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Abstract—The issue of variable stepsize in the backpropagation training algorithm has been widely investigated and
several techniques employing heuristic factors have been suggested to improve training time and reduce convergence
to local minima. In this contribution, backpropagation training is based on a modified steepest descent method which
allows variable stepsize. It is computationally efficient and possesses interesting convergence properties utilizing
estimates of the Lipschitz constant without any additional computational cost. The algorithm has been implemented
and tested on several problems and the results have been very satisfactory. Numerical evidence shows that the method
is robust with good average performance on many classes of problems. Copyright © 1996 Elsevier Science Ltd.
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1. INTRODUCTION

The efficient supervised training of feedforward
neural networks (FNNs) is a subject of considerable
ongoing research and numerous algorithms have
been proposed to this end. The backpropagation
(BP) algorithm (Rumelhart & McClelland, 1986) is
one of the most common supervised training
methods. Although BP training has proved to be
efficient in many applications, it uses a constant
stepsize, its convergence tends to be very slow, and it
often yields suboptimal solutions (Baldi & Hornik,
1989).

Attempts to speed up training and reduce
convergence to local minima have been made in the
context of gradient descent by Cater (1987), Chan
and Fallside (1987), Jacobs (1988), Vogl et al. (1988),
Battiti (1989), Darken and Moody (1990), and Silva
and Almeida (1990). However, these methods are
based on the use of heuristic factors to dynamically
adapt the stepsize.

In this contribution, BP training with variable
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stepsize (BPVS) is presented. The BPVS method is
based on a modification of the deterministic steepest
descent that allows variable stepsize as a consequence
of minimization of the objective function and of
observation of the trajectory in the weight space. Its
convergence is guaranteed, utilizing estimates of the
Lipschitz constant that are obtained without addi-
tional error function and gradient evaluations. The
BPVS method is tested and compared with three
popular deterministic steepest descent based training
methods, on several application examples.

2. THE BACKPROPAGATION TRAINING

Consider a FNN whose /th layer contains N; neurons,
for I=1,..., M. The network is based on the
following equations:

S WEY
- 1,101
net; = Zwij i

i=1

(1)

¥; = flnety), )
where net] is, for the jth neuron in the /th layer
(j=1, ..., Ny), the sum of its weighted inputs. The
weights from the ith neuron at the (/ — 1)th layer to
the jth neuron at the /th layer are denoted by wﬁ;l’ ! yI’
is the output of the jth neuron that belongs to the /th
layer, and f{net]) = (1 ﬂ-t:)(p(—net]'.))—l is the jth’s
neuron activation function.
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Training is realised by minimizing the error
function E defined by:

P Ny

Z Z(Y%;“tj,p)zzzEm (3)

p=1 j=1 p=1

E=

B =

where (yﬁ’l, —t, ,,)2 is the squared difference between
the actual output value at the jth output layer neuron
for pattern p and the target output value; p is an
index over input—output pairs. This function also
provides an error surface over the weight space.

Each pass through the entire training set which
contains P representative pairs, to compute E is
called an “epoch”. The minimization of E corre-
sponds to updating the weights by epoch (batch
learning). This approach is consistent with the
numerical optimization theory since it uses informa-
tion from all the pairs in the training set, i.e., the true
gradient. Moreover, batch learning makes the
problem of minimization more interesting since the
summation over the entire training set in eqn (3)
usually results in a complex error surface (Weier,
1991), increasing the possibility for any steepest
descent based training algorithm to be trapped in a
local minimum.

In the BP algorithm, minimization of E is
attempted using the steepest descent with constant
stepsize A and the computation of the gradient of the
sum-of-squared-differences error (SSE) function, VE,
by applying the chain rule on the layers of the FNN
(Rumelhart & McClelland, 1986).

