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Abstract: In this paper different schemes for the extraction of textural features contained in images are 
examined with respect to their influence on the training and testing performance of feedforward neural 
networks. Moreover a novel DWT-based scheme, which estimates the features from second-order statistics of 
the wavelet transform of the image, is comparatively evaluated. It is demonstrated that the new scheme leads to 
the design and selection of feedforward neural network architectures with the best texture classification 
accuracy.  
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1 Introduction 
Texture plays an important role in numerous 
applications related to recognition using information 
from images. The description of the texture is based 
on a number of measurements evaluated on a 
transformation of the examined image, or image 
region. These measurements define the descriptors 
of the texture, which are further used for defining 
the feature vector to be used for recognition. This 
kind of information has been used in different 
application with great success.  

Techniques that are capable of producing 
appropriate textural descriptors include simple 
statistical measures of gray level distribution, 
measures of local density or other gradient features, 
the use of run lengths, and the computation of 
second order statistics, like the cooccurrence 
matrices, [3][4][8][13].  

The emergence of the 2-D wavelet 
transform[11][14][16] as a popular tool in image 
processing offers the ability of robust feature 
extraction in images. Due to their strong localization 
properties, wavelets have been proven to be 
appropriate for the description of the textural 
information in an image providing richer problem 
specific-information than other methods.  

In this paper, several feature extraction 
techniques for texture classification of images are 
compared by examining the discrimination abilities 
of their textural descriptors. Besides neural network 
classifiers and the 2-D wavelet transform, the tools 
utilized in this paper are the cooccurrence matrices, 
the fractal dimension, and the gray-level run length 
methods for textural feature extraction. The 
contribution of the paper lies on the development 

and use of a novel wavelet-based textural descriptor 
for a classification scheme based on Feedforward 
Neural Networks (FNNs) and on the investigation of 
the effect of different textural descriptors on FNNs 
learning and generalization capabilities.  

The next section presents the different texture-
based schemes used in this paper. Then the wavelet-
based scheme is described. This is followed by an 
experimental study of the various textural 
descriptors. The papers ends with some conclusions 
and future work. 

 
2 Extracting Textural Information 
Texture carries information about the microstructure 
of the regions and the distribution of the gray levels. 
A scheme for the recognition of regions based on 
textural information should be capable of encoding 
the properties of the texture using a number of 
parameters, named descriptors. These descriptors 
are usually represented by sets of statistical 
measures defining vectors that are used, 
consequently, for the recognition process.  

The approach followed has two major processing 
stages. The first stage consists of all the processing 
procedures that will be performed on an image to 
extract all the identifiable features, which will form 
the feature vectors. To this end, one usually chooses 
a family of texture attributes that correspond to the 
components of the feature vectors and account for 
the main spatial relations between the gray levels of 
the texture. The second processing stage, in our case 
this is realized by a FNN classifier, decides how to 
incorporate in one body the information obtained 
from the first stage together with background and 
prior information, such as temporal data, 
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relationships about features, etc., in order to draw 
inferences. Below, three widely known feature 
extraction methods are briefly described.  
 
2.1 The cooccurrence matrices 
Cooccurrence Matrices (CM), [3], represent the 
spatial distribution and the dependence of the gray 
levels within a local area. Each p(i,j) entry of the 
matrices, represents the probability of going from 
one pixel with a gray level (i) to another with a gray 
level (j) under a predefined distance and angle. 
From these matrices several sets of statistical 
measures, or feature vectors, are computed for 
building different texture models. In our 
experiments, we have considered four angles, 
namely 0o, 45o, 90o, 135o, as well as a predefined 
distance of one pixel in the formation of the 
cooccurrence matrices. Therefore, we have formed 
four cooccurrence matrices using the four statistical 
measures, [3][4], shown in Table 1, where gN  is the 
number of gray levels, xµ , yµ are the marginal mean 
values of x (along the horizontal pixel axis) and y 
(along the vertical pixel axis), respectively, and xσ , 

yσ  are the corresponding standard deviations. Thus, 
a set of 16 features for each window is obtained. 
 

2.2 The run-length encoding descriptor 
The Run Length Matrix (RLM) P with elements 
p(i,j), where the i-th dimension corresponds to the 
gray level and has a length equal to the maximum 
gray level n, while the j-th dimension corresponds to 
the run length and has length equal to the maximum 
run length l, represents the frequency that (j) points 
with gray level (i) continue in the direction q [13]. 
As with the cooccurrence matrix, q = 0o, 45o, 90o 
and 135o offer the greatest interest. Five features can 
be calculated from the run length matrix as shown in 
Table 1, where N2

 denotes the number of points in 
the image. The run lengths are expected large for 
coarse textures, especially structural textures, but 
can be quite small for fine textures. The 
nonuniformity features are small when the gray 
levels, or the run lengths, are similar throughout the 
matrix, while the long run length is large when there 
is high intensity clustering in the texture. 
 
