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Letters__________________________________________________________________________________________

Globally Convergent Algorithms With Local Learning
Rates

George D. Magoulas, Vassilis P. Plagianakos, and Michael N. Vrahatis

Abstract—In this paper, a new generalized theoretical result is presented
that underpins the development of globally convergent first-order batch
training algorithms which employ local learning rates. This result allows us
to equip algorithms of this class with a strategy for adapting the overall di-
rection of search to a descent one. In this way, a decrease of the batch-error
measure at each training iteration is ensured, and convergence of the se-
quence of weight iterates to a local minimizer of the batch error function
is obtained from remote initial weights. The effectiveness of the theoret-
ical result is illustrated in three application examples by comparing two
well-known training algorithms with local learning rates to their globally
convergent modifications.

Index Terms—Backpropagation (BP) networks, batch training, en-
doscopy, globally convergent algorithms, gradient descent, local learning
rate adaptation, Quickprop (Qprop), Silva–Almeida (SA) method.

I. INTRODUCTION

The issue of changing the learning rates dynamically during training
has been widely investigated and several strategies for learning rate
adaptation have been proposed so far. The use of these strategies aims at
finding the proper learning rate that compensates for a small magnitude
of the gradient in a flat region and dampens a large weight changes in a
highly deep region. To this end, the literature suggests, for example, to

1) start with a small learning rate,�0, and increase it at the next
iteration,k+1, if successive iterations reduce the error, or rapidly
decrease it if a significant error increase occurs [2], [29];

2) start with a small�0 and increase it at thek + 1 iteration, if
successive iterations keep gradient direction fairly constant, or
rapidly decrease it if the direction of the gradient varies greatly
[4];

3) use alocal learning rate for each weightwk

i 2 n(i =
1; 2; . . . ; n), i.e., �k1 ; �

k

2 ; . . . ; �
k

n, which increases if the
successive corrections of the weights are in the same direction
and decreases otherwise [8], [19], [23], [27].

This paper focuses on the last approach and particularly on the spe-
cial class of first-order adaptive training algorithms that employ local
learning rates. These algorithms employ heuristic strategies to adapt
the learning rates at each iteration and require fine tuning additional
problem-dependent learning parameters that help to ensure submini-
mization of the error function along each weight direction. Neverthe-
less, no guarantee is provided that the network error will monotonically
decrease at each iteration and that the weight sequence will converge
to a minimizer of the batch error functionE. To alleviate this situa-
tion, we present in this paper a new generalized theoretical result that
underpins the development of globally convergent training algorithms,

Manuscript received January 15, 2001; revised January 30, 2002.
G. D. Magoulas is with the Department of Information Systems and

Computing, Brunel University, West London, UB8 3PH, U.K. (e-mail:
George.Magoulas@brunel.ac.uk).

V. P. Plagianakos and M. N. Vrahatis are with the Department of Mathematics
and UP Artificial Intelligence Research Center, University of Patras, Patras,
GR-261.10, Greece (e-mail: vpp@math.upatras.gr; vrahatis@math.upatras.gr).

Publisher Item Identifier S 1045-9227(02)05004-X.

i.e., algorithms with the property that starting from almost any initial
weight vector the sequence of the weights will converge to a local min-
imizer of the error function.

Note that, as stated in [5, p. 5], the term globally convergent algo-
rithm is used “to denote a method that is designed to converge to alocal
minimizer of a nonlinear function,from almost any starting point.”
Dennis and Schnabel also note that “it might be appropriate to call such
methodslocal or locally convergent, but these descriptions are already
reserved by tradition for another usage.” Additionally, in [17, p. 200],
Nocedal defines a globally convergent algorithm as an algorithm with
iterates that converge from a remote starting point. Thus, in this con-
text, global convergence is totally different from global optimization.
In a strict mathematical sense, global optimization means to find the
complete set of the globally optimal solutions (global minimizers)x�

of the objective functionf , and the associated global optimum value
f� = f(x�) (for analytical tractability reasons, it is assumed thatx� is
at most countable). So in this paper, we do not seek global minimizers
of the error functionE, but we are interested in developing algorithms
that will converge to a local minimizer with certainty. The interesting
topic of finding global minimizers in training neural networks is de-
scribed elsewhere [20]–[22], [28].