The BP algorithm can be summarized in the
following equations:

I-1,1 I-1,1 ) -
Wi |k+] =Wy Ik_’\éjyg l’ (4)

5;“ = (}’}:p - tjyp)f’(net}!‘)’ ©)

81 =f"'(net]) > wh 8, forl=M-1,...,2,
n=1

(6)

where eqn (4) is the weight update equation for any
set of input—output patterns, in which A is the
constant stepsize, and the notation |, indicates the
kth epoch. Equations (5) and (6) specify the
backpropagating error signal for the output layer
and the hidden layers respectively, and f'(-) is the
derivative of the activation function.

The BP method approximates a local minimum of
E and always converges when A is chosen to satisfy
the relation sup||Q(w)|| < A~! <oo (Goldstein, 1962)
in some bounded region where the relation
E(w) < EW®) holds; Q(w) denotes the Hessian
matrix of E with respect to the weight vector w and
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w, denotes the initial weight vector. The behavior of
E in the neighborhood of a local minimum is
determined by the eigensystem of the matrix Q. In
the neural network implementation, the storage and
computational requirements of the approximated
Hessian for FNNs with several hundred weights
make its use impractical (Bello, 1992; Magoulas et al.,
1995). Thus, the stepsize is usually chosen according
to the relation 0 <A< 1 in such a way that successive
steps in weight space do not overshoot the minimum
of the error surface.

The usual approach in BP training methods that
permit variable stepsize focuses on two issues: (i) start
with a small stepsize and increase it exponentially if
successive epochs reduce the error, and rapidly
decrease it if a significant error increase occurs
(Vogl et al., 1988; Battiti, 1989), (i) start with a
small stepsize and increase it if successive epochs keep
the gradient direction fairly constant or rapidly
decrease it if the direction of the gradient varies
greatly at each epoch (Chan & Fallside, 1987). For
each weight an individual stepsize can also be given
(Jacobs, 1988; Silva & Almeida, 1990), which
increases if the successive changes in the weights are
in the same direction and decreases otherwise. In this
case, there is no guarantee that the adaptations will
be in the proper direction determined by the negative
gradient of E.

A different approach are the so-called search-then-
converge schedules that combine the desirable
features of the standard least-mean-square and
traditional stochastic approximation algorithms
(Darken & Moody, 1990, 1991; Darken et al., 1992).

3. THE BACKPROPAGATION TRAINING WITH
VARIABLE STEPSIZE

3.1. Description of the BPVS Training Method

The minimization of the error function E requires a

sequence of weight vectors {w*}g° (where k indicates

epochs) which converges to the point w* that
minimizes E. First, let us make the following

assumptions regarding the error function E:

(1) The function E is a real-valued function defined
and continuous everywhere in #" (real Euclidean
n-space), bounded from below in £%;

(ii) for a given point w® € #", and for every w in
some region containing the initial weight vector
w’, S(w®) = {w: E(w) < EW°)}, then E€ C'
on S°) and VE is Lipschitz continuous on
S(w°), i.e., there exists a Lipschitz constant
K>0, such that:

IVE(v) — VE(w)|| < K]lv — ], (7)

for every pair v, w € S(w°);
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(iii) r>0 implies that  m(r)>0, where
m(r) = infes, @I VEl,  S,(0%) = S, 0 S(0),
S, ={w:|lw—w*||>r}, and w* is any point
for which E(w*) = inf,,cg~E(w) (in case S,(w°) is
void m(r) is defined to be equal to infinity).
By assuming that the above conditions are fulfilled
the following convergence theorem applies:

THEOREM 1 (Armijo, 1966). If 0<p < 0.25 K™, then

for any weS(wP), the set S*(w,p)={w):wy=

w— AVE(w), A>0, E(wy) — E(w) < —p||[VE(wW)|*},

is a non-empty set of S(w°) and any sequence of weight

vectors {w* }o°, such that wk+' € §*(wF, p), k=0, 1,2,
. , converges to the point w* which minimizes E.

It is known that the optimal value of the stepsize A
depends on the shape of the N-dimensional error
function, and can be obtained using the value of the
Lipschitz constant K. So the weight update equation
(4) can be written as:

Wl = wk ~0.5K'VE(W), k=0,1,2,... (8)

where
VEW) = ZP: VE,(w*).

