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Networks of neurons can perform computations that even modern computers find very difficult
to simulate. Most of the existing artificial neurons and artificial neural networks are consid-
ered biologically unrealistic, nevertheless the practical success of the backpropagation algorithm
and the powerful capabilities of feedforward neural networks have made neural computing very
popular in several application areas. A challenging issue in this context is learning internal
representations by adjusting the weights of the network connections. To this end, several first-
order and second-order algorithms have been proposed in the literature. This paper provides an
overview of approaches to backpropagation training, emphazing on first-order adaptive learning
algorithms that build on the theory of nonlinear optimization, and proposes a framework for
their analysis in the context of deterministic optimization.
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1. Introduction

Neural computing is inspired by information pro-
cessing and computation in the brain. The brain is a
highly complex, nonlinear, and parallel information-
processing system [Haykin, 1994]. The feature that
has made the brain such an appealing area of inter-
est is its ability to learn from experience. Learn-
ing is a continuous process, where each day our
brain re-structures itself to become accustomed to
new surroundings and builds its own rules through
past experiences. The human brain is composed
of billions of cells called neurons. The cell body–
soma contains the nucleus; networks of nerve fibre
called dendrites are connected to the soma. Each

cell consists of a single long fibre called an axon
which branches out into many strands and sub-
strands which are eventually connected to the den-
drites of other neurons through synaptic junctions
called synapses.

Information processing takes place by feeding
the neuron with input through its dendrites; this
information could either be raw data from the out-
side world or processed data from another neuron
(see Fig. 1). The neuron processes information it
receives and sends out electrical activity through
the axon, when this activity reaches the synapses it
is converted into electrical effects that either excite
or inhibit activity in connected neurones. When a
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Fig. 1. Biological neurons.

neuron receives excitatory input it sends electrical
activity down its axon.

The theoretical basis of neural networks was
developed in 1943 by the neurophysiologist Warren
McCulloch of the University of Illinois and the
mathematician Walter Pitts of the University of
Chicago. In 1954 Belmont Farley and Wesley Clark
of the Massachusetts Institute of Technology suc-
ceeded in running the first simple neural network.

Highly simplified models of the human brain
have been proposed in the area of computational
intelligence [Haykin, 1994]. Nodes, or artificial neu-
rons, in these models are usually considered as sim-
plified models of biological neurons (see Fig. 2). The
neuron consists of a number of inputs xn and a sin-
gle output y. Connections between the inputs and
the neuron represent dendrites each with a corre-
sponding weight wn that is applied to the input.
Weights have the same effect as the synapses in a
biological neuron.

In Fig. 2, each input of the artificial neuron
corresponds to a single attribute or an output of
another neuron. Inputs must be numerical. How-
ever in some circumstances, e.g. neural computing
applied to mortgage assessment, the input may be
qualitative such as the occupation of the applicant.
In these cases the attribute must be transformed
into numerical values during a pre-processing stage.
Each input has an associated weight that represents
the relative strength or the importance of the input.
An initial value is assigned to each weight, but these

Fig. 2. Model of a single artificial neuron.

values are not static. As the neuron is trained, as
will be explained below, the weights are contin-
uously adjusted to obtain a more accurate result
and it is through these continuous adjustments that
the neuron learns. A bias is simply added to the
weighted sum of each node; it has a constant input
of 1 and is updated during training like weights. The
role of the summation function is to calculate the
weighted average or activation level of all input ele-
ments, found by multiplying each input value by its
weight and then totaling them for a weighted sum.
The transfer or activation function of each process-
ing neuron is a mathematical formula that deter-
mines the output y of the neuron. Its purpose is
to prevent outputs from reaching very large val-
ues which can inhibit training. A number of trans-
fer functions are used in practice, such as those
shown in Fig. 3, i.e. the linear, nonlinear (sigmoid)
and binary threshold functions. Lastly, the out-
put y corresponds to the solution of a problem,
and usually needs to be transformed into a for-
mat suitable as input to another neuron or as a
piece of information that is understandable to the
user.

A popular way to training an artificial neuron is
by error correction: the difference between neuron’s
actual output y and the correct output t, as defined
by the user, is calculated. This difference is also
known as learning error. If the response at the out-
put is incorrect then the neuron weights should be

(a) Linear Transfer Function

(b) Sigmoid Transfer Function

(c) Threshold Transfer Function

Fig. 3. Popular transfer functions used in artificial neurons.
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changed so that it is more likely to produce the cor-
rect response the next time that the input stimulus
is presented. For example, this is achieved by chang-
ing the nth connection weight:

wnew
n = wold

n + ∆wn, (1)

where wnew
n is the updated value, wold

n is the current
value and ∆wn the estimated change needed to pro-
duce the correct response. This process of change is
applied until the learning error reaches a suitable
value.

This form of training is called supervised learn-
ing because it assumes an external teacher supplies
the correct output t. As soon as the neuron is able
to perform sufficiently well on additional test cases,
it can be used to classify new inputs. Another form
of training, which is adopted in practice is called
unsupervised learning. In this approach there is no
teacher that provides the correct output for each
input data but inputs are grouped together by mea-
suring the similarity among them rather than the
error [Haykin, 1994].

At this point it is useful to provide a simple
example in order to visualize the learning error dur-
ing supervised training. Let us consider the case of
a single neuron with two weights, w1 and w2 and
sigmoid activation function f(x) = (1 + e−x)−1.
This minimal architecture is trained to associate
a set of eight inputs with a set of eight outputs
that have been defined by the user. Training occurs
by feeding the artificial neuron with each one of
the inputs; producing the output and calculating
the corresponding error. The overall error produced
depends on the current values of the weights, W1

and W2, and is defined by the following objective

function

E(W1,W2) =
8∑

p=1

(yp − tp)2, (2)

where p denotes the input stimulus, yp denotes the
actual output for input p and tp denotes the cor-
rect output. Figure 4 illustrates the error function
produced when W1 ∈ [−3,+3] and W2 ∈ [−5,+5].
The objective function of Eq. (2) defines the sum-
of-squared-error and is commonly used in neural
networks learning.

The error function of Eq. (2) is not the
only possible choice for the objective function.
A variety of distance functions are available in
the literature, such as the Minkowsky, Maha-
lanobis, Camberra, Chebychev, Quadratic, Corre-
lation, Kendall’s Rank Correlation and Chi-square
distance metrics; the Context-Similarity measure;
the Contrast Model; hyperectangle distance func-
tions and others [Wilson & Martinez, 1997].

In general, the success of a learning sys-
tem depends upon the adopted distance func-
tion [Wilson & Martinez, 1997]. For example, a
function for measuring the network performance
is the piecewise linear perceptron criterion func-
tion [Duda & Hart, 1973]

E(w) = −
∑

z∈Z(w)

z�w, (3)

where Z(w) is the subset of samples misclassified by
w (for these samples z�w ≤ 0). Obviously if Z(w)
is empty then E(w) = 0; otherwise E(w) > 0. From
a geometrical point of view this objective function
tries to minimize the sum of the distances from
the misclassified samples to the decision boundary

Fig. 4. Error surface of a single neuron.
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but its gradient is not continuous. Another func-
tion of the same family that uses a continuous
gradient is the quadratic function [Mays, 1964;
Hassoun, 1995]:

E(w) =
∑

z�w≤b

(z�w − b)2

‖z‖2 , (4)

where b is a positive constant bias. In general, any
differentiable function that minimizes the errors
ep = yp − tp, for all p, can be used.

The sum-of-squared-error function of Eq. (2)
can be generalized to the well known Minkowski-r
objective function [Hanson & Burr, 1988]:

E(w) =
P∑

p=1

|yp − tp|r. (5)

Note that Eq. (5) for r = 1 is also known as the
Manhattan distance; for r = ∞ is the Chebychev
distance and for r = 2 it reduces to the sum-of-
squared-error function. One weakness of the sum-of-
squared-error function is that it is influenced by the
relative magnitude of the input attributes. There-
fore, a process of normalization, the exact way of
which depends on the nature of the problem and
on domain knowledge, is often necessary. Neverthe-
less, the choice r = 2 has become very popular
because it can be shown that under some assump-
tions it minimizes both the sum-of-squared-error
and the probability of prediction error (maximum
likelihood) [Hassoun, 1995].

During training, weights are repeatedly
updated using Eq. (1) until the learning error is
small enough. As will be explained in the next
sections the way ∆wn is calculated influences the
accuracy and quality of the solution, i.e. of the
weight combination that makes the learning error
small enough.

