Neural, Parralle] & Scientific Computations 8 (2000) 147-168

A Class of Adaptive Learning Rate Algorithms

Derived by One—dimensional Subminimization
Methods

G.D. Magoulas'3 and M.N. Vrahatis??

1Department of Information Systems and Computing, Brunel University
Uxbridge UB8 3PH, United Kingdom

2Department of Mathematics,University of Patras
GR-261.10 Patras, Greece

3University of Patras Artificial Intelligence Research Center-UPAIRC

ABSTRACT: A new class of adaptive learning rate algorithms for backpropagation
networks is presented. The algorithms of this class exploit the parallelism inherent
in the evaluation of the gradient of the error function to compute a different learn-
ing rate for each weight. To this end, one-dimensional subminimization is applied
along each weight direction. The algorithms of this class are analyzed as composite
nonlinear Jacobi methods applied to the gradient of the error function. Simulations
are conducted to evaluate the convergence behavior of two training algorithms of this
class and to compare them with several popular training methods.

Keywords - feedforward neural networks, gradient descent, back-propagation algo-
rithm, minimization methods, nonlinear Jacobi method, parallel algorithms.

1. INTRODUCTION

The efficient supervised training of Feedforward Neural Networks (FNNs) is a subject
of considerable ongoing research and numerous algorithms have been proposed to this
end. The special case of batch training of an FNN is consistent with the theory of
unconstrained optimization, since the information from all the training set is used. It
can be viewed as the minimization of the error function F; that is to find a minimizer
w* = (w},w},...,w,) € R", such that:

w* = min E(w), (1)

weR®

where E is the batch error measure defined as the sum-of-squared-differences error
function over the entire training set. This minimization corresponds to updating
the weights by epoch and, in order to be successful, it requires a sequence of weight

Received Febuary 1, 2000 1061-5369/96 $03.50 © Dynamic Publishers, Inc.

148 Magouglas and Vrahatis

iterates {w¥}32,, where k indicates epochs, which converges to a minimizer w*. The
rapid computation of such a minimizer is a rather difficult task since, in general, the
number of network variables is large and the corresponding nonconvex error function
possesses multitudes of local minima and has broad flat regions adjoined with narrow

steep ones.
Let us consider the family of gradient based training algorithms aaving the iter-

ative form:
wht! = wk + ¥k, k=0,1,2,... (2)

where w* is the current weight vector, d* is a search direction, and 7)* is the learning
rate. Various choices of the direction d* give rise to distinct algorithms. A broad
class of methods uses the search direction d* = —VE(w*), where the gradient vector
VE(w) is obtained by means of back-propagation of the error through the layers
of the network (Rumelhart et al., 1986). The most popular training algorithm of
this class, named batch Back-Propagation (BP), minimizes the error function using
the following steepest descent method with a constant, heuristically chosen, learning
rate n:

wht! = wk — nVE(wk). (3)

A small value for the learning rate is usually chosen, 0 < 7 < 1, in order to secure
the convergence of the BP training algorithmm and to avoid oscillations in a direction
where the error function is steep. However, it is well known that this approach tends
to be inefficient. This happens, for example, when the search space contains long
ravines that are characterized by sharp curvature across them and a gently slopping
floor (Rumelhart et al., 1986; Jacobs, 1988). In addition, the use of a constant learn-
ing rate introduces difficulties in obtaining convergence of back-propagation training
algorithms; see for example the work of Kuan et al., (1991) and of Liu et al., (1995).
On the other hand, there are theoretical results that guarantee the convergence when
the learning rate is constant. In this case the learning rate is proportional to the
inverse of the Lipschitz constant which, in practice, is not easily available (Armijo,
1966; Magoulas et al., 1997a).

Several heuristic methods have been suggested to dynamically adapt the learning
rate during training as an alternative to the constant learning rate strategy with the
aim to accelerate the convergence (Chan et al., 1987; Vogl et al., 1988; Battiti, 1989).
A different approach is to exploit the local shape of the error surface as described
by the direction cosines (Hsin et al., 1995) or the local estimation of the Lipschitz
constant (Magoulas et al., 1997a). Alternatively, a variety of approaches adapted from
numerical analysis have been applied, in an attempt to use second derivative related
information to accelerate the learning process (Parker, 1987; Watrous, 1987; Battiti,

A Class of Adaptive Learning Rate Algorithms

1992; Mpller, 1993; Van der Smagt, 1994; Magoulas et al., 1997b). However, these
training algorithms are computationally intensive for FNNs with several hundred
weights. Furthermore, it is not certain that the extra computational cost speeds up
the minimization process for nonconvex functions when the initial points are far from
a minimizer (Dennis and Moré, 1977; Nocedal, 1992), as is usually the case with the
neural network training problem (Battiti, 1992).

In this paper we present a class of training algorithms which are derived by one-
dimensional subminimization methods. A different learning rate for each weight is
adapted by means of one-dimensional subminimization. This approach help us to
develop algorithms which provide fast training without fluctuations and a greater
possibility of good performance. These characteristics are considered useful in neural
network applications.

The paper is organized as follows. In Section 2 the well known class of training
algorithms that employ a heuristically determined adaptive learning rate for each
weight is presented and the advantages as well as the disadvantages of these algorithms
are discussed. The new class of training algorithms is introduced in Section 3 and
its convergence properties are investigated in Section 4. Experiments to evaluate and
compare the performance of two algorithms of this class with several other training

methods are presented in Section 5. The paper ends, in Section 6, with conclusions.

2. TRAINING WITH A HEURISTICALLY DETERMINED
LEARNING RATE FOR EACH WEIGHT

The use of a different learning rate for each weight allows us to find the proper learning
rate that compensates for the small magnitude of the gradient in a flat weight direction
in order to avoid slow convergence, and dampens a large weight change in a steep
weight direction in order to avoid oscillations. Moreover, this approach exploits the
parallelism inherent in the evaluation of V E(w) by the BP algorithm. Various batch-
type BP training algorithms with an adaptive learning rate for each weight have
been suggested in the literature (Jacobs, 1988; Fahlman, 1989; Silva and Almeida,
1990; Pfister and Rojas, 1993; Riedmiller and Braun, 1993). Following this approach
Eq. (3) is reformulated to the following scheme:

wtt! = w* — diag{nf,...,nf} VE(w*), (4)

where diag{n%, ..., 7%} defines the diagonal matrix with elements {n¥,...,nk}.