The sequence of weight vectors {w*}$° is such that
wttl € S*(w*, 0.25K"1), and convergence to the
point w* is guaranteed as a consequence of Theorem
1.

In neural network implementation, the value of K
is not known a priori, and a “small” stepsize is
chosen. If a long stepsize is used there is no guarantee
that the steepest descent will converge. This problem
can be avoided by a proper stepsize tuning in each
epoch. The following theorem gives an elegant
stepsize tuning procedure:

THEOREM 2 (Armijo, 1966). Suppose that 1 is an
arbitrary assigned positive number and consider the
sequence Ty, =927, m=12, Then the
sequence of weight vectors {w*}° defined by
whktl = wk — o, VE(W*), k=0,1,2, ... 9)
where my, is the smallest positive integer for which:
E(w* — 1, VE(#*)) ~ E(w*) < ~2 1 [VEOR)I1,

(10)

converges to the point w* which minimizes the error
Sfunction E.

71

Theorem 2 constitutes an efficient and very useful
stepsize adaptation procedure. However, according
to simulation experiments we performed, its expo-
nential schedule is fast enough for many neural
network applications resulting in faster training when
compared with the BP with fixed stepsize but in
slower training when compared with certain BP
methods with variable stepsize like the one proposed
by Vogl et al. (1988).

BPVS exploits all the local information regarding
the direction and the stepsize. Thus, BPVS follows
the well known steepest descent direction, —VE(w*),
and uses a local approximation of the Lipschitz
constant L, in order to estimate the stepsize 0.5K~! at
each epoch. The local approximation of the Lipschitz
constant L; can be easily obtained without any
additional error function and gradient evaluations by

relation (7) for a pair of subsequent weight updates
wk wh-l e,

L = |[VE(w*) = VEGW* " Dl/lwk — w1l (11)

In this way, the stepsize 0.5L; ! will be sensitive to
the local shape of the error function and the
exponential schedule of Theorem 2 is avoided. If,
for some reason, the stepsize 0.5L;! is very long and
successive steps in weight space do not satisfy relation
(10), the stepsize adaptation procedure of Theorem 2
is used in order that the subsequent weight updates
do not overshoot the minimum of the error surface.
On the other hand, if the stepsize 0.5L;! is smaller
than a specific lower bound, BPVS increases it. One
such stepsize lower bound can be specified by the
value of the desired accuracy in obtaining the final
weights w*. Obviously, if the stepsize is smaller than
the desired accuracy, it is impossible to reach the
solution rapidly, except in situations where relation
(10) is not satisfied. A simple adaptation mechanism
to increase the stepsize is to double it. Now, since
BPVS fulfills relation (10), it converges to a minimizer
of E.

In the next subsection, the BPVS training
algorithm is summarized.

3.2. The BPVS Training Algorithm

In the BPVS method, the value of E can be calculated

with one forward pass and the value of VE with one

forward and one backward pass. A high-level
description of the batch BPVS training algorithm is
outlined below:

Step 0: Initialize by setting the number of epochs
k=0, the weights w° to real random values,
the stepsize to an arbitrary real value 7y, the
termination condition (7C), the stepsize
lower bound (SLB), Lo =1, 1, = 1.
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Step I: Present an input—desired output pair p, and
do Steps 1.1-1.3 for all p €[1, P], in order to
compute the gradient of E, for all pairs.
Step 1.1: Use the predetermined weights and

compute the output of the FNN.

Step 1.2: Compute the backpropagating er-
ror signal using relations (5) and
(6).

Step 1.3: Compute V;E, = §; ,y; ,, where
Vi;E, denotes the partial deriva-
tive of E, with respect to each
weight w;; connecting the pair
(i,j) of nodes, y; is either the
output of node i or an input.

Step 2: Take the local approximation L, of the
Lipschitz constant, using relation (11).
Compute m = 0.5L;!. If n,>SLB, go to
next step; otherwise set £ =1 +1,
m = m2*"! and go to next step.

Step 3: If relation (10) holds, set m; = 1, and go to
Step 5; otherwise, set my =mp + 1, 1, =1,
and go to next step.