Artificial neurons can be connected together
forming networks of artificial neurons that are
called Artificial Neural Networks (ANNs). ANNs
offer a powerful and distributed computing archi-
tecture equipped with significant abilities such as
learning of highly nonlinear and multivariable rela-
tionships, adaptation to changing environments and
learning of new data/concepts, self-organization,
real-time (online) operation, and they can be
implemented in parallel and in Very Large Scale
Integrated Systems (VLSI) [Magoulas et al., 2001;
Plagianakos & Vrahatis, 2002; Magoulas et al.,
2004]. ANNs have already been successfully used in
many real life applications, such as medical imaging,

control, and decision making. They demonstrate
considerable ability in handling

(a) incompleteness: missing parameter values;
(b) incorrectness: systematic or random noise in

the data;
(c) sparseness: few and/or non-representable

records available;
(d) inexactness: inappropriate selection of parame-

ters for the given task.

Furthermore, ANNs perform pattern matching and
exhibit human-like characteristics such as general-
ization, and robustness to noise.

The rest of the paper is organized as fol-
lows. The next section formulates the supervised
training problem from an optimization perspec-
tive. Then, in Sec. 3, adaptive algorithms with
a common learning rate for each weight are pre-
sented and their convergence is discussed in the
framework of Armijo–Goldstein–Price conditions.
The paper proceeds with a detailed review of first-
order adaptive algorithms with a different adap-
tive learning for each weight. A framework for their
analysis is presented in the context of the nonlin-
ear Jacobi process. In Sec. 5, sources of impreci-
sion that influence the success of the supervised
training procedure are discussed and an approach
based on the nonlinear successive overrelaxation is
presented to handle imprecise information. Lastly,
complexity issues relevant to supervised training
are briefly discussed. Section 7 ends the paper with
conclusions.

2. Formulation of the Supervised
Training Problem

The training algorithm is the method used for
updating the weights of Eq. (1). This paper focuses
on a particular class of training algorithms that
perform supervised training. In this type of learn-
ing, the desired output for each set of inputs is
known and fed into the network. The difference
between the desired and the actual output is used
to calculate modifications to the weights that glob-
ally minimize this difference (see Fig. 5). The rapid
computation of such a global minimum is a rather
difficult task since, in general, the number of net-
work weights is high and the corresponding noncon-
vex multimodal error function possesses multitudes
of local minima and has broad flat regions adjoined
with narrow steep ones.
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Fig. 5. Generic supervised training scheme.

Feedforward Neural Networks (FNNs) form the
most popular category of ANNs. In FNNs neurons
are organized in layers, where neurons of one layer
are connected to each one of the neurons of the next
layer, and inputs are propagated through the var-
ious layers of the network moving from the input
layer to the output layer (for the architecture of a
feedforward neural network see Fig. 6).

The operation of an FNN is usually based on
the following equations:

netlj =
nl−1∑
i=1

wl−1,l
ij yl−1

i , yl
j = f(netlj), (6)

where netlj is for the jth neuron in the lth layer
(j = 2, . . . , nl), the sum of its weighted inputs. The
weights from the ith node at the (l−1) layer to the
jth neuron at the lth layer are denoted by wl−1,l

ij , yl
j

is the output of the jth neuron that belongs to the
lth layer, and f(netlj) is the jth’s node activation
function.

If there is a fixed, finite set of input–output
samples, the squared error over the training dataset,
which contains P representative samples, is:

Fig. 6. Architecture of a feedforward neural network.

E(w) =
P∑

p=1

nL∑
j=1

(yL
jp − tjp)

2

=
P∑

p=1

nL∑
j=1

[fL(netL
j + θL

j ) − tjp]
2
. (7)

This equation gives the general form of the FNN
error function to be minimized, in which tj,p spec-
ifies the desired response at the jth output neu-
ron for the stimulus p and yL

j,p is the output of the
jth neuron at layer L that depends on the weights
of the network, and f is a nonlinear activation
function, such as the well known logistic function
f(x) = (1 + e−x)−1. The network weights can be
expressed using vector notation w ∈ R

n, as:

w = ( . . . , wl−1,l
ij , wl−1,l

i+1 j, . . . , w
l−1,l
Nl−1 j,

θl
j, w

l−1,l
i j+1, w

l−1,l
i+1 j+1, . . . )

�, (8)

where θl
j denotes the bias of the jth neuron (j =

1, . . . , Nl) at the lth layer (l = 2, . . . , L), and n
denotes the total number of weights and biases in
the network.

A variety of approaches adapted from uncon-
strained optimization theory have been applied to
solve this problem. The Back-Propagation (BP)
algorithm [Rumelhart et al., 1986] is widely rec-
ognized as a powerful tool for training FNNs
using information from the first derivatives of
the error function. In an attempt to use not
only the gradient of the error function but also
the second derivative to accelerate the learning
process training algorithms that apply nonlinear
conjugate gradient methods, such as the Fletcher–
Reeves or the Polak–Ribiere methods [Møller,
1993; Van der Smagt, 1994], or variable metric
methods, such as the Broyden–Fletcher–Goldfarb-
Shanno method [Watrous, 1987; Battiti, 1992], or
even Newton’s method [Parker, 1987] have been
proposed. However, these approaches are compu-
tationally intensive for FNNs with several hundred
weights: derivative calculations as well as submini-
mization procedures (for the case of nonlinear con-
jugate gradient methods) and approximations of
various matrices (for the case of variable metric and
quasi-Newton methods) are required. Moreover,
approximations of the Hessian matrix made dur-
ing training may be close to singular, or badly
scaled, and as a consequence they might produce
inaccurate results. Furthermore, it is not certain
that the extra computational cost speeds up the
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minimization process for nonconvex functions when
far from a minimizer, as is usually the case with the
neural network training problem [Dennis & Moré,
1977; Nocedal, 1992; Battiti, 1992].

The popular BP algorithm [Rumelhart et al.,
1986] minimizes the error function using the follow-
ing Steepest Descent (SD) method [Gill et al., 1981]
with constant learning rate η:

wk+1 = wk − η g(wk), k = 0, 1, 2, . . . (9)

where thegradientvector g(wk) ≡ ∇E(wk) is usually
computed by back–propagation of the error through
the layers of the FNN (see [Rumelhart et al., 1986]).
In theory, the SD method requires the assumption
that E is twice continuously differentiable on an open
neighborhood S(w0), where S(w0) = {w : E(w) ≤
E(w0)} is bounded, for some initial weight vector w0.
It also requires that η is chosen to satisfy the relation
sup ‖H(w)‖ ≤ η−1 < ∞ in the level set S(w0) where
H denotes the Hessian matrix of E [Cauchy, 1847;
Goldstein, 1962, 1965].

In practice, checking the validity of the above
condition requires calculating the Hessian for each
point in the level set. However, the manipulation
of the full Hessian matrix, H, is too expensive in
computation and storage for FNNs with several hun-
dred weights [Becker & Le Cun, 1988]. To alleviate
this situation, Le Cun [Le Cun et al., 1993] proposed
a technique that employs weight perturbations to
estimate the principle eigenvalues and eigenvectors
of the Hessian without calculating the full matrix H
on line. In [Le Cun et al., 1993], the largest eigenvalue
of the Hessian is mainly determined by the FNN
architecture, the initial weights and by short-term
low-order statistics of the training data. Le Cun’s
technique could be used to determine an initial η at
an additional cost in the number of presentations
of the training set during early training. Another
approach proposed in the literature is to consider a
learning rate that is proportional to the inverse of the
Lipschitz constant which, unfortunately, is not eas-
ily available [Armijo, 1966; Magoulas et al., 1997a,
1997b]. So despite these efforts, obtaining conver-
gence of BP training algorithms utilizing a constant
learning rate is still considered very difficult [Kuan
& Hornik, 1991; Liu et al., 1995] and practitioners
usually chose 0 < η < 1 to ensure that successive
weight updates will not lead to missing a minimum
of the error surface.

A practical way to ensure global convergence
using an arbitrary learning rate, i.e. convergence to
a local minimizer of the error function from any

starting point, is to use the Armijo–Goldstein–Price
conditions as explained below.

To this end, the following assumptions are
needed [Dennis & Schnabel, 1983; Kelley, 1995]:

(a) The error function E is a real-valued func-
tion defined and continuous everywhere in R

n,
bounded below in R

n.
(b) For any two points w and v ∈ R

n, the gra-
dient g(x) of E satisfies the Lipschitz condition
‖g(w)−g(v)‖ ≤ L‖w−v‖, where L > 0 denotes
the Lipschitz constant.

The effect of the above assumptions is to place
an upper bound on the degree of the nonlinear-
ity of the error function, via the curvature of E,
and to ensure that the first derivatives are continu-
ous [Dennis & Schnabel, 1983; Kelley, 1995].

If these assumptions are fulfilled the BP algo-
rithm can be made globally convergent by determin-
ing the learning rate in such a way that the error
function is exactly subminimized along the direction
of the negative of the gradient in each iteration. To
this end an iterative search, which is often expensive
in terms of error function evaluations, is required.
To alleviate this situation it is preferable to deter-
mine the learning rate so that the error function is
sufficiently decreased on each iteration, accompa-
nied by a significant change in the value of w.

