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Abstract

A reliable and portable software package, called ZEBEC (ZEros of BEssel functions Complex), is presented, which
localizes and computes simple zeros of Bessel functions of the first, the second or the third kind, or their derivatives.
The Bessel functions are of real order and complex argument. ZEBEC calculates with certainty the total number of zeros
within a given box whose edges are parallel to the coordinate axes. Cauchy’s Theorem is used for this calculation. Then
the program isolates each one of the zeros, utilizing the above-mentioned theorem, and finally computes them to a given
desired accuracy using a generalized method of bisection. © 1998 Elsevier Science B.V.
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Programming language used: FORTRAN-77

Memory required to execute with typical data: Less than 500
Kbytes (in double precision)

No. of bits in a word: For UNIX 32 bits; for MS-DOS it depends
on the particular compiler used

No. of bytes in distributed program, including test data. etc.:
267374

Distribution format: ASCII
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Nature of physical problem

Bessel functions and their zeros or turning points are encountered
in many problems of mathematical physics, e.g. cyclic membrane
vibrations, the temperature distribution in a solid cylinder or in a
solid sphere, the diffraction of a plane electromagnetic wave by a
conducting cylinder, quantum billiards, etc.

Method of solution

The number of zeros inside a given box is calculated by evaluating
a logarithmic residue integral along the edges of this box. The
longest edges of the box are then cut in half and the box is split
into two equal boxes. This process is repeated until a set of boxes
is obtained. each of which contains precisely one zero. The zeros
are then calculated via a generalized method of bisection.

LONG WRITE-UP

1. Introduction

The Bessel equation

22" (2) + o' (2) + (22 = vHu(z) =0,

z,veC,

Restrictions on the complexity of the problem

The functions considered here are Bessel functions of the first,
the second or the third kind, or their derivatives. They are of
real order and complex argument. The package calculates all the
simple zeros that lie inside a given box in the complex plane cut
along the nonpositive real axis. The edges of this box are to be
parallel to the coordinate axes. In general. we have not found any
restrictions in the applicability of the package. The only restriction
we have found is that, for real values of the argument greater
than 25, some of the Bessel functions are not evaluated correctly
through BESSCC. To overcome this problem one should use the
specialized package RFSFNS |1]. when looking for real zeros
greater than 25, while, for computing complex zeros with real part
greater than 25, BESSCC performs fine as long as the considered
box used by ZEBEC does not cross the real axis.

Typical running time
The running times (in seconds) for the four test runs of Section 5.
are given in the following table:

DEC HP IBM SUN

Testrun I 1.8 (1.3)  0.55 (043) 2.0 (L0) 061 (0.53)
Test rua 2 93.1 (62.8) 28.0 (22.0) 91.0 (52.0) 28.0 (24.0)
Test run 3 102.2 (67.3) 28.0 (22.0) 98.0 (57.0) 29.0 (24.0)
Test run 4 38.2 (25.6) 11.0 (8.9) 40.0 (23.0) 12.0 (9.8)

The subroutine DTIME was used for timing on the UNIX ma-
chines. The parenthesized times have been obtained by optimizing
the code using the option +O1 during compilation.

(D

appears in many problems of mathematical physics. Two linearly independent solutions are given by the Bessel

Sfunction of the first kind of order v,

Z( 1)k(z/2)" 2

7| < ,
MIGk+r+1)° |argz] <

and the Bessel function of the second kind of order v (also called Neumann’s function),

V,(2) = Jy(2) cos(var) — J_,(2)
i) = sin(vr) ’

largz| < 7,

veC\Z.
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For integral v, the right-hand side becomes indeterminate, and in this case
,(z)=1limY,(z), neZ.
y—n
Also of interest are the Bessel functions of the third kind, or Hankel functions,

HY(z2)=01(2) +i%(z) and HP(z)=J,(2) — i%(2).

The above considered functions are analytic with respect to z in the complex plane cut along the nonpositive
real axis and entire functions of the order » for fixed z. They also have several other interesting features [2].

The zeros and turning points of Bessel functions are important in many branches of physical sciences and
technology. They appear in the problem of cyclic membrane vibrations, the temperature distribution in a solid
cylinder or in a solid sphere, the diffraction of a plane electromagnetic wave by a conducting cylinder, quantum
billiards, etc.

Some theoretical results about these zeros and turning points are available: inequalities, bounds, regions
of existence or non-existence, power series expansions, Chebyshev series expansions, and qualitative results
concerning their location [3-14,2].

Hurwitz’s Theorem, for example, gives information about the zeros of J, where v is real.

