
Applied Mathematics and Computation 184 (2007) 63–72

www.elsevier.com/locate/amc
Applying evolutionary computation methods
for the cryptanalysis of Feistel ciphers

E.C. Laskari a,d,*, G.C. Meletiou b,d, Y.C. Stamatiou c,d, M.N. Vrahatis a,d

a Computational Intelligence Laboratory, Department of Mathematics, University of Patras, GR–26110 Patras, Greece
b A.T.E.I. of Epirus, P.O. Box 110, GR–47100 Arta, Greece

c Department of Mathematics, University of Ioannina, GR–45110 Ioannina, Greece
d University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras, GR–26110 Patras, Greece
Abstract

In this contribution instances of a problem introduced by the differential cryptanalysis of Feistel cryptosystems are for-
mulated as optimization tasks. The performance of Evolutionary Computation methods on these tasks is studied for a rep-
resentative Feistel cryptosystem, the Data Encryption Standard. The results indicate that the proposed methodology is
efficient in handling this type of problems and furthermore, that its effectiveness depends mainly on the construction of
the objective function. This approach is applicable to all Feistel cryptosystems that are amenable to differential
cryptanalysis.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Computational intelligence; Evolutionary computation; DES; Differential cryptanalysis; Feistel ciphers
1. Introduction

A Feistel cipher is a cryptosystem based on a sequential r times repetition of a function, called the round

function, that maps an n-bit plaintext P, to a ciphertext C. In a Feistel cipher the current n-bit word is divided
into (n/2)-bit parts, the left part Li and the right part Ri [1]. Then round i, 1 6 i 6 r, has the following effect:
0096-3

doi:10.

* Co
26110

E-m

vrahat
Li ¼ Ri�1; Ri ¼ Li�1 � F iðRi�1;KiÞ;

where Ki is the subkey used in the ith round (derived from the cipher key K), and Fi is an arbitrary round
function for the ith round. After the last round function has been applied, the two halves are swapped and
the outcome is the ciphertext C of the Feistel cipher, i.e. C = (Rr,Lr). On Feistel based cryptosystems the
decryption function is simply derived from the encryption function by applying the subkeys, Ki, and the round
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

1016/j.amc.2005.11.176

rresponding author. Address: Computational Intelligence Laboratory, Department of Mathematics, University of Patras, GR–
Patras, Greece.
ail addresses: elena@math.upatras.gr (E.C. Laskari), gmelet@teiep.gr (G.C. Meletiou), istamat@cc.uoi.gr (Y.C. Stamatiou),

is@math.upatras.gr (M.N. Vrahatis).

mailto:elena@math.upatras.gr
mailto:gmelet@teiep.gr
mailto:istamat@cc.uoi.gr
mailto:vrahatis@math.upatras.gr


64 E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72
functions, Fi, in reverse order, rendering thus the Feistel structure an attractive choice for both software and
hardware implementations.

The most widely used Feistel block-cipher cryptosystem is the Data Encryption Standard (DES) [2]. DES is
a symmetric cryptosystem, meaning that the parties exchanging information possess the same key. It processes
plaintext blocks of n = 64 bits, producing 64-bit ciphertext blocks, with effective key size k = 64 bits, eight of
which can be used as parity bits. The main part of the round function is the F function, which works on the
right half of the data, using a subkey of 48 bits and eight S-boxes. S-boxes are mappings that transform 6 bits
to 4 bits in a nonlinear manner and constitute the only nonlinear component of DES. The 32 output bits of the
F function are XORed with the left half of the data and the two halves are subsequently exchanged. A detailed
description of the DES algorithm can be found in [3,4].

Two of the most powerful cryptanalytic attacks for Feistel based ciphers, rely on the exploitation of specific
weaknesses of the S-boxes of the target cryptoalgorithm. These attacks are the Linear Cryptanalysis (see [5,6])
and the Differential Cryptanalysis (see [7,8]), and were first successfully applied to the cryptanalysis of DES.

In this contribution we consider different instances of a problem introduced by the Differential Cryptanal-
ysis of a Feistel cryptosystem and formulate them as optimization tasks. In particular, we investigate the prob-
lem of finding some missing bits of the key that is used in a simple Feistel cipher, namely the Data Encryption
Standard with four and six rounds, respectively. The performance of two Evolutionary Computation methods,
the Particle Swarm Optimization (PSO) and the Differential Evolution algorithm (DE), on this problem is
studied.