The following conditions, associated with the
names of Armijo, Goldstein and Price [Ortega &
Rheinboldt, 2000] are used to formulate the above
ideas and to define a criterion of acceptance of any
weight iterate produced by Eq.( 9):

E(wk − ηk g(wk)) − E(wk) ≤ −σ1ηk‖g(wk)‖2,

(10)

g(wk − ηk g(wk))g(wk) ≥ σ2‖g(wk)‖2, (11)

where 0 < σ1 < σ2 < 1. Thus, we seek to satisfy
the conditions (10)–(11) by selecting an appropri-
ate value for the learning rate: the first condition
ensures that using ηk the error function is reduced
at each iteration and the second condition prevents
ηk from becoming too small.

3. Adaptive Learning RateAlgorithms
in an Optimization Context

Adaptive learning rate algorithms are usually based
on the following approaches:

(i) start with a small learning rate and increase
it exponentially, if successive iterations reduce
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the error, or rapidly decrease it, if a signifi-
cant error increase occurs [Vogl et al., 1988;
Battiti, 1989];

(ii) start with a small learning rate and increase
it, if successive iterations keep gradient direc-
tion fairly constant, or rapidly decrease it, if
the direction of the gradient varies greatly at
each iteration [Chan & Fallside, 1987];

(iii) for each weight an individual learning rate is
given, which increases if the successive changes
in the weights are in the same direction and
decreases otherwise. The well known delta-bar-
delta method [Jacobs, 1988; Minai & Williams,
1990] and Silva and Almeida’s method [Silva
& Almeida, 1990] follow the last approach.
Another method of this group, named quick-
prop, has been presented in [Fahlman, 1989].
Quickprop is based on independent secant
steps in the direction of each weight [Vrahatis
et al., 2000b]. Riedmiller and Braun in 1993
proposed the Rprop algorithm [Riedmiller &
Braun, 1993]. The algorithm updates the
weights using the learning rate and the sign
of the partial derivative of the error function
with respect to each weight. This approach
accelerates training, mainly, in the flat regions
of the error function [Pfister & Rojas, 1993;
Rojas, 1996].

Note that all the above mentioned learning
rate adaptation methods employ heuristic coeffi-
cients in an attempt to secure converge of the
BP algorithm to a minimizer of E and to avoid
oscillations. A different approach is to exploit
the local shape of the error surface as described
by the direction cosines. In this case the learn-
ing rate is a weighted average of the direction
cosines of weight changes at the current and sev-
eral previous successive iterations [Hsin et al., 1995].
Lastly, the so-called search-then-converge sched-
ules combine the desirable features of the stan-
dard Least-Mean-Square and traditional stochastic
approximation algorithms [Darken et al., 1992] to
gradually decrease the learning rate.

Next we examine approaches to dynamically
adapt the rate of learning that are based on opti-
mization methods [Yu et al., 1995; Magoulas et al.,
1997a, 1997b; Vrahatis et al., 2000a; Anastasiadis
et al., 2005a; Anastasiadis et al., 2005b]. In the con-
text of unconstrained optimisation, Armijo’s modi-
fied SD algorithm automatically adapts the rate of
convergence [Armijo, 1966]. In order to incorporate

Armijo’s search method for the adaptation of the
learning rate in the BP algorithm, the following
assumptions are needed:

(a) The function E is a real-valued function defined
and continuous everywhere in R

n, bounded
below in R

n.
(b) For w0 ∈ R

n define S(w0) = {w : E(w) ≤
E(w0)}, then E ∈ C1 on S(w0) and g(w) is
Lipschitz continuous on S(w0), i.e. there exists
a Lipschitz constant L > 0, such that

‖g(w) − g(v)‖ ≤ L‖w − v‖, (12)

for every pair w, v ∈ S(w0).
(c) r > 0 implies that m(r) > 0, where m(r) =

infw∈Sr(w0) ‖g(w)‖, Sr(w0) = Sr ∩ S(w0), Sr =
{w : ‖w − w∗‖ ≥ r}, and w∗ is any point
for which E(w∗) = infw∈Rn E(w), (if Sr(w0) is
void, we define m(r) = ∞).

If the above assumptions are fulfilled and ηm =
η0/q

m−1, m = 1, 2, . . ., with η0 an arbitrary initial
learning rate, then the sequence (9) can be written
as:

wk+1 = wk − ηmk
g(wk), k = 0, 1, 2, . . . (13)

where mk is the smallest positive integer for which

E(wk − ηmk
g(wk)) − E(wk) ≤ −1

2
ηmk

‖g(wk)‖2,

(14)

and it converges to the weight vector w∗ which
minimizes the function E [Armijo, 1966; Ortega
& Rheinboldt, 2000]. Of course, this adaptation
method does not guarantee to find the opti-
mal learning rate but only an acceptable one, so
that convergence is obtained and oscillations are
avoided. This is achieved using the inequality (14)
which ensures that the error function is reduced suf-
ficiently with every iteration. This approach is able
to handle arbitrary learning rates and in this way
learning by neural networks on a first-time basis for
a given problem becomes feasible.

3.1. Adapting a self-determined
learning rate

The work of Cauchy [1847] and Booth [1949] sug-
gests determining the learning rate ηk by a Newton
step for the equation E(wk − η dk) = 0, for the case
that E : R

n → R satisfies E(w) ≥ 0 ∀w ∈ R
n. Thus

ηk =
E(wk)

g(wk)� dk
,
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where dk denotes the search direction. When dk =
g(wk), the iterative scheme (9) is reformulated as:

wk+1 = wk −
[

E(wk)
‖g(wk)‖2

]
g(wk), k = 0, 1, 2, . . .

(15)

The iterations (15) constitute a gradient method
that has been studied by Altman [1961]. The imple-
mentation of this method for minimizing the non-
quadratic error function is based on the assumption
that E is replaced at the kth stage of the iteration
by a quadratic function Ek which approximates E
in a neighborhood of the kth iterate wk. The min-
imizer of Ek is then taken to be the next iterate
wk+1.

Obviously, the iterative scheme (15) takes into
consideration information from both the error func-
tion and the gradient magnitude. When the gradi-
ent magnitude is small it considers the local shape
of E is flat, otherwise it is steep. The value of the
error function indicates how close to the global min-
imizer this local shape is. Taking into consideration
the above pieces of information, the iterative scheme
(15) is able to escape from local minima located far
from the global minimizer.

In practical applications, the error function has
broad flat regions adjoined with narrow steep ones.
This causes the iterative scheme (15) to create very
large learning rates, due to the small values of
the denominator, pushing the neurons into satura-
tion and thus it exhibits pathological convergence
behavior. In order to alleviate this situation and
eliminate the possibility of using an unsuitable self-
determined learning rate, denoted by η0, a proper
learning rate “tuning” is suggested. Therefore we
decide whether the obtained weight vector is accept-
able or not by considering if the condition (14) is
satisfied or not. Unacceptable vectors are redefined
using learning rates defined by the relation

ηk =
η0

qmk−1
, for mk = 1, 2, . . .

Moreover, this strategy allows to use one-
dimensional minimization of the error function
without losing global convergence (see [Magoulas
et al., 1999] for implementations of this method).

3.2. Lipschitz constant estimation
for learning rate adaptation

It is well known that the optimal value of the learn-
ing rate η in (9) depends on the morphology of the

error surface and as Armijo pointed out in [Armijo,
1966] it is related to the value of the Lipschitz
constant L. For example, when the error surface
has steep regions L is large and a small value for
the learning rate is appropriate in order to guaran-
tee the BP convergence. On the other hand when
the error surface has flat regions, L is small and a
large learning rate is appropriate to accelerate the
convergence speed. Despite these simple intuitive
rules, the fundamental algorithmic issue is to find
the proper learning rate that compensates for the
small magnitude of the gradient in the flat regions
and damps down the large weight changes in highly
curved regions that lead the weight vector to oscil-
late instead of approaching the minimum.

Based on Armijo’s approach the sequence of
weight vectors {wk}∞k=0 defined by (9) can be rede-
fined as:

wk+1 = wk − 0.5L−1 g(wk), k = 0, 1, 2, . . . .
(16)

It can be shown, in a deterministic framework of
analysis, that the weight update equation (16) con-
verges to the point w∗ (see [Magoulas et al., 1997a,
1997b]). However, in the neural network implemen-
tation, neither the morphology of the error surface
nor the value of L are known a priori. Thus, a local
estimation of the Lipschitz constant can be used.
This is defined for the kth iteration as:

Λk =
‖g(wk) − g(wk−1)‖

‖wk − wk−1‖ , (17)

where wk and wk−1 are a pair of subsequent weight
updates. Relation (17) exploits all the local informa-
tion regarding the direction without any additional
function and gradient evaluations. In this way, the
learning rate 0.5/Λk is sensitive to the local shape
of the error function.