This paper is organized as follows. In Section II, local learning rate
training algorithms are presented, and their advantages and disadvan-
tages are discussed. The proposed approach and the corresponding the-
oretical convergence result are presented in Section III. In order to il-
lustrate the effectiveness of this approach, two algorithms of this class
and their globally convergent modifications are comparatively evalu-
ated. Experiments and corresponding results are reported in Section IV.
Finally, Section V presents concluding remarks.

II. L OCAL LEARNING RATE ADAPTATION STRATEGIES

Developments in training algorithms with local learning rates are
mainly motivated by the need to train neural networks in situations
when a learning rate appropriate for one weight direction is not neces-
sarily appropriate for other directions [9]. Moreover, in certain cases a
learning rate may not be appropriate for all of the portions of the error
surface. To this end, a common approach to avoid slow convergence
in flat directions and oscillations in steep directions, as well as to ex-
ploit the parallelism inherent in the evaluation of the error,E(w), and
its gradient,rE(w), by the backpropagation (BP) algorithm, consists
of using a different adaptive learning rate for each direction in weight
space.

Batch-type BP training algorithms of this class [6], [8], [19], [23],
[27], follow the iterative scheme

w
k+1 = w

k � diagf�k1 ; . . . ; �
k

i ; . . . ; �
k

ngrE(wk) (1)

and try to decrease the error by searching a local minimum with small
weight steps. These steps are usually constrained by problem-depen-
dent heuristic parameters in order to avoid oscillations and ensure sub-
minimization of the error function along each weight direction. This
fact usually results in a tradeoff between the convergence speed and
the stability of the training algorithm. For example, thedelta–bar–delta
method [8], the Silva and Almeida (SA) method [27] and the Quickprop
(Qprop) method [6] introduce additional problem-dependent heuristic
learning parameters to alleviate the stability problem. A common ap-
proach, used for example in theRpropalgorithm [23] and in theBP
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with adaptive learning rate for each weight[14], is to employlearning
rate lower and upper boundswhich are chosen heuristically and help
to avoid the usage of an either extremely small or large learning rate
component, which might misguide the resultant search direction. The
learning rate lower bound helps to avoid unsatisfactory convergence
rate while the learning rate upper bound limits the influence of a large
learning rate component on the resultant search direction and depends
on the shape of the error function.

However, the use of additional heuristics for local learning rates
tuning may affect the overall adaptive search direction if the values
of the heuristics are not properly chosen. In such case, the training al-
gorithms cannot exploit the global information obtained by taking into
consideration all the directions; furthermore, it is theoretically difficult
to guarantee that the weight updates will converge to a local minimizer
of E [6], [8], [14], [19], [23], [27].

III. GLOBAL CONVERGENCE OFALGORITHMS WITH LOCAL

LEARNING RATES

Training of multilayer feedforward neural networks can be consid-
ered as a highly nonlinear minimization problem, involving sigmoid
functions that have infinitely broad regions with arbitrary small deriva-
tive [3], [26].

First-order training algorithms that follow the iterative scheme (1)
usually evaluate the local learning rates by means of heuristic pro-
cedures that exploit information regarding the history of the partial
derivative ofE(w) with respect to theith weight and/or the history
of each learning rate, depending on the algorithm. For example, the
Qprop, [6], performs independent secant steps in the direction of each
weight [31], while theRpropalgorithm, [23], updates the weights using
the learning rate and the sign of the partial derivative of the error func-
tion with respect to each weight.

Clearly, the weight vector in (1) is not updated in the direction of
the negative of the gradient; instead, an alternative adaptive search di-
rection is obtained by taking into consideration the weight changes.
These are evaluated by multiplying the length of the search step, i.e.,
the value of the learning rate along each weight direction, by the par-
tial derivative ofE(w) with respect to the corresponding weight, i.e.,
��i@iE(w). This behavior results in decreasing the error along each
direction by performing small steps in the weight space so as to ensure
subminimization of the error function along each weight direction and,
hopefully, leads to monotone error reduction along the resultant search
direction. To this end, the problem-dependent heuristic learning param-
eters, which are employed, act as constraints on the length of the search
step, or on the length of the subminimization steps. However, enforcing
monotone error reduction at each iteration using inappropriate values
for the heuristic learning parameters can considerably slow the rate of
training, or even lead to divergence and to premature saturation, as has
been observed in certain cases [12], [14], [24]. Moreover, it seems that
using heuristics it is not possible to develop globally convergent algo-
rithms and, thus, guarantee convergence to a local minimizer from any
initial condition [5].

