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Abstract

In this contribution we apply the particle swarm optimization method, which originates from the
field of evolutionary computation, to address an interesting problem introduced by the cryptanalysis
of block-cipher cryptosystems. The results on the data encryption standard reduced to four rounds
indicate that this is a promising approach.
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1. Introduction

Evolutionary computation algorithms are stochastic optimization methods that involve
algorithmic mechanisms inspired by natural evolution and social behavior. These methods
have been proven to be efficient and effective where deterministic optimization methods fail
and can handle problems that involve discontinuous objective functions and disjoint search
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spaces [7,10,20]. Commonly encountered paradigms of such methods are genetic algorithms
(GA), evolution strategies (ES), differential evolution algorithm (DE) and the particle swarm
optimization (PSO). GA and ES are based on the principles of natural evolution. On the other
hand, PSO is based on the simulation of social behavior. Optimization techniques for real
search spaces can be applied on integer programming problems through slight modification.
Usually, the optimum solution is determined by rounding off the real optimum values to
the nearest integer [19]. Early approaches in the direction of evolutionary algorithms for
integer programming problems are reported in [8,9].

In this paper we study the use of the particle swarm optimization method to address a
problem introduced by the cryptanalysis of block-cipher cryptosystems. More specifically,
we investigate the problem of finding some missing bits of the key used to a simplified
Feistel cipher, the data encryption standard (DES) reduced to four rounds. Our first results
are encouraging since the method managed to locate the missing bits on an average of 1500
function evaluations as opposed to the 214 = 16384 required by brute force. Furthermore,
the method can be readily adapted to handle more complex Feistel based ciphers.

The rest of the paper is organized as follows: in Section 2 the basics on block-cipher cryp-
tosystems and differential cryptanalysis are briefly reviewed and the optimization problem
is formulated. In Section 3 the considered PSO algorithm is briefly described. In Section 4
the experimental results are reported. In Section 5 conclusions are derived and directions
for future work are suggested.

2. Background and problem formulation

In order to describe the problem at hand, let us briefly review the block-cipher cryptosys-
tems and differential cryptanalysis.

2.1. Block-cipher cryptosystems and differential cryptanalysis

An n-bit block-cipher is a function E : Vn × K �→ Vn, such that for each key K ∈ K,
and plaintext P , E(P, K) is an invertible mapping called encryption function. We denote
as C = E(P, K) the ciphertext that results from the encrypting plaintext P under K . The
inverse mapping is called decryption function.

An iterated block-cipher is a block-cipher that is based on sequential r times repetition
of a function, the round function. Each repetition is called a round and the cryptosystem is
called an r-round cryptosystem. The parameters of the round function include the number
of rounds r , the block bitsize n, and the bitsize k of the key K , from which r subkeys Ki

(round keys) are derived. The subkeys Ki are calculated via the key scheduling algorithm.
The round function is usually based on substitution mappings, called S-boxes, bit per-

mutations, arithmetic operations and XOR operations (denoted by ⊕). The S-boxes are
nonlinear mappings and usually they are the only nonlinear part of the cryptosystem, ren-
dering thus cryptosystem’s security crucially depending on them. Due to the importance
of the role of substitutions, the engineering issues of S-boxes design and construction have
received considerable attention [1,15].
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A Feistel cipher is an iterated block cipher, mapping an n-bit plaintext P , to a ciphertext
C, through an r-round process, where the current n-bit word is divided into (n/2)-bit parts,
the left part Li and the right part Ri [6]. Then round i, 1� i�r has the following effect:

Li = Ri−1,

Ri = Li−1 ⊕ F(Ri−1, Ki),

where Ki is the subkey used in the ith round (derived from the cipher key K), and F is an
arbitrary round function. The number of rounds is often an even number. The output of a
Feistel cipher is ordered as (Rr, Lr) and not as (Lr, Rr) (i.e. after the last round function
has been applied, the two halves are swapped).

A nice characteristic of Feistel-based ciphers is that the decrypt function is identical
to the encrypt function except that the subkeys and the round functions are applied in
reverse. This makes the Feistel structure an attractive choice for both software and hardware
implementations.