In order to eliminate the possibility of using
an unsuitable local estimation of the Lipschitz con-
stant, which can lead the iterative procedure (16) to
oscillate temporarily, a proper learning rate “tun-
ing” is needed. To this end, any point of the
sequence {wk}∞k=0, that does not satisfy the con-
dition (14), has to be redefined using Armijo’s
search method. To be more specific, Armijo’s search
method gradually reduces inappropriate learning
rate values to acceptable ones, according to the
relation

ηk =
1

2mkΛk
, for mk = 1, 2, . . .



Adaptive Algorithms for Neural Network Supervised Learning 1937

to satisfy the condition (14). Thus, it provides
a damping effect in order to avoid oscillations
and keeps the descent direction. This strategy also
allows to guarantee the convergence of the algo-
rithm due to Armijo [Magoulas et al., 1997a, 1997b].

4. Approaches to Adapting a
Different Learning Rate for
Each Weight Through
Optimization

As mentioned in the previous section, the SD
method requires the assumption that E is twice con-
tinuously differentiable and that η is chosen to sat-
isfy the relation sup ‖H(w)‖ ≤ η−1 < ∞ in the level
set S(w0) [Cauchy, 1847; Goldstein, 1962, 1965].

The eigensystem of the Hessian matrix H
can be used to determine the shape of the error
function E in the neighborhood of a local mini-
mizer [Jacobs, 1988; Androulakis et al., 1997]. Thus,
studying the sensitivity of the minimizer to small
changes by approximating the error function by a
quadratic one, it is known that, in a sufficiently
small neighborhood of w∗, the directions of the prin-
cipal axes of the corresponding elliptical contours
(n-dimensional ellipsoids) will be given by the eigen-
vectors of H(w∗), while the lengths of the axes will
be inversely proportional to the square roots of the
corresponding eigenvalues. Furthermore, a variation
along the eigenvector corresponding to the max-
imum eigenvalue will cause the largest change in
E, while the eigenvector corresponding to the min-
imum eigenvalue gives the least sensitive direction.
Thus, a value for the learning rate that yields a large
variation along the eigenvector corresponding to the
maximum eigenvalue may result in oscillations. On
the other hand, a value of the learning rate that
yields a small variation along the eigenvector corre-
sponding to the minimum eigenvalue may result in
small steps along this direction and thus, in slight
reduction of the error function. Thus, in general, a
learning rate appropriate for any one weight direc-
tion is not necessarily appropriate for the others.

To alleviate this situation, a different adap-
tive learning rate for each weight coordinate has
been suggested by several researchers [Jacobs, 1988;
Fahlman, 1989; Minai & Williams, 1990; Silva &
Almeida, 1990; Pfister & Rojas, 1993; Riedmiller
& Braun, 1993]. This approach allows to find the
proper learning rate that compensates the small
magnitude of the gradient in a flat direction, in
order to avoid slow convergence, and damps down a

large weight change in a steep one, in order to avoid
oscillations.

In this case, the weight updates are described
by the following iterative scheme:

wk+1 = wk − diag{ηk
1 , . . . , ηk

n}g(wk),
k = 0, 1, 2, . . . . (18)

Clearly, in (18) the weight vector is not updated
in the direction of the negative of the gradient;
instead, an alternative adaptive search direction is
obtained by taking into consideration the weight
change, defined by the term −ηi∂iE(w), along the
direction of each weight coordinate (where ∂iE(w)
denotes the partial derivative of E with respect to
the ith coordinate). Note that training algorithms
based on this approach employ heuristic procedures
for the determination of the adaptive learning rates
and they do not guarantee that the weight updates
will converge to a minimizer of E [Jacobs, 1988;
Fahlman, 1989; Minai & Williams, 1990; Silva &
Almeida, 1990; Pfister & Rojas, 1993; Riedmiller &
Braun, 1993].

4.1. Adaptive learning rate
algorithms as nonlinear
Jacobi processes

In the sequel, we show that the class of training
algorithms with a different learning rate for each
weight is equivalent to the class of nonlinear Jacobi
methods for the numerical solution of a system of
nonlinear equations:

F (x) = Θn ≡ (0, 0, . . . , 0), (19)

where F = (f1, . . . , fn) : D ⊂ R
n → R

n is a contin-
uously differentiable mapping on an open neighbor-
hood D∗⊂D of a solution x∗ ∈D of (19).

This particular class of methods is based on
the nonlinear Jacobi process [Ortega & Rheinboldt,
2000; Vrahatis et al., 2003] and when applied to the
system

g(w) ≡ ∇E(w) = Θn, (20)

or equivalently to the following system of equations:

∂1E(w1, w2, . . . , wn) = 0,
∂2E(w1, w2, . . . , wn) = 0,

...
∂nE(w1, w2, . . . , wn) = 0,

(21)

allows to handle the n-dimensional minimization
problem of the error function E, at the kth epoch,
using reduction to the following one-dimensional
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nonlinear equations for the components of the gra-
dient ∂1E, ∂2E, . . . , ∂nE:

∂iE(wk
1 , . . . , wk

i−1, wi, w
k
i+1, . . . , w

k
n) = 0, (22)

for wi, i = 1, . . . , n, and then set:

wk+1
i = wk

i + γk(wi − wk
i ), (23)

for some relaxation factor γk.
Thus, the training of an FNN by applying a

back-propagation based algorithm that uses a dif-
ferent adaptive learning rate for each weight coor-
dinate, coincides with the minimization of the error
function E in the direction of each coordinate. To
be more specific, these training algorithms may
be considered as a composition of the nonlinear
Jacobi process with any one-dimensional iterative
method. The Jacobi method is applied directly to
an equation of the form (20) and then, to obtain
the (k + 1)st update, wk+1

i is taken as the result
of one-dimensional methods applied to Eq. (22) by
considering all but the ith weight as constant.

According to the proposed approach, the well
known algorithms of delta-bar-delta [Jacobs, 1988],
extented delta-bar-delta [Minai & Williams, 1990]
and Silva-Almeida [Silva & Almeida, 1990] belong
to this general class of training methods. This is
so because they approximate a minimizer of E in
the direction of each coordinate using one-step of
a descent method, which is an approximation of
the solution of Eq. (22). Their approximation of the
minimizer of E in each direction depends on the
way the learning rate is chosen; a heuristically
chosen learning rate for each direction is used
and convergence is not guaranteed. Specifically, the
learning rate is evaluated by employing heuris-
tic procedures that exploit information regarding
the history of the partial derivative of E(w) with
respect to the ith weight and/or the history of the
corresponding learning rate. Then, the algorithms
immediately define the new weight coordinate. Of
course, their approximations coincide with those
obtained by this general class of methods by tak-
ing in Eq. (23) a proper value of γk. The heuristics
used by these algorithms can also be considered as
estimations of the optimal value of γk.

4.2. One-dimensional iterative
methods in training algorithms
with adaptive learning rates

As mentioned is the previous subsection, the min-
imizer approximation, obtained by the submini-
mization techniques, is relaxed by the factor γk.

Then, in practice, it is not always useful to spend a
lot of computational effort in finding very accurate
approximations of the subminimizer in each coor-
dinate direction. Furthermore, the computational
effort is increased when the dimension of the prob-
lem is very high. Thus, a single iteration of the
subminimization technique in each direction is suf-
ficient. This is also, in practice, the case of the
heuristic procedures [Jacobs, 1988; Fahlman, 1989;
Minai & Williams, 1990; Silva & Almeida, 1990;
Pfister & Rojas, 1993; Riedmiller & Braun, 1993]
which utilize one iteration of the subminimization
process too.

Thus, if one-step of the one-dimensional
method is applied to Eq. (22) we are able to
obtain various training algorithms with adaptive
rates of convergence. In the sequel we propose sev-
eral iterative schemes which are based on tradi-
tional one-dimensional iterative methods [Ralston
& Rabinowitz, 1978; Ortega & Rheinboldt, 2000;
Gill et al., 1981; Press et al., 1992]. Hence, Eq. (18)
is reformulated according to the iterative method
used.

(1) The Jacobi–modified bisection method: It
is known that the bisection is a global conver-
gence method, it always converges within the given
interval, it is worst-case optimal, i.e. it possesses
asymptotically the best possible rate of conver-
gence in the worst-case [Sikorski, 2001] and it has
a known behavior concerning the number of iter-
ations required, to obtain a root with a predeter-
mined accuracy. This method has been proposed
for neural network training in [Magoulas et al.,
1996].

In order to compute a root wi of (22) in the
interval [ai, bi] we use the following iterative for-
mula [Vrahatis, 1988a, 1988b]:

wp+1
i = wp

i + sgn ∂iE(w0) sgn ∂iE(wp)
hi

2p+1
,

p = 0, 1, 2, . . . , (24)

with w0
i = ai, hi = bi − ai and where sgn defines

the well known triple valued sign function. Thus the
method systematically reduces the specified interval
by derivative comparison. Of course, the iterations
(24) converge to a root wi ∈ (ai, bi) if for some wp

i ,
p = 1, 2, . . ., the following holds:

sgn ∂iE(w0) sgn ∂iE(wp) = −1.

