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Abstract: In this paper we propose a framework for developing globally convergent batch training al-
gorithms with adaptive learning rate. The proposed framework provides conditions under which global
convergence is guaranteed for adaptive learning rate training algorithms. To this end, the learning rate
is appropriately tuned along the given descent direction. Providing conditions regarding the search di-
rection and the corresponding stepsize length this framework can also guarantee global convergence for
training algorithms that use a different learning rate for each weight. To illustrate the effectiveness of
the proposed approach on various training algorithms simulation results are provided.
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1. Introduction

Supervised neural network training is a subject of considerable ongoing research and numerous algorithms
have been proposed to this end. A common approach is to realize training by minimizing the network
leaminge.rror,whichisameasureofitsperformancemdisusuallybasedonthediﬂerencebetweenthe
actual output vector of the network and the desired output vector. The rapid computation of a set of
weights that minimizes this error is a rather difficult task since, in general, the number of network weights
is high and the error function generates a complicated surface in the weight space, possessing multitudes
of local minima and having broad flat regions adjoined with narrow steep ones that need to be searched
to locate an “optimal” weight set.

In order to simplify the formulation of the equations throughout the paper a unified notation for the
weights is adopted. Thus, for a Feedforward Neural Network (FNN) with a total of n weights, R is
the n—dimensional real space of column weight vectors w with components wy, w2,...,Wn and w* is the
optimal weight vector with components w},w3,...,w}; E is the batch error measure defined as the sum-
of-squared-differences error function over the entire training set; ;E(w) denotes the partial derivative
of E(w) with respect to the ith variable w;; VE(w) defines the gradient vector of the sum—of-squared-
differences error function E at w while H = [H;;] defines the Hessian V2E(w) of E at w.

The special case of the batch training is consistent with the theory of unconstrained optimization.
In this case the minimization corresponds to updating the weights after each presentation of the entire
training set, which is called an epoch, and requires that the sequence of weight vectors {w*}2,, where k
indicates epochs, converges to a set w* that minimizes E.

“The widely used batch Back-Propagation (BP) (23] is a first-order training algorithm, which mini-
mizes the error function using the steepest descent method [8]:

vt = wk - nVE(*), ' )
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where the gradient vector is usually computed by the back-propagation of the error through the layers of
the FNN (see [23]) and 7 is a heuristically chosen constant parameter, called learning rate. Appropriate
learning rates help to avoid convergence to a saddle or maximum point. In practice, a small constant
learning rate is chosen (0 < 7 < 1) in order to secure the convergence of the BP algorithm and to avoid
oscillations in the directions where the error surface is steep. However, this approach considerably slows
down the training process since, in general, a small learning rate may not be appropriate for all the
portions of the error surface.

Our motivation in this paper is to provide general theoretical results and strategies that are applicable
to guarantee the convergence of adaptive learning rate algorithms. The algorithms differ according to
the information they need to modify the learning rate. In training algorithms with a global learning rate,
the same rate is used to update all the weights in the FNN, while in algorithms with a local learning rate
a different learning rate is used for each weight.

The paper is organized as follows. Section 2 provides an overview of adaptive learning rate BP
algorithms. In Section 3 the issues of monotone decrease of the error function, as well as the notion
of global convergence are introduced. Then, strategies for developing globally convergent modifications
of adaptive learning rate algorithms are presented in Sections 4 and 5, while in Section 6 we present
an application example to evaluate and compare various adaptive learning rate algorithms. Finally, the
paper ends in Section 7 with some concluding remarks.

2. Adaptive learning rate algorithms

Several adaptive learning rate algorithms have been proposed to accelerate the training procedure. The
following strategies are usually suggested:

(i) start with a small learning rate and increase it exponentially if successive epochs reduce the error,
or rapidly decrease it if a significant error increase occurs [2, 25},
(ii) start with a small learning rate and increase it if successive epochs keep gradient direction fairly
constant, or rapidly decrease it if the direction of the gradient varies greatly at each epoch [4] or
(iii) for each weight an individual learning rate is given, which increases if the successive changes in the
weights are in the same direction and decreases otherwise [10, 19, 21, 24].

Note that all the above mentioned strategies employ heuristic parameters in an attempt to enforce the
monotone decrease of the learning error and to secure the converge of the training algorithm to a minimizer
of E.

