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Letters

Globally Convergent Algorithms With Local Learning i.e., algorithms with the property that starting from almost any initial
Rates weight vector the sequence of the weights will converge to a local min-
imizer of the error function.
George D. Magoulas, Vassilis P. Plagianakos, and Michael N. VrahatisNote that, as stated in [5, p. 5], the term globally convergent algo-
rithm is used “to denote a method that is designed to convergetak
minimizer of a nonlinear functiorfrom almost any starting poirit

Abstract—in this paper, a new generalized theoretical result is presented ; Wit i :
that underpins the development of globally convergent first-order batch Dennis and Schnabel also note that “it might be appropriate to call such

training algorithms which employ local learning rates. This result allows us methoddocal or locally convergentbut these descriptions are already
to equip algorithms of this class with a strategy for adapting the overall di- reserved by tradition for another usage.” Additionally, in [17, p. 200],
rection of search to a descent one. In this way, a decrease of the batch-error Nocedal defines a globally convergent algorithm as an algorithm with
measure fa\tN:?CI’?I f{:'rg'tre‘% ittc??tlic?cnalismeir?isr;jirzeedf ;nt?]:%g\grr]g;?g? fﬁLtcTi%r?e- iterates that converge from a remote starting point. Thus, in this con-
iqsuggtcefin%d frogm remote initial weights. The effectiveness of the theoret- text, 9'9ba' converge_nce is totally dlfferenF fr_om.global Opt'mlz_at'on'
ical result is illustrated in three application examples by comparing two 1N @ strict mathematical sense, global optimization means to find the
well-known training algorithms with local learning rates to their globally ~ complete set of the globally optimal solutions (global minimizers)
convergent modifications. of the objective functiory, and the associated global optimum value

Index Terms—Backpropagation (BP) networks, batch training, en- f* = f(«") (for analytical tractability reasons, it is assumed tiats
doscopy, globally convergent algorithms, gradient descent, local learning at most countable). So in this paper, we do not seek global minimizers
rate adaptation, Quickprop (Qprop), Silva-Almeida (SA) method. of the error functionZ, but we are interested in developing algorithms
that will converge to a local minimizer with certainty. The interesting
topic of finding global minimizers in training neural networks is de-
scribed elsewhere [20]-[22], [28].

The issue of changing the learning rates dynamically during trainingThis paper is organized as follows. In Section Il, local learning rate
has been widely investigated and several strategies for learning faéning algorithms are presented, and their advantages and disadvan-
adaptation have been proposed so far. The use of these strategies aitages are discussed. The proposed approach and the corresponding the-
finding the proper learning rate that compensates for a small magnitustetical convergence result are presented in Section Ill. In order to il-
of the gradient in a flat region and dampens a large weight changes ingtrate the effectiveness of this approach, two algorithms of this class
highly deep region. To this end, the literature suggests, for exampleaied their globally convergent modifications are comparatively evalu-

1) start with a small learning ratg?, and increase it at the nextated. Experiments and corresponding results are reported in Section IV.

iteration k+1, if successive iterations reduce the error, or rapidlfzinally, Section V presents concluding remarks.
decrease it if a significant error increase occurs [2], [29];
2) start with a smalho and increase it at the + 1 iteration, if 1. LOCAL LEARNING RATE ADAPTATION STRATEGIES
successive iterations keep gradient direction fairly constant, or
rapidly decrease it if the direction of the gradient varies greatl%
[4];
3) use alocal learning rate for each weight* € R"(i =

|. INTRODUCTION

Developments in training algorithms with local learning rates are
ainly motivated by the need to train neural networks in situations
when a learning rate appropriate for one weight direction is not neces-
1,2, ..., n), ie, o5, nk. ..., n*, which increases if the sarily_ appropriate for otherdirecti_ons [9]. Moreover, in_ certain cases a
successive corrections of the weights are in the same directfgﬁ‘m'ng rate may not be appropriate for all of the pomons of the error
and decreases otherwise [8], [19], [23], [27]. surface. To this end, a common approach to avoid slow convergence