Evolutionary Computation optimization methods are inspired by paradigms of social behavior and/or nat-
ural evolution. A common characteristic of all these algorithms is that they do not employ information from
the derivatives of the objective function. Therefore, they are applicable to hard real-world optimization prob-
lems that involve discontinuous objective functions and/or disjoint search spaces [9–11]. The performance of
PSO in handling discrete optimization problems, through the technique of rounding off the real values of the
solution to the nearest integer [12], was investigated in [13] with promising results.

In the experimental results for DES reduced to four rounds, the optimization methods considered, located
the solution efficiently, in the sense that they required a smaller number of function evaluations compared to
the brute force approach. For DES reduced to six rounds the effectiveness of the proposed algorithms depends
on the construction of the objective function.

The rest of the paper is organized as follows. In Section 2 the considered problem is analyzed and two dif-
ferent instances of it are formulated as optimization tasks. In Section 3 the considered evolutionary compu-
tation methods are briefly described. In Section 4 the experimental setup and results are reported. The
discussion of the reported results is given in Section 5. Section 6 summarizes with conclusions and future work
directions.

2. Problem formulation

To describe the problem at hand, we briefly review the basic notions of differential cryptanalysis.

2.1. Basic notions of differential cryptanalysis

Differential Cryptanalysis (DC) is a chosen plaintext attack. It analyzes the effect of particular differences in
plaintext pairs on the differences of the resultant ciphertext pairs. These differences can be used to assign prob-
abilities to the possible keys and to identify the most probable key. This method usually works on a number of
pairs of plaintexts with the same particular difference using only the resulting ciphertext pairs. For cryptosys-
tems similar to DES, the difference is chosen as a fixed XORed value of the two plaintexts.

In order to locate the most probable key, DC uses characteristics. As defined in [7], an r-round characteristic

is a tuple X = (XP,XK,XC) where XP and XC are n bit numbers and XK is a list of r elements
XK = (K1,K2, . . . ,Kr), each of which is a pair of the form Ki ¼ ðki

I ; k
i
OÞ, where ki

I and ki
O are n/2 bit numbers

and n is the block size of the cryptosystem. A characteristic satisfies the following requirements: (a) k1
I is

the right half of XP, (b) k2
I is the left half of XP � k1

O, (c) kr
I is the right half of XC, (d) kr�1

I is the left half
of XC � kr

O, and (e) for every i, 2 6 i 6 r � 1, ki
O ¼ ki�1

I � kiþ1
I . Each characteristic has a probability, which



E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72 65
is the probability that a random pair with the chosen plaintext XOR, XP, has the round XORs, Ki, and the
ciphertext XOR, XC, specified in the characteristic. Each characteristic allows the search for a particular set of
bits in the subkey of the last round: the bits that enter some particular S-boxes, depending on the chosen char-
acteristic. The characteristics that are most useful are those that have a maximal probability and a maximal
number of subkey bits whose occurrences can be counted.

DC is a statistical method that fails in rare instances. A more extended analysis on DC and its results on
DES for different numbers of rounds can be found in [7].

2.2. Problem formulation

2.2.1. DES reduced to four rounds

For DES reduced to four rounds, DC uses a one–round characteristic with probability 1 and provides at
the first step of the cryptanalysis 42 bits of the subkey of the last round. We consider the case where the sub-
keys are calculated with the DES key scheduling algorithm, thus the 42 bits given by DC are actual key bits of
the key and there are 14 key bits still missing. A possible way for obtaining these key bits is to try all the 214

possibilities in decrypting the given ciphertexts, using the resulting keys. The right key should satisfy the
known plaintext XOR value for all the pairs that are used by DC. An alternative approach is to use a second
characteristic that corresponds to the missing bits and attempt a more careful counting on the key bits of the
last two rounds. The approach of brute force requires testing 214 = 16384 possible key bits, while the imple-
mentation of the second approach is more complicated.

