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1. INTRODUCTION

Supervised training of a feed—forward neural network (FNN) can be viewed as the minimization of
an error function that depends on the weights of the network. This perspective gives some advantage
to the development of effective training algorithms because the problem of minimizing a function is
well known in the field of numerical analysis.

If there is a fixed, finite set of input-output pairs, the square error over the training set which
contains P representative cases is:
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This equation formulates the error function to be minimized, in which ¢;, specifies the desired
response at the j—th neuron of the output layer at the input pattern p and yﬁp is the output at the
J—th neuron of the output layer L that depends on the weights of the network and ¢ is a nonlinear
activation function, such as the well known sigmoid o(z) = (1 + e~=)"'. The weights in the network
can be expressed using vector notation as:
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where wij_l’l is the connection weight from the i—th neuron (¢ = 1,..., Ni_1) at the (I — 1) layer to
the j—th neuron at the I-th layer, Bé denotes the bias of the j—th neuron (j = 1,..., N;) at the I-th
layer (1 =2,...,L). This formulation defines the weight vector as a point in the N-dimensional real
Euclidean space R™, where N denotes the total number of weights and biases in the network.

Minimization of E(w) is attempted by updating the weights using a training algorithm. The
weight update vector describes a direction in which the weight vector will move in order to reduce
the network training error. The weight update equation for any training algorithm is thus:

wt = wk + Ak, k=0,1,..., (1.2)

where w¥+! is the new weight vector, w* is the current weight vector and Aw* the weight update
vector.

The commonly used training methods are gradient based algorithms such as the popular back-
propagation (BP) algorithm [1]. It is well known that the BP algorithm leads to slow training
and often yields suboptimal solutions [2]. This contribution presents a technique that alleviates the
problem of occasional convergence to local minima in BP training.
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2. BACK-PROPAGATION TRAINING AND LOCAL MINIMA

The BP minimizes the error function E(w) using the Steepest Descent (SD) [3] with constant
stepsize p, i.e. :
whtl = wk — uVE@W*), k=0,1,.... (2.1)

The optimal value of the stepsize p depends on the shape of the N-dimensional error function. The
gradient, VE, is computed by applying the chain rule on the layers of the FNN (see [1]).

Attempts to speed up back-propagation training have been made by dynamically adapting the
stepsize u during training [4,5], or by using second derivative related information [6,7,8]. However,
these BP-like training algorithms are based on local minimization methods. They have no mechanism
that allows them to escape the influence of a local minimum. Convergence of an algorithm to a local
minimum prevents a network from learning the entire training set and results in inferior network
performance.

Intuitively, the existence of local minima is due to the fact that the error function is the super-
position of nonlinear activation functions that may have minima at different points which results in
nonconvex error surface. Convergence to local minima can be caused by the insufficient number of
hidden nodes as well as improper initial weight vector.

Recently, several researchers have presented conditions on the network architecture, the training
set and the initial weight vector that allow BP to reach the optimal solution [2,9,10]. However,
conditions such as the linear separability of the patterns and the pyramidal structure of the FNN [2]
as well as the need for a great number of hidden neurons (as many neurons as patterns to learn),
make these interesting results not easily interpretable in practical situations even for problems as
simple as the XOR.

3. THE PROCEDURE OF SIMULATED ANNEALING

Simulated annealing refers to the process in which random noise in a system is systematically
decreased at a constant rate so as to enhance the response of the systems.

In the numerical optimization framework, Simulated Annealing (SA) [11] is a procedure that has
the capability to move out of regions near local minima. SA is based on random evaluations of
the cost function, in such a way that transitions out of a local minimum are possible. It does not
guarantee of course, to find the global minimum, but if the function has many good near-optimal
solutions, it should find one.

The performance of the SA [12] as observed on typical neural network training problems, is not the
appropriate one. SA is characterized by the need for a number of function evaluations greater than
that commonly required for a single run of common training algorithms and by the absence of any
derivative related information. In addition, the problem with minimizing the neural network error
function is not the well defined local minima but the broad regions that are nearly flat. In this case
the so—called Metropolis move is not strong enough to move the algorithm out of these regions [13].

In [14] SA is incorporated in the weight update vector as follows:

AwF = —uV E(wF) 4 ne22

where 7 is a constant controlling the initial intensity of the noise, ¢ € (-0.5,+0.5) is a random
number and d is the noise decay constant. In our experiments we have applied this technique, named
SA1, for updating the weights from the beginning of the training as proposed by Burton et al. [14).
Alternatively, we update the weights using BP until convergence to a global or local minimum is
achieved. In the latter case, we switch to SA1. This combined BP with SA1 is named BPSA.
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4. THE DEFLECTION PROCEDURE

It is well known that in order to minimize the error function E we require a sequence of weight
vectors {w*}g°, where k indicates iterations, that converges to a minimizer of E£. Assuming that this
sequence converges to a local minimum r € R" we can formulate the following function:

F(w) = S(w;r, \) P E(w), (4.1)

where S(w;r, A) is a function depending on a weight vector w and on the local minimizer r of E; X is
a relaxation parameter. Assuming that there exist m local minima ry,...,7, € RV, Relation (4.1)

is reformulated as:
F(w) = S(w;rl,)\l)‘l ---S(w;rm,)\m)_lE(w). (4.2)

Our goal is to find a “proper” S5(-) such that F(w) will not obtain a minimum at r;,s = 1,...,m,
while keeping all other minima of E locally “unchanged”. In other words, we have to construct
functions § that provide F' with the property that any sequence of weights converging to r; (a local
minimizer of F) will not produce a minimum of F' at w = r;. In addition, this function F will retain
all other minima of E. We call this property deflection property.