Theorem 1. Let v be an arbitrary real number, and suppose that |arg z| < 7. Then the function J,(z) has an
infinite number of positive real zeros, and a finite number 2N (») of conjugate complex zeros, where

(i) Nv)y=0ifr>—-lorv=-1,-2,..,

() Nwy=mif ~-(im+1)<v<-mm=1,2,...
In the second case, if [—»] is odd, then there is a pair of purely imaginary zeros among the conjugate complex
ZEeros.

It is known that any solution of (1) has only simple zeros, except possibly at z =0 [15, p. 79], [2, p. 479].
In particular, this holds for J,, Y,, H" and H(?. Besides, the derivative of any solution of (1) also has only
simple zeros, except possibly at z =0 or z = v [16-18].

In [19,20] a software package is presented for computing zeros of J,(x), where x > 0 and » > —1, and
turning points of J,(x), where x > 0 and v > 0. The package RFSFNS [1] can be used to calculate zeros and
turning points of J,(x) and ¥,(x), where x > 0 and » > 0. In this paper we present a reliable and portable
software package, called ZEBEC (ZEros of BEssel functions Complex), for computing simple zeros or turning
points of J,(z), ¥,(z), H"V (z) and H{® (z), where the argument z belongs to the complex plane cut along
the nonpositive real axis and the order » is real. ZEBEC is capable of calculating all the zeros or turning points
that lie inside a rectangle whose edges are parallel to the coordinate axes.

2. The method

The main phases of our method are the following:
(a) Calculation of the total number of zeros within a predetermined region.
(b) Isolation of all the zeros by consecutive subdivisions of the initial region.
(¢) Computation of each zero.
For the first two phases we employ logarithmic residue integrals, while for phase (c) a generalized method of
bisection is utilized. All these will be briefly explained in the sequel.
Let W be a simply connected region in C\ {z € C: Rez < 0;Imz = 0}, f one of the Bessel functions
mentioned in the introduction, and vy a positively oriented Jordan curve in W that does not pass through any



P Kravanja et al./Computer Physics Communications 113 (1998) 220-238 223

zero of f. As f is analytic in W, the total number of zeros of f that lie inside Y is given by the following
logarithmic residue integral [21]:

1 f(z)

T2mi ) f(2)
Y

dz . (2)

Suppose that a parametric representation of the curve v is given by z = y(1), a < t < b, and that the
mapping y : [a,b] — C is piecewise continuously differentiable in [a,b]. Thus, a partition a =1y < £, <

- < fy—y < t, = b of the interval [a, b] can be found, such that the restriction of ¥ to each subinterval
[tj—1,1;] is continuously differentiable.

Let W*={(x,y) €R® : x+iye€ W} and u,v: W — R with

u(x,y)=Re f(x+iy) and v(x,y)=1Imf(x+iy).
The restriction of « and v on the curve vy is
w®) =u(x(0.y(0) and o() =v(x(0,3(0)),

where x(¢) = Rey(t), y(t) = Imy(t) and t € [a, b]. Then, by using the Cauchy-Riemann equations for u
and v, one can easily verify that

i
1 < ude _ o, de
N=— dt dt dt,
" 2 ; / u? + 1?2 (3)

where we have considered the above partition of [a, b]. This formula for N is the Kronecker integral for the
topological degree of the real mapping F = (u,v) at the origin relative to the interior of . For an introduction
to degree theory we refer the interested reader to [22]. Also, for a detailed description of the Kronecker
integral, see [23,24].

Let us consider the case that vy is a rectangle whose edges are parallel to the coordinate axes. Suppose that
it has a left lower vertex (xq, yo) and that its edges have length h; and #,. In other words, suppose that 7y is
the boundary of [xo, xo + A1] X [0, yo + k). Define the functions ¢ and ¢ in W* as

u(x, y) ox(x,y) —v(x,y) ux(x,y)
Y G P Tu(r ) 12
and
u(x, y) oy(x, ) —o(x,y) uy(x,y)
(u(x, )12+ [v(x, y)]?
Then N is obtained by the following relation:

o(x,y) =

N=m(h—-h)+h(L-L),

with

1
1
1] =2—/§/I(X()+th1,y0) dt,
T
0
1

1
12=‘~/¢(xo+h|,yo+th2)dt,
2
0
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1
1
[3:——-/4p(x0+th|,yg+hz)d!,
27
0
1

{
ly= ——/rp(xo,yo + thy) dt.
2
0

These formulae are the basis of the phases (a) and (b) of our method.