2.3 The fractal dimension 
The Fractal Dimension (FD) is a feature that 
characterizes the roughness of an image [8]. An 
efficient and accurate method for the evaluation of 
the fractal dimension in texture classification tasks, 
which is a variation of the well-known box-counting 
procedure, has been introduced in [12].  
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Table 1. Cooccurence matrices and run-length descriptors. 
Following this approach, the gray-level image is 

considered as a 3-dimensional space ( )x y z, , , with 
( )x y,  denoting a 2-dimensional location and ( )z  
denoting the gray level. This 3-dimensional space is 

partitioned into cubes of size r r r× × . The position 
of the columns of the cubes, vertical to the ( )x y,  
pixel plane is assigned as ( )i j, , where 
( ) ( )i j x r y r, ,= , and the boxes are enumerated from 
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bottom to top. In every column ( )i j,  the cubes k and 
l that contain the minimum and maximum gray 
levels of the column, respectively, are found.  

The fractal dimension D is estimated through the 
least mean square linear fit of ( )log N r  against 

( )log 1 r  for different values of r, 
)./1log()log( rND r=  

The number Nr  is computed as ( )N n i jr r
i j

= ∑ ,
,

, 

where ( )n i j l kr , = − + 1. Note that in practice, it 
is possible that two images of different texture and 
different optical appearance may have the same 
fractal dimension. Thus, the discrimination 
capability of the fractal dimension is problematic in 
some cases. To deal with this problem the feature 
extraction procedure proposed in [5] has been used: 
the fractal dimension has been computed in the 
original subimage, as well as in the first two lower 
resolution versions of the original subimage and the 
first two sets of detail subimages, which contain 
higher horizontal and vertical frequency spectral 
information. The subimages have been produced by 
decomposing the original image through the dyadic 
wavelet transform [7]. This technique results in 
seven-dimensional training patterns for each image 
window.  
 
3 A Novel Wavelet-based Textural 
Descriptor 
The wavelet transform is a general mathematical 
approach for hierarchical function decomposition. A 
function representing an image, curve, or signal, can 
be described by means of this transformation in 
terms of a coarse level and levels of details, which 
range from broad to narrow scales.  

More specifically, wavelets offer a novel 
framework for computing the levels of detail present 
in an application context, which is called 
MultiResolution Analysis (MRA) [7]. This 
framework is based on a chain of approximation 
vector spaces { ( )22 ℜ⊂ LV j , Ζ∈j }, where Z is the 
set of integers, and a scaling functionφ  such that the 
set of functions ( ){ }Ζ∈−−− kktjj :22 2/ φ  form an 
orthonormal basis for jV . An MRA scheme of 

( )22 ℜL can be defined as a sequence of closed 
subspaces { ( )22 ℜ⊂ LV j , Ζ∈j } satisfying the 
following properties: 
1. Containment: 2

1 LVV jj ⊂⊂ − ; for all j ∈Ζ . 
2. Decrease: 0lim =∞→ jj V , i.e. ∅=

>


Nj
jV , for all 

N, where N is the set of natural numbers. 

3. Increase: 2lim LV jj =−∞→ , i.e. 2LV
Nj

j =
<
 , for all N. 

4. Dilation: ( ) ( ) ( ) jj VtuVtu ∈⇔∈ −12 . 
5. Generator: There is a function φ ∈V0 whose 

translation ( ){ }Ζ∈− kkt :φ forms a basis for 0V . 
By defining complementary subspaces 

jjj VVW −= −1 , so that jjj WVV +=−1 , we can write 
using the “increase” property that   

( ) .22 ∑
Ζ∈

=ℜ
j

jWL                        (1) 

The subspaces jW  are called wavelet subspaces 
and contain the difference in signal information 
between the two spaces jV and 1−jV . These sets 
contribute to a wavelet decomposition of 2L  
according to Relation (1). 

The special case of the Discrete Wavelet 
Transform (DWT) has been suggested by various 
researchers as a suitable approach to perform 
efficient texture modeling [14]. By considering the 
problem of texture classification in the wavelet 
domain, we can better exploit the well-known local 
information extraction properties of the wavelet 
signal decomposition, as well as the features of the 
wavelet denoising procedure [11]. It is expected that 
this kind of information, considered in the wavelet 
domain, should be smooth enough due to the time-
frequency localization properties of the wavelet 
transform.  

In our experiments, we have used the popular 2-
D DWT schemes [7][16] performing a one-level 
wavelet decomposition of the image regions. It is 
worth noting that the 2-D Haar wavelet transform, 
which is considered as a simple one compared with 
the other wavelet bases, has exhibited the expected 
and desired properties. Thus, in the first stage of the 
proposed methodology a one-level wavelet 
decomposition of the images has been performed 
resulting in four wavelet channels: the approximate 
one and the three detail wavelet channels 2, 3, 4 
(frequency index).  