This paper focuses on the last approach and particularly on the s561‘_Iat directions and oscillations in steep directions, as well as to ex-

cial class of first-order adaptive training algorithms that employ loc oit th;. parg”gelism thehre?)t inkthe evalugtion of thle er@gw), and_
learning rates. These algorithms employ heuristic strategies to adsp@radientV £(w), by the backpropagation (BP) algorithm, consists

the learning rates at each iteration and require fine tuning additio3Using a different adaptive learning rate for each direction in weight

problem-dependent learning parameters that help to ensure submiRgce- . . .
mization of the error function along each weight direction. Neverthe- Batch-type B,P tra!nlng algorithms of this class [6], [8], [19], [23],
less, no guarantee is provided that the network error will monotonica 7], follow the iterative scheme

decrease at each iteration and that the weight sequence will converge
to a minimizer of the batch error functiohl. To alleviate this situa-

tion, we present in this paper a new generalized theoretical result that

underpins the development of globally convergent training algorithmfd}d try to decrease the error by searching a local minimum with small
weight steps. These steps are usually constrained by problem-depen-

dent heuristic parameters in order to avoid oscillations and ensure sub-
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with adaptive learning rate for each weigli#], is to employlearning Vi® 4+ o*d)Td* >0,V ™) T dk (4)

rate lower and upper boundshich are chosen heuristically and help

to avoid the usage of an either extremely small or large learning rauereV f(x) is the gradient off atx, and0 < o1 < o2 < 1. Then,

component, which might misguide the resultant search direction. TH following theorem, due to Wolfe [32], [33] and Zoutendijk [34],

learning rate lower bound helps to avoid unsatisfactory convergerfg be used to obtain global convergence results.

rate while the learning rate upper bound limits the influence of a largeTheorem 1 [32], [34]: Suppose thaf: D C R" — R is bounded

learning rate component on the resultant search direction and depdprlgw inR™ and thatf is continuously differentiable in a neighbor-

on the shape of the error function. hood A of the level setC = {z: f(z) < f(aro)}, wherez® is the
However, the use of additional heuristics for local learning ratégarting point of the iterative scheme (2). Assume also that the gradient

tuning may affect the overall adaptive search direction if the valuésLipschitz continuous, i.e., there exists a constant 0 such that

of the heuristics are not properly chosen. In such case, the training al-

gorithms cannot exploit the global information obtained by taking into IVf(x) = VIl < Lz - yll

consideration all the directions; furthermore, it is theoretically difficul . .

to guarantee that the weight updates will converge to a local minimizt‘é)lr allz, y € N Then the Zoutendijk condition

of E [6], [8], [14], [19], [23], [27]. 2
[6], (8], [14], [19], [23], [27] S coton vt < o ©)
Ill. GLOBAL CONVERGENCE OFALGORITHMS WITH LOCAL k2
LEARNING RATES where
Training of multilayer feedforward neural networks can be consid- V()T gk
Vi®)'d
ered as a highly nonlinear minimization problem, involving sigmoid cos by = W (6)
functions that have infinitely broad regions with arbitrary small deriva-
tive [3], [26]. is fulfilled.

First-order training algorithms that follow the iterative scheme (1) Remark 1: Suppose that an iterative scheme of the form (2) follows
usually evaluate the local learning rates by means of heuristic pe-descent directiod”, which does not tend to be orthogonal to the
cedures that exploit information regarding the history of the partigradientVf(wk), for which
derivative of E(w) with respect to théth weight and/or the history
of each learning rate, depending on the algorithm. For example, the costr 2 (>0
Qprop, [6], performs independent secant steps in the direction of each . .
weight [31], while theRpropalgorithm, [23], updates the weights usingfor all k. Then, from the Zoutendijk condition (5), holds that
the learning rate and the sign of the partial derivative of the error func-
tion with respect to each weight.

Clearly, the weight vector in (1) is not updated in the direction of . .
Y 9 (1) P which means that the sequence of gradients converges to zero.

h i f th ient; i I i i h'dj- : ) g ;
the negative of the gradient; instead, an alternative adaptive searc or an iterative scheme of the form (2), the limit (7) is the best type of

tion is obtained by taking int ideration th ight ch . ; .
rection 1s ontained by taKing Into consideraton the weight ¢ ange?obal convergence result that can be obtained (see [17] for a detailed