The number of iterations p of the sequence (24)
which are required to obtain an approximate root
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w∗
i , such that |wi − w∗

i | ≤ δ for some δ ∈ (0, 1), is
given by p =

⌈
log2(hiδ

−1)
⌉
, where the notation �·

is the ceiling function of the real number quoted.
To ensure that the solution point is a minimizer

along the ith coordinate direction we choose the
endpoints ai and bi in such a way that, at the left
endpoint ai the ith component of the gradient vec-
tor has negative value, or, at the right endpoint bi

the ith component of the gradient vector has pos-
itive value. In order that this condition is fulfilled
we choose these endpoints by the following relation:

ai = wk
i − 1

2
{1 + sgn ∂iE(wk)}hi, bi = ai + hi.

Thus the weight update equation can be defined as:

wk+1
i = wk

i + γk(wi − wk
i ), (25)

where wi is the result of (24).
Variants of this method have been recently

proposed in [Anastasiadis et al., 2003] and [Anas-
tasiadis et al., 2004] and tested in several
neural network benchmarks outperforming other
well known adaptive training algorithms. Other
training schemes that proceed solely with the

information of the sign of the gradient compo-
nents have been proposed in [Pfister & Rojas, 1993;
Riedmiller & Braun, 1993]. These schemes employ
heuristic parameters in the form of learning rate
lower and upper bounds to define the interval of
search.

(2) The one-step Jacobi–Newton method: The
Newton’s method is considered extremely powerful,
since it converges quadratically. In our case one-step
Jacobi–Newton iteration can be defined by:

wk+1
i = wk

i − γk
∂iE(wk)
∂2

iiE(wk)
. (26)

In [Magoulas & Vrahatis, 2000] a variant of
this method was tested in real–world applications
exhibiting good performance. A relative training
method of this type, which applies (26) to obtain
learning rates, can also be found in [Yu et al., 1995].

(3) The one-step Jacobi-secant method: This
method replaces the second derivative needed in
Newton’s method by its finite difference approxi-
mation. Thus, the weight update can be defined as:

wk+1
i = wk

i − γk

{
∂iE(wk) − ∂iE(wk−1)

wk
i − wk−1

i

}−1

∂iE(wk), (27)

which looks like the basic formula of the quickprop
method [Fahlman, 1989]. One difficulty with the
secant method is that the iterates may diverge when
∂iE(wk) and ∂iE(wk−1) have the same sign [Gill
et al., 1981]. To overcome this difficulty a modifica-
tion of the secant method is suggested, named regula
falsi, in which a “better” approximation of the solu-
tion, i.e. the latest point wk+1

i , replaces either wk
i

or wk−1
i depending on which corresponding partial

derivative value agrees in sign with ∂iE(wk+1) [Gill
et al., 1981]. Training algorithms that employ this

method have been introduced in [Magoulas &
Vrahatis, 2000; Vrahatis et al., 2000b; Vrahatis
et al., 2003] for neural network training.

(4) The one-step Jacobi–Steffensen method: This
method is of practical interest because, under suit-
able conditions, it exhibits the same quadratic con-
vergence as Newton’s method while it does not
require second derivatives [Ortega & Rheinboldt,
2000]. In this case the weight update equation takes
the following form:

wk+1
i = wk

i −γk

{
∂iE(wk)−∂iE

[
wk−∂iE(wk) ei

]
∂iE(wk)

}−1

∂iE(wk), (28)

where ei denotes the ith column of the identity
matrix.

(5) The Jacobi–Brent method: This method com-
bines bisection and inverse quadratic interpolation [Press
et al., 1992] to converge from the neighborhood of a
root which is defined as an interval whose endpoints

have opposite sign values. Of course, provision
should be taken for the case of a root outside the
interval. In [Brent, 1973] several techniques are sug-
gested to avoid this situation. Thus, in our case, if
three previous points are available, then the weight
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update is given by the following formula:

wk+1
i = wk

i + γk

{
∂iE(wk−2)∂iE(wk−1)

[∂iE(wk) − ∂iE(wk−2)] [∂iE(wk) − ∂iE(wk−1)]
wk

i

+
∂iE(wk−1)wk−2

i

[∂iE(wk−2) − ∂iE(wk−1)] [∂iE(wk−2) − ∂iE(wk)]
∂iE(wk)

+
∂iE(wk−2)wk−1

i

[∂iE(wk−1) − ∂iE(wk)] [∂iE(wk−1) − ∂iE(wk−2)]
∂iE(wk) − wk

i

}
. (29)

(6) The Jacobi–Illinois and the Jacobi–Pegasus
methods: These methods are modifications of the
secant method. They differ from the regula falsi
method in the way they discard previous approx-
imations of the solution. The point which is the
most recent of the prior approximations of the solu-
tion is retained. These methods modify the length
of the step by a factor α which is set equal to 0.5 for
the Illinois algorithm and ∂iE(wk−1)/(∂iE(wk−1)+
∂iE(wk)) for the Pegasus algorithm, [Ralston &
Rabinowitz, 1978]. The weight update equation has
the following general form:

wk+1
i = wk

i + γk

[
α ∂iE(wk−2)wk

i

[α ∂iE(wk−2) − ∂iE(wk)]

− wk−2
i ∂iE(wk)

[α ∂iE(wk−2) − ∂iE(wk)]
− wk

i

]
. (30)

Relative training algorithms can be easily con-
structed by utilizing any one-dimensional iterative
method. To facilitate the reader we recall two con-
cepts which will be used in the following conver-
gence theorem.

(1) The Property Aπ: Young [1954] discovered a
class of matrices that can be partitioned into block–
tridiagonal form, possibly after a suitable permuta-
tion and they are described as having property A.

In Young’s original presentation the elements of
a matrix A = [aij] are partitioned into two groups.
In general, any partitioning of an n-dimensional
vector x = (x(1), . . . , x(m)) into block compo-
nents x(p) of dimensions np, p = 1, . . . ,m (with∑m

p=1 np = n) is uniquely determined by a parti-
tioning π = {πp}m

p=1 of the set of the first n integers,
where πp contains the integers sp + 1, . . . , sp + np,
sp =

∑k−1
j=1 nj. The same partitioning π induces also

a partitioning of any n × n matrix A into block
matrix components Aij of dimensions ni ×nj. Note
that the matrices Aii are square.

Definition 4.1 [Axelsson, 1996]. The matrix A has
the property Aπ if A can be permuted by PAP�

into a form that can be partitioned into block–
tridiagonal form, that is,

PAP� =




D1 L�
1 O

L1 D2 L�
2

. . . . . . . . .
Lr−2 Dr−1 L�

r−1

O Lr−1 Dr




where the matrices Di, i = 1, . . . , r are nonsingular.

(2) The Root-convergence factor: It is useful for
any iterative procedure to have a measure of the
rate of its convergence. In our case, we are interested
in how fast the weight update equations (25)–(30),
denoted in general by P, converge to w∗. A measure
of the rate of their convergence is obtained by tak-
ing appropriate roots of successive errors. To this
end we use the following definition.

Definition 4.2 [Ortega & Rheinboldt, 2000]. Let
{wk}∞k=0 be any sequence that converges to w∗.
Then the number

R{wk} = lim
k→∞

sup‖wk − w∗‖1/k
, (31)

is the root-convergence factor, or R-factor of the
sequence of the weights. If the iterative procedure
P converges to w∗ and C(P, w∗) is the set of all
sequences generated by P which convergence to w∗,
then

R(P, w∗) = sup{R{wk}; {wk} ∈ C(P, w∗)}, (32)

is the R-factor of P at w∗.

For completeness, we present below a conver-
gence result, originally introduced in [Magoulas &
Vrahatis, 2000].
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Theorem 4.1. Let E: D ⊂ R
n → R be twice

continuously differentiable on an open neighborhood
S0 ⊂ D of a point w∗ ∈ D for which ∇E(w∗) = Θn

and the Hessian, H(w∗) is positive definite with the
property (Aπ). Then there exists an open ball cen-
tered at w∗ with radius r, S = S(w∗, r) in S0 such
that the sequence {wk}∞k=0 generated by the non-
linear Jacobi (22 )–(23 ) iterative procedure P con-
verges to w∗ which minimizes E and R(P, w∗) = 	.

Proof. Clearly, the necessary and sufficient con-
ditions for the point w∗ to be a local minimizer
of the function E are satisfied by the hypothe-
sis ∇E(w∗) = Θn and the assumption of posi-
tive definitiveness of the Hessian at w∗ (see for
example [Ortega & Rheinboldt, 2000]). Finding
such a point is equivalent to obtaining the corre-
sponding solution w∗ ∈ D of Eq. (20) or equiv-
alently to solving the system of Eqs. (21) by
applying the nonlinear Jacobi iterations (22)–(23)
to this system employing any one-dimensional
iterative method [Ralston & Rabinowitz, 1978;
Ortega & Rheinboldt, 2000; Gill et al., 1981;
Press et al., 1992].