The algorithms that follow the above scheme try to decrease the error by search-
ing a local minimum with small weight steps. These steps are usually constraint by
problem-dependent heuristic parameters in an attempt to avoid oscillations, and to

149

150 Magouglas and Vrahatis

ensure minimization of the error function in each weight direction. However, this
approach usually results in a trade-off between the convergence speed and the sta-
bility of the training algorithm. For example, the delta-bar-delta method (Jacobs,
1988) or the quickprop method (Fahlman, 1989) introduce additional highly problem-
dependent heuristic coefficients to alleviate the stability problems.

Heuristically chosen learning rate lower and upper bounds are also suggested with
the aim to avoid the usage of an extremely small, or large, learning rate component,
which misguides the resultant search direction. The learning rate lower bound helps
to avoid unsatisfactory convergence rate, while the learning rate upper bound limits
the influence of a large learning rate component on the resultant search direction, and
depends on the shape of the error function.

A well known difficulty of this approach is that the use of inappropriate heuristic
values for a weight direction misguides the resultant search direction. In such cases,
these training algorithms cannot exploit the global information obtained by taking
into consideration all the directions. This is the case of many well known training
algorithms that employ heuristics for properly tuning the adaptive learning rates
(Jacobs, 1988; Fahlman, 1989; Silva and Almeida, 1990; Pfister and Rojas, 1993;
Riedmiller and Braun, 1993) and no guarantee is provided that the weight updates
will converge to a minimizer of E. Recently, a modification of the Fahlman’s method
has been proposed which exhibits improved convergence characteristics (Vrahatis et
al., 2000a). In certain cases the aforementioned methods, although initially developed
for batch training, can be used for on-line training by minimizing a pattern-based error

measure.

3. LEARNING RATE ADAPTATION BY SUBMINIMIZATION IN
EACH WEIGHT DIRECTION

It is well known that a minimizer w* of a continuous differentiable function £ should

satisfy the necessary conditions:
VE(w')=0"=(0,0,...,0). (5)

Eq. (5) represents a set of n nonlinear equations which must be solved to obtain w*
(Rao, 1992). Therefore, one approach to the minimization of the error function E is
to seek the solutions of the set of Eq. (5) by including a provision to ensure that the
solution found does, indeed, correspond to a local minimizer. This is equivalent to

A Class of Adaptive Learning Rate Algorithms

solving the following system of equations:

O E(wy,wy, ..., w,) =0,
G E(wy,ws, ..., wy,) =0,
2 (1 2 . n) (6)
anE(wla Wa, ..., wn) = Oa
where 8,E(w,, ..., w;,...,w,) denotes the partial derivative of E with respect to the

ith weight.

Next, we consider the class of nonlinear Jacobi methods applied to System (6).
These methods are widely used for the numerical solution of a system of nonlinear
equations. The main feature of the nonlinear Jacobi process is that it is a parallel
algorithm (Ortega and Rheinboldt, 1970), i.e. it applies a parallel update of the
variables.

Starting from an arbitrary initial weight vector w® € D, one can subminimize at
the kth epoch the function:

E(wf,...,wf_l,w,-,wfﬂ,...,wﬁ), (7)

along the ith direction and obtain the corresponding subminimizer ;. Obviously for
the subminimizer w; holds:

BiE(wf,...,wf_l,ﬁ)i,wfﬂ,..‘,wﬁ) ={, (8)
This is a one-dimensional subminimization because all other components of the weight
vector, except the ith, are kept constant. Then, the ith weight is updated according
to the equation: ‘

witt = wk 4 7 (- wf), 9)

for some relaxation factor 7;. The error function in (7) is subminimized in parallel
for all 7.

Various composite nonlinear Jacobi training algorithms can be obtained depend-
ing on the one-dimensional minimization method applied. It is worth noticing that
the number of the iterations of the subminimization method is related to the re-
quested accuracy in obtaining the subminimizer approximations. Thus, significant
computational effort is needed in order to find very accurate approximations of the
subminimizer in each weight direction at each epoch. Moreover, this computational
effort is increased for FNNs with several hundred weights. On the other hand, it is
not certain that this large computational effort speeds up the minimization process
for nonconvex functions when the current weight vector is not close to a minimizer
w*. Thus, we propose to obtain w; by minimizing the function (7) with one iteration

151

152 Magouglas and Vrahatis

of a minimization method. Note that this practice is also suggested for the iterative
solution of nonlinear equations (Ortega and Rheinboldt, 1970; Voigt, 1971).

By properly tuning the relaxation factor 7, we can obtain better weight updates
because this factor defines the length of the minimization step along the resultant
search direction. Thus, we are able to avoid temporary oscillations and/or to enhance
the rate of convergence when the current weight vector is far from a minimizer.

Below we synthesize three adaptive learning rate algorithms of this class. These
algorithms employ a different learning rate for each weight based on traditional one-
dimensional minimization methods. The first one requires only the sign of the gradient

values, while the other two exploit both the function and gradient values.

3.1. The multi-step Jacobi-modified bisection method

In order to compute a minimizer approximation w; in the interval [a;, b;] we use the

following iterative formula (Vrahatis, 1988a; Vrahatis, 1988b):
wlt' = w? + sgn 6, E(w®) sgn 8, E(wP) hy /2P, p=0,1,..., (10)

where sgn defines the well known triple valued sign and wd = a;; hy = b; — q;. Of
course, the iterations (10) converge to w; € (a;, b;) if for some wf, p=1,2,..., the

following condition holds:
sgn 0; E(w®) sgn 6, E(w”) = —1.