Instead of using the aforementioned approaches to find the missing key bits, we formulate the problem of
computing the missing bits as an integer optimization problem. Since the right key should satisfy the known
plaintext XOR value for all the pairs that are used by DC, these ciphertexts can be used for the evaluation of
possible solutions provided by optimization methods. Thus, let X be a 14–dimensional vector, where each
of its components corresponds to one of the 14 unknown key bits. Such a vector represents a possible solution
of the problem. Also, let np be the number of ciphertext pairs used by DC to obtain the right 42 key bits. Con-
struct the 56 bits of the key, using the 42 bits which are known by DC and the 14 components of X in the
proper order. With the resulting key, decrypt the np ciphertext pairs and count the number of decrypted pairs
that satisfy the known plaintext XOR value, denoted as cnpX. Thus, the objective function f, is the difference
between the desired output np and the actual output cnpX, i.e. f(X) = np � cnpX. The global minimum of the
function f is zero and the global minimizer is with high probability the actual key. A first study of this
approach is given in [14].

In this paper we provide a more detailed study of the performance of Evolutionary Computation methods
on this problem, and also extend the proposed methodology in a different instance of the problem, namely the
missing bits of the six round DES. The two instances are complementary, since every problem of missing bits
of keys in Differential Cryptanalysis of Feistel ciphers can be categorized into one of the two cases.

2.2.2. DES reduced to six rounds

The cryptanalysis of DES reduced to six rounds is more complicated than the four round version, since the
best characteristic that can be used has probability less than 1. In particular, DC uses two characteristics of
probability psr = 1/16 to provide 42 bits of the right key. Again, there are 14 bits of the key missing. However,
in this case the right key may not be suggested by all ciphertext pairs. This holds because not all the corre-
sponding plaintexts pairs are right pairs. A pair is called right pair with respect to an r-round characteristic

X = (XP,XK,XC) and an independent key K, if it holds that P 0 = XP, where P 0 is the pair’s XOR value,
and for the first r rounds of the encryption of the pair using the independent key K the input and output XORs
of the ith round are equal to ki

I and ki
O, respectively [7].

The probability that a pair, with plaintext XOR equal to XP of the characteristic, is a right pair using a fixed
key is approximately equal to the probability of the characteristic. A pair which is not a right pair is called
wrong pair and it does not necessarily suggest the right key as a possible value. The study of right and wrong
pairs, has shown that the right key appears with the probability of the characteristic from the right pairs and
some other random occurrences from wrong pairs. In conclusion, if all the pairs of DC (right and wrong) are
used in the predefined objective function f, the function’s minimum value will change depending on the specific



66 E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72
pairs used. On the other hand, if the right pairs are filtered and are solely used in the objective function f, the
function’s global minimum will be constant with value equal to 0, as in the case of missing bits of DES reduced
to four rounds. As the filtering of the right pairs is not always possible and easy, we study the behavior of the
proposed approach using the objective function f with all the pairs of DC.

3. The evolutionary computation methods considered

For completeness purposes, in this section we briefly describe the considered Evolutionary Computation
methods, namely the Particle Swarm Optimization and the Differential Evolution algorithm. Both methods
employ a population of possible solutions to identify promising regions of the search space. In the context
of PSO, the population is called swarm, while the members of the population are called particles. Each particle
moves in the search space according to three quantities; its velocity, the memory of its own best, previous,
position and the memory of the best, previous, position of its neighborhood. In the global variant of the
method the whole swarm is considered as one neighborhood. Thus, the best position of the swarm is commu-
nicated to all the particles. On the contrary, in the local variant of the method a prespecified number of par-
ticles constitute the particle’s neighborhood and the best position of these specific particles is communicated
among them [15].

Let S be a D-dimensional search space, S � RD, and a swarm of N particles. Then, in the constriction factor

version of PSO the following equations are used to manipulate the swarm [16]:
V ðtþ1Þ
i ¼ v V ðtÞi þ c1r1 P ðtÞi � X ðtÞi

� �
þ c2r2 P ðtÞg � X ðtÞi

� �� �
; ð1Þ

X ðtþ1Þ
i ¼ X ðtÞi þ V ðtþ1Þ

i ; ð2Þ
where i = 1,2, . . . ,N; v is the constriction factor; c1 and c2 denote the cognitive and social parameters, respec-
tively; r1, r2 are random numbers uniformly distributed in the range [0, 1]; and t, stands for the counter of iter-
ations. By Eq. (1) the velocity vector of the ith particle, Vi = (vi1,vi2, . . . ,viD)>, is the result of the weighted
summation of the particle’s current velocity, and the weighted differences of the particle’s current position,
Xi = (xi1,xi2, . . . ,xiD)>, with its best previous position, Pi = (pi1,pi2, . . . ,piD)>, and with the best position
encountered by the particles comprising its neighborhood, Pg = (pg1,pg2, . . . ,pgD)>. The position of the ith par-
ticle in the next iteration is obtained by simply adding the velocity to the current position (Eq. (2)). All com-
putations in Eqs. (1) and (2) are component wise.

