 
As before, these equations give an infinity of periodic cycles (of period 16 and 

32) whose symmetric points lie on the one parameter families of curves given by 

Eq. (27). Solving these equations numerically and plotting the resulting curves in 

fig. 2 we find that their intersection (bifurcation of g-cycle to 16-cycle) again 

occurs at the point where the g-cycle turns unstable, and a similar situation holds 

at the next bifurcation of the period-16 cycle to one of period 32. Furthermore the 

Feigenbaum constants a, /3 for these bifurcations appear to tend to the universal 

values of the 2D case [2,3]. 

d,,,~C”, d:,Kp-“, m >> 1 (28) 

with 

(Y = 4.0180. . . , /3 = 16.36389. . , 

where d,, d;, respectively, are the distances between the two points on the 

symmetry plane and the two closest to that plane for a 2”’ period orbit at its 

bifurcation to one of period 2”‘+‘, see Table 1. 

It is important to point out that similar bifurcation phenomena were found for 

all the p values we tried and occured in the same way as in the integrable case 

j_l =o. 
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Table 1 
The computation of the constants (Y, p 

At bifurc. 
of 2”, 2”” 
periods 

jL = 0.0 

dJd,+, Cl&k+, 

/.l = 0.5 

Ud,+, d: Id:+, 

4,8 3.7888387 16.3257976 3.7219493 12.4463141 
8,16 4.1167369 16.3677171 4.1634185 17.3682789 
16,32 3.9960988 16.3624495 3.98561980 16.1022989 
32,64 4.0236916 16.3642419 4.02638860 16.4270973 
64,128 4.0166903 16.3638056 4.01602333 16.3479544 
128,256 4.0184214 16.3639168 4.01858847 16.3678436 
256,512 4.0179808 16.3635998 4.01794139 16.3628446 

5. Methods of computation and conclusions 

To compute the point (UT, uz) where a periodic orbit of period 2k, k = 
1,2, . . . ) bifurcates to an orbit of period 2k+1 we have to solve the system of 

equations 

P(U,) u*) = 0 ) Fzk+‘(u, u*) = 0. 

In the case of period doubling, we need to take into consideration that any point 

which satisfies the first equation also satisfies the second one since the periodic 

orbit of period 2k also has period 2k+1. Thus, to find a unique solution 

numerically we use the following trick. We perturb the first equation by a small 

parameter E and solve instead the following system: 

F2*(U1, u*) + E = 0 ) FZk+‘(U1) u2) = 0 ) 

where, of course, E is bigger in magnitude than the precision we need in order to 

compute the point (u: , u z). 

To solve system (30) we have implemented a recently developed method based 

on the topological degree theory to provide a criterion for the existence of a root 

within a given region. This method constructs a polyhedron (the so-called 

“characteristic polyhedron”) in such a way that the value of the topological 

degree [24] of the vector function corresponding to (30), relative to this 

polyhedron, be *l, which implies the existence of a root within this polyhedron. 

Then, repeatedly subdivide this polyhedron in such a way that the new refined 

polyhedron also retains the property of the existence of a root within its interior, 

without any computation of the topological degree. These subdivisions, called the 

“characteristic bisection method” [ll-151, take place iteratively, until a root is 

computed to a desired accuracy. 

The above procedure is very efficient in our case, since it always converges 

within the initial specified region. Note that traditional iterative schemes such as 

Newton’s method and related classes of algorithms [24-271 often fail since they 

converge to a root almost independently of the initial guess, while there may also 
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exist several roots close to each other, which are all desirable for the application 
(see [28]). For instance, in our case, a root of system (29) also satisfies the 
following system: 

F2k+1(U1) u*) = 0 ) F2k+Z(U,) u*) = 0 . 

Moreover, Newton methods are affected by the mapping evaluations taking large 
values in magnitude and, in general, may fail due to the nonexistence of 
derivatives (or poorly behaved partial derivatives) near the roots. 

The characteristic bisection method is very efficient, since the only computable 
information that is required is the algebraic signs of the components of the 
function. Thus, it is not affected by the mapping evaluations taking large values 
and can be applied to problems with imprecise function values. Moreover, it can 
be applied to nondifferentiable continuous functions and does not involve 
calculations of derivatives or approximation of such derivatives. Finally, the 
characteristic bisection method has all the advantages of the traditional one- 
dimensional bisection method: that is, one can determine the number of iterations 
needed for the attainment of an approximate root within a predetermined 
accuracy, while the starting estimate of the root does not have to be near the root. 
For more details on the above procedure the reader is referred to [11-E]. 