A different approach is based on Goldstein’s and Armijo’s work on steepest-descent and gradient
methods. The method of Goldstein [9] requires the assumption that E is twice continuously differentiable
on S(w°), where S(u°) = {w: E(w) < E(w°)} is bounded, for some initial vector w®. It also requires
that 7 is chosen to satisfy the relation sup ||[H(w)|| < 7! < oo in some bounded region, where the
relation E(w) < E(w°) holds. The kth iteration of an algorithm model that follows this approach
consists of the following steps:

1. Choose 7y to satisfy sup ||H(w)|| < 75 < oo and § to satisfy 0 <5 < 1o .
2. Set n* = 7, where 7 is such that § < n < (2n — &) and go to the next step.
3. Update the weights w*1! = w* — f*VE(wF).

However, the manipulation of the full Hessian is too expensive in computation and storage for FNNs
with several hundred weights [3]. Le Cun [11] proposed a technique, based on appropriate perturbations
of the weights, for estimating on-line the principle eigenvalues and eigenvectors of the Hessian without
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calculating the full matrix H. According to experiments reported in {11] the largest eigenvalue of the
Hessian is mainly determined by the FNN architecture, the initial weights and by short-term low-order
statistics of the training data. This technique could be used to determine 7, in Step 1 of the above
algorithm, requiring additional presentations of the training set in the early training.

An alternative approach is based on the work of Armijo [1]. Following this approach, the value of the
learning rate 7 is related to the value of the Lipschitz constant K, which depends on the morphology of
the error surface. In this case, the BP algorithm takes the form:

Wt = k- —2—1}-(-VE(w"), @)

and converges to the point w* which minimizes E (see [1] for conditions under which convergence occurs
and a convergence proof). However, in practice neither the morphology of the error surface nor the value
of K are known a priori. In [13] a local estimation of the Lipschitz constant has been proposed, as part
of a learning rate adaptation strategy that provides increased rate of convergence through the Lipschitz
constant estimation and guarantees the stability of the learning procedure.

3. Monotone decrease of the error function and global convergence

A training algorithm can be made globally convergent by determining the learning rate in such a way that
the error is exactly minimized along the current search direction at each epoch, i.e. E(w**!) < E(w*). To
this end, an iterative search, which is often expensive in terms of error function evaluations, is required.
It must be noted that the above simple condition does not guarantee global convergence for general
functions, i.e. converges to a local minimizer from any initial condition (see [5] for a general discussion
on globally convergent methods).

The use of adaptive learning rate algorithms which enforce monotonic error reduction using inappro-
priate values for the critical heuristic learning parameters can considerably slow the rate of training, or
even lead to divergence and to premature saturation [12, 22]. Moreover, using heuristics it is not possible
to develop globally convergent training algorithms.

To alleviate this situation it is preferable to tune the learning rate, which is evaluated by an adaptive
learning rate algorithm, so that the value of the error function is sufficiently decreased at each epoch,
accompanied by a significant change in the value of w. A strategy of this kind consists in accepting a
positive learning rate n* along the search direction * if it satisfies the Wolfe conditions:

E(v* + n*¢*) - E(w*) < oin*(VE(wb), &), 3)

(VE(w* +n*¢¥),¢%) 2 02(VE(u*), ), 4)

where 0 < 01 < 02 < 1 and {-,-) stands for the usual inner product in R*. The first inequality ensures

that the error is reduced sufficiently and the second prevents the learning rate from becoming too small.

It can be shown that if ¢* is a descent direction, if E is continuously differentiable and if E is bounded

below along the radius {w* +n¢* | n > 0}, then there always exist learning rate satisfying (3)-(4) [5, 16].
Relation (4) can be replaced by [5]:

E(w* +n*¢*) — E(w*) 2 o (VE(w*),¢*),  02€(01,1). ()

- An alternative strategy has been proposed in [20]. It is applicable to any descent direction ¢* and

uses two parameters a, 8 € (0,1). Following this approach the learning rate is 7* = ™, where my € Z

is any integer such that:
E(u* + B™¢*) - E(w*) < F™ o(VE(w"), ), (6)
E@* + ™! +¢¥) - B@) > ™" (VE(W), ¢). Y
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An algorithm model that incorporates the above strategy is given below.
Algorithm 1

1. Input {E;u%a,B € (0,1);m* € Z; MIT;c}.

2. Setk=0.

3. If [VE(w*)|| < € go to Step 6. Else, compute a descent direction ¢*.

4. compute the learning rate n* = f™+, where m;, € Z is any integer such that

(a) E(uw* + ™ ¢*) — E(w*) < ™ a(VE(w*),¢*) and
(b) E(w* +pm™~1¢F) — E(w*) > ™~ 1a(VE(w*), o).