To ensure that w; is a subminimizer along the ith weight direction, we choose the
endpoints a; and b; in such a way that the ith component of the gradient vector at
the left endpoint a; has negative value, or, the ith component of the gradient vector
at the right endpoint b; has positive value. In order that this condition be fulfilled

we choose the endpoints by means of the following relation:
k1 k k
a; = w, — 5{1 +sgn 6 E(w)}h{ —sgn 0, E(w*)p, b; = a; + h,

where # is a small positive real number which has dependence on the machine pre-
cision.

The maximum number v of the iterations of the sequence (10), which are required
to obtain an approximate minimizer w} at each epoch along the ith direction, is
related to a predefined accuracy & € (0, 1), and it is given by (Magoulas et al., 1996;
Vrahatis et al., 1996):

v = [logy(hi 6711,

where |-], defines the ceiling function.

A Class of Adaptive Learning Rate Algorithms

Thus, the parameter ; in the weight update equation (9) is the approximation of
the subminimizer obtained by (10). For the implementation and the good performance
characteristics of (10) in neural networks training with imprecision see (Magoulas et
al., 1996).

3.2. The one-step Jacobi-Newton method and an “approximated scheme”

A straightforward implementation of the one-step Jacobi-Newton iteration leads to
the following weight update equation:
b gt g BEWY))

O2E(w*)
In order to avoid the calculation of the second derivative we propose the following
scheme which utilizes the notion of the local Lipschitz constant (Magoulas et al.,
1999):

A¥ = |8, E(w*) — 8, E(w*1)|/|wF — wk1, (12)

i
where w* and w*~! is a pair of consecutive weight updates at the kth iteration. Thus,
the weights are updated according to the relation:
0. E(w*) — Bt
'LU'I-‘+1 =’U),:C — Tk { k—w'.c—ll 6,E(w") (13)
1

|w;

In the steep regions of the error surface Eq. (13) uses a small value for the learning
rate in order to guarantee convergence. On the other hand, when the error surface
has flat regions, a large learning rate is used to accelerate the convergence. Note that
in Eq. (13) the partial derivative with respect to the ith weight 8;E(w*™?) is used.
Thus, initial learning rates are needed to start the learning procedure.

3.3. A modified one-step Jacobi-Newton method

The problem of minimizing the error function E along the ith direction at the kth
epoch:

7; = min E(w* + n; ¢;), (14)
720

where e; indicates the ith column of the identity matrix, is equivalent to seeking the

value of 7} that minimizes the one-dimensional function:
$i(m) = E(w* +nie;). (15)

Since in neural network training F{w) > 0, for all w € R", then the point w* with
E(w*) = 0 minimizes E(w). Therefore the subminimization problem (14) can be

handled by applying properly a root finding procedure to the equation:

¢i(ni) =0, (16)

153

154 Magouglas and Vrahatis

in order to obtain an approximation 7; of 77. To this end, using one step of the
Newton’s method (see the discussion in the previous and in the next section for a

justification of the one step procedure) we obtain:

1 0 _ éi(nf)

i =Tk 7 . 17
7 7 ¢:(n?) (17)
Since 7Y = 0 we get:
R ¢i(17)
T — T 18
g s
From Eq. (15) we have:
d:(1?) = E(w* + 1) e;) = E(uw*) (19)
and
$:(1°) = VE(w*) e; = B E(w"). (20)
Thus, Eq. (18) is reforinulated as:
. E@Y
n = —BiE(w")' (21)

The value of 7; corresponds to the difference (@; — wf) of Eq. (9) and is calculated in
parallel for all weight directions (i = 1,...,n) at each epoch.

Consequently, Eq. (9) takes the form:
(22)

The iterative scheme (22) takes into consideration information from both. the error
function and the magnitude of the gradient components. When the gradient magni-
tude is small, the local shape of E in this direction is flat, otherwise it is steep. The
value of the error function indicates how close to the global minimizer this local shape
is. The above pieces of information help the iterative scheme (22) to escape from flat
regions with high error values, which are located far from a desired minimizer. Note

also that Eq. (22) does not need any initial learning rates.

4. CONVERGENCE ANALYSIS

The convergence analysis is studied under appropriate assumptions and provides use-
ful insight into the new class. First, we recall two concepts which will be used in our
convergence analysis. Then, we provide a local convergence analysis and we propose

strategies for developing globally convergent adaptive learning rate algorithms.

A Class of Adaptive Learning Rate Algorithms

4.1. The property A"

Young in 1971 discovered a class of matrices described as having property A that
can be partitioned into block-tridiagonal form, possibly after a suitable permutation
(Young, 1971).

Definition 1 (Axelsson, 1996): The matrix A has the property A™ if A can be permuted
by PAPT into a form that can be partitioned into block-tridiagonal form, that is,

[D, LT o
L, D, L]
PAPT = . - . ,
L., D,y L],
| O L., D, |
where the matrices D;, i = 1,...,r are nonsingular. For an algorithm which trans-

forms a symmetric matrix to tridiagonal form see (p.335 in (Stewart, 1973)).

4.2. The root—convergence factor

It is useful for any root finding iterative procedure to have a measure of the rate of
its convergence. In our case, we are interested in how fast the training algorithms
of the new class, denoted in general by P, converge to w*. A measure of the rate of
convergence is obtained by taking appropriate roots of successive errors. To this end
we use the following definition.

Definition 2 (Ortega and Rheinboldt, 1970): Let {w*}$, be any sequence that con-
verges to w*. Then the number

. enl/k
R{w*} = lim sup||w* — """, (23)

is the root-convergence factor, or R-factor of the sequence of the weights. If the iter-
ative procedure P converges to w* and C(P,w*) is the set of all sequences generated
by P which convergence to w*, then

R(P,w*) = sup{ R{w*}; {w*} € C(P,w")}, (24)

is the R-factor of P at w*.

4.3. Local convergence

In this subsection we focus on the local convergence behavior of the new class of
algorithms. The objective is to show that there is a neighborhood of a minimizer

of the error function for which convergence to the minimizer can be guaranteed. To

155

156 Magouglas and Vrahatis

this end, we recall some qualitative results which provide the theoretical convergence

justification of this class of algorithms (Vrahatis et al., 2000b).