Now consider the decomposition of H(w∗) into
its diagonal, strictly lower–triangular and strictly
upper-triangular parts:

H(w∗) = D(w∗) − L(w∗) − L�(w∗).

Since, H(w∗) is symmetric and positive definite,
then D(w∗) is positive definite [Varga, 2000]. More-
over, since H(w∗) has the property (Aπ), the eigen-
values of the matrix:

Φ(w∗) = D(w∗)−1[L(w∗) + L�(w∗)],

are real and for the spectral radius ρ(Φ(w∗)) of
Φ(w∗) holds that [Axelsson, 1996]:

ρ(Φ(w∗)) = 	 < 1,

then there exists an open ball S = S(w∗, r) in S0,
such that, for any w0 ∈ S, there is a unique sequence
{wk}∞k=0 ⊂ S which satisfies (22)–(23) such that
limk→∞ wk = w∗ and R(P, w∗) = 	 [Ortega &
Rheinboldt, 2000; Voigt, 1971; Reinboldt, 1974].
Thus the Theorem is proved. �

Remark 4.1. By the proof of Theorem 4.1, it is shown
that the asymptotic rate of convergence of the com-
posite algorithms is independent of the precise rate
of the one-dimensional method. This fact has two
interesting consequences. First, the asymptotic rate
of convergence is not enhanced if one takes more than

one step of the one-dimensional method. Second, the
extra computational cost required when higher order
one-dimensional methods are used to form train-
ing algorithms with adaptive learning rate for each
weight does not speed up the learning process. Thus,
in this context a method that approximates the sec-
ond derivative, such as the quickprop method, would
be superior to any other higher order method that
requires second derivatives.

4.3. Estimating the Lipschitz
constant along each weight
direction

Below, we derive a method that exploits the local
information regarding the direction and the mor-
phology of the error surface at the current point in
the weight space in order to dynamically adapt a
different learning rate for each weight. This learn-
ing rate adaptation is based on estimation of the
local Lipschitz constant along each weight direc-
tion [Magoulas et al., 1999].

As mentioned in the previous section, the
inverse of the Lipschitz constant L can be used
to obtain the optimal learning rate which is
0.5L−1 [Armijo, 1966]. The value L in Rel. (12)
can be estimated by the modulus of continuity of g
on S(w0) [Ortega & Rheinboldt, 2000]:

µ(g, δ) = sup{‖g(w) − g(v)‖, for w, v ∈ S(w0),
and ‖w − v‖ ≤ δ}.

Note that if g is Lipschitz for some real number L
and for all w, v ∈ S(w0) then we have immediately
that:

µ(g, δ) ≤ Lδ.

Furthermore, by taking the infinity norm (Cheby-
chev distance) the Lipschitz constant L using
Rel. (12) can be obtained by the following relation:

L = max
w �=v

‖g(w) − g(v)‖∞
‖w − v‖∞ .

Thus, in order to obtain a local estimation Λk of L
we use the following relation:

Λk =
max

1≤j≤n
|∂jE(wk) − ∂jE(wk−1)|
max

1≤j≤n
|wk

j − wk−1
j | , (33)

where wk and wk−1 is a pair of consecutive weight
updates at the kth iteration.

Now, in order to take into consideration the
shape of the error surface to dynamically adapt a
different learning rate for each weight, we estimate
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Λk along the ith direction, i = 1, . . . , n, at the
kth iteration by:

Λk
i =

|∂iE(wk) − ∂iE(wk−1)|
|wk

i − wk−1
i | , (34)

and we use the inverse of Λk
i to estimate the learning

rate of the ith coordinate direction.
The reason for choosing Λk

i instead of Λk is that
when large changes of the ith weight occur and the
error surface along the ith direction is flat, we have
to take a larger learning rate along this direction.
This can be done by taking (34) instead of (33),
since in this case (34) underestimates Λk. On the
other hand, when small changes of the ith weight
occur and the error surface along the ith direction
is steep, (34) overestimates Λk and thus the learn-
ing rate to this direction is dynamically reduced in
order to avoid oscillations. Therefore, the larger the
value of Λk

i is, the smaller learning rate is used and
vice versa. As a consequence, the iterative scheme
(9) is reformulated as:

wk+1 = wk − γkdiag
{

1
Λk

1

, . . . ,
1

Λk
n

}
g(wk),

k = 0, 1, 2, . . . (35)

where γk is a relaxation coefficient. By properly tun-
ing γk, we are able to avoid temporary oscillations
and/or to enhance the rate of convergence when we
are far from a minimum.

A search technique for γk consists of finding the
weight vectors of the sequence {wk}∞k=0, that satisfy
the following condition:

E(wk+1) − E(wk)

≤ 1
2
γmk

〈
−diag

{
1
Λk

1

, . . . ,
1

Λk
n

}
g(wk), g(wk)

〉
.

(36)

If a weight vector wk+1 does not satisfy the above
condition, it has to be evaluated again using the
Armijo–Goldstein–Price conditions. In this case,
the search method gradually reduces inappropri-
ate γk values to acceptable ones by finding the
smallest positive integer mk = 1, 2, . . . such that
γmk

= γ0/q
mk−1 satisfies the condition (36).

A common characteristic of all the methods
that adapt a different learning rate for each weight
coordinate is that they require the global infor-
mation obtained by taking into consideration all
the coordinates at each iteration. To this end,
learning rate lower and upper bounds are usually
used [Pfister & Rojas, 1993; Riedmiller & Braun,

1993] to avoid the usage of an extremely small or
large learning rate component, which misguides the
resultant search direction. The learning rate lower
bound (ηlb) is related to the desired accuracy in
obtaining the final weights and helps to avoid unsat-
isfactory convergence rate. The learning rate upper
bound (ηub) helps limiting the influence of a large
learning rate component on the resultant descent
direction and depends on the shape of the error
function; in the case ηub is exceeded for a partic-
ular weight, its learning rate in the kth iteration is
set equal to the previous one of the same direction.
It is worth noticing that the values of both ηlb and
ηub do not affect the stability of the algorithm.

5. Imprecision Incurred in
Supervised Training

Training algorithms described so far require precise
error function and gradient values. However, the
fact that neural networks are simulated on comput-
ers with finite accuracy bounds implies that it may
be difficult or impossible to obtain very precise val-
ues for the error function and the gradient [Wray
& Green, 1995]. Thus, software-based FNNs while
exploiting the advantage of training by examples,
are directly affected by numerical imprecision; a
common problem encountered in numerical simu-
lations. The arithmetic operations required in the
numerical simulations of the BP affect the accuracy
of the result. All of these operations can be severely
impacted by imprecision, especially for problems
that are ill-conditioned even when a high preci-
sion is used [Holt & Hwang, 1993]. Moreover, using
minimization methods for training FNNs derivative
calculations as well as one-dimensional submini-
mization (for the case of nonlinear conjugate gra-
dient methods) and approximations of the inverse
Hessian (for the case of quasi-Newton and variable
metric methods) are required. A detailed analysis
on the sources of imprecision involved to this kind
of computations is presented in [Gill et al., 1981;
Battiti, 1992].

A crucial factor of imprecision, as pointed
in [Wray & Green, 1995], is the evaluation of the
activation function f(netj). This function can be
calculated using a polynomial approximation which
implies that numerical accuracy constraints are
introduced in the calculation of the error value.

In the special case of FNN applications with a
very large number of patterns, the errors involved
because of the imprecision in the computation of the
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gradient of the batch error measure may be compara-
ble to the gradient itself. In general, the rounding off
error is one serious source of imprecision in the error
function value E and its gradient. When this type
of error is generated by overflow, mostly occurred
during the calculation of the term netl

j, is not cru-
cial due to the characteristics of the sigmoid neu-
ron model. However the underflow error that occurs
during the calculation of the backpropagating error
signal [Rumelhart et al., 1986] denoted by δj is very
crucial and can lead to nonconvergence and satura-
tion [Rigler et al., 1991]. Despite the fact that the
error associated with neuron j can be significant, δj

may become negligible and rounded to zero if the
derivative of the activation function f ′(netl

j) is very
small. In this case weight adaptation is not possible
although there is a large value of error.

A similar to saturation phenomenon occurs
when second derivative based training methods are
used. In this case, problematic situation occurs
when the Hessian is not positive definite, as well as
when it is ill-conditioned or singular (see [Magoulas
et al., 1997a, 1997b; Battiti, 1992] for simulations
on these kind of problems).

Moreover, in various small and large scale FNN
applications the error surface has flat regions. This
results in the evaluation of imprecise gradient val-
ues which affects all training methods that use first
derivatives in case we are far from the minimum.