As f may have zeros on the boundary of the rectangular box specified by the user, the algorithm starts by
perturbing this box. For this purpose a tolerance is introduced that is taken to be proportional to a power of
the machine precision, for instance 10 times the square root of the machine precision. The box is then slightly
enlarged asymmetrically. The reason for this asymmetric perturbation is to eliminate the possibility of having a
zero close to or on any boundary of the consecutive subdivisions. For example, if the starting box is symmetric
with respect to the imaginary axis, the inner boundary at the first subdivision will pass through any imaginary
zeros of f.

The total number of zeros of f that lie inside the perturbed box is obtained by calculating the integrals
Ii,..., 14 via the adaptive integrator DQAG from QUADPACK [25]. A zero near one of the edges of the
rectangle causes the integrand of the corresponding integral to have a “peak.” The closer the zero lies to the
edge, the sharper is this peak. If the zero lies on the edge, then the integral is divergent. DQAG uses adaptive
strategies that enable it to cope with such peaks efficiently. However, if a zero lies too close to an edge (the
corresponding peak is too sharp), then DQAG warns us that it had problems in calculating the integral. Our
algorithm then slightly moves this edge and restarts. By enlarging the user’s box, we may of course include
additional zeros. We have decided not to discard any of these zeros ourselves. Rather, we provide the user with
the box that eventually has been considered, all the zeros that lie inside this box, and leave it to him/her to
filter out unwanted zeros.

If the starting box (as perturbed by the method) contains a single zero, then this zero is calculated via the
package CHABIS [26,27]. This package implements a generalized method of bisection, called characteristic
bisection, which will be explained below. Otherwise, the longest edges of the box are halved, and the box
is subdivided into two equal boxes. The number of zeros in each of these boxes is calculated via numerical
integration. If DQAG detects a zero near the inner edge, then this edge is shifted, a process that results in an
asymmetric subdivision of the box. Then the two smaller boxes are examined. A box that does not contain any
zero is abandoned. A box that contains precisely one zero is handed to CHABIS. A box that contains more
than one zero is subdivided again. This process is repeated until all the zeros have been isolated — a set of
boxes has been found, each of which contains precisely one zero - and computed.

The method employed for the computation of the isolated zeros is based on the notion of the topological
degree and is used to solve systems of nonlinear algebraic and/or transcendental equations [26,27]. First a so-
called characteristic polyhedron (CP) is constructed, which, under certain assumptions on its boundary, secures
the nonzero value of the topological degree without computing it. This nonzero value implies, by Kronecker’s
Theorem, the existence of at least one zero within this CP. The CP has the following property: the signs of the
functions of the system at its vertices produce all the possible combinations of —1, 1. Based on this property,
a smaller CP can be created by replacing a certain vertex of CP with the midpoint of its longest edge. The
replaced vertex is the one where the signs of the function components coincide with those at the midpoint
of the longest edge. The polyhedron thus obtained contains also the root since it remains characteristic. This
process, which is called characteristic bisection, is repeated until the diameter of the box is smaller than a
predetermined accuracy.

This method has the advantage that it always converges within the given region and it is a global convergence
method. Also, the number of iterations required for the attainment of an approximate root to a predetermined
accuracy is a priori known. Furthermore, since it depends only on the signs of the functions, it is suitable for
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solving problems with imprecise function values or involving infinite series expansions. For example, in the
case of Bessel and Airy functions it has been shown [28,29] that the sign stabilizes after summing a relatively
small number of terms of the series and the calculations can be accelerated considerably. A theoretical approach
to computing complex zeros of Bessel functions utilizing only the signs of the respective series is presented
in [30].

As mentioned above, the derivatives of the Bessel functions may have multiple zeros at the points z = +».
Since our algorithm can manage only simple zeros, we have to examine the existence of such multiple zeros
within the initial box in case we consider J,, Y/, H{" or H,?'. If the box contains z = » or z = —», the
algorithm checks the values of the corresponding function and its derivative. If they are both equal to zero, the
program terminates. Otherwise, the execution is continued.

3. A brief description of the packages used

In this section we briefly outline the packages BESSCC, QUADPACK and CHABIS incorporated in our
code.

BESSCC: BESSCC [31] calculates the modified Bessel functions 1,(z) and K,(z) as well as their first
derivative for complex argument z and real order ». To obtain J, from these functions we used the following
analytic continuation and reflection formulae [3]: if » > 0, then

et (—iz) ifImz >0,
J.(z) = iz A .
e "1, (iz) ifImz<O,

else
Ju(z)=Jd-p(z2)cos(mv) +Y_,(2) sin(mv).