Theorem 1 Let E: D C R* — R be twice continuously differentiable in an open
neighborhood Sy C D of a point w* € D for which VE (w*) = O™ and the Hessian,
H(w*) is positive definite with the property A™. Then there exists an open ball
S = S(w*, r) in S such that any sequence {w*}2, generated by the nonlinear
Jacobi process P converges to w* which minimizes E and R(P,w*) < 1.

Proof: Following the proof of Theorem 3.6 in (Vrahatis et al, 2000b), the necessary
and sufficient conditions for the point w* to be a local minimizer of the function
E are satisfied by the hypothesis VE(w*) = ©" and the assumption of positive
definitiveness of the Hessian at w* (see for example (Ortega and Rheinboldt, 1970)).
Finding such a point is equivalent to obtaining the corresponding solution w* € D of
the following equation:

VE(w) = O™, (25)

which minimizes E(w) or, equivalently, to solve iteratively, in parallel, the system
of equations (6) by applying the nonlinear Jacobi process and employing any one-
dimensional method for the subminimization process.

Next we consider the decomposition of H(w*) into its diagonal, strictly lower-

triangular and strictly upper-triangular parts:
H(w*) = D(w") — L(w") - LT (w*). (26)

Since, H(w*) is symmetric and positive definite, then D(w*) is positive definite
(Varga, 1962). Moreover, since H(w") has the property A", the eigenvalues of

<

$(w') = D(w")™! [L(w") + LT (w")], (27)

are real and the spectral radius of &(w*) is p(#(w*)) = ¢ < 1 (Axelsson, 1996); then
there exists an open ball § = S(w*,) in Sy, such that, for any initial weight vector
w® € S, there is a sequence {w*}, C S which satisfies the composite methods
defined by Egs. (8)-(9) such that limiew* = w* and R(P,w*) = ¢ <1 (Ortega
and Rheinboldt, 1970; Voigt, 1971). Thus the Theorem is proved.” O

The proof of the above Theorem shows that the asymptotic rate of convergence
of the algorithms is not enhanced if one takes more than one iteration of the one-
dimensional subminimization method. It only depends on'the value of the spectral
radius g. The theorem is applicable to any training algorithm that adapts a different

learning rate for each weight using one-dimensional subminimization methods.

A Class of Adaptive Learning Rate Algorithms

The local convergence analysis has been developed under appropriate assump-
tions and provides useful insight into the new class. However, in practice, neural net-
work users want a guarantee that a training algorithm will reduce the error at each
epoch and that the error will not fluctuate. Particularly, neural network practitioners
are interested in techniques that will satisfy the above mentioned requirements when
the initial weights are far from the neighborhood of a minimizer. Therefore we would
like any iterative scheme of the new class to generate weight iterates that achieve a
sufficient reduction in the error function at each epoch. Only these weight iterates
will be accepted. Searching for an acceptable weight vector rather than a minimizer
along the current search direction usually reduces the number of function evaluations
per epoch and the same goes for the total number of function evaluations required
to successfully train the FNN. This is due to the fact that training starts away from
a local minimum of the error function and exact minimization steps along the search
direction do not usually help, because of the nonlinearity of the error function. On
the other hand, when the current iterate w* is close to the minimizer a “better” ap-
proximator of the minimizer w**! can be found without much difficulty. This issues
are investigated below in the framework of the global convergence properties of the
new class.

4.4. Global convergence

By a globally convergent algorithm we mean an algorithm with the property that
for any initial weight vector the weight sequence converges to a local minimizer of
the error function (see Kelley, 1995; Dennis and Schnabel, 1996). In order to ensure
global convergence of the new class of algorithms the following assumptions are needed
(Kelley, 1995; Dennis and Schnabel, 1996):

a) The error function E is a real-valued function defined and continuous every-

where in R", bounded below in R",
b) for any two points w and v € R", VE satisfies the Lipschitz condition
IVE(w) - VE@)|| < Ljlw - vl], (28)
where L > 0 denotes the Lipschitz constant.

The effect of the above assumptions is to place an upper bound on the degree of the
nonlinearity of the error function and to ensure that the first derivatives are continuous
in w. If these assumptions are fulfilled any algorithm of this class can be made globally
convergent by determining the learning rates in such a way that the error function
is exactly minimized along the current search direction at each epoch. To this end

157

158 Magouglas and Vrahatis

an iterative search, which is often expensive in terms of error function evaluations, is
required. To alleviate this situation it is preferable to determine the learning rates
so that the error function is sufficiently decreased at each epoch, accompanied by
a significant change in the value of w. The following conditions, associated with
the names of Armijo, Goldstein, Price and Wolfe (Ortega and Rheinboldt, 1970), are
used to formulate the above ideas and to define a criterion of acceptance of any weight
iterate:

E@*) — E(w*) < 07 VE(w*)Td¥, (29)

VE(wkH)TVE(wk) > UQVE(wk)Tdk, (30)

where 0 < 0; < 0, < 1 and d* denotes the search direction and depends on the
training algorithm. By setting 7, = 1 and by using appropriate values for the learning
rates we seek to satisfy the conditions (29)-(30): the first condition ensures that the
error function is reduced with every epoch and the second condition prevents the
learning rate from becoming too small. Furthermore, these conditions can be used
to enhance any training algorithm with tuning techniques that are able to handle
arbitrarily large learning rates. Note that the value o; = 0.5 is usually suggested in
the literature (Armijo, 1966; Nocedal, 1992).