The best known and most widely used Feistel block-cipher cryptosystem is DES. DES
is the outcome of the collaboration between the government of the United States and IBM
in the 1970s and today. It is a symmetric algorithm, meaning that the parties exchanging
information possess the same key. DES processes plaintext blocks of n=64 bits, producing
64-bit ciphertext blocks, with effective key size k=64 bits, 8 of which can be used as parity
bits. The plaintext block is divided into the left and right parts of 32 bits each. The main
part of the round function is the F function, which works on the right half of the data, using
a subkey of 48 bits and eight (6–4 bits) S-boxes. The 32 output bits of the F function are
XORed with the left half of the data and the two halves are exchanged. A more detailed
description of the DES algorithm can be found in [14,22].

Two of the most powerful cryptanalytic attacks for Feistel-based ciphers, that were first
applied with success to the cryptanalysis of DES, depend critically on the exploitation of
specific weaknesses of the S-boxes of the target cryptoalgorithm. These attacks are the
Linear Cryptanalysis (see [13,12]) and the Differential Cryptanalysis (see [2,3]).

Differential cryptanalysis (DC) is a chosen plaintext attack which uses only the resultant
ciphertexts. The basic tool of the attack is the ciphertext pair which is a pair of ciphertexts
whose plaintexts have particular differences. The two plaintexts can be chosen at random,
as long as they satisfy the difference condition. The method analyzes the effect of particular
differences in plaintext pairs on the differences of the resultant ciphertext pairs. These
differences can be used to assign probabilities to the possible keys and to locate the most
probable key. This method usually works on many pairs of plaintexts with the same particular
difference using only the resultant ciphertext pairs. For cryptosystems similar to DES, the
difference is chosen as a fixed XORed value of the two plaintexts.

The most important component in DC is the use of a characteristic.An informal definition
of a characteristic is the following. “Associated with any pair of encryptions are the XOR
value of its two plaintexts, the XOR of its ciphertexts, the XORs of the input of each round in
the two executions and the XORs of the outputs of each round in the two executions. These
XOR values form an r-round characteristic. A characteristic has a probability, which is the
probability that a random pair with the chosen plaintext XOR has the round and ciphertext
XORs specified in the characteristic.” [2].
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Each characteristic allows looking for a particular number of bits in the subkey of the last
round and more specifically for all the bits that enter some particular (but not all) S-boxes.
The most useful characteristics are those which have a maximal probability and a maximal
number of subkey bits whose occurrences can be counted.

The DC is statistical in nature and can fail in rare instances. A more extended analysis
on DC and its results on DES for different numbers of rounds can be found in [2].

2.2. Problem formulation

For the differential cryptanalysis of DES reduced to four rounds, Biham and Shamir [2]
use a one-round characteristic with probability 1, and at the first step DC provided 42 bits
of the subkey of the last round. In the case where the subkeys are calculated with the DES
key scheduling algorithm, the 42 bits given by DC are actual key bits of the 56 key bits and
there are 14 key bits still missing. A suggestion for finding these key bits was to try all the
214 possibilities in decrypting the given ciphertexts, using the resulting keys. The right key
should satisfy the known plaintext XOR value for all the pairs that are used by DC. The rest
214 − 1 values of the key have only probability 2−64 to satisfy the pairs condition [2].

Instead of using brute force to find the missing key bits, we formulate the problem of the
missing 14 bits to an optimization one, as follows. We consider each one of the 14 bits as a
component of a 14th dimensional vector. Such a vector represents a possible solution of the
problem. Now, assume that the right 42 key bits found by DC were suggested using np pairs.
We can use these np pairs to evaluate the possible solutions provided by the optimization
method. More specifically, for each possible solution, Xi , suggested by the optimization
algorithm, we construct the 56 bits of the key, using the 42 bits which are known by DC
and the 14 components of Xi in proper order. With the resulting key, we decrypt the np

ciphertext pairs that where used by DC and count the number of decrypted pairs that satisfy
the known plaintext XOR value, denoted as cnpXi

. Thus, the evaluation function f , is the
difference between the desired output np and the actual output cnpXi

, i.e.,

f (Xi) = np − cnpXi
.