In the second stage feature extraction has been 
conducted by using the information that comes from 
the cooccurrence matrices [3], i.e. angular second 
moment, correlation, inverse difference moment and 
entropy, on the detail channels in order to create a 
more reliable framework for the generation of the 
textural descriptors. Hence, a set of four features has 
been obtained for each window by calculating these 
statistical measures as described in Section 2.1. 
These four measures provide high discrimination 
accuracy. In this way, a feature vector containing 16 
features that uniquely characterizes in the wavelet 
domain each image window of the selected wavelet 
channel has been formed. This procedure applied to 
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the three detail channels has resulted in the 
extraction of 3 ×16 = 48 relevant measures. A 
mathematical description of the novel DWT-based 
feature extraction procedure is given below: 

Step 1: After splitting the image f(x,y) by the 
sliding window split process (this is common to all 
methodologies herein compared), an original image 
window fw(x,y) is transformed into its four wavelet 
bands, denoted as ws1, ws2, ws3, ws4, by performing a 
one-level decomposition through the use of the 2-D 
DWT. The well known formula of the 1-D DWT 
decomposition of a signal f(t) 
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where the choice of j0 sets the coarsest scale whose 
space is spanned by the wavelet basis φj0,k(t), J-j0 
defines the decomposition level of the transform as 
desired by having J-j0 stages, )(, tkjψ  is the wavelet 
basis that provides the high resolution details of the 
signal at scale j, and, finally, cj0(k) and dj(k) are the 
wavelet coefficients (coarse and detail ones) that are 
calculated using the formulae 
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We, then, proceed defining the one-level 2-D 

DWT of an image window fw(x,y) into its four 
wavelet bands ws1, ws2, ws3, ws4, which will be 
denoted as ws1,1, ws2,1, ws3,1, ws4,1, respectively. But 
first, let us assume that a 2-D separable scaling 
function Φ(1)(x,y)= Φ(x)Φ(y) is involved as kernel 
function in the decomposition. Then we have 
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where  k and m are indices that run over the 
elements of the matrices wsq,1, q = 1, 2, 3, 4. As in 
the 1-D case, the following formulae are used to 
obtain the wavelet coefficients  ws1(k,m), ws2(k,m), 
ws3(k,m) and ws4(k,m) 
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Step 2: Transform the detail wavelet coefficients 
ws2(k,m), ws3(k,m) and ws4(k,m) resulted from Step 1 
into integers using the following formula: 

,4,3,2, =∗−= qwsNintws qgq δ  
where Ng is the number of gray levels and δ is a 
heuristic parameter, [2]. In the experiments 
presented in the next section we have used the 
values Ng = 256 and δ = 3.8. Thus, this step results 
in transforming the bands ws2, ws3, and ws4 into 
intws2, intws3, and intws4, respectively. 

Step 3: For each one of the transformed wavelet 
band intws2, intws3, intws4 consider its corresponding 
cooccurrence matrices Mk(intwsq), for k = 1, 2, 3, 4 
and q = 2, 3, 4, and extract the corresponding 
features. 
 
4 Experimental Study 
In the first experiement, a total of 12 Brodatz texture 
images, [1], of size 512×512 has been used, as 
shown in Figure 2. From each texture image 10 
subimages of size 256×256, with 256 gray levels 
depth, have been randomly selected, and the feature 
extraction methods described in Sections 2 and 3 
have been applied.  
 

 
Figure 2. The twelve Brodatz textures. 

For each feature extraction method 30 simulation 
runs have been performed using FNNs with 5 to 60 
neurons in the hidden layer in order to find the 
architecture with the best average generalization 
capability. The best available architecture for each 
case is exhibited in Table 2. For example, an FNN 
with 48 input neurons, 30 hidden and 12 output 
neurons with sigmoid activation functions and 
biases exhibited the best performance for the DWT-
based method. 
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Textural Descriptor FNN 

DWT distribution estimation 48-30-12 
Fractal dimension-FD 7-7-12 

Cooccurrence matrices-CM 16-40-12 

Run length moments-RLM 5-18-12 

       

 

 
Table 2. The best available FNN architecture. 

 
Simulations have been performed using five 

batch training algorithms: the standard Back-
Propagation (BP) [10], the Momentum BP (MBP) 
[10], the Adaptive BP (ABP) [15], the Rprop 
algorithm [9] and the BP with Variable Stepsize 
(BPVS) [6]. The termination condition was a 
classification error less than 3%. 