For ¥, the following holds: if » > 0, then

: iZy . 2 —iZy . .
Y,(z) =4 ‘€" 1»(—!2)—;(3 YK, (—iz) if Imz >0,

Y,(2) if Imz <0,
else
Y,(z)=Y_,(z)cos(mr) — J_,(z)sin(7y) .

The Bessel functions of the third kind were evaluated by using their definition. To obtain formulae for the
derivatives, we differentiated the previous identities.

For compatibility purposes, and with the permission of the authors, we also made some small changes to
BESSCC.

QUADPACK: QUADPACK [25] is a widely used package for automatic integration. It consists of 12 quadra-
ture routines. Here the routine DQAG is used, which implements a globally adaptive integrator for calculating
definite integrals over finite intervals. DQAG uses double precision arithmetic and is based on Gauss—Kronrod
quadrature rules. It is written in ANSI standard FORTRAN-77.
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CHABIS: CHABIS [27] is a mathematical software package for the numerical solution of a system of
n nonlinear equations in n variables when the only computable information is the algebraic signs of the
components of the function. First CHABIS locates at least one solution of the system within an n-dimensional
polyhedron. Then, it applies a new generalized method of bisection to this n-polyhedron in order to obtain an
approximate solution of the system according to a predetermined accuracy. CHABIS consists of a set of nine
subprograms, one of which is called by the user-driver program. The package CHABIS contains about 1200
lines of code, 50 percent of which are comments. The total storage required for CHABIS is 6n - (6n + 1)2"
locations, where n determines the dimension of the problem. CHABIS is coded in ANSI standard FORTRAN-77.
More details can be found in [26,27].

4. Program description

The package ZEBEC (ZEros of BEssel functions Complex) contains about 7000 lines of code including
comments. It is written in FORTRAN-77 and has been tested on various UNIX machines as well as on a PC
IBM compatible.

ZEBEC consists of seven parts, namely, the main program ZEBEC, the subroutines MANAGE, INBOX, SPLIT,
RCOMP, and FDF and the function FNC, and a set of functions related to the integrals /1,,..., ;. ZEBEC also
requires the subroutine DQAG from the package QUADPACK [25], the package CHABIS [27] and the
subroutine BESSCC [31] of the CPC Program Library.

In the main program ZEBEC the following parameters have to be set:

MAXRT a positive integer that determines the maximum number of zeros that may be requested.
ICASE an integer in {1,...,8} that specifies which function is to be considered:
J, the Bessel function of the first kind;

1
2 the derivative of J;
3 Y, the Bessel function of the second kind;
4 the derivative of Y;
5 H™ = J + Y, the Bessel function of the third kind;
6 the derivative of H(!);
7 H'® = J — Y, the Bessel function of the third kind;
8 the derivative of H®.
XNU a real variable that specifies the order of the Bessel function.
X0 a real array of length 2 that contains the x- and y-coordinates of the left lower vertex of the rectangle
that is to be examined (see also Section 2).
H a real array of length 2 that specifies the size of this rectangle along the x- and y-direction.
ICON an integer in {1,...,4} that specifies which calculations are to be done:
1 calculation of the total number of zeros, cnly;
2 calculation of the total number of zeros and isolation of each one of them;
3 calculation of the total number of zeros, isolation and computation of each one of them;
4 calculation of the total number of zeros; isolation and computation of NR zeros.

Note that if ICON=4 the user must also supply the desired number of zeros NR. In the other cases
(ICON=1,2,3) a value of NR may be supplied but it will not be used by the package.

EPSILO  a real variable that is used in the stopping criterion for the computation of the zeros. Termination
occurs if the algorithm estimates that the infinity norm of the function value at an approximate
solution is at most EPSILO or if the size of the box containing a zero is at most 4. DO*EPSILQ. If
EPSILO is set to a value that is less than the machine precision EPSMCH, then EPSILO is set equal
to 5.DO*EPSMCH. EPSMCH is computed within ZEBEC. The value of EPSILO needs to be set only
in case ICON=3 or ICON=4.
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EPSABS  a real variable that determines the absolute accuracy to which the integrals are to be evaluated. If
EPSABS=0.D0, then only a relative precision criterion will be used.
EPSREL  a real variable that determines the relative accuracy to which the integrals are to be evaluated. If
EPSREL=0.D0, then only an absolute precision criterion will be used.
If EPSABS and EPSREL are both too small, then the numerical integration may be time consuming.
If they are both too large, then the calculated number of zeros may be wrong. The default values
of EPSABS and EPSREL are 0.07D0 and 0.0DO, respectively.

ACC a variable whose value determines a target relative accuracy for the subroutine BESSCC which is
used for the calculation of the Bessel functions. If ACC is greater than 0.0001 or less than the
machine accuracy, then it is set equal to the default value ACCDEF=10E-6.