These are evaluated by multiplying the length of the search step, i%., : N . -
the value of the learning rate along each weight direction, by the p '1_scussm_>n). Erom the above, |t_|s evident that no guarant_eg IS provided
at the iterative scheme (2) will converge to a global minimizér,

tial derivative of E(w ) with respect to the corresponding weight, i.e. t onlv that it the alobal tv 151, 1171 &
—n;0; E(w). This behavior results in decreasing the error along eagﬁggglymin?m'izg?ssesses e global convergence property [5], [17] to

direction by performing small steps in the weight space so as to ensflr . .
yp 9 b ghtsp n neural network training, the sum-of-squared-differences error

subminimization of the error function along each weight direction an . - . .
: ) >
hopefully, leads to monotone error reduction along the resultant seagiﬁgi?]?f 'Zgg:lnnsd:g dfg);inxsglr?gwscl)?li (r::l;1)| te/Ct(l)J.l’ F%;;J'g?gijf;
direction. To this end, the problem-dependent heuristic learning param- 9 P - o e ;
. . that E(w™) = 0, thenw™ is a global minimizer. Otherwise, the weight
eters, which are employed, act as constraints on the length of the see\t/r ctorw with the smallest error function value is the global minimizer.
.. . . . )
step, or on the length of the subminimization steps. However, enforcin v . Istheg . '
or neural networks witlsmooth enouglactivation functions (the

monotone error reduction at each iteration using inappropriate valugs.” . ) .
9 bprop dee{lvatlves of at least orderare available and continuous), such as the

for the heuristic learning parameters can considerably slow the rate’0 Il known hvoerbolic tangent. the logistic activation function etc.. the
training, or even lead to divergence and to premature saturation, as i8S ' hype gent, 9 "
or functionF is also smooth enough.

been observed in certain cases [12], [14], [24]. Moreover, it seems tFY o ) ) . .
. L ) [12], [14], [24] Ithough it is possible to verify the assumptions of Theorem 1, in
using heuristics it is not possible to develop globally convergent algr?éural network training this task is considered to be computationall
rithms and, thus, guarantee convergence to a local minimizer from an)é/ . 9 ; N . P y
initial condition [5]. expensive for large networks, and in practice is omitted.

In the context of optimization theory, the issue of making an unco In general, any batch-type BP training algorithm of the form (2) can

strained minimization iterative scheme globally convergent is treat§8 made globally convergent if

lim V(")) =0 (7)

as will be described below. Suppose tifatb ¢ R* — R is the ob- 1) the adopted search directidhis a des_cent Qirection anq it does

jective function to be minimized using the following iterative scheme: ~ Nottend to be orthogonal to the gradient directiassp; in (6)
should be positive]

2 = R g R R (2) 2) the learning rate’* satisfies the two Wolfe conditions (3)—(4).

Notice that, sincel* is a descent direction anfl is continu-

whered” is a descent direction and" is the step-length obtained by ously differentiable and bounded below along the radiu$ +

means of one-dimensional line search that satisfies the Wolfe condi- «d*|a > 0}, then there always exist" satisfying the Wolfe’s

tions [32], [33] conditions (3) and (4) [5], [17].

For example, the well-known batch BP algorithm that employs the
f® + o d™) = (") <o VM) Td" (3) steepest descent method with a common learning rate for all weights
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that satisfies the Wolfe conditions (3)—(4) is globally convergent be- With regards to parameter®, the use ofx* = 1, for all %, is sug-

cause in this case we haves 9, = 1 > 0.

gested in practical applications. This has the effect that the minimiza-

With regards to batch-type BP algorithms with a different learningion step along the resultant search direction is explicitly defined by
rate for each weight (local learning rate), no strategy is available, e values of the local learning rates. The length of the minimization
the best of our knowledge, to make these methods globally convergeép can be regulated through tuning so that the Wolfe’s conditions
Below we present a strategy that ensures the search direction folloveed satisfied and the weights are updated in a descent direction. To this
is, indeed, a descent one, and a theoretical result for globally convend, a simple backtracking strategy could be used to decteaby
gent local learning rate algorithms. It is important to emphasize thatreduction factoil /¢, whereq > 1. This has the effect that” is
this result is independent of the local learning rates adaptation prodecreased by the largest number in the sequéqce };5_; [18]. We
dure, and can be used to prove convergence for any batch-type traimemmark here that the selectiongis not critical for successful learning,

algorithm that adopts the strategy:

1) define(n — 1), say{n1, 52, - .+, Mi=1, Nit1s -« -5 Wn }, OUt Of

however it has an influence on the number of error function evaluations
required to satisfy the Wolfe's conditions. A valuegt= 2 is gener-

then learning rates{n:, 12, ..., . }, as computed directly by ally suggested in the literature [1], [18] and, indeed, it has been found

an adaptive learning rate evaluation procedure;

2) calculate the remaining one, sgy analytically using the values

of the others{n1, 72, ...
shown later.

s Tie1s Mit1s -+ Ma}, @S it will be

Next we present a theoretical result that applies to adaptive traini

algorithms with local learning rates.