The global minimum of the function f is zero and the global minimizer provided, will be
the actual key with probability P = 1 − 2−64.

3. The considered optimization method

For completeness purposes, in this section we briefly describe the considered evolutionary
computation method.

PSO is a population-based algorithm that exploits a population of individuals, to search
promising regions of the function space. In this context, the population is called swarm
and the individuals are called particles. Each particle moves with an adaptable velocity
within the search space, and retains in its memory the best position it ever encountered.
In the global variant of the PSO the best position ever attained by all individuals of the
swarm is communicated to all the particles. In the local variant, each particle is assigned
to a neighborhood consisting of a prespecified number of particles. In this case, the best
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position ever attained by the particles that comprise the neighborhood is communicated
among them [5].

Assume a D-dimensional search space, S ⊂ RD , and a swarm of N particles. The ith
particle is in effect a D-dimensional vector Xi = (xi1, xi2, . . . , xiD)�. The velocity of this
particle is also a D-dimensional vector, Vi=(vi1, vi2, . . . , viD)�. The best previous position
ever encountered by the ith particle is a point in S, denoted by Pi = (pi1, pi2, . . . , piD)�.
Assume g, to be the index of the particle that attained the best previous position among all
the individuals of the swarm. Then, according to the constriction factor version of PSO the
swarm is manipulated using the following equations [4]:

V
(t+1)
i = �(V

(t)
i + c1r1(P

(t)
i − X

(t)
i ) + c2r2(P

(t)
g − X

(t)
i )), (1)

X
(t+1)
i = X

(t)
i + V

(t+1)
i , (2)

where i = 1, 2, . . . , N ; � is the constriction factor; c1 and c2 denote the cognitive and
social parameters, respectively; r1, r2 are random numbers uniformly distributed in the
range [0, 1]; and t , stands for the counter of iterations. The value of the constriction factor

is typically obtained through the formula � = 2�/|2 − � −
√

�2 − 4�|, for � > 4, where
� = c1 + c2, and � = 1. Different configurations of � as well as a theoretical analysis of the
derivation of the above formula can be found in [4].

In a different version of PSO a parameter called inertia weight is used, and the swarm is
manipulated according to the formulae [10,5,21]
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where i = 1, 2, . . . , N ; and w is the inertia weight, while all other variables are the same as
in the constriction factor version. There is no explicit formula for the determination of the
factor w, which controls the impact of the previous history of velocities on the current one.
However, since a large inertia weight facilitates global exploration (searching new areas),
while a small one tends to facilitate local exploration (fine-tuning the current search area),
it appears intuitively appealing to initially set it to a large value and to gradually decrease it
to obtain more refined solutions. The superiority of this approach against the selection of a
constant inertia weight, has been experimentally verified [21]. Thus, an initial value around
1.2 and a gradual decline toward 0.1 can be considered as a good choice for w. Proper
fine-tuning of the parameters c1 and c2, results in faster convergence and alleviation of
local minima. As default values, c1 = c2 = 2 have been proposed, but experimental results
indicate that alternative configurations, depending on the problem at hand, can produce
superior performance [10,16].

Typically, the swarm and the velocities, are initialized randomly in the search space. For
more sophisticated techniques, see [17]. For uniform random initialization in a multidimen-
sional search space, a Sobol sequence generator can be used [18]. The performance of the
PSO method for the integer programming problem was studied in [11] with very promising
results.
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4. Experimental setup and results

PSO method was applied considering each component of the possible solution as a real
number in the range [0, 1]. For the evaluation of the suggested solutions PSO was applied
by rounding off real values to the nearest integer. As the constriction factor version of PSO
is considered faster at converging to a solution, the global and local PSO variants of this
version of the method, were tested.All populations were constrained in the feasible region of
the problem and the size of each population was taken equal to 100. The maximum velocity,
Vmax, of the method was set to 0.5. The parameters of the method were set at the default
values, i.e. �=0.729 and c1 = c2 =2.05, found in the literature [4]. The proposed approach
was tested for several different initial keys and number of pairs, np. For each setting, the
performance of the method was investigated on 100 independent runs. The results for six
different keys, ki , i = 1, . . . , 6, and for test pairs, np, equal to 20, 50 and 100, are reported
in Tables 1–3, respectively.