Imprecision is also encountered when the par-
tial derivative of E with respect to the ith
weight is evaluated using the forward-difference
approximation:

∂iE(w) ≈ E(w + pert · ei) − E(w)
pert

, (37)

where pert is a small quantity proportional to the
square root of the relative machine precision and ei

denotes the ith column of the identity matrix [Den-
nis & Schnabel, 1983]. This approach has been used
by several researchers as an alternative to the gener-
ation of derivatives using the backpropagation chain
rule [Rumelhart et al., 1986] because only forward
operations of the FNN can give the weight updates.
As reported in [Gill et al., 1981], truncation error as
a consequence of the neglected terms in the Taylor
series, condition or cancellation error due to impre-
cise values of E and rounding off errors are intro-
duced in this case.

The above mentioned problematic situations
can be handled, at least in part, by developing train-
ing algorithms that can take into consideration that

the error function and gradient values are known
only imprecisely. In the next subsection, a training
method eminently suitable to work under impre-
cise conditions is presented. If a method is capable
of converging when imprecise values are used then
computational effort can be saved by avoiding the
extra work required to compute precise function and
gradient values.

5.1. The training with imprecision
algorithm

The algorithm is derived from a recently proposed
method for unconstrained optimization [Vrahatis
et al., 1996]. This optimization method has an
improved performance when compared with nonlin-
ear conjugate gradient methods and BFGS on many
well known test cases (see [Vrahatis et al., 1996] for
comparative results).

In order to find a proper weight vector w∗ so
that the FNN exhibits a desired behavior we want a
sequence of weight vectors {wk}∞0 that converges to
a minimizer of the error function E. An element of
this sequence of weight vectors can be obtained by
solving an one-dimensional equation for each com-
ponent of the weight vector as the following one:

E(wk+1
1 , . . . , wk+1

i−1 , w,wk
i+1, . . . , w

k
n)

−E(wk+1
1 , . . . , wk+1

i−1 , wk
i , wk

i+1, . . . , w
k
n) = 0.

(38)

Solving the above equation for w and keeping all
the other components of the weight vector in their
constant values we get ŵn as a solution. Then, the
weight vector (wk+1

1 , . . . , wk+1
i−1 , ŵi, wk

i+1, . . . , w
k
n)

possesses the same error function value with the
vector (wk+1

1 , . . . , wk+1
i−1 , wk

i , wk
i+1, . . . , wk

n), i.e.
these points belong to the same contour line of the
function E.

Assuming that the Hessian of the error func-
tion E at w∗ is positive definite, which means
that E curves up from w∗ in all directions,
any point which belongs to the line that con-
nects the points (wk+1

1 , . . . , wk+1
i−1 , ŵi, wk

i+1, . . . , w
k
n)

and (wk+1
1 , . . . , wk+1

i−1 , wk
i , wk

i+1, . . . , w
k
n) possesses

smaller error value than these points. To find such
a point we update at the (k + 1)st iteration the ith
component wk

i using the following relation:

wk+1
i = wk

i + ζ(ŵi − wk
i ), ζ ∈ (0, 1). (39)

Obviously the above procedure handles n-
dimensional problems using reduction to simpler
one-dimensional equations like Eq. (38). Of course,
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any one of the well known one-dimensional rootfind-
ing methods [Ralston & Rabinowitz, 1978; Ortega
& Rheinboldt, 2000; Gill et al., 1981; Press et al.,
1992] can be employed to solve Eq. (38). Here
we use the bisection method because it can be
applied to imprecise problems. Specifically, in order
to compute a root ŵi of Eq. (38) in the interval
(ai, bi), we use the simplified version of the bisec-
tion method [Vrahatis, 1988a, 1988b] which can be
modified to the following one:

ŵp+1
i = ŵp

i +
c sgn(E(zp) − E(z))

2p+1
, (40)

where p = 0, 1, . . . indicates iterations, sgn defines
the well known sign function, zp = (wk+1

1 , . . . ,

wk+1
i−1 , wp

i , w
k
i+1, . . . , w

k
n), z = (wk+1

1 , . . . , wk+1
i−1 , wk

i ,

wk
i+1, . . . , w

k
n), c = sgn(E(z0) − E(z))hi with hi =

bi −ai, and z0 = (wk+1
1 , . . . , wk+1

i−1 , ai, w
k
i+1, . . . , w

k
n).

To minimize the function E by applying the
above sequence we choose the endpoints ai and bi

in such a way that, at the left endpoint ai the ith
component of the gradient has negative value, or,
at the right endpoint bi the ith component of the
gradient has positive value. In order that this con-
dition is fulfilled, we choose these endpoints by the
following relation:

ai = wk
i − 1

2
{1 + sgn ∂iE(z)}hi, bi = ai + hi.

(41)

The number of iterations p of the sequence (40)
which are required to obtain an approximate root
ŵi such that |ŵi −w∗

i | ≤ δ, for some δ ∈ (0, 1), is
given by:

p =
⌈
log2(hiδ

−1)
⌉
. (42)

It is evident from the sequence (40) that
the only computable information required by this
method is related to algebraic signs and thus it can
be proceeded solely by comparing the relative size
of the function values. Also, the gradient values in
Rel. (41) can be calculated by using Rel. (37). In
this case the sign can also be accurately obtained
by comparing the relative size of the function value.
So, rounding and quantization errors, causing, in
simulations, imprecise function values, cannot affect
its convergence as long as the signs are preserved.
In addition, storage requirements regarding gradi-
ent are minimized. Furthermore, Sequence (40) is
a global convergence method, it always converges
within the given interval, it is worst-case optimal,
i.e. it possesses asymptotically the best possible rate

of convergence in the worst-case [Sikorski, 2001] and
it has a known behavior concerning the number of
iterations required to obtain a root with a predeter-
mined accuracy (see Rel. (42)).

A high level description of the batch version of
this algorithm is outlined below.

Initialization: Randomly initialize the weights;
define stepsizes hi in each weight direction; the
relaxation coefficients ζ, γ; the maximum number
of epochs (ME); the predetermined desired accura-
cies δ and ε.

Recursion: For k = 1, . . . ,ME (epochs); and for
i = 1, 2, . . . , n (components of the weight vector w).

(1) Present all patterns to the network and com-
pute the output of all nodes.

(a) Calculate E using Eq. (7).
(b) Define the interval (ai, bi) where the bisec-

tion seeks the root that minimizes E using
Eq. (41).

(c) Find the parameter ŵ that satisfies Eq. (38)
by applying Eq. (40) in (ai, bi) within accu-
racy δ.

(d) If ŵ ≥ bi − δ, set y0 = (wk+1
1 , . . . , wk+1

i−1 , wk
i ,

wk
i+1, . . . , w

k
n) and go to Step (5); otherwise

continue.
(e) Set wk+1

i = wk
i + ζ(ŵ − wk

i ).
(f) If i < n, increment i and begin recursion.

(2) Check the convergence criterion ‖wk+1−wk‖ ≤
ε. In case it is true, the weights remain unmod-
ified so Terminate; otherwise go to next step.

(3) Set wk+1 = wk + γ (wk+1 − wk).
(4) If sgn

(
E(wk+1) − E(wk)

) ≤ 0, increment k and
reset i; otherwise set y0 = wk and continue.

(5) Apply using Rel. (37) the scheme (13)–(14) by
utilizing the starting value y0 and take its out-
put value yAR.

(6) Set wk+1 = yAR, increment k and reset i.

Termination: Get the final weights and the corre-
sponding error value.

Remark 5.1. When the values of E or gradient val-
ues can be accurately obtained we may also use
the following convergence criteria at Step (2) of our
algorithm:∣∣∣∣E(wk+1) − E(wk)

E(wk)

∣∣∣∣ ≤ ε, or ‖g(wk+1)‖ ≤ ε.

Step (2) of the above algorithm detects if the bisec-
tion does not converge. This can happen only when
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Eq. (40) converges to the right endpoint bi or when
Bolzano’s criterion is not fulfilled. Furthermore,
Steps (5) and (6) apply the Armijo’s condition.

It is evident that the above procedure can
be considered as an nonlinear Successive Over-
Relaxation (nonlinear SOR) method [Ortega &
Rheinboldt, 2000] since it allows to handle the
n-dimensional minimization problem of the func-
tion E, at the kth epoch, by solving the following
one-dimensional nonlinear equations:

∂iE(wk+1
1 , . . . , wk+1

i−1 , wi, w
k
i+1, . . . , w

k
n) = 0, (43)

for wi, i = 1, . . . , n, and then set:

wk+1
i = wk

i + γk(wi − wk
i ), (44)

for some relaxation factor γk. It is obvious that any
one of the well known one-dimensional rootfinding
methods [Ralston & Rabinowitz, 1978; Ortega &
Rheinboldt, 2000; Gill et al., 1981; Press et al., 1992]
can be employed to solve Eq. (43).

For all these methods including the proposed
one we present below a convergence result, origi-
nally introduced in [Vrahatis et al., 1996].