Let us briefly describe the various parts of ZEBEC.

The subroutine INBOX calculates the total number of zeros that lie inside the box specified by the user. INBOX
slightly perturbs this box and enlarges it, if necessary, namely when zeros lie too close to the boundary and the
quadrature routine DQAG fails.

The subroutine SPLIT takes a box and splits it into two boxes. A symmetric splitting, by halving the longest
edges, is tried first. If it is necessary for DQAG, the inner edge will be shifted.

The subroutine RCOMP takes a box containing precisely one zero and returns an approximation to this zero.
RCOMP calls CHABIS.

The subroutine MANAGE forms the main part of the package. MANAGE starts by calling INBOX. If there are no
zeros inside the user’s box, then the program stops. If there is precisely one zero inside this box, then RCOMP
is called (if ICON=3 or 4). Else, the box is given to SPLIT. The two boxes returned by SPLIT are examined.
A box that does not contain any zero is abandoned. A box that contains precisely one zero is given to RCOMP
(if ICON=3 or 4). A box that contains more than one zero is put in a list. Then MANAGE takes the next box
from this list and evokes SPLIT. This procedure is repeated until all the zeros are isolated and computed, if it
1s required.

DQAG needs function and derivative values of the Bessel function that is to be considered. These are provided
by the subroutine FDF. CHABIS needs only the function values. These are provided by the function FNC. Both
FDF and FNC call BESSCC.

The program execution terminates normally after the completion of its task. This type of termination is
indicated by the value 1 of the output variable INFO. If the value of this parameter is different from 1, the
termination of the program is abnormal. The cases of abnormal termination are the following:

INFO=0 Improper input parameters:
the input values of ICASE or ICON are out of range, or
NR exceeds MAXRT, or
the box specified by X0 and H crosses the nonpositive real axis, or
the initial box contains multiple zeros (ICASE=2, 4, 6, or 8), or
H(1) or H(2) is negative, or
EPSABS or EPSREL is negative.

INFO=2  The procedure for the calculation of the total number of zeros failed.

INFO=3  The procedure for the isolation of the zeros failed.

INFO=4  The procedure for the computation of the zeros failed.

Upon normal termination, the main output values of the program are given by the following parameters of
MANAGE:

NRPERT  an integer that gives the number of zeros existing in the examined box when ICON is not equal to
3.

LFLRT an integer that gives the number of zeros existing in the examined box if ICON is equal to 3.

XOFIN a real array of size 2xMAXRT that contains the x- and y-coordinates of the left lower vertices of the
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rectangles that are found to contain a single zero.
HFIN a real array of size 2xMAXRT that specifies the size of these rectangles along the x- and y-direction.
ROOTS a real array of size 2xMAXRT that contains the real and imaginary parts of the zeros found in the

examined box.
FROOTS  a real array of size 2xMAXRT that contains the values of the Bessel function (real and imaginary
parts) at the approximations of the roots found.

5. Example of ZEBEC usage

Let us demonstrate how ZEBEC can be used to calculate the total number of zeros inside a given box, to
isolate these zeros, and to compute all of them. Suppose that we want to calculate all the zeros of J_;4(z)
that lie inside the box

{z€C: ~1<Rez<2,05<Imz <4}

The corresponding input values are ICASE=1, XNU=~1.4D(0, ICON=3, NR=0, and X0(1)=-1.D0, X0(2)=0.5D0,
H(1)=3.D0, H(2)=3.5D0. We request an accuracy of EPSIL0=1.0D-13.
For this example the main program of ZEBEC is the following:

*= *
PROGRAM ZEBEC
IMPLICIT NONE

INTEGER MAXRT
PARAMETER (MAXRT = 100)

INTEGER IFLRT(MAXRT), ICASE, ICON, NR, INFO, NRKEEP, IBESS
INTEGER J, LFLRT, NRPERT, IMAXRT

DOUBLE PRECISION X0(2), H(2), XOPERT(2), HPERT(2)

DOUBLE PRECISION ROOTS(2,MAXRT), FROOTS(2,MAXRT)

DOUBLE PRECISION POINTS(2,MAXRT), STEPS(2,MAXRT), NRS(MAXRT)
DOUBLE PRECISION XOFIN(2,MAXRT), HFIN(2,MAXRT)

DOUBLE PRECISION RINTS(6,MAXRT), ERRS(6,MAXRT)