Corollary 1: Suppose that the conditions of Theorem 1 fqn)
andV f(x) are also true for the error functiafi(w) and its gradient
VE(w). Then, for a given pointw’ € R", the sequencgw”}52,
which is generated by the iterative scheme

W = wk 4+ aFd* (8)
where of >
d¥* = —diag{nf, ..
direction,n*, form =1,2,...,i—1,i+1,...,
chosen small positive learning rates, and

n are arbitrarily

B 1 "
aE(wk)  OiE(wk) g
G

I[JkajE('LUk)

rk_
n =—

0<6< oo and E(w*)#£0 (9)
is globally convergent to a local minimizer.

Proof: Evidently, the error functio is bounded below oR™.
The sequencéw” 52, follows the direction

a* = —diag{nf., bt }VE(?x,'k)

which is a descent directionif,, m =1, 2, ..., i—1,i+1,..., n
are arbitrarily chosen learning rates (positive real numbersyéris
given by (9), since

VEWw")Td* <.
Moreover, in our case (6) becomes

~VE(w*)Td* >0

VE@Hlla| ~

| (10

cosf =

0 satisfies the Wolfe's conditions (3)—(4),
LonF, . pFYVE(w") denotes the search

to work without problems in our experiments.

In reference to the Wolfe conditions (3)—(4), (3) ensures that the error
is reduced sufficiently, while (4) prevents the minimization step from
becoming too small. Consequently, when seeking to satisfy (3) it is
H@oortant to ensure that® is not reduced unnecessarily so that (4)
is not satisfied. However, at thigh training epoch the gradient vector
is only known at the beginning of the iterative search for a new set of
weightsw* . Thus, (4) cannot be checked directly, as this task would
require additional gradient evaluations at each iteration of the training
algorithm. This problem can be easily tackled (see [5]) by replacing (4)
with relation

E(w* 4+ o*d") — BE(w") = 02" VE@*)Ta* (11)

and, thus, avoid the computationally expensive backward passes.

At this point, it is useful to illustrate the behavior of the proposed
strategy by means of a simple example, which concerns the case of a
single node with two weights and logistic activation function [13]. This
minimal architecture is trained using the classic Qprop method and its
globally convergent modification, which uses a positive learning rate
valuenf computed by the Qprop formula anél given by (9). Starting
from the same initial conditions, the globally convergent modification
successfully locates the feasible minimum [see Fig. 1(a)], while the
classic Qprop generates a discretized path in the weight space [see
Fig. 1(b)] that leads to an undesired local minimum (undesired local
minimizers are those having error function values higher than the de-
sired error goal).

In a more difficult problem, learning the three-bit parity [7], [25],

a typical run for the Qprop method and its globally convergent modi-
fication is shown in Fig. 2. Starting with the same initial weights and
learning parameters, the modified Qprop (dotted line) successfully con-
verges to afeasible solutioR(w) < 107'?), while the original Qprop
(solid line) got stuck in a local minimum with higher error function
value.

IV. EMPIRICAL STUDY

The proposed strategy has been incorporated in two first-order
training algorithms, the SA method [27] and the Qprop algorithm [6],
to develop new globally convergent modifications. These modified
schemes have been implemented and tested on different training

Thus, from the previous discussion it is evident that the sequerm®blems and have been compared in terms of gradient and error

{w" 52, is globally convergent to a local minimizer. ]

function evaluations and rate of success with the original methods.

In (9), we choose a coordinate direction with no zero partial derivédote that in training practice, a gradient evaluation is considered three
tive. Of course always exists such a direction; otherwise we would hait®es more costly than an error function evaluation for certain classes

found a minimizer already. In addition, the paramétér < § < o, is

of problems [14]-[16].

introduced to alleviate problems with limited precision that may occur Our experience from the simulations is that the proposed strategy be-
in simulations. It should take a small value proportional to the squanaves predictably and reliably. Below, we exhibit results from 100 runs
root of the relative machine precision. In the experiments reportedfor the SA method, the Qprop algorithm, and their globally conver-
the next section the value= 10~° has been used in an attempt to tesient modifications in two applications, using initial weights from the

the convergence accuracy of the proposed strategy.

