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Abstract

In this contribution problems encountered in the field of cryptology, are introduced as discrete
optimization tasks. Two evolutionary computation algorithms, namely the particle swarm optimization
method and the differential evolution method, are applied to handle these problems.The results indicate
that the dynamic of this type of discrete optimization problems makes it difficult for the methods to
retain information.
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1. Introduction

The field of cryptography has motivated a number of hard and complex computational
problems. Such problems are the integer factorization problem related to the RSA cryp-
tosystem; the index computation or the discrete logarithm problem related to the El Gamal
cryptosystem, as well as, to the Diffie–Hellman key exchange and others [2,3,9,10]. The
assumption that these problems are in general computationally intractable in polynomial
time forms the basis of the reliability of most contemporary cryptosystems.
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In this paper, a number of problems originating from the integer factorization problem
are formulated as discrete optimization tasks. The integer factorization problem forms the
basis of the RSA cryptosystem. Thus, optimization methods that can efficiently tackle the
problems under consideration in acceptable computational time, could be regarded as a
useful tool for cryptanalysis of the corresponding type of cryptosystems.

Evolutionary computation algorithms are stochastic optimization methods inspired by ei-
ther natural evolution or social behavior. Genetic algorithms (GA) [4], evolution strategies
(ES) [11], the differential evolution algorithm (DE) [12], as well as, the particle swarm op-
timization (PSO) [1,5] belong to this class of methods. All the aforementioned optimization
algorithms are designed to address problems involving discontinuous and multimodal ob-
jective functions, the existence of numerous local minima, constrained optimizations tasks,
and disjoint search spaces [4,5,11]. Optimization techniques for real search spaces can
be applied to discrete optimization problems with minor modifications. A straightforward
approach is to round off the optimum solution to the nearest integer [6,8].

Two evolutionary computation algorithms, namely the particle swarm optimization method
and the differential evolution algorithm, are applied to tackle several instances of the pro-
posed optimization problems. The performance of both these methods is compared with
simple random search.

The rest of this contribution is organized as follows. The definition of the problems along
with the transformations to discrete optimization tasks, are given in Section 2. In Section
3, experimental setup of the considered methods and results are reported. Conclusions are
given in Section 4.

2. Problem formulation

The first problem under consideration is defined as follows: given a composite integer N,
find pairs of x, y ∈ Z∗

N , such that x2 ≡ y2 (mod N), with x /≡ ±y (mod N). This problem
is equivalent to finding non-trivial factors of N, as N divides x2 − y2 = (x − y)(x + y), but
N does not divide either x − y or x + y. Hence the gcd(x − y, N) is a non-trivial factor of
N (random square factorization algorithm) [7].

The prescribed problem can be formulated as a discrete optimization task by defining the
minimization function f : {1, . . . , N − 1} × {1, . . . , N − 1} �→ {0, . . . , N − 1}, with

f (x, y) = x2 − y2 (mod N),

subject to the constraints x �= ±y (mod N). The constraint x = −y can be incorporated to
the problem by changing the domain of the function. Thus, the problem reduces to mini-
mizing the function g : {2, 3, . . . , (N −1)/2}×{2, 3, . . . , (N −1)/2} �→ {0, . . . , (N −1)},
with

g(x, y) = x2 − y2 (mod N),

subject to the constraint x /≡ y (mod N). The minimization problem is two-dimensional and
the global minimum of the function g is zero.A plot of the function f (x, y) for N=5∗7=35
is given in Fig. 1(a) and the contour plot for the value f (x, y) = 0 is given in Fig. 1(b).
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Fig. 1. (a) Plot of function f (x, y) = x2 − y2 (mod N), for N = 35 (left), and (b) contour plot of function
f (x, y) = x2 − y2 (mod N), for N = 35 at value 0 (right).