DOUBLE PRECISION EPSILO, XNU, EPSABS, EPSREL, ACC

EXTERNAL MANAGE

COMMON /BLK1/ ICON, NR
COMMON /BLK2/ INFO

COMMON /BLK3/ XNU

COMMON /BLK4/ ICASE

COMMON /BLK5/ IBESS

COMMON /BLK6/ EPSABS, EPSREL
COMMON /BLK7/ ACC

COMMON /BLK8/ IMAXRT

DATA  ICASE, XNU, ICON, NR

+ /1, -1.4D0, 3, 0/
DATA  X0Q1), X0(2), H(1), H(2)

+ / -1.DO, 0.5D0, 3.D0, 3.5D0 /

EPSILO = 1.0D-13
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EPSABS = 0.07D0
EPSREL = 0.0DO

ACC = 1.D-13

PRINT 9999, ICASE, XNU, X0, H, ICON, EPSILO

NRKEEP = NR
IBESS = 0
IMAXRT = 0

Call the interface subroutine MANAGE.

CALL MANAGE(MAXRT,XO,H,XOPERT,HPERT,EPSILO,NRPERT,XOFIN,HFIN,
+ ROOTS, FROOTS, POINTS, STEPS, RINTS,ERRS, NRS, IFLRT, LFLRT)

IF ( INFO .EQ. O ) THEN
PRINT 9998
GO TO 10

END IF

IF ( IBESS .EQ. 2 ) PRINT 9997

IF ( INFO .EQ. 2 ) THEN
PRINT 9996
GO TO 10

END IF

IF ( IMAXRT .EQ. 1 ) THEN
PRINT 9995, MAXRT
STOP

END IF

PRINT 9994, XOPERT(1), XOPERT(2), HPERT(1), HPERT(2)

IF ( ICON .NE. 3 ) THEN
PRINT 9993, NRPERT
ELSE
PRINT 9993, LFLRT
END IF

IF ( NRPERT .EQ. 0 ) GO TO 10
IF ( ICON .EQ. 1 ) GD TO 10

IF ( INFO .EQ. 3 ) THEN
PRINT 9992
GO TO 10

ENDIF

IF ( ICON .EQ. 4 ) THEN
PRINT 9991, NRKEEP, NR
ELSE
PRINT 9990, LFLRT
END IF

PRINT 9989
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DO J = 1,LFLRT
PRINT 9988, J, XOFIN(1,J), XOFIN(2,J]), HFIN(1,J), HFIN(2,])
ENDDO

IF ( ICON .EQ. 2 ) GO TO 10

IF ( INFO .EQ. 4 ) THEN
PRINT 9987
GO0 TO 10

ENDIF

PRINT 9986
DO J = 1,LFLRT
IF ( IFLRT(J) .EQ. i ) THEN
PRINT 9985, J, ROOTS(1,J), ROOTS(2,1),
+ FROOTS(1,J), FROOTS(2,J)
ELSE
PRINT 9984, J
END IF
ENDDQ

10 PRINT 9983, INFO
STOP

9999 FORMAT (/2X, ’ STARTING VALUES :’ /3X, 17(’-’),

+ //2K, > ICASE : ’, 11,
+ /2X, ’ ORDER : ', F22.18,
+ //2%, ’ X0 : ’, F22.15, F23.15,
+ /2X,  H : ’, F22.15, F23.15,
+ //2X, ’ ICON : ', 11,
+ /2X, ’ EPSILO : ’, F22.15,
+ //3%, 67(’ =),
+ //2X, * RESULTS :’ /3X, 9(’-?))
9998 FORMAT (/2X, ’> # * * IMPROPER INPUT PARAMETERS * * x’'//)

9997 FORMAT (/2X, ’ » THE PROCEDURE FOR THE CALCULATION OF THE’,

+ ’ BESSEL’,

+ /2%, FUNCTION FAILED. THE RESULTS MAY BE’,

+ > INACCURATE =’)
9996 FORMAT (/2X, ® * * x THE PROCEDURE FOR THE CALCULATICN OF’,

+ /2X, ? THE TOTAL NUMBER OF ZEROS FAILED * * x°//)
9995 FORMAT (/2X, ' * * = THE NUMBER OF ZEROS EXCEEDS MAXRT = ’,I5,

+ /2%, INCREASE THE VALUE OF MAXRT # * #’//)