Concerning the notation used in the tables, PSOCG is the global variant of PSO with
constriction factor and PSOCL is PSO’s local variant with constriction factor. A run is con-
sidered to be successful if the algorithm identifies the global minimizer within a prespecified
number of function evaluations. The function evaluations threshold was taken equal to 214.
The success rates of each algorithm, that is the proportion of the times it achieved the global
minimizer within the prespecified threshold, the minimum number and the mean value of
function evaluations used by the method, are reported.

Our first results are encouraging since the method managed to locate the missing bits on
an average of 1500 function evaluations as opposed to the 214 = 16, 384 required by brute
force. Relative to the different variants of the PSO method, the local variant accomplished
higher success rates within the prespecified threshold of function evaluations. Finally, using
a larger number, np, of test pairs speeds up the convergence rate, as the function value of
local minima seems to be elevated.

Table 1
Results for six different keys using np = 20 test pairs

Key Method Suc.rate Function evaluations

(%) Mean Min

k1 PSOCG 98 1146 200
k1 PSOCL 100 2020 200
k2 PSOCG 99 854 200
k2 PSOCL 100 2079 200
k3 PSOCG 97 1542 200
k3 PSOCL 100 2300 200
k4 PSOCG 97 1698 200
k4 PSOCL 100 1884 300
k5 PSOCG 93 1870 200
k5 PSOCL 100 1788 300
k6 PSOCG 100 740 200
k6 PSOCL 100 1717 200
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Table 2
Results for six different keys using np = 50 test pairs

Key Method Suc.rate Function evaluations

(%) Mean Min

k1 PSOCG 99 885 200
k1 PSOCL 100 1873 200
k2 PSOCG 100 682 200
k2 PSOCL 100 1348 200
k3 PSOCG 100 606 200
k3 PSOCL 100 1432 200
k4 PSOCG 96 1322 200
k4 PSOCL 100 1382 200
k5 PSOCG 98 941 200
k5 PSOCL 100 1691 200
k6 PSOCG 96 1205 200
k6 PSOCL 100 1627 200

Table 3
Results for six different keys using np = 100 test pairs

Key Method Suc.rate Function evaluations

(%) Mean Min

k1 PSOCG 100 640 200
k1 PSOCL 100 1225 200
k2 PSOCG 97 1082 200
k2 PSOCL 100 1261 200
k3 PSOCG 99 833 300
k3 PSOCL 100 1633 200
k4 PSOCG 100 589 200
k4 PSOCL 100 1255 200
k5 PSOCG 99 883 200
k5 PSOCL 100 1214 200
k6 PSOCG 92 2043 200
k6 PSOCL 100 1640 200

5. Conclusions and future work

The particle swarm optimization method was applied to the problem of locating the key
of a simplified version of DES [2]. As reported in [2], in the case of keys produced by
the DES key scheduling algorithm, the determination of the key bits involves a brute force
search for 14 missing bits of a previously computed part of the key. The PSO method,
as evidenced by the experimental results given in the previous section, seems to speed-up
considerably the search for the 14 missing bits. This suggests that the two methods can be
used complementary to each other, in order to locate all the bits of the key.
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We also observed that when the input and output permutation functions of DES are
omitted, PSO actually locates 4 candidate values for the 14 missing bits that minimize the
evaluation function, which differ in 2 fixed positions that correspond to positions 10 and
36 of the DES key. However, the permutations do not affect the method, but the ciphertext
pairs which are imported to the evaluation function.

In conclusion, in view of the encouraging results of our preliminary experiments, we
believe that the PSO method will also be beneficial in locating bits of the key other than the
14 bits on which we applied it.
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