Step 4: Set 1, = mp2!~"™, and return to Step 3.

Step 5: Update weights according to:

Wt = wk —  VE(wk),

where

(wk) = X_;VEp(W")

Step 6: Check E(w**1)>TC, replace k by k + 1, go
to Step 1; otherwise get the final weight vector
w*, and the corresponding value of E.

REMARK 1. The implementation of a stepsize lower
bound does not influence the convergence of the
BPVS method and has no crucial effect on the
convergence speed.

ReMARK 2. Step 2 of the BPVS algorithm gives an
adaptation of the stepsize increment in the case
Mm<SLB. In this way, unsatisfactory convergence
rate as a consequence of an unsuitable Iocal
approximation of the Lipschitz constant is avoided.

REMARK 3. Steps 34 constitute an efficient method to
determine a safe stepsize without additional gradient
evaluations. This method guarantees BPVS conver-
gence to a weight vector w* which minimizes the error
function E.

4. APPLICATION EXAMPLES

The BPVS training algorithm has been applied to
several problems. The FNNs have been implemented
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in Matlab version 3.5 (Moleret al., 1987) and a number
of simulations have been performed to evaluate the
BPVS and compare its performance with the batch
versions of BP, momentum BP (MBP) (Jacobs, 1988),
and adaptive BP (ABP) (Vogl et al., 1988).

The algorithms have been tested using the same
initial weight vectors, and received the same sequence
of training patterns. The FNNs were based on nodes
with activation function of the form (1 +e"t)™",

In all application examples the stepsize lower
bound was taken equal to 0.04. For the BPVS initial
stepsize a large value was randomly selected for each
application, in order to test the stepsize tuning
effectiveness and the robustness in oscillations due
to large stepsizes. On the other hand, much effort has
been made to properly tune the heuristic factors, but
there is no guarantee that our final choice is optimal.
However, our experience with simulations indicates
that the behavior of the algorithms described in the
examples to follow is characteristic.

A consideration that is worth mentioning is the
difference between epochs (weight vector updates)
and error function evaluations: for the BP, the
momentum BP and the adaptive BP training
algorithms the number of error function evaluations
equals the number of epochs; for the BPVS there is a
number of additional error function evaluations due
to Steps 34 [i.e., when relation (10) does not hold].
Thus, a comparison in terms of error function
evaluations is preferable in order to readily obtain
the computational efficiency of the BPVS.

4.1. The Case of a Single Neuron

This simple example (Demuth & Beale, 1992) is
chosen because it is easy to visualize and illustrate the
behaviour of the algorithms in different cases. The
problem consists of a neuron with two weights to be
learned, on a set of eight, two-dimensional patterns.
The two weights, w;, w, are initialized from uniform
distributions in the intervals (—1, 1) and (-2.5, 2.5),
respectively. The error surface is shown in Figure 1.

\‘

17 "' ooy
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FIGURE 1. Error surface for example 4.1.
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The global minimum is located at the center and there
are two valleys that lead to local minima.

The behavior of the algorithms is tested in three
characteristic cases: (i) when the initial weight vector
leads to the global minimum, (ii) when the initial
weight vector leads BP to a local minimum, and (iii)
when the initial weight vector leads to the global
minimum, in the presence of additive weight
perturbations in each epoch. Additive weight
perturbations may be caused by the imprecision of
digital or analog hardware in the implementation of
the FNNs and are modeled as a random noise with
uniform distribution (Holt & Hwang, 1993). This is
especially true when the FNN is to be implemented in
real time (Frye et al., 1991) or using fixed-point
arithmetic (Sakaue et al., 1993). In the simulations,
all weights have been perturbed by a random number
uniformly distributed in (—0.3, +0.3). The per-
turbed weights have been used in all calculations.

In all cases, the stepsize for the adaptive BP and
the BPVS is set equal to 0.6; the stepsizer for the BP,
and the momentum BP is taken equal to 0.05 (a larger
value leads to oscillations). After tuning the heuristics
are set as follows: momentum factor = 0.95, error
ratio = 1.04, stepsize increment factor = 1.05, and
stepsize decrement factor = 0.4.