In the context of optimization theory, the issue of making an uncon-
strained minimization iterative scheme globally convergent is treated
as will be described below. Suppose thatf : D � n ! is the ob-
jective function to be minimized using the following iterative scheme:

x
k+1 = x

k + �
k
d
k (2)

wheredk is a descent direction and�k is the step-length obtained by
means of one-dimensional line search that satisfies the Wolfe condi-
tions [32], [33]

f(xk + �
k
d
k)� f(xk) �1�

krf(xk)>dk (3)

rf(xk + �
k
d
k)>dk �2rf(x

k)>dk (4)

whererf(x) is the gradient off atx, and0 < �1 < �2 < 1. Then,
the following theorem, due to Wolfe [32], [33] and Zoutendijk [34],
can be used to obtain global convergence results.

Theorem 1 [32], [34]: Suppose thatf : D � n ! is bounded
below in n and thatf is continuously differentiable in a neighbor-
hoodN of the level setL = fx: f(x) f(x0)g, wherex0 is the
starting point of the iterative scheme (2). Assume also that the gradient
is Lipschitz continuous, i.e., there exists a constantL > 0 such that

krf(x)�rf(y)k Lkx� yk

for all x; y 2 N . Then the Zoutendijk condition

k 1

cos2 �k rf(xk)
2

<1 (5)

where

cos �k =
�rf(xk)>dk

krf(xk)kkdkk
(6)

is fulfilled.
Remark 1: Suppose that an iterative scheme of the form (2) follows

a descent directiondk, which does not tend to be orthogonal to the
gradientrf(xk), for which

cos �k � > 0

for all k. Then, from the Zoutendijk condition (5), holds that

lim
k!1

krf(xk)k = 0 (7)

which means that the sequence of gradients converges to zero.
For an iterative scheme of the form (2), the limit (7) is the best type of

global convergence result that can be obtained (see [17] for a detailed
discussion). From the above, it is evident that no guarantee is provided
that the iterative scheme (2) will converge to a global minimizer,x�,
but only that it possesses the global convergence property [5], [17] to
a local minimizer.

In neural network training, the sum-of-squared-differences error
functionE is bounded from below, sinceE(w) 0. For a finite set
of training patterns and a fixed network architecture, ifw� exists such
thatE(w�) = 0, thenw� is a global minimizer. Otherwise, the weight
vectorw with the smallest error function value is the global minimizer.

For neural networks withsmooth enoughactivation functions (the
derivatives of at least orderp are available and continuous), such as the
well known hyperbolic tangent, the logistic activation function etc., the
error functionE is also smooth enough.

Although it is possible to verify the assumptions of Theorem 1, in
neural network training this task is considered to be computationally
expensive for large networks, and in practice is omitted.

In general, any batch-type BP training algorithm of the form (2) can
be made globally convergent if

1) the adopted search directiondk is a descent direction and it does
not tend to be orthogonal to the gradient direction [cos �k in (6)
should be positive]

2) the learning rate�k satisfies the two Wolfe conditions (3)–(4).
Notice that, sincedk is a descent direction andE is continu-
ously differentiable and bounded below along the radiusfwk +
�dkj� > 0g, then there always exist�k satisfying the Wolfe’s
conditions (3) and (4) [5], [17].

For example, the well-known batch BP algorithm that employs the
steepest descent method with a common learning rate for all weights
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that satisfies the Wolfe conditions (3)–(4) is globally convergent be-
cause in this case we havecos �k = 1 > 0.

With regards to batch-type BP algorithms with a different learning
rate for each weight (local learning rate), no strategy is available, to
the best of our knowledge, to make these methods globally convergent.
Below we present a strategy that ensures the search direction followed
is, indeed, a descent one, and a theoretical result for globally conver-
gent local learning rate algorithms. It is important to emphasize that
this result is independent of the local learning rates adaptation proce-
dure, and can be used to prove convergence for any batch-type training
algorithm that adopts the strategy:

1) define(n � 1), sayf�1; �2; . . . ; �i�1; �i+1; . . . ; �ng, out of
then learning rates,f�1; �2; . . . ; �ng, as computed directly by
an adaptive learning rate evaluation procedure;

2) calculate the remaining one, say�i, analytically using the values
of the others,f�1; �2; . . . ; �i�1; �i+1; . . . ; �ng, as it will be
shown later.