A simple technique to tune the length of the minimization step, so that it satisfies
Conditions (29)-(30) at each epoch, is to decrease the learning rates by a reduction
factor 1/q, where ¢ > 1 (Ortega and Rheinboldt, 1970). This has the effect that each
learning rate is decreased by the largest number in the sequence {g™™}%_,, so that
the condition (29) is satisfied. We remark here that the selection of g has an influence
on the number of error function evaluations required to obtain an acceptable weight
vector. Thus, some training problems respond well to one or two reductions in the
learning rates by modest amounts, such as 1/2, while others might respond well to
a more aggressive learning rate reduction. Note that reducing #; too much can be
costly as well, since the total number of epochs will be increased. Consequently, when
seeking to satisfy the condition (29) it is important to ensure that the learning rates
are not reduced unnecessarily so that the condition (30) is not satisfied. Instead of
checking the condition (30) it is possible to place a lower bound on the acceptable
values of each learning rate: the learning rate lower bound is related to the desired
accuracy in obtaining the final weights and helps to avoid unsatisfactory convergence
rate. This bound has the same theoretical effect as the condition (30) and ensures
global convergence (Dennis and Schnabel, 1996). The value ¢ = 2 is usually suggested
in the literature (Armijo, 1966) and, indeed, it has been found to work without
problems in the experiments reported in the next section. We have also set the
learning rate lower bound to 10~%.

A Class of Adaptive Learning Rate Algorithms

Another approach to perform learning rate reduction is to estimate the appro-
priate reduction factor at each epoch. This is achieved by modeling the decrease in
the magnitude of the gradient vector as the learning rates are reduced. To this end,
quadratic and cubic interpolations, which exploit the available information about
the error function are suggested. Relative techniques have been proposed by Battiti
(1989), Dennis and Schnabel (1996) and Looney (1997).

5. EXPERIMENTAL STUDY

In this section we give comparative results for six batch training algorithms: Back-
propagation with constant learning rate (BP); Back-propagation with constant learn-
ing rate and constant Momentum (Rumelhart et al., 1986), named BPM; Adaptive
Back-propagation with adaptive momentum (ABP) proposed by Vogl et al. (1988);
Rprop (Riedmiller and Braun, 1993); the Approzimated one-step Jacobi-Newton
method of Eq. (13), named AJN and the Modified one-step Jacobi-Newton method of
Eq. (22), named MJN. The FNNs have been implemented in Matlab (Demuth and
Beale, 1992) and 1000 simulations have been run in each test case.

The selection of initial weights is very important in FNN training (Wessel and
Barnard, 1992). A well known initialization heuristic for FNNs is to select the weights
with uniform probability from the interval (—1,1). This weight range has been used
in several experimental studies (see Hirose et al., 1991; Hoehfeld and Fahlman 1992,
Pearlmutter 1992; Riedmiller and Braun, 1993).

The values of the learning parameters used in each problem are shown in Table 1.
The initial learning rate has been the same for all algorithms tested; it has been care-
fully chosen so that the BP algorithm rapidly converges without oscillating towards a
global minimum. Then, all the other learning parameters have been tuned by trying
different values and comparing the number of successes that has been exhibited by 3
simulation runs that have been started from the same initial weights. However, if an
algorithm has exhibited the same number of successes out of 3 runs for two different
parameter combinations, then the average number of epochs has been checked and
the combination that has provided the fastest convergence has been chosen.

To obtain the best possible convergence, the momentum term m in BPM is nor-
mally adjusted by trial and error or even by some kind of random search (Schaffer
et al., 1992). Since the optimal value is highly dependent on the learning task, no
general strategy has been developed to deal with this problem. Thus, the optimal
value of m is experimental, but depends on the learning rate chosen. In our experi-
ments, we have tried 9 different values for the momentum ranging from 0.1 to 0.9 and
we have run 3 simulations combining all these values with the best available learning

159

160 Magouglas and Vrahatis

Table 1: Learning parameters used in the experiments

Algorithm 8x8 font Texture classification Vowel spotting
BP 7’ =12 n° = 0.001 n° = 0.0034
BPM 7° =12 n° = 0.001 n° = 0.0034

m=209 m=0.9 m=0.7
ABP =12 7% = 0.001 n° = 0.0034
m=0.1 m=0.9 m=20.1
inc=1.05 inc = 1.05 inc = 1.07
dec = 0.7 dec = 0.5 dec =0.8
ratio = 1.04 ratio = 1.04 ratio = 1.04
Rprop =12 70 = 0.001 n° = 0.0034
u=13 u=1.05 u=13
d=0.7 d=0.6 d=0.7
Ib=10"° Ib=10"° Ib=10"5
ub=1 ub=1 ub=1
AJN 7’ =12 n° = 0.001 n° = 0.0034
T=1 T=1 T=1
Ib=10"° Ib=10"° Ib=10""
ub=1 ub=1 ub=1
MJN T= T=1 T=1
ub=1 ub=1 ub=1

rate for the BP.

Much effort has been made to properly tune the learning rate increment and
decrement factors inc, u, dec and d. To be more specific, different values in steps
of 0.05 to 2 have been tested for the learning rate increment factor, while different
values between 0.1 and 0.9, in steps of 0.05, have been tried for the learning rate
decrement factor. The error ratio parameter, denoted ratio in Table 1, has been set
equal to 1.04. This value is generally suggested in the literature (Vogl et ’al., 1988)
and, indeed, it has been found to work better than others tested. The lower and
upper learning rate bound, b and ub, respectively, have been chosen so as to avoid
unsatisfactory convergence rates (Riedmiller and Braun, 1993). All the combinations
of these parameter values have been tested on 3 simulation runs starting from the
same initial weights. The combination that has exhibited the best number of successes
‘out of 3 runs has finally been chosen. If two different parameter combinations have
exhibited the same number of successes (out of 3), then the combination with the
smallest average number of epochs has been chosen.

A consideration that is worth mentioning is the difference between gradient and
error function evaluations at each epoch: for the BP, the BPM, the ABP and the
Rprop one gradient evaluation and one error function evaluation are necessary at each
epoch; for AJN and MJN there is a number of additional error function evaluations

A Class of Adaptive Learning Rate Algorithms

Table 2: Comparative results for the numeric font learning problem

Algorithm Gradient Evaluation Function Evaluation Success

M o Min/Maz m o Min/Maz %
BP 14489 2783.7 9421/19947 14489 2783.7 9421/19947 66
BPM 10142 2943.1 5328/18756 10142 2943.1 5328/18756 54
ABP 1975 2509.5 228/13822 1975 2509.5 228/13822 91
Rprop 289 189.1 56/876 289 189.1 56,/876 90
AJN 159 24.1 119/245 581 105.9 404/884 100
MJN 1361 648.8 553/5286 3708 3041.4 555/26024 100

when the condition (29) is not satisfied. Thus, we compare the algorithms in terms
of both gradient and error function evaluations. However, the reader has to consider
the fact that a gradient evaluation is more costly than an error function evaluation.
For example, Mgller suggests to count a gradient evaluation three times more than
an error function evaluation (Mgller, 1993).