Figures 2-5 illustrate, in contours of constant
error in the w;,ws-plane, the behavior of the
algorithms when initial weights lead to the global
minimum. Under the same conditions, BPVS need 18
error function evaluations, to reach the global
minimum, while BP, momentum BP, and adaptive
BP neced 40, 48, and 26 error function evaluations,
respectively. BPVS stepsize n vs error function
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FIGURE 2. lllustration of the backpropagation training algorithm
in the case of the global minimum. The ellipses are contours of
the surface depicted in Figure 1.
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FIGURE 3. lliustration of the momentum backpropagation
training algorithm in the case of the global minimum. The
ellipses are contours of the surface depicted in Figure 1.

evaluations is shown in Figure 6a, and the stepsize
0.5L;' due to the local approximation of the
Lipschitz constant, is shown in Figure 6b. By
comparing Figures 6a and 6b one can see that the
stepsize is mx = 0.5 L;! for the cases: 1, 4, 6-11, 15,
17-18; in the situations 5 and 16 the value 0.5 L;! is
less than the stepsize lower bound, thus 7, = L;‘. As
a consequence of Step 3 of the BPVS, the stepsize is
reduced according to Step 4 in the following
situations: 2-3, and 12-14.

When initial conditions lead BP to a local
minimum (see Figure 7) momentum BP, adaptive

25 \

| 'r//

Weight, w,
@]
T

|
T
L

4
o
T
f

-25 BN ’
-1 -05 o 05 1

Weight, w,

FIGURE 4. lliustration of the adaptive backpropagation training
algorithm in the case of the global minimum. The ellipses are
contours of the surface depicted in Figure 1.
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FIGURE 5. lllustration of the backpropagation with variable FIGURE 7. lllustration of the backpropagation training algorithm
stepsize in the case of the global minimum. The ellipses are in the case of a local minimum. The ellipses are contours of the

contours of the surface depicted in Figure 1.

surface depicted in Figure 1.
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FIGURE 6. The case of a single neuron: (a) stepsize 1) vs error function evaluations curve for the backpropagation with varlable stepsize;
(b) the computed stepsize 0.5L;" vs error function evaluations curve. The curves are for the global minimum case.
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FIGURE 8. MHlustration of the momentum backpropagation
training algorithm in the case of a local minimum. The ellipses
are contours of the surface depicted in Figure 1.

BP, and BPVS converge to the global minimum.
Figures 8-10 illustrate, in contours of constant error
in the wy,ws-plane, the behavior of momentum BP,
adaptive BP, and BPVS. Although contours are oval-
shaped and bent, BPVS has escaped from the local
minimum updating the weights using the stepsize
0.5 L,:l‘ Thus, BPVS has exploited the error surface
related information provided by the local approxima-
tion of the Lipschitz constant, and converged to the
global minimum faster than the momentum BP and
the adaptive BP. To be more specific, BPVS needs 76
error function evaluations, while momentum BP and

25
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Weight, w,
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I
T

L
[
T

Weight, w,

FIGURE 9. lllustration of the adaptive backpropagation training
algorithm in the case of a local minimum. The ellipses are

contours of the surface depicted in Figure 1.

75

-25 +
Weight, w,

FIGURE 10. lllustration of the backpropagation with variable
stepsize in the case of a local minimum. The ellipses are
contours of the surface depicted in Figure 1.

adaptive BP need 177 and 102 error function
evaluations, respectively.

The effects on the behavior of the algorithms when
perturbing the weights are illustrated in Figures 11—
14. As shown in Figure 11, BP oscillates but finally
succeeds to converge to the global minimum. The
momentum factor (see Figure 12) appears to help
limiting the influence of noise. As illustrated in Figure
13, the adaptive BP oscillates when reaching the
neighborhood of the global minimum. On the other
hand, BPVS trajectory is smooth enough. In general,
BPVS had a behavior similar to the adaptive BP but
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Weight, w,
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Weight, w,
FIGURE 11. lllustration of the backpropagation training algorithm

with additive weight perturbations. The ellipses are contours of
the surface depicted in Figure 1.
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FIGURE 12. lllustration of the momentum backpropagation
training algorithm with additive weight perturbations. The
ellipses are contours of the surface depicted in Figure 1.

when reaching the global minimum the stepsize is
kept very small (due to Steps 3-4), and the algorithm
does not oscillate (see Figure 14).