Next we present a theoretical result that applies to adaptive training
algorithms with local learning rates.

Corollary 1: Suppose that the conditions of Theorem 1 onf(x)
andrf(x) are also true for the error functionE(w) and its gradient
rE(w). Then, for a given pointw0 2 n, the sequencefwkg1k=0
which is generated by the iterative scheme

wk+1 = wk + �kdk (8)

where �k > 0 satisfies the Wolfe’s conditions (3)–(4),
dk = �diagf�k1 ; . . . ; �

k
i ; . . . ; �

k
ngrE(wk) denotes the search

direction,�km for m = 1; 2; . . . ; i � 1; i + 1; . . . ; n are arbitrarily
chosen small positive learning rates, and

�ki =�
�

@iE(wk)
�

1

@iE(wk)

n

�kj @jE(wk)

0 <� �1 and @iE(wk) 6= 0 (9)

is globally convergent to a local minimizer.
Proof: Evidently, the error functionE is bounded below on n.

The sequencefwkg1k=0 follows the direction

dk = �diagf�k1 ; . . . ; �
k
i ; . . . ; �

k
ngrE(wk)

which is a descent direction if�km; m = 1; 2; . . . ; i�1; i+1; . . . ; n
are arbitrarily chosen learning rates (positive real numbers) and�ki is
given by (9), since

rE(wk)>dk < 0:

Moreover, in our case (6) becomes

cos �k =
�rE(wk)>dk

krE(wk)kkdkk
> 0: (10)

Thus, from the previous discussion it is evident that the sequence
fwkg1k=0 is globally convergent to a local minimizer.

In (9), we choose a coordinate direction with no zero partial deriva-
tive. Of course always exists such a direction; otherwise we would have
found a minimizer already. In addition, the parameter�,0 < � �1, is
introduced to alleviate problems with limited precision that may occur
in simulations. It should take a small value proportional to the square
root of the relative machine precision. In the experiments reported in
the next section the value� = 10�6 has been used in an attempt to test
the convergence accuracy of the proposed strategy.

With regards to parameter�k, the use of�k = 1, for all k, is sug-
gested in practical applications. This has the effect that the minimiza-
tion step along the resultant search direction is explicitly defined by
the values of the local learning rates. The length of the minimization
step can be regulated through�k tuning so that the Wolfe’s conditions
are satisfied and the weights are updated in a descent direction. To this
end, a simple backtracking strategy could be used to decrease�k by
a reduction factor1=q, whereq > 1. This has the effect that�k is
decreased by the largest number in the sequencefq�mg1m=1 [18]. We
remark here that the selection ofq is not critical for successful learning,
however it has an influence on the number of error function evaluations
required to satisfy the Wolfe’s conditions. A value ofq = 2 is gener-
ally suggested in the literature [1], [18] and, indeed, it has been found
to work without problems in our experiments.

In reference to the Wolfe conditions (3)–(4), (3) ensures that the error
is reduced sufficiently, while (4) prevents the minimization step from
becoming too small. Consequently, when seeking to satisfy (3) it is
important to ensure that�k is not reduced unnecessarily so that (4)
is not satisfied. However, at thekth training epoch the gradient vector
is only known at the beginning of the iterative search for a new set of
weights,wk+1. Thus, (4) cannot be checked directly, as this task would
require additional gradient evaluations at each iteration of the training
algorithm. This problem can be easily tackled (see [5]) by replacing (4)
with relation

E(wk + �kdk)� E(wk) �2�
krE(wk)>dk (11)

and, thus, avoid the computationally expensive backward passes.
At this point, it is useful to illustrate the behavior of the proposed

strategy by means of a simple example, which concerns the case of a
single node with two weights and logistic activation function [13]. This
minimal architecture is trained using the classic Qprop method and its
globally convergent modification, which uses a positive learning rate
value�k1 computed by the Qprop formula and�k2 given by (9). Starting
from the same initial conditions, the globally convergent modification
successfully locates the feasible minimum [see Fig. 1(a)], while the
classic Qprop generates a discretized path in the weight space [see
Fig. 1(b)] that leads to an undesired local minimum (undesired local
minimizers are those having error function values higher than the de-
sired error goal).

In a more difficult problem, learning the three-bit parity [7], [25],
a typical run for the Qprop method and its globally convergent modi-
fication is shown in Fig. 2. Starting with the same initial weights and
learning parameters, the modified Qprop (dotted line) successfully con-
verges to a feasible solution (E(w) 10�10), while the original Qprop
(solid line) got stuck in a local minimum with higher error function
value.