5. Set w*t! = w* + 7**. If k < MIT, replace k by k+ 1, and go to Step 3;
otherwise go to Step 6.

6. Output {w*; E(w*); VE(wF)}.

For an extended version of Algorithm 1, see [26]. All the above strategies must be combined with
tuning subprocedures generating learning rates that satisfy conditions (3)-(4) or (6)—(7) in order to
guarantee global convergence. This issue is the subject of the next section.

4. Global convergence by tuning the learning rate

In this section we propose learning rate tuning subprocedures and establish useful convergence theorems
due to Wolfe [27, 28] and Polak [20]. The strategy based on Wolfe’s conditions provides an efficient
and effective way to ensure that the error function is globally reduced sufficiently. In practice, the
conditions (4) and (5) are generally not needed because the use of a backtracking strategy avoids very
small learning rates. A simple backtracking strategy to tune the length of the minimization step, so that
it satisfies conditions (3)—(4) at each epoch, is to decrease the learning rate by a reduction factor 1/q,
where ¢ > 1 [17]. This has the effect that the learning rate is decreased by the largest number in the
sequence {g~™}%_,;, so that the condition (3) is satisfied. We remark here that the selection of ¢ is not
critical for successful learning, however it has an influence on the number of error function evaluations
required to satisfy the condition (3). Thus, when seeking to satisfy (3) it is important to ensure that
the learning rate is not reduced unnecessarily so much that the condition (4) is not satisfied. Since in
training the gradient vector is known only at the beginning of the iterative search for a new weight vector,
the condition (4) cannot be checked directly (this task requires additional gradient evaluations at each
epoch), but is enforced simply by placing a lower bound on the acceptable values of the learning rate.
This bound on the learning rate has the same theoretical effect as the condition (4) and ensures global
convergence [5]. The value ¢ = 2 is usually suggested in the literature (1] and indeed it was found to
work without problems in the experiments (see [14]).

In this framework, an important theorem due to Wolfe [5] states that if E is bounded below, then the
sequence {w*}{2, generated by any algorithm that follows a descent direction ¢* whose angle 6, with

—VE(w*) is such that: ). ot
{(=VE(w"),¢")
086k = IWE@ON I ~
and satisfy the Wolfe’s condmons, will also obey limg_,o Vf(w*) =0 [5, 16).

®)

Theorem 1 {5, 16, 27, 28]. Suppose that the error function E : R* — R is continuously differentiable on
R* and assume that VE is Lipschitz continuous on R*. Then, given any w® € R", either E is unbounded
below, or there exists a sequence {w*}$2, obeying the Wolfe’s conditions (3)-(4) and either:
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(1) (VE(wF), (w**! — wk)) <0, or
(2) VEw*) =0, and wrt!-wr=0,

for each k > 0. Furthermore, for any such sequence, either:

(a) VE(w) # 0 for some k 2 0, or
(b) Jim E(u*) = —co, or

() Jim (VE(u*), (w** — wh))/ub*! = w¥|=0.

This is also true when Relation (4) is replaced by Relation (5) [5](cf. Relation (b) of Step 4 of
Algorithm 1). For a relative convergence result where the sequence {w*}§2, converges g-superlinearly
to a minimizer w* see [5].

Regarding Polak’s approach, if the error function E is bounded from below the following subprocedure
can be used to find an m; satisfying Relations (a) and (b) of Step 4 of the Algorithm 1. This subprocedure
uses the last used learning rate n*~1 = §™¢-1 as the starting point for the computation of the next one [20}:

1. If k = 0, set m’ = m*. Else set m' = m;_;.

2. If m; = m’ satisfies Relations (a) and (b) of Step 4 of Algorithm 1, stop.

3. If m; = m' satisfies (a) but not (b), replace m' by m' — 1, and go to Step 2.
If m; = m’ satisfies (b) but not (a), replace m’ by m’ + 1, and go to Step 2.