5.1. Numeric font learning problem

The first experiment refers to the training of a 64-6-10 FNN (444 weights, 16 biases)
for recognizing 8 x 8 printed numerals from 0 to 9 (Sperduti and Starita, 1993). The
network is based on neurons of the logistic activation model. Numerals are given
in a finite sequence of input-output pairs (Inp,, Out,) where Inp, are the binary
64-dimensional input vectors determining the 8 x 8 binary pixel and Out, are 10-
dimensional binary output vectors, for p = 0,...,9 determining the corresponding
numerals. An error value E < 1073 has been chosen as termination condition for all
algorithms tested.

Detailed results regarding the training performance of the algorithms are pre-
sented in Table 2, where u denotes the mean number of gradient or error function
evaluations required to obtain convergence, o the corresponding standard deviation,
Min/Maz the minimum and maximum number of gradient or error function evalu-
ations, and % denotes the percentage of successful simulations out of 1000 runs.

Obviously, the number of gradient evaluations is equal to the number of error
function evaluations for the BP, the BPM, the ABP and the Rprop. AJN has the
smallest average number of gradient evaluations which is considered very important
in practice. Rprop requires less function evaluations by it reveals a smaller number
of successful runs than AJN. Both AJN and MJN provide a greater possibility of
successful training: they exhibit a 100% of success in the 1000 simulation runs. Re-
garding the performance of the MJN, it is better that the BP and the BPM (without
needing an initial learning rate) and comparable to the overall performance of the

161

162 Magouglas and Vrahatis

ABP which needs fine tuning five parameters.

5.2. Texture classification problem

The second experiment is a texture classification problem. A total of 12 Brodatz
texture images (Brodatz, 1966): 3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 (see Figure 1)
of size 512 x 512 has been acquired by a scanner at 150dpi. From each texture image
10 subimages of size 128 x 128 have been randomly selected and the co-occurrence
method has been applied (Haralick et al., 1973). This method evaluates a series of
matrices that describe the spatial variation of gray-level values within a local area.
In this way, the relative frequencies of gray-level pairs of pixels at certain relative
displacements are computed and stored in a matrix form. In our simulations, four co-
occurrence matrices have been computed for each sample area, with a displacement
of one pixel and angles of 0°, 45°, 90° and 135°. 10 sixteenth-dimensional training
patterns have been created from each image. A 16-8-12 FNN (224 weights, 20 biases)
with logistic activations has been trained to classify the patterns to 12 texture types.

A classification error CE< 3% has been used as termination condition.

Figure 1: Twelve texture patterns obtained from digitizing the ‘Brodatz Album’
images 20, 5, 51, 3, 12, 9, 93, 15, 68, 77, 78 and 79.

The results of the training phase are shown in Table 3, where the abbreviations
are as in Table 2. The successfully trained FNNs are tested for their generalization
capability using patterns from 20 subimages of the same size randomly selected from
each image. The average success rate of classification is: BP= 90%; BPM= 90%;

A Class of Adaptive Learning Rate Algorithms

ABP= 93.5%; Rprop= 93.6%; AJN= 94.1%; MIN= 93%.

In general, AJN outperforms all other methods tested. MJN significantly outper-
forms BP and BPM in the number of gradient and error function evaluations as well
as in the percentage of successful simulations. ABP exhibits very good performance,
however it requires fine tuning four additional learning parameters. Rprop is also
faster than MJN needing tuning five learning parameters, but has smaller percentage
of success than MJN.

5.3. Vowel spotting problem

Vowel spotting provides a preliminary acoustic labeling of speech, which can be very
important for both speech and speaker recognition procedures. A 15-15-1 FNN (240
weights and 16 biases), based on neurons of hyperbolic tangent activations, is trained
as speaker independent using labeled training data from a large number of speakers
from the TIMIT database (Fisher et al., 1987). The sampled speech data are seg-
mented into 30ms frames with a 15ms sliding window in overlapping mode. After
applying a Hamming window, each frame is analyzed using the Perceptual Linear
Predictive (PLP) speech analysis technique to obtain the characteristic features of
the signal. The choice of the proper features is based on the work of (Sirigos et al.,
1995) which proposes a 15-dimensional feature vector for each frame. The feature
vectors are classified into {—1,+1} for the non-vowel /vowel model.

The FNN is part of a text-independent speaker identification and verification
system which is based on using only the vowel part of the signal. The fact that the
system uses only the vowel part of the signal makes the cost of mistakenly accepting a
non-vowel and considering it as a vowel much more than the cost of rejecting a vowel
and considering it as a non-vowel. A mistaken decision regarding a non-vowel will
produce unpredictable errors to the speaker classification module of the system that
uses the response of the FNN and is trained only with vowels (Fakotakis and Sirigos,
1996).