9994 FORMAT (/2X, ’ THE FOLLOWING BOX WAS CONSIDERED:’,
+ //5X, X0 = ’, F22.15, F24.15,
+ /5X, ’H ’, F22.15, F24.15 )

9993 FORMAT (/2X, ’> THE TOTAL NUMBER OF ZEROS WITHIN’,
+ ’ THIS BOX IS : ’,I5)

9992 FORMAT (/2X, ’ * * *» THE PROCEDURE FOR THE ISOLATION CF’,
+ /2K, THE ZEROS FAILED * * *°//)
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9991 FORMAT (/2X, ’ NUMBER OF ZEROS REQUESTED : ’,I5,/
+ /2X, * NUMBER OF ZEROS ISOLATED : 2,I8)
9990 FORMAT (/2X, ’ NUMBER OF ZEROS ISOLATED : 7,15)

9989 FORMAT (/2X, ’> BOXES CONTAINING A SINGLE ZERO :’,
+ /3%, 320°-"))

9988 FORMAT ( /2X, I4,’) X0 ’, F22.15, F24.15,
+ /9X, 'H = ', F22.15, F24.15 )

9987 FORMAT (/2X, ’ * * x THE PROCEDURE FOR THE COMPUTATION (F’,
+ /2X, THE ZEROS FAILED * * *°//)

9986 FORMAT (/2X, ’ FINAL APPROXIMATE ZEROS AND’,

+ ’ VERIFICATION :’,
+ /3%, 42(°-") )
9985 FORMAT ( /2X, 14,’) Z = (’, F22.15, ’,’, F22.15, * )’,
+ /9X, 'F(Z) = (*, F22.15, ’,’, F22.15, * )’ )
9984 FORMAT ( /2X, I4,’)°/)
9983 FORMAT (/2X, ’ EXIT PARAMETER : INFO = ’,I2)
*
* Last statement of the main program.
*
END
= -— *

The output results of ZEBEC for four test cases are shown in the test run outputs below.

6. Concluding remarks

The package ZEBEC has been applied to Bessel functions of various orders and random boxes. We have
found that it behaves predictably and accurately. It calculates with certainty the total number of zeros that lie
inside a given box, isolates each one of them, and then computes all these zeros.

The user will appreciate the flexibility offered by the input parameter ICON. If nothing is known about the
zeros that lie inside the given box, one may call ZEBEC with ICON = 1 to obtain the total number of zeros.
Then one may proceed with ICON = 3 to isolate and compute all these zeros, or, if less than the total number
of zeros are required, with ICON = 4 and NR equal to the requested number of zeros. If only a set of boxes is
required, each of which contains precisely one zero, then one may set ICON = 2,

Our package can be applied to any special function that has only simple zeros in the considered box, provided
a FORTRAN-77 routine exists to evaluate this function and its first derivative.
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TEST RUN OUTPUT 1

STARTING VALUES :

ICASE 1

ORDER : -1.400000000000000

X0 : -1.000000000000000 .500000000000000
H : 3.000000000000000 3.500000000000000
ICON : 3

EPSILO : .000000000000100

RESULTS

THE FOLLOWING BOX WAS CONSIDERED:

X0 = -1.000000163912773 .499999806284904

H = 3.000000357627869 3.500000417232513
THE TOTAL NUMBER OF ZEROS WITHIN THIS BOX IS : 1
NUMBER OF ZEROS ISOLATED : 1

BOXES CONTAINING A SINGLE ZERD :

1) X0 = -1.000000163912773 .499999806284904
H = 3.000000357627869 3.500000417232513

FINAL APPROXIMATE ZEROS AND VERIFICATION :

1) z = ( -.000000000000055, 1.118783284992136 )
F(Z) = ( .000000000000080, -.000000000000015 )

EXIT PARAMETER : INFO = 1

233
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TEST RUN OUTPUT 2

STARTING VALUES :

ICASE : 3

ORDER : ~-15.300000000000001

X0 : -22.000000000000002 . 500000000000000
H : 45.000000000000000 100.000000000000000
ICON : 4

EPSILO : .000000000000100

RESULTS :

THE FOLLOWING BOX WAS CONSIDERED:

X0 = -22.000000163912774 .499999806284904
H = 45.000000357627865 100.000000417232520
THE TOTAL NUMBER OF ZEROS WITHIN THIS BOX IS : 16
NUMBER OF ZERGS REQUESTED : 5
NUMBER OF ZEROS ISOLATED : 5

BOXES CONTAINING A SINGLE ZERO :

1) X0 = 11.750000104308129 .499999806284%04
H = 11.250000089406966 12.500000052154C:63
2) X0 = .500000014901161 .499999806284904
H = 11.250000089406966 6.250000026077032
3) X0 = 6.125000059604645 6.749999832361937
H = 2.812500022351742 1.562500006519258
4) X0 = 6.125000059604645 8.312499838881135
H = 2.812500022351742 1.562500006519258
5) X0 = .500000014901161 9.874999845400453
H = 5.625000044703484 3.125000013038516