Similar problems that can be studied are the following:
Minimize the function h : {1, . . . , N − 1} �→ {0, . . . , N − 1}, with

h(x) = (x − a)(x − b) (mod N),

where a, b non-zero integers and x /≡ a (mod N), x /≡ b (mod N). As an example of this
problem, we have considered the minimization of the function he(x) = (x − 1)(x − 2),
where x /≡ 1 (mod N) and x /≡ 2 (mod N). In a more general form one can consider the
minimization of the function

w(x) = (x − a)(x − b) · · · (x − m) (mod N),

where x ∈ {0, . . . , N − 1} and x /≡ {a, b, . . . , m} (mod N). As an example of this prob-
lem, we have studied the function we(x) = (x + 1)(x − 1)(x − 2) (mod N), with x /≡
{−1, 1, 2} (mod N).

3. Experimental setup and results

The PSO [1] and DE [12] methods, were applied on the considered problems along with
the random search technique. The global and local PSO variants of both the inertia weight
and the constriction factor versions, as well as the DE/rand/1/bin and DE/best/2/bin
variants of the DE algorithm, have been used. For both the PSO variants typical parameter
values were used, while the size of the neighborhood for the local variant of the PSO was
taken equal to 1. Preliminary experiments indicated that the value of maximum velocity Vmax
of the PSO’s particles affects its performance significantly. The value Vmax =�(UpBound−
LoBound)/5�, where UpBound denotes the upper bound of the function’s domain and
LoBound the lower bound of the function’s domain, produced the most promising results
and therefore it was adopted in all the experiments. For the DE algorithm, the parameters
were set at the values F =0.5 and CR=0.5.All populations were constrained in the feasible
region of the corresponding problem.
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Table 1
Results for the minimization of function g

N Method Suc. rate (%) Mean FE SD FE Median FE Min FE

N = 199 ∗ 211 PSOGW 56 8844.643 5992.515 8325.000 660
PSOGC 48 7149.375 5272.590 5355.000 330
PSOLW 51 8329.412 6223.142 7050.000 270
PSOLC 51 7160.588 6001.276 5940.000 420
DE1 4 517.500 115.866 465.000 450
DE2 9 5476.667 6455.651 1830.000 60
RS 66 9104.015 5862.358 8700.500 22

N = 293 ∗ 307 PSOGW 41 16210.244 11193.375 15090.000 120
PSOGC 45 16818.667 12664.632 13800.000 630
PSOLW 58 18455.690 12870.897 14520.000 270
PSOLC 50 16374.000 13597.782 13365.000 120
DE1 7 1598.571 1115.488 1470.000 120
DE2 19 17815.263 12484.580 16290.000 2730
RS 64 21548.531 13926.751 20852.500 57

N = 397 ∗ 401 PSOGW 53 31965.849 24423.975 27570.000 780
PSOGC 45 32532.667 22652.983 33210.000 1740
PSOLW 55 31472.182 23394.791 22620.000 720
PSOLC 54 38156.111 22925.970 37665.000 750
DE1 1 1680.000 0.000 1680.000 1680
DE2 12 27722.500 17498.736 28620.000 180
RS 60 27302.567 21307.031 23607.500 145

N = 499 ∗ 503 PSOGW 56 49893.750 37515.327 44640.000 930
PSOGC 55 49975.636 36727.380 41760.000 300
PSOLW 55 49207.091 34053.904 50430.000 2010
PSOLC 46 48443.478 34677.039 43470.000 1920
DE1 1 2480.000 0.000 2480.000 2480
DE2 8 67245.000 35114.316 64770.000 14730
RS 61 54139.443 38642.970 48743.000 140

N = 599 ∗ 601 PSOGW 52 72175.000 48653.823 71550.000 600
PSOGC 51 81476.471 53666.543 75100.000 5000
PSOLW 49 78651.020 48197.105 67400.000 11200
PSOLC 52 69542.308 48837.949 53050.000 2500
DE1 2 4700.000 4808.326 4700.000 1300
DE2 5 8620.000 8078.180 9300.000 800
RS 64 86123.656 47504.284 89392.500 904