interval [-1, 1]. The globally convergent modifications use the same
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Fig. 1. lllustration of the Qprop method for training a node with two weights. G-Qprop GrD 8242 T77.30 26/485 99
(a) The modification converges to the desired minimum while (b) the classic
method converges to an undesired local minimum. EFE 17231 20285  26/1023
107
TABLE 1l
RESULTS FOR THENUMERIC FONT LEARNING PROBLEM (E < 1072)
1° N
' Algorithm U o Min/Maz %
.2
10
i:’ SA GRD 218.23 9.77 204/237 26
2 gt
s EFE  218.23 9.77 204/237
k]
50 ., G-SA GRD  712.92 23548  335/1526 99
UEJ EFE 142341 796.50  335/4556
.8
wr N Qprop GRD D D D 0
I e EFE D D D
G-Qprop GrD  160.06 147.20 35/641 100
10" . ~ . s ; : - EFE 37236 44381  35/1778
0 1000 2000 3000 4000 5000 BOOD 7000 8OO0 9000 10000
Number of epochs
Fig. 2. Learning curves for the Qprop method (solid line) and the globallgase (Table Il). For both cases, a limit of 5000 error function evalu-

convergent Qprop (dotted line) for the three-bit parity problem. Both methodgions was set and the algorithms were tested under the same initial
start from the same initial conditions. conditions (learning parameters and weights).

As shown in Table I, the Globally convergent Qprop (G-Qprop) is
initial values for the learning parameters and are tested under the sdaster and more reliable than the original method, which fails to con-
initial weight conditions as the original methods. verge in all cases. In the same problem, the SA method, although it is

The heuristic learning parameteraximum growth factoof the faster than the globally convergent modification (G-SA), fails to con-
Qprop method has been set to the classical value= 1.75. The verge in 43 out of the 100 runs, due to convergence to undesired local
learning rate increment and decrement fact@mkthe SA method extrema (points that possess error function values higher than the de-
have been tuned appropriately and received the values 1.02 sired error goal). The algorithm exhibits stability problems because
andd = 0.5, respectively. It is worth mentioning that (9) has beethe learning rates increase exponentially when many iterations are per-
employed cyclically over the local learning rates, i.e., at #te formed successively. This behavior results in minimization steps that
iterationi = k mod n, in all of the experiments reported in this paperincrease some weights by large amounts, pushing the outputs of some

In the first experiment, a network with 64 input, six hidden, and temeurons into saturation and consequently into convergence to a local
output nodes (444 weights, 16 biases) istrained to recogniz@ @ixel minimum or maximum. On the other hand, the globally convergent
machine printed numerals from 0 to 9 in helvetica italic [13]. The netnodification overcomes these problematic situations by exploiting the
work is based on logistic activation neurons. The training performanasalytic evaluation of théth learning rate. For the globally conver-
of the algorithms is shown in Tables | and Il, where the following notagent modifications, the 1% of failure represents runs that the algorithm
tion is adoptedy: is the mean number of gradient or error functiorfailed to converge to a desired local minimum within the maximum al-
evaluations, denoted as GRD and EFE, respectivelg the corre- lowed number of error function evaluations.
sponding standard deviatioilin/Max denotes the minimum/max- By comparing the results of Tables | and Il one can see that the glob-
imum number of gradient or error function evaluatiohs,ndicates ally convergent modifications of the tested algorithms exhibit consis-
that the algorithm diverged, and % is the percentage of simulations thextt behavior. On the other hand, the performance of the original SA
converge to a desired minimum. method is getting worse as the accuracy of the required solution in-

The termination conditions for all algorithms tested werecreases. Note that the results of Tables | and Il have been produced by
E < 107", in the first case (Table 1), anfl < 1072, in the second using the same initial weights for all the algorithms tested; only the de-
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107 . TABLE Il
COMPARATIVE RESULTS FOR THEFUNCTION APPROXIMATION PROBLEM

Algorithm o o Min/Maz %

SA GRD  23.11 116.18 84/150 11
EFE  23.11 116.18 84/150

G-SA GRD 352.44 105.21 48/764 99
EFE 688.26 197.02 48/2354

Error function value

Qprop GRD 362.81 268.55 58/953 27

i EFE 36281 268.55  58/953
Tl ] G-Qprop GRD 17651 119.98  40/694 99

EFE 252.10 179.31 50/1033

0 500 1000 1500 2000 2500
Number of epochs

therefore a greater possibility of good performance in terms of success-
Fig. 3. Learning curves for the SA method (solid line) and the globallfully finding a local minimizer; however, in the case of the SA method
convergent SA (dotted line) for the numeric font learning problem. Botls globally convergent modification requires additional iterations to
methods start from the same initial conditions.

converge.