4.2. XOR classification problem

Classification of the four XOR patterns into {0, 1}
using a 2-2-1 FNN (six weights, three biases) is a
classical test problem (Jacobs, 1988; Kollias &
Anastassiou, 1989; van Ooyen & Nienhuis, 1992;
van der Smagt, 1994). The XOR problem is sensitive
to initial weights as well as to stepsize variations and

25—
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FIGURE 13. lllustration of the adaptive backpropagation training
algorithm with additive weight perturbations. The ellipses are
contours of the surface depicted in Figure 1.
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FIGURE 14. lllustration of the backpropagation with variable
stepsize with additive weight perturbations. The ellipses are
contours of the surface depicted in Figure 1.

presents a multitude of local minima with certain
weight vectors (Blum, 1989). The weights were
initialized using the Nguyen—Widrow (1990) meth-
od. BPVS stepsize was taken equal to 12. For the BP,
the momentum BP, and the adaptive BP the
following standard values were chosen: step-
size = 0.75, momentum factor = 0.9, error ra-
tio = 1.04, stepsize increment factor = 1.05, and
stepsize decrement factor = 0.7. The termination
condition was E < 0.04 within 600 error function
evaluations.

In all instances, 1000 simulations were run and the
results are summarized in Table 1. BPVS and
adaptive BP had similar performance: they were
faster than the BP and momentum BP, but BPVS had
smaller standard deviation than adaptive BP. The
aforementioned local minima problem affects the
number of successful simulations. However, an
improvement to +10% in the success was observed

TABLE 1
Results of Simulations for the XOR Problem
Algorithm m.n. s.d. m.e. s.e. suc.
BP 250.50 96.82 398 0.11 441
MBP 24090 113.02 396 0.24 434
ABP 78.56 69.88 38.1 1.96 484
BPVS 78.41 55.19 378 0.17 485

m.n.=mean number of error function evaluations for
simulations that reached solution; s.d.=standard deviation
of error function evaluations for simulations that reached
solution; m.e.=mean value of error for simulations that
reached solution x107%; s.e.= standard deviation of error
for simulations that reached solution x1073;
suc.=simulations succeeded out of 1000 within the error
function evaluations limit.
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FIGURE 15. XOR problem: (a) BPVS convergence behavior; (b) stepsize n behavior; {c) stepsize O.SL;‘ behavior.

for the BPVS when compared with the BP. The BPVS
error function E in a typical run, is shown in Figure
15a. The corresponding stepsize n vs error function
evaluations curve is illustrated in Figure 15b, and the
stepsize 0.5L; ! due to the local approximation of the
Lipschitz constant, is shown in Figure 15c.

4.3. Numeric Font Learning Problem

A 64-6-10 FNN (444 weights, 16 biases) is used as a
simple numeral recognizer (Sperduti & Starita, 1993)
with an 8 x 8 pixel input and a 10 bit one-hot output
representing zero through nine. The weights were
initialized using the Nguyen-Widrow (1990) method.
The stepsize was set to 1.5 for the BP, the momentum
BP, and the adaptive BP, in agreement with results
reported in Sperduti & Starita (1993). In the case of

BPVS the stepsize was equal to 24. The termination
condition was E < 0.04 within 2000 error function
evaluations and the algorithms were tested on 1000
simulation runs. The heuristics were set as follows:
momentum factor = 0.9, error ratio = 1.04, stepsize
increment factor = 1.05, stepsize decrement fac-
tor = 0.7.