The following function:

S(w;ri, A;) = tanh (X|w — 7)), (4.3)

provides F' with the above mentioned deflection property as will be explained in the sequel.
Assuming that a local minimum r; has been determined, then

- E(w)

o2,k O ) T “s
which means that r; is no longer a local minimizer of F. Moreover, it is easily verified that for
[lw —r;]| > € , where ¢ is a small positive constant, holds that :

. . E(w) _

W2 = B e (e =~ P *9)
since the denominator tends to unity. This means that the error function remains unchanged in the
whole weightspace.

However, for an arbitrary value of A there is a small neighborhood R(r, p) with center r and radius
p, with pox A~1, that for any z € R(r,p) holds that F(z) > E(z). To be more specific, when the
value of X is small (say A < 1) the denominator in (4.5) becomes one for w “far” from r. Thus, the
deflection procedure affects a large neighborhood around r in the weightspace. On the other hand,
when the value of A is large, new local minima is possible to be created near the computed minimum
r (like a mexican hat). These minima have function values greater than F(r) and can be avoided
easily by taking a proper stepsize or by changing the value of A.

At this point it is instructive to provide a simple example in order to illustrate the improvement
achieved by incorporating the new technique in the BP method. The problem consists of a neuron
with two weights to be learned, on a set of 8, two-dimensional patterns. The two weights, w,, w; are
initialized from uniform distributions in the intervals (—3,3) and (—7.5,7.5), respectively. The error
surface is shown in Figure 1. The global minimum is located at the center and there are two valleys
that lead to local minima.

In Figure 2 we illustrate the weight trajectory when the initial weight vector leads BP to a local
minimum. In Figures 3 and 4 we illustrate the deflected trajectory of weights drawn on the contour
lines of the error function £ and on the contour lines of the function F, respectively.
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Figure 1: The error surface
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Figure 3: Deflected trajectory of weights
drawn on the contour lines of the error
function
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Figure 2: Weight trajectory when the initial
weight vector leads BP to a local minimum
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Figure 4: Deflected trajectory of weights
drawn on the contour lines of the error
function subject to deflection
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5. EXPERIMENTAL EVALUATION AND CONCLUDING REMARKS

Several experiments have been performed to evaluate the deflection procedure (DEflactive TRa-
jectory Algorithm — DETRA) and compare its performance with the batch versions of BP, SA1 and
BPSA. The algorithms have been tested using the same initial weight vectors chosen from the uni-
form distribution in the interval (~1,+1). BP and SAl termination condition has been E < 0.04.
Note also that, BPSA and DETRA updated weights using BP until convergence to a global or local
minimum. Global convergence has been obtained when E < 0.04, while local convergence has been
considered when the stopping condition |V E{(w*)| < 103 has been met and w* has been taken as a
local minimum 7; of the error function F.

1. Exclusive-OR classification problem: classification of the four XOR patterns in one of two
classes, {0,1} using a 2-2-1 FNN is a classical test problem [1,7,5]. The XOR problem is sensitive
to initial weights and presents a mmltitude of local minima [15). The stepsize is taken equal to 1.5
and the heuristics for SA1 and BPSA are tuned to = = 0.3 and d = 0.002. In all instances, 100
simulations have been run and the results are summarized in Table 1.

Training | Exclusive-OR Problem Parity Problem
Method | Success Mean  Std | Success Mean Std
BP 2% 1441 1126 22 % 88185 64229
SA1l 43 % 4242 4208 11 % 80514  4207.1
BPSA 65 % 1661.9 2775.7 33 % 26340.0 34334.0
DETRA 100 %  575.1  387.3 100 % 14409.0 5575.9

Table 1: Comparative results in terms of function evaluations for the test problems

2. The four bit parity problem [1]: a 4-4-1 FNN receives 16, 4-dimensional binary input patterns
and must output a “1” if the inputs have an odd number of ones and “0” if the inputs have an even
number of ones. This is a very difficult problem for an FNN because the network must determine the
proper parity (the value at the output) for input patterns which differ only by Hamming distance
1. It is well known that network’s weightspace contains “bad” local minima. The stepsize has been
taken equal to 0.5 and the heuristics for SA1 and BPSA have been tuned to » = 0.1 and d = 0.00025.
In all instances, 100 simulations have been run and the results are summarized in Table 1.

The results of Table 1 suggest that DETRA escapes local minima and converges to the global
minimum in all cases. A consideration that is worth mentioning is that the number of function
evaluations in BPSA and DETRA contains the additional evaluations required for BP to satisfy the
local minima stopping condition.

In conclusion, a simple procedure for the alleviation of the problem of local minima in BP training
has been presented. This procedure can be incorporated in any training algorithm and allows escaping
the influence of local minima. Preliminary results on two notorious for their local minima problems
are promising. We currently investigate techniques in order to find a proper relaxation parameter A
for each case.
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