The value of the constriction factor is typically obtained through the formula
v ¼ 2j= 2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

q����
����; for / > 4;
where / = c1 + c2, and j = 1. Different configurations of v, as well as, a theoretical analysis of the derivation
of the above formula can be found in [16].

The Differential Evolution algorithm [17] is a parallel direct numerical search method, that utilizes N, D–
dimensional parameter vectors xi,G, i = 1, . . . ,N, as a population for each iteration (generation) of the algo-
rithm. At each generation, the mutation and crossover (recombination) operators are applied on the individuals,
to produce a new population, which is subsequently subjected to the selection phase.

For each vector xi,G, i = 1, . . . ,N, a mutant vector is generated through the following equation:
vi;Gþ1 ¼ xr1;G þ F ðxr2;G � xr3;GÞ; ð3Þ

where r1, r2, r3 2 {1, . . . ,N}, are mutually different random indexes, and F 2 (0, 2]. The indexes r1, r2, r3, also
need to differ from the current index, i. Consequently, to apply mutation, N must be greater than, or equal
to, 4.

Following the mutation phase, the crossover operator is applied on the mutant vector yielding the trial vec-

tor, ui,G+1 = (u1i,G+1,u2i,G+1, . . . ,uDi,G+1), where,
uji;Gþ1 ¼
vji;Gþ1; if ðrandbðjÞ 6 CRÞ or j ¼ rnbrðiÞ;
xji;G; if ðrandbðjÞ > CRÞ and j 6¼ rnbrðiÞ;

�



E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72 67
for j = 1,2, . . . ,D; where randb(j), is the jth evaluation of a uniform random number generator in the range
[0,1]; CR is the (user specified) crossover constant in the range [0, 1]; and rnbr(i) is a randomly chosen index
from the set {1,2, . . . ,D}.

To decide whether or not the vector ui,G+1 will be a member of the population of the next generation, it is
compared to the initial vector xi,G. Thus,
xi;Gþ1 ¼
ui;Gþ1; if f ðui;Gþ1Þ < f ðxi;GÞ;
xi;G; otherwise:

�

The procedure described above is the standard variant of the DE algorithm. Different mutation operators that
have been applied with promising results [17], are the following:
vi;Gþ1 ¼ xbest;G þ F ðxr1;G � xr2;GÞ; ð4Þ
vi;Gþ1 ¼ xi;G þ F ðxbest;G � xi;GÞ þ F ðxr1;G � xr2;GÞ; ð5Þ
vi;Gþ1 ¼ xbest;G þ F ðxr1;G þ xr2;G � xr3;G � xr4;GÞ; ð6Þ
vi;Gþ1 ¼ xr1;G þ F ðxr2;G þ xr3;G � xr4;G � xr5;GÞ; ð7Þ
where, xbest,G, corresponds to the best individual of the Gth generation, r1, r2, r3, r4, r5 2 {1, . . . ,N}, are mutu-
ally different random indexes and xi,G is the current individual of generation G.

4. Experimental setup and results

Both PSO and DE methods were applied considering each component of the possible solution as a real
number in the range [0, 1] and all populations were constrained in the feasible region of the problem. For
the evaluation of the suggested solutions, the technique of rounding off the real values of the solution to
the nearest integer [12] was applied. For the PSO method we have considered both the global and local vari-
ants, and for the DE algorithm all five variants described in Section 3. A maximum value for the velocity,
Vmax = 0.5, of the PSO method was set in order to avoid the swarm’s explosion, i.e. avoid velocities from
assuming large values that lead the particles to the boundary of the search space, and thus destroy the dynamic
of the method. The parameters of PSO were set at the default values, i.e. v = 0.729 and c1 = c2 = 2.05, found
in the literature [16], and the parameters of DE were set at equal values CR = F = 0.5.

