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This article focuses on gradient-based backpropagation algorithms that
use either a common adaptive learning rate for all weights or an individual
adaptive learning rate for each weight and apply the Goldstein/Armijo
line search. The learning-rate adaptation is based on descent techniques
and estimates of the local Lipschitz constant that are obtained without
additional error function and gradient evaluations. The proposed algo-
rithms improve the backpropagation training in terms of both conver-
gence rate and convergence characteristics, such as stable learning and
robustness to oscillations. Simulations are conducted to compare and
evaluate the convergence behavior of these gradient-based training al-
gorithms with several popular training methods.

1 Introduction

The goal of supervised training is to update the network weights iteratively
to minimize globally the difference between the actual output vector of the
network and the desired output vector. The rapid computation of such a
global minimum is a rather difficult task since, in general, the number of
network variables is large and the corresponding nonconvex multimodal
objective function possesses multitudes of local minima and has broad flat
regions adjoined with narrow steep ones.

The backpropagation (BP) algorithm (Rumelhart, Hinton, & Williams,
1986) is widely recognized as a powerful tool for training feedforward neu-
ral networks (FNNs). But since it applies the steepest descent (SD) method
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to update the weights, it suffers from a slow convergence rate and often
yields suboptimal solutions (Gori & Tesi, 1992).

A variety of approaches adapted from numerical analysis have been ap-
plied in an attempt to use not only the gradient of the error function but
also the second derivative in constructing efficient supervised training al-
gorithms to accelerate the learning process. However, training algorithms
that apply nonlinear conjugate gradient methods, such as the Fletcher-
Reeves or the Polak-Ribiere methods (Møller, 1993; Van der Smagt, 1994),
or variable metric methods, such as the Broyden-Fletcher-Goldfarb-Shanno
method (Watrous, 1987; Battiti, 1992), or even Newton’s method (Parker,
1987; Magoulas, Vrahatis, Grapsa, & Androulakis, 1997), are computation-
ally intensive for FNNs with several hundred weights: derivative calcu-
lations as well as subminimization procedures (for the case of nonlinear
conjugate gradient methods) and approximations of various matrices (for
the case of variable metric and quasi-Newton methods) are required. Fur-
thermore, it is not certain that the extra computational cost speeds up the
minimization process for nonconvex functions when far from a minimizer,
as is usually the case with the neural network training problem (Dennis &
Moré, 1977; Nocedal, 1991; Battiti, 1992).

Therefore, the development of improved gradient-based BP algorithms
is a subject of considerable ongoing research. The research usually focuses
on heuristic methods for dynamically adapting the learning rate during
training to accelerate the convergence (see Battiti, 1992, for a review on these
methods). To this end, large learning rates are usually utilized, leading, in
certain cases, to fluctuations.

In this article we propose BP algorithms that incorporate learning-rate
adaptation methods and apply the Goldstein-Armijo line search. They pro-
vide stable learning, robustness to oscillations, and improved convergence
rate. The article is organized as follows. In section 2 the BP algorithm is
presented, and three new gradient-based BP algorithms are proposed. Ex-
perimental results are presented in section 3 to evaluate and compare the
performance of these algorithms with several other BP methods. Section 4
presents the conclusions.

2 Gradient-based BP Algorithms with Adaptive Learning Rates

To simplify the formulation of the equations throughout the article, we
use a unified notation for the weights. Thus, for an FNN with a total of
n weights, Rn is the n–dimensional real space of column weight vectors
w with components w1,w2, . . . ,wn, and w∗ is the optimal weight vector
with components w∗1,w∗2, . . . ,w∗n; E is the batch error measure defined as
the sum-of-squared-differences error function over the entire training set;
∂iE(w) denotes the partial derivative of E(w) with respect to the ith vari-
able wi; g(w) = (g1(w), . . . , gn(w)) defines the gradient ∇E(w) of the sum-
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of-squared-differences error function E at w, while H = [Hij] defines the
Hessian ∇2E(w) of E at w.

In FNN training, the minimization of the error function E using the BP
algorithm requires a sequence of weight iterates {wk}∞k=0, where k indicates
iterations (epochs), which converges to a local minimizer w∗ of E. The batch-
type BP algorithm finds the next weight iterate using the relation

wk+1 = wk − ηg(wk), (2.1)

where wk is the current iterate, η is the constant learning rate, and g(w) is
the gradient vector, which is computed by applying the chain rule on the
layers of an FNN (see Rumelhart et al., 1986). In practice the learning rate
is usually chosen 0 < η < 1 to ensure that successive steps in the weight
space do not overshoot the minimum of the error surface.