TABLE 2
Results of Simulations for the 8 x 8 Numeric Font Problem
Algorithm m.n. s.d. m.e. s.e. suc.
BP 859.2 42067 399 0.17 242
MBP 1824.0 0.00 39.9 0.00 2
ABP 8144 466.94 392 1.50 544
BPVS 337.3 84.97 387 1.50 999

Abbreviations as for Table 1.
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FIGURE 16. Numeric font problem: (a) BPVS convergence behavior; (b) stepsize n behavior; (c) stepsize 0.5L," behavior.

The results are summarized in Table 2. BPVS is
definitely better than the other algorithms escaping
shallow local minima and providing fast training.
Figures 16a-c illustrate the error function E, the
stepsize 7, and the stepsize 0.5L;! in a typical BPVS
run. Note that there was an overshoot of small
amplitude in the SSE (see Figure 16a) just before
error function evaluation number 120. As soon as the
overshoot was detected [i.e., relation (10) was not
satisfied] BPVS has stopped following the stepsize
0.5L;!'. A safe stepsize was chosen after three error
function evaluations according to Steps 3-4 of the
BPVS algorithm.

4.4. Numeric Font Generalization Problem

Numerals from zero to nine in eight points standard

helvetica font (Figure 17a) form the training patterns
for this application example. After being trained with
BP, adaptive BP and BPVS as in Application 4.3 the
FNN is tested for its generalization capability using
helvetica italic (Figure 17b) and helvetica bold (Figure
17¢). Note that, the test patterns in italic have 614 bits
reversed from the training patterns, the test patternsin
bold have 6-22 bits reversed from the training
patterns, and that 100 FNNs are trained for each
case. A test pattern is considered to be correctly
recognized if the corresponding output neuron has the
greatest value among the output neurons.

BP trained FNNs had similar generalization
capability with the adaptive BP trained ones, but as
in Application 4.3 more error function evaluations
were necessary in order to converge. Therefore, only
the performance of the adaptive BP and the BPVS is
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FIGURE 17. Numerals for the numeric font generalization
problem: (a) standard helvetica; (b) helvetica italic; (c) helvetica
bold.
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FIGURE 18. Number of trained feedforward neural networks that
correctly recognized numerals in helvetica italic.

illustrated in Figures 18 (for the italic) and 19 (for the
bold).

As shown in Figure 18, BPVS trained FNNs had
slightly better generalization capability than adaptive
BP trained ones. For example, seven BPVS trained
FNNs recognized eight numerals out of ten. On the
other hand, there are only three FNNs trained with
adaptive BP that had the same generalization
capability.

In the second case, BPVS had definitely better
generalization capability than adaptive BP. As shown
in Figure 19, BPVS trained FNNs recognized up to
nine numerals out of ten. On the other hand,
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FIGURE 19. Number of trained feedforward neural networks that
correctly recognized numerals in helvetica bold.

networks trained with adaptive BP recognized up to
seven numerals.

4.5. Texture Classification Problem

A texture classification problem is chosen to compare
and evaluate the BP, the adaptive BP, and the BPVS
as an example of practical application wusing
continuous-valued training data that contain ran-
dom noise. Texture classification can be considered as
the first step in texture analysis, with important
applications in medical imaging, surface or object
identification, and processing of satellite images
(Haralick, 1979).

A total of 12 Brodatz texture images (Brodatz,
1966): 3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 (see
Figure 20) of size 512x512 were acquired by a
scanner at 150 dpi. From each texture image 10
subimages of size 256 x 256 were randomly selected,
and the fractal dimension pattern was computed for

FIGURE 20. Twelve texture patterns obtained from digitizing images found in the "Brodatz Album". Textures: 20, 5, 51, 3, 12, 9, 93, 15, 68,

77,78, 79.



80

G. D. Magoulas et al.

TABLE 3
Success Rate of Classification by ABP

Texture

Input Texture Pattern

Type D20 D5 D51 D3 D12

D9 D93 D15 D68 D77 D78 D79

D20 20

D5 20

D51 20

D3 20

D12 19
D9 1
D93

D15

D68

D77

D78

D79

20 1
20
20
20

each one of them. The fractal dimension is an image
feature that characterizes the roughness of an image
(Pentland, 1984). However, it is possible that two
images of different texture and different optical
appearance have the same fractal dimension. Thus,
its discrimination capability, in some cases is
problematic.