IV. EMPIRICAL STUDY

The proposed strategy has been incorporated in two first-order
training algorithms, the SA method [27] and the Qprop algorithm [6],
to develop new globally convergent modifications. These modified
schemes have been implemented and tested on different training
problems and have been compared in terms of gradient and error
function evaluations and rate of success with the original methods.
Note that in training practice, a gradient evaluation is considered three
times more costly than an error function evaluation for certain classes
of problems [14]–[16].

Our experience from the simulations is that the proposed strategy be-
haves predictably and reliably. Below, we exhibit results from 100 runs
for the SA method, the Qprop algorithm, and their globally conver-
gent modifications in two applications, using initial weights from the
interval [�1, 1]. The globally convergent modifications use the same
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(a) (b)

Fig. 1. Illustration of the Qprop method for training a node with two weights.
(a) The modification converges to the desired minimum while (b) the classic
method converges to an undesired local minimum.

Fig. 2. Learning curves for the Qprop method (solid line) and the globally
convergent Qprop (dotted line) for the three-bit parity problem. Both methods
start from the same initial conditions.

initial values for the learning parameters and are tested under the same
initial weight conditions as the original methods.

The heuristic learning parametermaximum growth factorof the
Qprop method has been set to the classical valuem = 1:75. The
learning rate increment and decrement factorsof the SA method
have been tuned appropriately and received the valuesu = 1:02
andd = 0:5, respectively. It is worth mentioning that (9) has been
employed cyclically over the local learning rates, i.e., at thekth
iterationi = k mod n, in all of the experiments reported in this paper.

In the first experiment, a network with 64 input, six hidden, and ten
output nodes (444 weights, 16 biases) is trained to recognize 8� 8 pixel
machine printed numerals from 0 to 9 in helvetica italic [13]. The net-
work is based on logistic activation neurons. The training performance
of the algorithms is shown in Tables I and II, where the following nota-
tion is adopted:� is the mean number of gradient or error function
evaluations, denoted as GRD and EFE, respectively,� is the corre-
sponding standard deviation,Min=Max denotes the minimum/max-
imum number of gradient or error function evaluations,D indicates
that the algorithm diverged, and % is the percentage of simulations that
converge to a desired minimum.

The termination conditions for all algorithms tested were:
E 10

�1, in the first case (Table I), andE 10
�2, in the second

TABLE I
RESULTS FOR THENUMERIC FONT LEARNING PROBLEM (E 10 )

TABLE II
RESULTS FOR THENUMERIC FONT LEARNING PROBLEM (E 10 )

case (Table II). For both cases, a limit of 5000 error function evalu-
ations was set and the algorithms were tested under the same initial
conditions (learning parameters and weights).

As shown in Table I, the Globally convergent Qprop (G-Qprop) is
faster and more reliable than the original method, which fails to con-
verge in all cases. In the same problem, the SA method, although it is
faster than the globally convergent modification (G-SA), fails to con-
verge in 43 out of the 100 runs, due to convergence to undesired local
extrema (points that possess error function values higher than the de-
sired error goal). The algorithm exhibits stability problems because
the learning rates increase exponentially when many iterations are per-
formed successively. This behavior results in minimization steps that
increase some weights by large amounts, pushing the outputs of some
neurons into saturation and consequently into convergence to a local
minimum or maximum. On the other hand, the globally convergent
modification overcomes these problematic situations by exploiting the
analytic evaluation of theith learning rate. For the globally conver-
gent modifications, the 1% of failure represents runs that the algorithm
failed to converge to a desired local minimum within the maximum al-
lowed number of error function evaluations.

By comparing the results of Tables I and II one can see that the glob-
ally convergent modifications of the tested algorithms exhibit consis-
tent behavior. On the other hand, the performance of the original SA
method is getting worse as the accuracy of the required solution in-
creases. Note that the results of Tables I and II have been produced by
using the same initial weights for all the algorithms tested; only the de-
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Fig. 3. Learning curves for the SA method (solid line) and the globally
convergent SA (dotted line) for the numeric font learning problem. Both
methods start from the same initial conditions.

sired error goal varied from anE 10�1 to anE 10�2 in the two
sets of experiments.