To investigate how the distributions of initial weights affect the suc-

sired error goal varied from ali < 10~ toanE < 102 inthe two CesS of the learning process in large networks, we have conducted a
sets of experiments. third experiment. A 16-40-2 (720 weights and 42 biases) network with

Thus, the adaptive learning rate schedule helps SA to converge vp@)stic activations has been trained to detect two different types of ab-

fast in 26 of the runs, but fails to allow the method to reach the locaPrmalities in colonoscopy images taken from two different colons.
minimizer with accuracy. Thus, as shown in Table II, the success p#nage 1 [Fig. 4(a) leff] is considered histologically as a low grade

centage of the SA method reduces as the method gets stuck to unde&§fE§er (@ Type-liI's lesion macroscopically [11]). Image 2 [Fig. 4(b)

local minima. A typical run for the SA method and its globally conver[i_ght] is considered histologically as a moderately differentiated car-

gent modification is shown in Fig. 3. In this case, the networks wef0ma (& Type-V lesion macroscopically). Textures from ten normal
trained exhaustively to reach an error vallie< 10~2 starting from the and ten abnormal tissue samples have been randomly chosen from each

same initial weights and learning parameters. The modified SA (dottfg29€ and used for training the network to discriminate between ma-
line) successfully converges to a feasible soluti@i«() = 10~) lignant and normal regions with 3% classification error (see [10] for

while the original SA (solid line) gets stuck to a local minimum witHfurther technical details). We have used G-Qprop.
higher error function value. Fig. 4 (b) shows a plot of the average percentage of suc-

In the second experiment, the continuous functipfr) = cess with respect to six initial weight rangés-a, «), where

sin(z) cos(2z) is approximated by a 1-15-1 neural network (3¢ € {0.2,06, 1,14, L8, 2.2}, for simulations that reached a

weights, 16 biases) using 20 input—output pairs, scattered in tﬂ%swed minimum c_)u_t of 100 runs. It is _eV|dent that the_G-Qprop
interval [0, 2x]. The termination condition i€ < 0.1 within 10 000 outperforms the original method. According to our experience, the

error function evaluations, and the network is based on hidden neurgﬂgrovement obtained justifies, especially in certain real-life applica-

with hyperbolic tangent activations and on a linear output neurofions: the additional programming effort for the implementation of the

Comparative results are exhibited in Table Ill. The SA method exhibi?éOposed strategy.
the highest percentage of failure due to convergence to undesired
local extrema; the method converges only 11 times (see Table IlI),
although the best available values for the heuristics have been used. In
the same problem, the G-Qprop outperforms the original method inA theoretical result that underpins the development of globally con-
the number of successful runs (99% success). On the other hand,viéigjent batch training algorithms with local learning rates has been pro-
original Qprop method succeeded only in 27 runs due to entrapme@ked in this paper. This result allows us to provide conditions under
in neighborhoods of undesired local minima. Although training waghich global convergence is guaranteed and introduce a strategy for
allowed for 10000 iterations (the worst case run took 953 epochgapting the search direction and tuning the length of the minimiza-
to converge), this did not help Qprop to escape from the undesirgsh step. Two well-known training algorithms with local learning rates
minima. have been equipped with the proposed strategy to illustrate its applica-
In additional simulations, keeping initial conditions the samgility. Their modified versions exhibit significantly better percentage
and changing only the desired error goal to Bn < 1072, the of success in reaching local minimizers than the original methods, but
algorithms exhibited behavior similar to the one of the numeric fomhey may require additional error function and gradient evaluations de-
learning problem, whilst the globally convergent algorithms exhibitgsending on the algorithm, as has been observed with the G-SA method.
consistent convergence behavior and 100% success. Nevertheless, the issue of developing techniques that will choose the
The results of the two experiments reported above provide empappropriateth local learning ratey”, to be calculated by (9), as well
ical evidence verifying that the proposed strategy performs in practias the optimal value df should be investigated further to fully exploit
reasonably well in different types of problems. The globally convethe potential of the suggested strategy, and improve the convergence
gent modifications of the tested algorithms provide stable learning aseed of the globally convergent algorithms.

V. CONCLUDING REMARKS
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