Now, to find the point (VT, u2*) where the orbit of period-2 bifurcates to 
period-4, we choose an accuracy E* < E and consider a box say B,B,B,B, which 
contains (u T, uz) in which the method will strive to compute a characteristic 
polyhedron and compute the root of (30). Thus, choosing a box B,B2B3B, with 

B, = (u;, u;) > B, = (u;, vi + h2) > B3=(~:+hd& 

B, = (u; + h,, u; + h2) , 

and taking, e.g. in Fig. la, 

we compute the point (UT, u;) using E* = lo-l3 and E = lo-“. Following the same 
approach and choosing appropriate boxes B,B,B,B,, we have also computed the 
bifurcations of 4 to &cycles, 8 to 16 and 16, up to 512 to 1024-cycles. This was 
done for two values of Al. and some of the results are given in table 2, for the 
points (UT, uz) which bifurcate on the symmetry plane. 

Finally, we describe our method for computing points u = (ul, u2) of periodic 
orbits, where stability changes occur. Of course, these points are located on 
connected components of the orbit of period p = 2” and thus satisfy the equation 
FP(u) = 0. Now, to compute a point u* = (UT, u,C), say, such that FP(u*) = 0, for 
any real number u,C, we proceed as follows: We choose an interval (a, b) and uz 
such that 

P(a, u;) P(b, u;) < 0 . (31) 
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Then, holding u; fixed, we solve the equation FP(u,, us) = 0 for ur, using our 
modified version of the bisection method [ll-15,29-321, 

u:+l = uf + sgn FP(a, u4) sgn FP(u:, ui) (b - U)/2k+1 , 

k=O,l,. . .) (32) 

with uy = a and where for any real number y, 

1 

-1, ify<O, 

sgny= 0, ify=O, (33) 
1, ify>O. 

Iteration scheme (32) converges to (UT, u;), since the well-known Bolzano 

existence criterion is fulfilled by Eq. (31). Moreover, using the above formula we 
are in a position to know a priori the minimum number of iterations v required to 
obtain an approximate point (ti,, ug) such that Id, - u:l =S 6, for some 6 E (0,l) 
which is given by 

1, = [log,[(b - a)8 -‘]I ) (34) 

where the notation ]n] refers to the least integer that is not less than the real 
number 7. 

We may now combine the above calculations of u1 with a concurrent variation 
of ui such that the condition for a destabilization of the period p = 2” orbit, i.e. 
A, + A, = -1, hold at u1 = u:, vi = uz. This is accomplished by a similar variation 

of the bisection method as in (32), only here instead of the function sgn FP(x, 5) 
we use 

$(XA)={-:’ 
if (x, 5) is stable , 

9 if (x, S) is unstable . 

The procedure is started by choosing two values u;, ui such that 

NC> u~)$(uT, ui) = -1. Taking, e.g. 6 = lo-l5 and appropriate values for 

a, b, VI, vi, we have computed the points of stability change (vT, us) listed in 
Table 2 for I_L = 0 and 0.5. 

Finally, using these results we computed the distances d,, d; between the two 

Table 2 
Bifurcation points in the symmetry plane 

Bifurc. /A = 0.0 
2”+2”+’ 

periods u: VI 

2-4 1.5 -0.5 
4-8 1.52988977 -0.2536812 
8+ 16 1.55020316 -0.31572413 
16+ 32 1.54804870 -0.30034366 
32+ 64 1.54889857 -0.30417878 
64+ 128 1.54872187 -0.30322513 

p = 0.5 

VT u: 

1.162277660 -0.1026334 
1.183402961 0.069841549 
1.200648163 0.030606529 
1.198680305 0.040785062 
1.199421707 0.038298353 
1.199265034 0.038922510 
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points and off (but closest to) the symmetry plane respectively and found that 

they scale by the 2D-universal constants (Y, p, cf. (28). Furthermore, similar 

results were found also for the class of conservative, reversible maps (7), with a 

symmetric H(u,, u2) = H(u,, ui) and several values of Al. [33]. 

It would thus be interesting to investigate whether these 3D maps possess an 

analytic integral for all CL, as they do in the p = 0 case. A different class of 3D 

reversible, conservative mappings which do possess such an integral, the so called 

“trace maps”, has also been recently investigated by other authors [34]. 
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