Thus, the adaptive learning rate schedule helps SA to converge very
fast in 26 of the runs, but fails to allow the method to reach the local
minimizer with accuracy. Thus, as shown in Table II, the success per-
centage of the SA method reduces as the method gets stuck to undesired
local minima. A typical run for the SA method and its globally conver-
gent modification is shown in Fig. 3. In this case, the networks were
trained exhaustively to reach an error valueE 10�2 starting from the
same initial weights and learning parameters. The modified SA (dotted
line) successfully converges to a feasible solution (E(w) �= 10�5),
while the original SA (solid line) gets stuck to a local minimum with
higher error function value.

In the second experiment, the continuous functionf(x) =
sin(x) cos(2x) is approximated by a 1-15-1 neural network (30
weights, 16 biases) using 20 input–output pairs, scattered in the
interval [0; 2�]. The termination condition isE 0:1 within 10 000
error function evaluations, and the network is based on hidden neurons
with hyperbolic tangent activations and on a linear output neuron.
Comparative results are exhibited in Table III. The SA method exhibits
the highest percentage of failure due to convergence to undesired
local extrema; the method converges only 11 times (see Table III),
although the best available values for the heuristics have been used. In
the same problem, the G-Qprop outperforms the original method in
the number of successful runs (99% success). On the other hand, the
original Qprop method succeeded only in 27 runs due to entrapment
in neighborhoods of undesired local minima. Although training was
allowed for 10 000 iterations (the worst case run took 953 epochs
to converge), this did not help Qprop to escape from the undesired
minima.

In additional simulations, keeping initial conditions the same
and changing only the desired error goal to anE 10�2, the
algorithms exhibited behavior similar to the one of the numeric font
learning problem, whilst the globally convergent algorithms exhibited
consistent convergence behavior and 100% success.

The results of the two experiments reported above provide empir-
ical evidence verifying that the proposed strategy performs in practice
reasonably well in different types of problems. The globally conver-
gent modifications of the tested algorithms provide stable learning and

TABLE III
COMPARATIVE RESULTS FOR THEFUNCTION APPROXIMATION PROBLEM

therefore a greater possibility of good performance in terms of success-
fully finding a local minimizer; however, in the case of the SA method
its globally convergent modification requires additional iterations to
converge.

To investigate how the distributions of initial weights affect the suc-
cess of the learning process in large networks, we have conducted a
third experiment. A 16-40-2 (720 weights and 42 biases) network with
logistic activations has been trained to detect two different types of ab-
normalities in colonoscopy images taken from two different colons.
Image 1 [Fig. 4(a) left] is considered histologically as a low grade
cancer (a Type-III’s lesion macroscopically [11]). Image 2 [Fig. 4(b)
right] is considered histologically as a moderately differentiated car-
cinoma (a Type-V lesion macroscopically). Textures from ten normal
and ten abnormal tissue samples have been randomly chosen from each
image and used for training the network to discriminate between ma-
lignant and normal regions with 3% classification error (see [10] for
further technical details). We have used G-Qprop.

Fig. 4 (b) shows a plot of the average percentage of suc-
cess with respect to six initial weight ranges(�a; a), where
a 2 f0:2; 0:6; 1; 1:4; 1:8; 2:2g, for simulations that reached a
desired minimum out of 100 runs. It is evident that the G-Qprop
outperforms the original method. According to our experience, the
improvement obtained justifies, especially in certain real-life applica-
tions, the additional programming effort for the implementation of the
proposed strategy.

V. CONCLUDING REMARKS

A theoretical result that underpins the development of globally con-
vergent batch training algorithms with local learning rates has been pro-
posed in this paper. This result allows us to provide conditions under
which global convergence is guaranteed and introduce a strategy for
adapting the search direction and tuning the length of the minimiza-
tion step. Two well-known training algorithms with local learning rates
have been equipped with the proposed strategy to illustrate its applica-
bility. Their modified versions exhibit significantly better percentage
of success in reaching local minimizers than the original methods, but
they may require additional error function and gradient evaluations de-
pending on the algorithm, as has been observed with the G-SA method.

Nevertheless, the issue of developing techniques that will choose the
appropriateith local learning rate,�ki , to be calculated by (9), as well
as the optimal value of� should be investigated further to fully exploit
the potential of the suggested strategy, and improve the convergence
speed of the globally convergent algorithms.
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(a)

(b)

Fig. 4. (a) Colonoscopy images used in the experiments. (b) Percentage of
success with respect to different initial weights ranges.
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