Table 3: Comparative results for the texture classification problem

Algorithm Gradient Evaluation Function Evaluation Success

i o Min/Mazx i o Min/Maz %
BP 15839 3723.3 8271/25749 15839 3723.3 8271/25749 96
BPM 12422 2912.1 4182/18756 12422 2912.1 4182/18756 94
ABP 560 2704 310/2052 560 2704 310/2052 100
Rprop 703 2112.6 82/18750 703 2112.6 82/18750 88
AJN 382 1296 217/1242 591 2009 343/1930 100

MJIN 791 5123 417/5318 2185 1405.9 1116/14006 100

164 Magouglas and Vrahatis

Table 4: Comparative results for the vowel spotting problem

Algorithm Gradient Evaluation Function Evaluation Success

U o Min/Maz m o Min/Maz %
BP 905 1067.5 393/6686 905 1067.5 393/6686 63
BPM 802 1852.2 381/9881 802 1852.2 381/9881 57
ABP 1146 13744 302/6559 1146 13744 302/6559 73
Rprop 296 584.3 79/3000 296 584.3 79/3000 80
AJN 169 90.4 108/520 545 175.8 315/1092 82
MJN 362 358.5 96,/1580 1756 1692.1 459/7396 64

Thus, in order to minimize the false acceptance error rate which is more critical
than the false rejection error rate, we polarize the training procedure by taking 317
non-vowel patterns and 43 vowel patterns. The training terminates when the clas-
sification error is less than 2%. After training, the generalization capability of the
successfully trained FNNs is examined with 769 feature vectors taken from different
utterances and speakers. The results of the training phase are shown in Table 4,
where the abbreviations are as in Table 2.

The performance of the FNNs that have been trained using adaptive methods is
evaluated in terms of the average improvement on the error rate percentage, that has
been achieved by BP trained FNNs, that is 9%. Thus, FNNs trained with BPM do
not improve the error rate achieved by the BP, thus the improvement is 0%. The av-
erage improvement achieved by the adaptive methods is: ABP= 0.1%; Rprop= 1.3%;
AJN= 1.3%; MIJN= 1%. The above results show that the increased training speed
achieved by the adaptive learning rate methods does not affect their generalization
capability.

AJN exhibits the best performance. MJN compares favorably on the number of
gradient evaluations to BP, BPM and ABP without using an initial learning rate.
It also improves the error rate achieved by the BP by 1%. ABP exhibits the slow-
est convergence but has a reliable performance regarding the number of successful
simulations. Note that Rprop provides fast training and has very good performance
regarding the generalization capability.

6. CONCLUSIONS

A class of gradient-based training algorithms has been presented. These algorithms
apply one-dimensional subminimization methods to adapt the rate of learning and
provide accelerated training without oscillation by ensuring that the error function
is sufficiently decreased with every iteration. In addition, they ensure global conver-
gence, i.e. convergence to a local minimizer of the error function from any starting

A Class of Adaptive Learning Rate Algorithms

point, and provide stable learning and, therefore, a greater possibility of good perfor-
mance.

Two algorithms of this class have been tested and compared with several train-

ing algorithms. Their efficiency has been numerically confirmed by the experiments

presented in this paper.

7. ACKNOWLEDGEMENT

George D. Magoulas was supported by a postdoctoral fellowship from the Greek State
Scholarship Foundation (I.K.Y.).

10.

11.

12.

REFERENCES

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Internal Representations
by Error Propagation. In Parallel Distributed Processing: Ezplorations in the Microstructure of
Cognition, 1, D. E. Rumelhart, & J. L. McClelland, eds., pp. 318-362. MIT Press, Cambridge,
Massachusetts.

. Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural

Networks, vol. 1, pp.295-307.

. Kuan, C.M., & Hornik, K. (1991). Convergence of learning algorithms with constant learning

rates. IEEE Transactions on Neural Networks, vol. 2, pp.484-488.

. Liu, R., Dong, G., & Ling, X. (1995). A convergence analysis for neural networks with constant

learning rates and non-stationary inputs. In Proceedings of the 34th Conference on Decision
& Control, New Orleans, pp.1278-1283.

. Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial deriva-

tives. Pacific Journal of Mathematics, vol. 16, pp.1-3.

. Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1997a). Effective back-propagation

with variable stepsize. Neural Networks, vol. 10, pp.69-82.

. Chan, L. W., & Fallside, F. (1987). An adaptive training algorithm for back-propagation

networks. Computers, Speech & Language, vol. 2, pp.205-218.

. Vogl, T. P, Mangis, J. K., Rigler, J. K., Zink, W. T, & Alkon, D. L. (1988). Accelerating the

convergence of the back-propagation method. Biological Cybernetics, vol. 59, pp.257-263.

. Battiti, R. (1989). Accelerated backpropagation learning: two optimization methods. Complez

Systems, vol. 3, pp.331-342.

Hsin, H.-C,, Li, C.-C., Sun, M., & Sclabassi, R.J. (1995). An adaptive training algorithm for
back-propagation neural networks. JEEE Transactions on System, Man and Cybernetics, vol.
25, pp.512-514.

Parker, D. B. (1987). Optimal Algorithms for Adaptive Networks: Second Order Back-
Propagation, Second Order Direct Propagation, and Second Order Hebbian Learning. In Pro-
ceedings of the IEEE International Conference on Neural Networks, vol. 2, pp.593-600. Piscat-
away, New Jersey: IEEE Press.

Watrous, R. L. (1987). Learning Algorithms for Connectionist Networks: Applied Gradient
of Nonlinear Optimization. In Proceedings of the IEEE International Conference on Neural
Networks,vol. 2, pp.619-627. Piscataway, New Jersey: IEEE Press.

165

166 Magouglas and Vrahatis

13. Battiti, R. (1992). First- and second-order methods for learning: between steepest descent and
Newton’s method. Neural Computation, vol. 4, pp.141-166.

14. Mgller, M. F. (1993). A scaled conjugate gradient algorithm, for fast supervised learning. Neural
Networks, vol. 6, pp.525-533.

15. Van der Smagt, P. P. (1994). Minimization Methods for training feedforward neural networks.
Neural Networks, vol. 7, pp.1-11.

16. Magoulas, G. D., Vrahatis, M. N., Grapsa, T. N., & Androulakis, G. S. (1997b). Neural
network supervised training based on a dimension reducing method. In Mathematics of Neural
Networks: Models, Algorithms and Applications, S. W. Ellacot, J. C. Mason, & 1. J. Anderson,
eds., pp. 245-249, Kluwer.