Details on the average performance of the 
algorithms over the 30 best runs are presented in 
Table 3 in terms of the average number of gradient 
and error function evaluations needed to reach the 
termination condition. Note that in practice the 
computational cost of a gradient evaluation is 
considered at least three times more than the cost of 
an error function evaluation. 100% of success has 
been achieved for all algorithms in the training 
phase. 

The generalization capability of the 30 FNNs has 
been tested using patterns from 20 subimages of size 
256×256 randomly selected from each image.  

As shown in Figure 3 the five training algorithms 
exhibited the best generalization performance when 
trained with DWT extracted patterns. Especially, 
BP, MBP, ABP and BPVS reached an average 
performance of 99%. 

87 88 89 90 91 92 93 94 95 96 97 98 99

BP

MBP

ABP

BPVS

Rprop

DWT
Fractal dimension 
Run length moments
Cooccurrence

Figure 3. Average performance in the 
generalization. 

 
Detailed generalization results for the BPVS 

trained FNNs are exhibited in Figure 4 (left). As 
shown by the number of misclassified test patterns 
out of a set of 240 patterns from each feature 
extraction method, the FNNs that have been trained 
with DWT-based patterns had better generalization 
capability than all the others. For example, 7 FNNs 
trained with DWT-based patterns misclassified only 
6 test patterns out of 240. On the other hand, 18 
FNNs trained with Run length patterns misclassified 
8 test patterns out of 240. Note that one FNN trained 
with DWT-based patterns achieved 100% 
classification success, i.e. it exhibited 0 
misclassifications. Relative results are exhibited in 
Figure 4 (right) for the Rprop trained FNNs. In both 
cases, DWT patterns provided the better 
generalization capability than all other extraction 
methods tested. 

 
 

 DWT (GRD/EFE) FD (GRD/EFE) CM (GRD/EFE) RLM (GRD/EFE) 

BP 1054/1054 688889/688889 924/924 4906/4906 

MBP 1067/1067 596430/596430 9236/9236 5006/5006 

ABP 327/327 407500/407500 531/531 390/390 

Rprop 72/72 469297/469297 172/172 180/180 

BPVS 262/386 23597/37678 677/1008 265/388 

Table 3. Average number of gradient (GRD)/error function evaluations (EFE) for each method tested. 
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Figure 4. (a) BPVS and (b) Rprop trained FNNs 
with respect to their number of misclassifications 

 
In order to investigate the effect of the FNN 

architecture on the effectiveness of the image 
recognition scheme, we conducted a second set of 
experiments using 6 different FNN architectures 
with 5, 10, 15, 20, 25 and 30 hidden nodes, 
respectively, which were trained using the BPVS 
from 100 different initial weight sets.  

In this case we have used wavelet-extracted 
pattern, since FNNs trained with wavelet patterns 
have exhibited the best performance in our tests 
with texture images. Colonoscopic images from two 
different colons were used (see Figure 5), and 200 
patterns have been used for training and 400 for 
testing. The results are illustrated in Figures 6-8. 

 

  
Figure 5. Colonoscopic images: Image 1 on the 
left, and Image 2, on the right. 

In Figure 6, the generalization performance of 
the trained networks is shown with respect to the 
number of hidden nodes. FNNs with 15 hidden 
nodes exhibit the best average generalization 
capability, denoted by a triangle in the figure. Also, 
the network that exhibits the best performance 
overall (96.5%) is based on 15 hidden nodes. 
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Figure 6. Generalization performance vs. number of 
hidden nodes. 
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Figure 7. Number of gradient evaluations vs. 
number of hidden nodes. 
 

In Figure 7, the number of gradient evaluations 
with respect to the number of hidden nodes is 
illustrated. Networks with 10 to 20 hidden nodes 
exhibit the best average number of gradient 
evaluations (60 gradient evaluations). While the 
worse case performance was observed with a 5 
hidden node FNN (247 gradient evaluations).  
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Figure 8. Number of error function evaluations vs. 
number of hidden nodes. 
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In Figure 8, networks with 10 to 20 hidden nodes 
exhibit almost the same average performance with 
respect to the average number of error function 
evaluations to train the FNNs. The best performance 
(59 error function evaluations) was obtained with a 
10 hidden nodes architecture. 

5 Conclusions 
A novel DWT-based technique has been suggested 
for texture description. The proposed scheme 
estimates the features from second-order statistics of 
the wavelet transform of the image. This method, 
along with three other well known feature extraction 
techniques have been tested in terms of their effects 
on the training and generalization performance of 
the neural network component of a texture 
classification scheme. The recognition task was 
executed using various neural network architectures 
in order to determine the most suitable one for 
similar applications. The preliminary results indicate 
that the proposed approach is considerably reliable 
for demanding applications. Future research will be 
directed to the examination of the recognition 
performance of the proposed scheme on medical 
images acquired by different sources. 
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