N = 691 ∗ 701 PSOGW 46 207443.478 163585.340 214800.000 800
PSOGC 46 175426.086 138118.794 149200.000 800
PSOLW 60 196993.334 146204.518 144500.000 9200
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Table 1 (continued)

N Method Suc. rate (%) Mean FE SD FE Median FE Min FE

PSOLC 52 209307.692 163833.606 200100.000 1800
DE1 2 23800.000 25000.000 23800.000 21000
DE2 10 71000.000 95357.642 15200.000 1600
RS 60 185932.334 126355.926 154999.000 2828

Table 2
Results for the minimization of the functions he and we , for N = 103 ∗ 107

Function Method Suc. rate (%) Mean FE SD FE Median FE Min FE

he PSOGW 51 2013.333 1483.535 1500.000 100
PSOGC 57 1974.035 1609.228 1420.000 60
PSOLW 59 1677.288 1254.688 1420.000 60
PSOLC 58 2385.862 1676.898 2040.000 120
DE1 1 100.000 0.000 100.000 100
DE2 1 80.000 0.000 80.000 80
RS 65 2099.646 1448.007 2056.000 6

we PSOGW 79 1382.785 1265.927 820.000 40
PSOGC 84 1402.857 1442.194 930.000 40
PSOLW 80 1757.750 1544.267 1110.000 40
PSOLC 85 1416.000 1329.034 880.000 40
DE1 1 60.000 0.000 60.000 60
DE2 1 80.000 0.000 80.000 80
RS 96 1507.969 1328.913 1104.000 7

For the minimization of the function g, the performance of the methods was investigated
for several instances of N, from the value N = 199 ∗ 211 = 41, 989 up to N = 691 ∗
701 = 484, 391. For each N considered, 100 independent runs were performed and the
corresponding results are exhibited in Table 1. Concerning the notation used in the Table,
PSOGW corresponds to the global variant of PSO method with inertia weight; PSOGC
is the global variant of PSO with constriction factor; PSOLW is PSO’s local variant with
inertia weight; PSOLC is PSO’s local variant with constriction factor, DE1 corresponds
to the DE/rand/1/bin and DE2 to the DE/best/2/bin variants of DE method. Random
search results are denoted as RS. A run is considered to be successful if the algorithm
identifies the global minimizer within a prespecified number of function evaluations. The
function evaluations threshold was taken equal to the cardinal of integers in the domain of
the function studied. The success rates of each algorithm, that is the proportion of the times
it achieved the global minimizer within the prespecified threshold, the minimum number,
the median, the mean value and the standard deviation of function evaluations (FE) needed
for success, are reported.
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The results indicate that the variants of PSO method outperform the variants of the DE
method over these instances and with this parameter setup. Moreover, the performance of
the DE method decreases as the value of N increases in contrast to PSO which appears to
be more stable with respect to this parameter. However, in contrast to the known behavior
of the evolutionary computation methods, the random search technique outperforms both
these methods and their variants. This fact suggests that the almost random behavior of the
specific kind of problems makes it quite difficult for the methods to retain knowledge about
their dynamics. Similar results were reported on the minimization of the functions he and
we. For N = 103 ∗ 107 the results are reported in Table 2.

4. Conclusions

In this paper, a number of problems originating from the integer factorization problem
are introduced as discrete optimization tasks. Since the integer factorization problem forms
the basis of many contemporary cryptosystems, optimization methods that can efficiently
and effectively tackle the considered problems, could constitute a useful tool for the crypt-
analysis of the corresponding cryptosystems.

Two evolutionary computation algorithms, namely the particle swarm optimization
method and the differential evolution method, are applied to handle these problems. Their
results, compared with the random search technique, indicate that this special kind of dis-
crete optimization problems seem to have a dynamic that makes it difficult for the methods
to retain information.
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