In practice, only a very small number of iterations of the above subprocedure is required to compute
the learning rate. The search strategy of Algorithm 1 allows us to establish the following useful con-
vergence theorem due to Polak [20]. This theorem requires the search direction ¢* to be bounded from
above, it imposes a restriction on the angle between VE(w*) and ¢* (see Relation (8)), and states that
Algorithm 1 is well defined in the sense that whenever VE(w*) # 0, the search for a learning rate 7* is
a finite process.

Theorem 2 [20]. Assume that (i) the error function E : R* — R is Lipschitz continuously differentiable
on bounded sets; (ii) the sequences {w*}2 and {¢*}2, are constructed by Algorithm 1; (iii) there ezist
two continuous functions N; : R* — R and N2 : R® — R such that:

(1) for all w satisfying VE(w) # 0, Ny(w) > 0, N2(w) > 0 and Ni(w) = 0 if and only if VE(w) =0
and

@) fo";ll; k € N, the w* and ¢* satisfy the inequalities (VE(w*), p(w*)) < —Ni(w*), and [l¢*|l <
Np(w").

Under these assumptions,

(a) if w* is such that VE(w*) # 0, then nf* is computed by Algorithm 1 using a finite number of function
evaluations and

(b) any accumulation point w* of the sequence {w*}2, satisfies VE(w*) = 0.
5. Global convergence by adapting the search direction
A batch BP algorithm with a different learning rate for each weight is defined by the iterative scheme:

whtl = wk — diag{flf, 775’ vee :7':} VE(wk)' ®
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The learning rates are evaluated employing heuristic procedures that exploit information regarding the
history of the partial derivative of E(w) with respect to the ith weight and/or, depending on the algorithm,
the history of the corresponding learning rate. Appropriate values of the heuristics ensure that the error
function is decreased in each weight direction, every epoch. The well known delta-bar-delta method [10]
and Silva and Almeida’s method [24] follow this approach. Another method, named gquickprop [6] is
based on independent secant steps in the direction of each weight. The Rprop algorithm [21] updates the
weights using the learning rate and the sign of the partial derivative of the error function with respect
to each weight.

Clearly, the weight vector in Eq. (9) is not updated in the direction of the negative of the gradient;
instead, an alternative adaptive search direction is obtained by taking into consideration the weight
change, evaluated by multiplying the length of the search step, i.e. the value of the learning rate,
along each weight direction by the partial derivative of E(w) with respect to the corresponding weight,
i.e. —7;0,E(w). In other words, the algorithms of this class try to decrease the error in each direction,
by searching the local minimum with small weight steps. These steps are usually constraint by problem-
dependent heuristic parameters in order to ensure subminimization of the error function in each weight
direction. )

A well known difficulty of this approach is that the use of inappropriate heuristic values for a weight
direction misguides the resultant search direction. In such cases, the training algorithm cannot exploit the
global information obtained by taking into consideration all the directions. To alleviate this situation, we
propose the search direction to be obtained by taking into consideration n — 1 learning rates, as directly
evaluated by any adaptive learning rate algorithm and analytically evaluate the remaining one. This
approach has the effect that the search direction is properly corrected and ensures that the direction
followed is indeed a descent one. The following theorem provides a global convergence result for training
algorithms with a different learning rate for each weight.

Theorem 3. Suppose that the error function E : R* — R is continuously differentiable. Assume that
VE is Lipschitz continuous on R®. Then, given any point w® € R®, for any sequence {w*}2,, generated
by the sterative scheme: '

vt =wk —* ding(nk, 1, ..., 7k} VE(t), (10)

where 7% > 0 satisfies the Wolfe’s conditions (3)-(4) implies that
lim VE(w*) = 0.
k=00

Proof: Evidently, the error function E is bounded below on R®. The sequence {w*}$2, follows the

direction
'pk(‘wk) = —diag{ﬂf’ﬂga eee y":} VE(wk)y
which is a descent direction when
(VE(w"),qp“(w")) <0.

In that case, since E is continuously differentiable and bounded below there always exist 7* satisfying
the Wolfe’s conditions:

E(w* + m8¢*) - E(w¥) < o175 (VE(u*), o%), 1)
(VE(wk + m5g), %) > 02(VE(u*), o*), (12)
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for 0 < 01 < 02 < 1. Moreover, the restriction on the angle 8; is fulfilled since for a descent direction
«* it can be easily justified utilizing Relation (8) that cos6; > 0. Thus, by the Wolfe’s Theorem [5}, it
holds that lims,o, VE(w*) = 0. Thus the Theorem is proved.