FINAL APPROXIMATE ZEROS AND VERIFICATION :

1) 2 = ( 12.507257919321071, 4.095557539693683 )
F(Z) = ( -.000000000000003, -.00000000000C039 )
2) Z = 10.378711262301940, 6.178243183678395 )

F(Z) -.000000000000009, .000000000000031 )

n
—~



3 z =
F(2) = (
4) Z =
F(2) = (
5) Z =
F(2) = (

EXIT PARAMETER :
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8.447945724224951, 7.613850557712050 )
.000000000000075, .000000000000033 )
6.607246778783210, 8.648294108469159 )
.000000000000034, -.000000000000027 )
1.3056877373221013, 10.12722023548999¢ )
.000000000000057, -.000000000000045 )
INFO = 1
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TEST RUN OUTPUT 3

STARTING VALUES :
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ICASE : 4

ORDER -.100000000000000

X0 -22.000000000000002 .500000000000000
H : 45.000000000000000 100.000000000000000
ICON : 3

EPSILO : .000000000000100

RESULTS :

THE FOLLOWING BOX WAS CONSIDERED:

X0 = -22.000000163912774 .499999806284904
H = 45.000000357627865 100.000000417232520
THE TOTAL NUMBER OF ZEROS WITHIN THIS BOX IS : 7

NUMBER OF ZEROS ISOLATED

BOXES CONTAINING A SINGLE ZERO :

1) X0 = -5.125000029802322 .499999806284904
H = 2.812500022351742 3.125000013038516
2) X0 = -2.312500007450581 .499999806284904
H = 2.812500022351742 3.125000013038516
3) X0 = -10.7500000745058086 .499999806284904
H = 2.812500022351742 3.125000013038516
4) X0 = -7.937500052154064 .499999806284904
H = 2.812500022351742 3.125000013038516
5) X0 = ~-16.375000119209289 .499999806284904
H = 5.625000044703484 6.250000026077032
6) X0 = -22.000000163912774 .499999806284904
H = 2.812500022351742 3.125000013038516
7) X0 = -19.187500141561031 .499999806284904
H = 2.812500022351742 3.125000013038516
FINAL APPROXIMATE ZEROS AND VERIFICATION :
1 Z = ( -3.887205157313519, .539553358417456 )

F(Z) = ( .000000000000067, -.000000000000002 )



2) 2 = (
F(2Z) = (
3 2z =
F(Z) = (
4) Z = (
F(Z) = (
5) Z = (
F(zZ) = (
6) 2 = (
F(Z) = (
7 Z =(
F(Z) = (

EXIT PARAMETER :

-13.
.000000000000068,

-19.
.000000000000002,

-16.
.000000000000047,
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.548875794670892,
.000000000000034 ,

.227206121588486,
.000000000000043,

.069495108154051,
.000000000000077,

377415057395032,

669612573645452,

524366351420319,

INFO = 1

.753840972468368
.000000000000012

.529025446346720
.000000000000012

.5631062479620184
.000000000000036

.528243018784274
.000000000000047

.527646968933275 )
.000000000000057

.527861289720225 )
.000000000000020
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TEST RUN OUTPUT 4

STARTING VALUES :

ICASE : 5

ORDER : 3.000000000000000

X0 : ~10.000000000000000 -10.000000000000200
H : 20.000000000000000 9.500000000000000
ICON H 3

EPSILO : .000000000000100

RESULTS :

THE FOLLOWING BOX WAS CONSIDERED:

X0 = -10.000000163912772 -10.000000193715095

H = 20.000000357627870 9.500000417232513
THE TOTAL NUMBER OF ZERQOS WITHIN THIS BOX IS : 3
NUMBER OF ZEROS ISOLATED : 3

BOXES CONTAINING A SINGLE ZERO :

1) X0 = .000000014901161 -10.000000193715095
H = 10.000000178813935 9.500000417232613
2) X0 = -2.500000029802322 -2.874999880790710
H = 1.250000022351742 2.375000104308128
3) X0 = -1.250000007450581 -2.874999880790710
H = 1.250000022351742 2.375000104308128

FINAL APPROXIMATE ZEROS AND VERIFICATION :

1) Z = ( 1.308012032273956, -1.681788804745902 )
F(Z) = ( -.000000000000073, -.000000000002027 )
2) Z = ( -2.242469255140806, -1.006482383164907 )
F(Z) = ( -.000000000000067 , -.000000000000098 )
3) 2 = ( -.431821001058069, -1.958584527573394 )

F(Z) =

i
~

-.000000000000073, .000000000000017 )