In order to alleviate this problem, the fractal
dimension was computed in the original subimage, as
well as in the first two lower resolution versions of the
original subimage and the first two sets of detail
subimages, containing higher horizontal and vertical
frequency spectral information. The subimages were
produced by decomposing the original image through
the dyadic wavelet transform (Mallat & Zhong,
1992). The aforementioned feature extraction proce-
dure is originally proposed in Karayiannis &
Stouraitis (1995).

Following this procedure ten seven-dimensional
training patterns were created from each image. A 7-
7-12 FNN (133 weights, 19 biases) was trained to
classify the training patterns to 12 texture types. The
FNN generalization capability was tested using

patterns from 20 subimages of the same size
randomly selected from each image. After tuning,
stepsize and heuristics were set to the following
values: stepsize = 0.001, error ratio = 1.004, stepsize
increment factor = 1.005, stepsize decrement fac-
tor = 0.4. The termination condition was E < (.2,
the weights were initialized using the Nguyen—
Widrow (1990) method and in all instances ten
simulations were run, due to the long training time.

BP never found a global minimum due to
oscillations; when BP was approaching a global
minimum a smaller stepsize was necessary for the
algorithm to continue decreasing the error. Adaptive
BP converged to the global minimum needing more
than 1.015x107 error function evaluations. On the
other hand, BPVS converged with an average of
7.1 x 10% error function evaluations. The perfor-
mance of the two FNNs that had the best training
time is presented in Table 3 (adaptive BP trained
FNN) and Table 4 (BPVS trained FNN needed
6.242 x 10% error function evaluations), where for
each input texture pattern, the count of its
classification as a specific texture type by the FNN

TABLE 4
Success Rate of Classification by BPVS

Texture

input Texture Pattern

Type D20 D5 D51 D3 D12

D9 D93 D15 D68 D77 D78 D79

D20 20

D5 20

D51 20

D3 20
D12 20
D9

D93

D15

D68

D77

D78

D79

17 2 3

20 1
20
20
20




Variable Step Backpropagation

is given. The total classification rate by BPVS and
adaptive BP was significantly high, almost 95%,
however BPVS was faster.

5. CONCLUDING REMARKS

BP training with variable stepsize, named BPVS, is
presented in this contribution. This algorithm allows
arbitrarily large variable stepsize, utilizing estimates
of the Lipschitz constant that are obtained without
additional error function and gradient evaluations.

The use of the local approximation L, of the
Lipschitz constant at every epoch provides BPVS
with valuable information that relates the error
function local shape and the subsequent weight
updates. This information is used in the stepsize
adaptation procedure, in order to achieve satisfactory
convergence rate and escape from shallow local
minima. In fact, starting with a large stepsize and
gradually decreasing it, has an effect similar to
annealing (Rumelhart & McClelland, 1986): the
algorithm escapes shallow local minima in the early
training and converges into a deeper, hopefully global
minimum.

The BPVS method has proved to be very effective,
when tested and compared with the batch BP, the BP
with momentum, and the BP with variable stepsize
proposed by Vogl et al. (1988), on several application
examples.

The results of the applications suggest that, with
no use of heuristic factors the BPVS method
successfully adjusts the weights of an FNN. The
training algorithm succeeds to converge, within the
specified error function evaluation limit, more times
than the other algorithms tested and has very small
error deviation, which means that it possesses a stable
behavior to the desired accuracy. The behavior of the
algorithm in the simulations proved to be robust
against phenomena such as: oscillations due to large
stepsizes and the nearly constant error function value
(Lee et al., 1993), by ensuring that the value of the
error function E is decreased with every weight
update.

Although BPVS is developed for use with
deterministic steepest descent, it seems to have a
potential for convergence when additive weight
perturbations are introduced during training. In a
subsequent communication we intend to present the
behavior and characteristics of the BPVS conver-
gence under more noise situations and on-line type
learning.
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