Remark 1: Note that for neural networks with sigmoid activation functions the assumption of continuous
differentiability of the error function is redundant.

Remark 2: A relative convergence result can be proved for any sequence {w*} satisfying the rela-
tions (3) and (5).

Remark 3: The use of ¢ = 1 is suggested. This has the effect that the minimization step along the
resultant search direction is defined by the value of the learning rates. By tuning ¥, the length of
the minimization step is regulated to satisfy the Wolfe’s conditions, while the weights are updated in a
descent direction.

6. Application example

The proposed strategies have been incorporated in various steepest descent-based and conjugate gradient—
based training algorithms to develop new globally convergent modifications of these algorithms. These
modified schemes have been implemented and tested on different training problems and have been com-
pared in terms of epochs, gradient and error function evaluations and rate of success with other popular
training methods. The results have been quite satisfactory. Our experience is that these strategies be-
have predictably and reliably. In this section we report an instance of our experimental study. More
specifically we exhibit results on the numeric font learning problem [14, 26} for the following methods:

(i) the batch Back-Propagation (BP) with a constant learning rate [23];
(ii) the batch BP with adaptive learning rate [14] enhanced by the new strategy, which results in a BP
training algorithm with inexact Line Search (BPLS) for the determination of a global learning rate;
(iii) the BP with constant learning rate and Momentum (BPM) [23];
(iv) the BP with Variable Stepsize (BPVS) [13];
(v) the BP with Multi-learning Rate (BPMR), i.e a different adaptive learning rate for each weight [14],
which incorporates the new strategy; .
(vi) the Fletcher-Reeves (FR) method [7];
(vii) the Polak-Ribiere (PR) method [7];
(viii) the Polak-Ribiere (PR) method constrained by the FR method (PR-FR) [7};
(ix) the BP with heuristically determined adaptive learning rate and momentum proposed by Vogl et
al. [25] (VMRZA);
(x) the accelerated BP proposed by Parlos et al. [18] (PFAMT), which is now enhanced by the proposed
strategy to avoid the jumpy behavior of the weights; and
(xi) the Silva-Almeida (SA) method [24] that uses sign-based information to adapt local learning rates.

The algorithms testing has been conducted using the same 1000 initial weight vectors, which have
been randomly chosen from a uniform distribution in the interval (-1, 1).

In this application a 64-6-10 FNN (444 weights, 16 biases) is used for recognizing an 8 x 8 pixel
machine printed numeral ranging from 0 to 9. The FNN is based on neurons of the logistic activation
model.
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Table 1: Results of Simulations for the Numeric Font Learning Problem

Algorithm BEP BGFE Success

BP 14489 28978 660/1000
BPLS 12225 24454 990/1000
BPM 10142 20284 540/1000
BPVS 253 636 1000/1000
BPML - 159 740 1000/1000
FR 620 3121 420/1000
PR 649 2124 960/1000
PR-FR 750 3473 1000/1000
VMRZA 1975 3950 910/1000
PFAMT 304 2419 1000/1000
SA 1400 - 2800 680/1000

The results exhibited in Table 1 are in terms of the average number of epochs (u£p) required to obtain
a local minimum with batch error value E < 1073, the average number of the corresponding gradient
and function evaluations (ugrg) and the number of successful runs out of 1000 (Success).

It is worth mentioning the difference that appears between the number of gradient evaluations and
the number of error function evaluations at each epoch: in the BP, the BPM, the VMRZA and the SA,
the batch error function and its gradient are evaluated only once, while there is a number of additional
error function evaluations for all other algorithms tested when the Wolfe conditions are not fulfilled. For
example, BPML needs an average of 159 epochs to converge, which corresponds to 740 gradient and
error function evaluations, i.e to 159 gradient and 581 error function evaluations. However, note that
in training practice a gradient evaluation is usually considered three times more costly than an error
function evaluation [15]. By exhibiting this performance, BPMR significantly outperforms the original
method in the same example (see [14]).

7. Concluding remarks

A framework for the development of globally convergent batch training algorithms with adaptive learning
rates has been proposed. The proposed framework provides conditions under which global convergence is
guaranteed and strategies for tuning the adaptive learning rate and the search direction. A new general
result for the global convergence has been established which is applicable to a class of training algorithm
that use a different learning rate for each weight.
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