17. Dennis, J. E., & Moré, J. J. (1977). Quasi-Newton methods, motivation and theory. SIAM
Review, vol. 19, pp.46-89.

18. Nocedal, J. (1992). Theory of algorithms for unconstrained optimization. Acta Numerica,
pp.199-242.

19. Fahlman, S. E. (1989). Faster-learning variations on back-propagation: an empirical study. In
Proceedings of the 1988 Connectionist Models Summer School, D.S. Touretzky, G.E. Hinton,
& T.J. Sejnowski, eds., pp. 38-51. San Mateo: Morgan Kaufmann.

20. Silva, F., & Almeida, L. (1990). Acceleration techniques for the back-propagation algorithm.
Lecture Notes in Computer Science, vol. 412, pp.110-119. Berlin: Springer-Verlag.

21. Pfister, M., & Rojas, R. (1993). Speeding-up backpropagation -A comparison of orthogonal
techniques. In Proceedings of the Joint Conference on Neural Networks, Nagoya, Japan, pp.517—
523. Piscataway, New Jersey: IEEE Press.

22. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation
learning: the Rprop algorithm. In Proceedings of the IEEE International Conference on Neural
Networks, San Francisco, CA, pp.586-591. Piscataway, New Jersey: IEEE Press.

23. Vrahatis, M.N., Magoulas, G.D. & Plagianakos, V.P. (2000a). Globally convergent modification
of the Quickprop method, Neural Processing Letters, to appear vol. 12, No. 2, October 2000.

24. Rao, S.S. (1992). Optimization Theory and Applications. New Delhi: Wiley Eastern Limited.

25. Ortega, J.M., & Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in Several
Variables. New York:Academic Press.

26. Voigt, R.G. (1971). Rates of convergence for a class of iterative procedures. SIAM Journal of
Numerical Analysis, vol. 8, pp.127-134.

27. Vrahatis, M. N. (1988a). Solving systems of nonlinear equations using the nonzero value of the
topological degree. ACM Transactions Mathematical Software, vol. 14, pp.312-329 .

28. Vrahatis, M. N. (1988b). CHABIS: A mathematical software package for locating and evalu-
ating roots of systems of nonlinear equations. ACM Transactions Mathematical Software, vol.
14, pp.330-336.

29. Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1996). A new method in neural
network supervised training with imprecision. In Proceedings of the IEEE 3rd International
Conference on Electronics, Circuits and Systems, pp. 287-290. Piscataway, New Jersey: IEEE
Press.

30. Vrahatis, M. N., Androulakis, G. S., & Manousakis, G.E. (1996). A new unconstrained opti-
mization method for imprecise function and gradient values. Journal of Mathematical Analysis
& Applications, vol. 197, pp.586-607.

31. Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1999). Improving the convergence of

A Class of Adaptive Learning Rate Algorithms 167

32.
33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

the back-propagation algorithm using learning rate adaptation methods, Neural Computation,
vol. 11, pp.1769-1796.

Young, D. (1971). Iterative methods for solving partial difference equations of elliptic type.
Transactions American Mathematical Society, vol. 76, pp.92-111.

Axelsson, O. (1996). Iterative Solution Methods. New York: Cambridge University Press.
Stewart G.W., (1973). Introduction to Matriz Computations. New York: Academic Press.
Vrahatis, M.N., Androulakis, G.S., Lambrinos, J.N. & Magoulas, G.D. (2000b). A class of gra-
dient unconstrained minimisation algorithms with adaptive stepsize. Journal of Computational
and Applied Mathematics, vol. 114, pp.367-386.

Varga, R. (1962). Matriz Iterative Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
Kelley, C.T. (1995). Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM
publications.

Dennis, J. E., & Schnabel, R. B. (1996). Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Philadelphia: SIAM publications.

Looney, C. G. (1997). Pattern Recognition Using Neural Networks. New York: Oxford Univer-
sity Press.

Demuth, H., & Beale, M. (1992). Neural Network Toolboz User’s Guide. Natick, Massachusetts:
The MathWorks Inc.

Wessel, L.F., & Barnard, E. (1992). Avoiding false local minima by proper initialization of
connections. IEEE Transactions Neural Networks, vol. 3, pp.899-905.

Hirose, Y., Yamashita, K., & Hijiya, S. (1991). Back-propagation algorithm which varies the
number of hidden units. Neural Networks, vol. 4, pp.61-66.

Hoehfeld, M., & Fahlman, S.E. (1992). Learning with limited numerical precision using the
cascade-correlation algorithm. IEEE Transactions on Neurel Networks, vol. 3, pp.602-611.
Pearlmutter, B. 1992. Gradient descent: second-order momentum and saturating error. In
Advances in Neural Information Processing Systemns 4, J.E. Moody, S.J. Hanson, & R.P. Lipp-
mann, eds., pp. 887-894. San Mateo: Morgan Kaufmann.

Schaffer, J., Whitley, D., & Eshelman, L. (1992). Combinations of genetic algorithms and
neural networks: a survey of the state of the art. In Proceedings of the International Workshop
on Combinations of Genetic Algorithms and Neural Networks, pp.1-37. Los Alamitos: IEEE
Computer Society Press.

Sperduti, A., & Starita, A. (1993). Speed up learning and network optimization with extended
back-propagation.. Neural Networks, vol. 6, pp.365-383.

Brodatz P. Teztures- a Photographic Album for Artists and Designer. New York: Dover.
Haralick, R., Shanmugan, K., & Dinstein, I. (1973). Textural features for image classification.
IEEE Transactions System, Man & Cybernetics, vol. 3, pp.610-621.

Sirigos, J., Fakotakis, N., & Kokkinakis, G. (1995). A comparison of several speech parameters
for speaker independent speech recognition and speaker recognition. In Proceedings of the th
FEuropean Conference of Speech Communications and Technology.

Fisher, W., Zue, V., Bernstein, J., & Pallet, D. (1987). An acoustic-phonetic data base. Journal
of Acoustical Society of America, Suppl. A, vol. 81, pp.581-592.

Fakotakis, N., & Sirigos, J. (1996). A high-performance text-independent speaker recognition
system based on vowel spotting and neural nets. In Proceedings of the IEEE International
Conference on Acoustic Speech and Signal Processing, vol. 2, pp.661-664. Piscataway, New
Jersey: IEEE Press.