Theorem 5.1. Let E:D ⊂ R
n → R be twice con-

tinuously differentiable on an open neighborhood
S0 ⊂ D of a point w∗ ∈ D for which ∇E(w∗) =
Θn and the Hessian, H(w∗) is positive definite.
Then there exists an open ball centered at w∗ with
radius r, S = S(w∗, r) in S0 such that the sequence
{wk}∞k=0 generated by the nonlinear SOR (43)-(44)
iterative procedure P converges to w∗ which mini-
mizes E and R(P, w∗) = 	.

Proof. Clearly, the necessary and sufficient con-
ditions for the point w∗ to be a local minimizer
of the function E are satisfied by the hypothe-
sis ∇E(w∗) = Θn and the assumption of positive
definitiveness of the Hessian at w∗ (see for exam-
ple [Ortega & Rheinboldt, 2000]). Finding such a
point is equivalent to obtaining the correspond-
ing solution w∗ ∈ D of Eq. (20) or equivalently
to solving the system of Eqs. (21) by applying
the nonlinear SOR (43)–(44) iterative procedure to
this system employing any one–dimensional itera-
tive method.

Now consider the decomposition of H(w∗) into
its diagonal, strictly lower-triangular and strictly
upper-triangular parts:

H(w∗) = D(w∗) − L(w∗) − L�(w∗).

Since H(w∗) is symmetric and positive definite
then, D(w∗) is nonsingular [Varga, 2000]. Suppose
that:

Φγ(w∗) = [D(w∗) − γL(w∗)]−1

×[(1− γ)D(w∗) + γL�(w∗)],

for γ ∈ (0, 2). Now, by virtue of Ostrowski Theo-
rem [Varga, 2000] holds that:

ρ(Φγ(w∗)) = 	 < 1,

for any γ ∈ (0, 2) and therefore, by the nonlinear
SOR theorem [Ortega & Rheinboldt, 2000], there
exists an open ball S = S(w∗, r) in S0, such that,
for any w0 ∈ S, there is a unique sequence {wk} ⊂ S
that satisfies the nonlinear SOR prescription such
that limk→∞ wk = w∗ and R(P, w∗) = 	. Thus the
Theorem is proved. �

6. Complexity Considerations in
Artificial Neural Network
Training

The effectiveness of an ANN-based approach for
solving a particular problem can be examined from
a computational complexity point of view [Abu-
Mostafa, 1986]. For example, in a neural network
solution the number of computations is a mea-
sure of time complexity, the number of neurons in
an ANN is a measure of space complexity (mem-
ory requirements), and the number of weights and
biases in the ANN is a measure of Kolmogorov
complexity [Hassoun, 1995]. Hence, the goal is to
minimize simultaneously the time, space and Kol-
mogorov complexities of the network.

With regards to the number of neurons in an
ANN, the universal approximation theorem, proved
in [White, 1990], states the following for the general
problem of function approximation:

Theorem 6.1. Standard Feedforward Neural Net-
works with only a single hidden layer can approx-
imate any continuous function uniformly on any
compact set and any measurable function to any
desired degree of accuracy.

A direct implication of the above theorem is
that any lack of success in applications must arise
from inadequate learning and/or an insufficient
number of hidden units and/or the lack of a deter-
ministic relationship between the input patterns
and the desired response (target).

The selection of the optimal network architec-
ture for a specific task remains up to date an open
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problem. An upper bound on the architecture of an
FNN designed to approximate a continuous func-
tion defined on the unit cube in R

n is given by the
following Theorem [Pinkus, 1999]:

Theorem 6.2. On the unit cube in R
n any con-

tinuous function can be uniformly approximated, to
within any error by using a two hidden layer net-
work having 2n+1 units in the first layer and 4n+3
units in the second layer.

Although single linear threshold units have very
limited computational abilities, a network of linear
threshold units with one hidden layer can repre-
sent any Boolean function as the following Theo-
rem [Anthony, 2003] states.

Theorem 6.3. There is a Feedforward linear
threshold Neural Network with one hidden layer
capable of computing any Boolean function.

A universal network for Boolean functions on
{0, 1}n is a linear threshold network which is capa-
ble of computing every Boolean function of n vari-
ables [Anthony, 2003]. In particular [Anthony, 2003]
has shown that a one hidden layer linear thresh-
old network with n inputs, 2n units in the hidden
layer, and one output unit, is universal. A ques-
tion naturally arises as to whether there is a univer-
sal network with fewer threshold units. By an easy
counting argument, one can obtain a lower bound
on the size of any universal network, regardless of
its structure. In particular (see [Nechiporuk, 1964;
Siu et al., 1995]), any universal network (regard-
less of how many layers it has) must have at least
Ω(2n/2/

√
n) threshold units. Moreover, any one hid-

den layer universal network for Boolean functions
must have at least Ω(2n/n2) threshold units.

In practice, convergence success, cost of cal-
culations for each step of the training algorithm,
total number of iterations required to obtain an
acceptable solution are all influencing the com-
plexity of obtaining a neural network–based solu-
tion. Various Levenberg–Marquardt, quasi–Newton
and trust–region algorithms have been proposed
for small to medium size neural nets with sigmoid
transfer functions [Hagan & Menhaj, 1994; Kollias
& Anastassiou, 1989] in order to reduce the time
for training. Variants of these methods, such as the
limited-memory quasi-Newton and double dogleg,
have been also proposed in an attempt to reduce the
memory requirements of these methods [Ampazis

& Perantonis, 2002; Bertsekas, 1995]. Neverthe-
less, first-order methods, such as variants of gradi-
ent descent discussed in this paper and conjugate-
gradient algorithms [Møller, 1993] appear to be
more efficient in training large size neural nets.

Another important consideration for the con-
vergence success of an iterative scheme is its sus-
ceptibility to ill-conditioning: the minimization of
the network’s learning error is often ill-conditioned,
especially when there are many hidden neurons
[Saarinen et al., 1993]. Second-order methods
are considered better for handling ill-conditioned
problems [Battiti, 1992; Magoulas et al. 1997a,
1997b]; nevertheless, it is not certain that the
computational cost for each step and the mem-
ory requirements of these methods provide signif-
icant advantage when the algorithm starts from a
remote starting point (training starts with random
weight values) [Battiti, 1992], particularly when the
networks use a large number of weights [Magoulas
et al., 2002; Plagianakos et al., 2002].

An additional factor that impacts on the com-
plexity of the training process is the existence of
a multitude of suboptimal solutions [Gori & Tesi,
1992] which affect the convergence success of the
training algorithms. Convergence to a local mini-
mum prevents the ANN from learning the entire
training set and results in inferior network perfor-
mance, or possibly in premature convergence. Intu-
itively, the existence of local minima is due to the
fact that the error function is the superposition of
nonlinear activation functions that may have min-
ima at different points, which sometimes results in a
nonconvex error function [Gori & Tesi, 1992]. The
insufficient number of hidden neurons, as well as
improper initial weight values can cause conver-
gence to a local minimum. Several researchers have
presented conditions on the network architecture,
the training set and the initial weight vector that
allow BP-like procedures to reach the optimal solu-
tion [Gori & Tesi, 1992; Yu & Chen, 1995]. However,
conditions such as the linear separability of the pat-
terns and the pyramidal structure of the ANN [Gori
& Tesi, 1992] as well as the need for a great num-
ber of hidden neurons (as many neurons as pat-
terns to learn) make these interesting results not
easily interpretable in practical situations even for
simple problems. Thus, in practice the problem of
local minima is treated with a variety of techniques,
such as generating a new starting point and starting
training all over again after convergence to a local
minimum [Magdon-Ismail & Atiya, 2000]; training
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with noise [Burton & Mpitsos, 1992; Rögnvaldsson,
1994; Anastasiadis & Magoulas, 2004]; variants of
simulated annealing [Treadgold & Gedeon, 1998].

7. Conclusions

Backpropagation provides an efficient method to
calculate how much changing the weight of a con-
nection would influence the difference between the
actual behavior of an artificial neural network in
response to a particular input and the desired
bahavior as defined by a teacher. This approach is
widely known as supervised training and although it
is not a plausible model of how learning takes place
in the human brain it has demonstrated impres-
sive success in adjusting the weights to optimize an
objective function that represents performance.

This paper has focused on adaptive backpropa-
gation algorithms which use either a common adap-
tive learning rate for all weights or an individual
adaptive learning rate for each weight coordinate.
A number of techniques for adaptation of learning
rate was reviewed, and it has been shown that the
training algorithms with adaptive learning rate for
each weight can be analyzed as nonlinear Jacobi
methods applied to the gradient of the error func-
tion. This approach has helped us to synthesize var-
ious adaptive algorithms that build on the theory
of nonlinear optimization. The way simulations of
neural networks are affected by the limited precision
was discussed and an algorithm based on the nonlin-
ear successive overrelaxation proces was presented.
This approach is eminently useful when training is
affected by technology imperfections and environ-
mental changes that cause unpredictable deviations
of parameter values from the designed configura-
tion. Lastly, various factors that affect the complex-
ity of neural networks training have been discussed.
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