The proposed approach was tested for several different initial keys and number of pairs, np. For each set-
ting, the size of each population was equal to 100 and the performance of the methods was investigated on 100
independent runs. A run is considered to be successful if the algorithm identifies the global minimizer within a
prespecified number of function evaluations. The function evaluations threshold for both problems was taken
equal to 214. For the missing bits of the key of DES reduced to four rounds, the results for six different keys, ki,
i = 1, . . . , 6, and for test pairs, np, equal to 20 and 50 are reported in Tables 1 and 2, respectively.

Concerning the notation used in the tables, PSOCG is the global variant of the constriction factor version
of PSO, PSOCL1 is PSO’s local variant with neighborhood size equal to 1, PSOCL2 is PSO’s local variant
with neighborhood size equal to 2, and DE1, DE2, DE3, DE4, DE5 denote the five DE variants of Eqs.
(3)–(7), respectively. Each table reports the success rate of each algorithm, that is the proportion of the times
it achieved the global minimizer within the prespecified threshold, and the mean value of function evaluations
over the successful experiments.

For the missing bits of the key of DES reduced to six rounds, where both right and wrong pairs are used for
the construction of the objective function, the results for the same six different keys tested for DES reduced to
four rounds, and for test pairs, np, equal to 200, are reported in Table 3.

5. Discussion

The results for the problem of missing bits of DES reduced to four rounds suggest that the proposed
approach is able to locate the global minimizer, i.e. the 14 missing bits of the key, with relatively low compu-
tational cost compared to the brute force attack. The success rates of all versions of the two methods are high.
For np equal to 20 success rates range from 93% to 100%, with an average of 99.3%. For np equal to 50 the



Table 1
Results for six different keys using np = 20 test pairs for DES reduced to four rounds

Key Method Success Rate (%) Mean F.E.

k1 PSOGC 99 742.42
PSOLC1 100 1773.00
PSOLC2 100 1255.00
DE1 100 614.00
DE2 100 1406.00
DE3 100 780.00
DE4 100 588.00
DE5 100 1425.00

k2 PSOGC 99 911.11
PSOLC1 100 2665.00
PSOLC2 100 1650.00
DE1 100 603.00
DE2 100 1518.00
DE3 100 879.00
DE4 100 615.00
DE5 100 1649.00

k3 PSOGC 94 1117.02
PSOLC1 99 2447.48
PSOLC2 100 1688.00
DE1 99 693.94
DE2 100 1497.00
DE3 100 805.00
DE4 100 690.00
DE5 100 1427.00

k4 PSOGC 96 876.04
PSOLC1 100 2089.00
PSOLC2 100 1418.00
DE1 99 701.01
DE2 100 1378.00
DE3 100 843.00
DE4 100 568.00
DE5 100 1362.00

k5 PSOGC 97 900.00
PSOLC1 99 1979.80
PSOLC2 100 1496.00
DE1 100 662.00
DE2 100 1493.00
DE3 100 848.00
DE4 100 662.00
DE5 100 1542.00

k6 PSOGC 93 1457.00
PSOLC1 95 4475.79
PSOLC2 99 2913.13
DE1 100 651.00
DE2 100 1717.00
DE3 100 1063.00
DE4 99 725.25
DE5 100 1583.00

68 E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72
success rates lie in the region from 90% to 100%, with mean 99.4%. The improvement of the success rate as the
number of ciphertext pairs, np, increases is expected as the larger number of ciphertext pairs used for the eval-
uation of the possible solutions reduces the possibility of a wrong 14-tuple to be suggested as the right one.
The mean number of function evaluations required to locate the global minimizer (over all variants) is



Table 2
Results for six different keys using np = 50 test pairs for DES reduced to four rounds

Key Method Success Rate (%) Mean F.E.

k1 PSOGC 99 860.61
PSOLC1 100 1698.00
PSOLC2 100 1141.00
DE1 100 485.00
DE2 100 1215.00
DE3 100 785.00
DE4 100 553.00
DE5 100 1382.00

k2 PSOGC 94 741.49
PSOLC1 100 1367.00
PSOLC2 100 1100.00
DE1 99 490.91
DE2 100 1081.00
DE3 100 669.00
DE4 100 521.00
DE5 100 1128.00

k3 PSOGC 99 631.31
PSOLC1 100 1217.00
PSOLC2 100 1035.00
DE1 100 385.00
DE2 100 1006.00
DE3 100 546.00
DE4 100 409.00
DE5 100 1016.00

k4 PSOGC 90 947.78
PSOLC1 98 2292.88
PSOLC2 100 1588.00
DE1 98 666.33
DE2 100 1342.00
DE3 100 838.00
DE4 99 649.50
DE5 100 1294.00

k5 PSOGC 100 707.00
PSOLC1 100 1763.00
PSOLC2 100 1193.00
DE1 100 445.00
DE2 100 1127.00
DE3 100 684.00
DE4 100 465.00
DE5 100 1131.00

k6 PSOGC 96 880.21
PSOLC1 100 2009.00
PSOLC2 100 1390.00
DE1 100 507.00
DE2 100 1250.00
DE3 100 692.00
DE4 100 563.00
DE5 100 1230.00

E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72 69
1309 in the case of np = 20 and 982 in the case of np = 50. This implies that, as more ciphertext pairs are incor-
porated in the objective function, not only the evaluation becomes more accurate, but also the the global min-
imizer becomes easier to locate. However, the number of ciphertext pairs used by the proposed approach
should not exceed the number of the ciphertext pairs that are used by DC for the initial problem, as this would
increase the total cost of the cryptanalysis in terms of encryptions and decryptions.



Table 3
Results for six different keys using np = 200 test pairs for DES reduced to six rounds

Key Method Success Rate (%) Mean F.E.

k1 PSOGC 26 7038.46
PSOLC1 9 2188.89
PSOLC2 8 3862.50
DE1 36 5191.67
DE2 52 5515.39
DE3 41 5807.32
DE4 51 6364.71
DE5 59 6855.93

k2 PSOGC 24 5037.50
PSOLC1 3 1500.00
PSOLC2 7 2357.14
DE1 34 6535.29
DE2 58 6968.97
DE3 40 5945.00
DE4 39 6897.44
DE5 61 6932.79

k3 PSOGC 41 4902.44
PSOLC1 6 4533.33
PSOLC2 5 7340.00
DE1 48 5070.83
DE2 61 6967.21
DE3 53 6698.11
DE4 48 5889.58
DE5 56 7926.79

k4 PSOGC 47 4912.77
PSOLC1 13 4407.69
PSOLC2 23 4134.78
DE1 57 6491.23
DE2 76 7594.74
DE3 66 6418.18
DE4 72 5741.67
DE5 76 7001.32

k5 PSOGC 36 5575.00
PSOLC1 4 1950.00
PSOLC2 5 4700.00
DE1 51 5688.24
DE2 62 7803.23
DE3 57 5229.83
DE4 53 5377.36
DE5 64 6387.50

k6 PSOGC 37 5624.32
PSOLC1 5 2920.00
PSOLC2 9 3377.78
DE1 49 5681.63
DE2 63 7380.95
DE3 50 7048.00
DE4 51 5621.57
DE5 64 7679.69

70 E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72
With respect to the different variants of the PSO method, the local variant with neighborhood size two
accomplished success rates close to 100%, in all instances of the first problem, with an average of 1489 of func-
tion evaluations. The global variant of PSO achieved success rates from 93% to 100% in different instances of
the problem, but with an average of 898 of function evaluations. This means that, although the global variant



E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72 71
of PSO exhibits overall lower success rates, in the cases where both local and global variants of PSO are able to
locate the minimizer, the global variant requires less function evaluations than the local variant.

The DE variants exhibited a stable and similar behavior, with mean success rates 100% in all cases. A minor
exception was DE4 that achieved a mean of success rates of 99% on two instances of the problem. DE1
required the lowest mean number of function evaluations (576) among all two methods and their variants.

Regarding the results of DES reduced to six rounds, we observe from Tables 1–3 that there is a considerable
difference between the success rates for the case of four rounds and the case of six rounds. This can be attributed
to the fact that in the former case we work with a characteristic that occurs with probability 1 while in the latter
case we work with a characteristic with smaller probability (1/16). This means that in the set of 200 ciphertext
pairs used by the objective function, approximately 12 pairs are right and suggest the right tuple, while the
remaining 188 pairs suggest tuples at random, decreasing thus, the possibility of suggestion of the right tuple.
Consequently, since the objective function becomes more effective when more right pairs are available or, equiv-
alently, when the probability of the utilized characteristic is large, it is expected that in the four round case the
performance of the methods should be better than in the six round case. Although, the wrong pairs used in
the objective function of DES for six rounds are misleading for the evaluation of the right tuple of missing bits,
the global variant of PSO and all DE variants were able to locate the missing bits on an average of 35% of inde-
pendent runs for PSOGC and 55% for the DE variants over all six different keys tested. The function evaluations
required for the location of the right 14–tuple of missing bits in this case are on average 5600 for all methods.

Finally, an interesting observation from the results of the proposed approach is that in the case of DES
reduced to four rounds all methods in independent runs were able to locate 4 different 14–tuples satisfying
the condition criterion of the objective function. These 4 solutions of the problem differed in two fixed posi-
tions, the 10th and the 36th, of the DES key. In the case of DES reduced to six rounds just one solution, the
right one, was located by all methods.

6. Conclusions and future work

In this contribution the problem of finding missing key bits of a Feistel cipher, the DES reduced to four and
six rounds, respectively, is formulated as an optimization task. The performance of two Evolutionary Com-
putation methods in addressing the two different instances of the optimization problem is studied and results
are reported.

The results indicate that the proposed methodology is efficient in handling this type of problems, since on
DES reduced to four rounds it managed to address the problem at hand using an average of 576 function eval-
uations in contrast with the brute force approach that requires 214 = 16384 evaluations. Furthermore, the
results of DES reduced to six rounds shows that the effectiveness of the proposed approach depends mainly
on the construction of the objective function. Also, this approach is applicable to all Feistel cryptosystems that
are amenable to differential cryptanalysis, motivating thus its use for other Feistel cryptosystems. Finally, as a
future direction, we are interested in studying the effectiveness of the proposed approach not just for missing
bits of the key produced by Differential Cryptanalysis but also for all the bits of the key of Feistel ciphers.

Acknowledgement

The authors would like to acknowledge the partial support by the ‘‘Archimedes’’ research programme
awarded by the Greek Ministry of Education and Religious Affairs and the European Union.

References

[1] H. Feistel, Cryptography and computer privacy, Scientific American 228 (5) (1973) 15–23.
[2] National Bureau of Standards, US Department of Commerce, FIPS pub. 46, Data Encryption Standard, January 1977.
[3] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press series on discrete mathematics and its

applications, CRC Press, 1996.
[4] D. Stinson, Cryptography: Theory and Practice (Discrete Mathematics and Its Applications), CRC Press, 1995.
[5] M. Matsui, A. Yamagishi, A new method for known plaintext attack of FEAL cipher, Lecture Notes in Computer Science (1992) 81–

91.



72 E.C. Laskari et al. / Applied Mathematics and Computation 184 (2007) 63–72
[6] M. Matsui, Linear cryptanalysis method for DES cipher, Lecture Notes in Computer Science 765 (1994) 386–397.
[7] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, Journal of Cryptology 4 (1) (1991) 3–72.
[8] E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag, 1993.
[9] D. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.

[10] J. Kennedy, R. Eberhart, Swarm Intelligence, Morgan Kaufman Publishers, 2001.
[11] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.
[12] S. Rao, Engineering Optimization – Theory and Practice, Wiley Eastern, New Delhi, 1996.
[13] E. Laskari, K. Parsopoulos, M. Vrahatis, Particle swarm optimization for integer programming, in: Proceedings of the IEEE 2002

Congress on Evolutionary Computation, IEEE Press, Hawaii, HI, 2002, pp. 1576–1581.
[14] E.C. Laskari, G.C. Meletiou, Y.C. Stamatiou, M.N. Vrahatis, Evolutionary computation based cryptanalysis: A first study,

Nonlinear Analysis: Theory, Methods and Applications 63 (2005) e823–e830.
[15] R. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence PC Tools, Academic Press, 1996.
[16] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE

Transactions on Evolutionary Computation 6 (1) (2002) 58–73.
[17] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of

Global Optimization 11 (1997) 341–359.


	Applying evolutionary computation methods for the cryptanalysis of Feistel ciphers
	Introduction
	Problem formulation
	Basic notions of differential cryptanalysis
	Problem formulation
	DES reduced to four rounds
	DES reduced to six rounds


	The evolutionary computation methods considered
	Experimental setup and results
	Discussion
	Conclusions and future work
	Acknowledgement
	References