In order to ensure global convergence of the BP algorithm, that is, conver-
gence to a local minimizer of the error function from any starting point, the
following assumptions are needed (Dennis & Schnabel, 1983; Kelley, 1995):

1. The error function E is a real–valued function defined and continuous
everywhere in Rn, bounded below in Rn.

2. For any two points w and v ∈ Rn, ∇E satisfies the Lipschitz condition,

‖∇E(w)−∇E(v)‖ ≤ L‖w− v‖, (2.2)

where L > 0 denotes the Lipschitz constant.

The effect of the above assumptions is to place an upper bound on the
degree of the nonlinearity of the error function, via the curvature of E, and to
ensure that the first derivatives are continuous at w. If these assumptions are
fulfilled, the BP algorithm can be made globally convergent by determining
the learning rate in such a way that the error function is exactly submini-
mized along the direction of the negative of the gradient in each iteration.
To this end, an iterative search, which is often expensive in terms of error
function evaluations, is required. To alleviate this situation, it is preferable
to determine the learning rate so that the error function is sufficiently de-
creased on each iteration, accompanied by a significant change in the value
of w.

The following conditions, associated with the names of Armijo, Gold-
stein, and Price (Ortega & Rheinboldt, 1970), are used to formulate the
above ideas and to define a criterion of acceptance of any weight iterate:

E
(

wk − ηkg(wk)
)
− E(wk) ≤ −σ1ηk

∥∥∥∇E(wk)

∥∥∥2
, (2.3)

∇E
(

wk − ηkg(wk)
)>

g(wk) ≥ σ2

∥∥∥∇E(wk)

∥∥∥2
, (2.4)
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where 0 < σ1 < σ2 < 1. Thus, by selecting an appropriate value for the
learning rate, we seek to satisfy conditions 2.3 and 2.4. The first condition
ensures that using ηk, the error function is reduced at each iteration of the
algorithm and the second condition prevents ηk from becoming too small.

Moreover, conditions 2.3–2.4 have been shown (Wolfe, 1969, 1971) to be
sufficient to ensure global convergence for any algorithm that uses local
minimization methods, which is the case of Fletcher-Reeves, Polak-Ribiere,
Broyden-Fletcher-Goldfarb-Shanno, or even Newton’s method-based train-
ing algorithms, provided the search directions are not orthogonal to the di-
rection of steepest descent at wk. In addition, these conditions can be used
in learning-rate adaptation methods to enhance BP training with tuning
techniques that are able to handle arbitrary large learning rates.

A simple technique to tune the learning rates, so that they satisfy con-
ditions 2.3–2.4 in each iteration, is to decrease ηk by a reduction factor 1/q,
where q > 1 (Ortega & Rheinboldt, 1970). This means that ηk is decreased
by the largest number in the sequence {q−m}∞m=1, so that condition 2.3 is sat-
isfied. The choice of q is not critical for successful learning; however, it has
an influence on the number of error function evaluations required to obtain
an acceptable weight vector. Thus, some training problems respond well
to one or two reductions in the learning-rate by modest amounts (such as
1/2), and others require many such reductions, but might respond well to
a more aggressive learning-rate reduction (for example, by factors of 1/10,
or even 1/20). On the other hand, reducing ηk too much can be costly since
the total number of iterations will be increased. Consequently, when seek-
ing to satisfy condition 2.3, it is important to ensure that the learning rate
is not reduced unnecessarily so that condition 2.4 is not satisfied. Since, in
the BP algorithms, the gradient vector is known only at the beginning of
the iterative search for an acceptable weight vector, condition 2.4 cannot
be checked directly (this task requires additional gradient evaluations in
each iteration of the training algorithm), but is enforced simply by placing
a lower bound on the acceptable values of the ηk. This bound on the learn-
ing rate has the same theoretical effect as condition 2.4 and ensures global
convergence (Shultz, Schnabel, & Byrd, 1982; Dennis & Schnabel, 1983).

Another approach to perform learning-rate reduction is to estimate the
appropriate reduction factor in each iteration. This is achieved by modeling
the decrease in the magnitude of the gradient vector as the learning rate
is reduced. To this end, quadratic and cubic interpolations are suggested
that exploit the available information about the error function. Relative
techniques have been proposed by Dennis and Schnabel (1983) and Battiti
(1989). A different approach to decrease the learning rate gradually is the so-
called search–then–converge schedules that combine the desirable features
of the standard least-mean-square and traditional stochastic approximation
algorithms (Darken, Chiang, & Moody, 1992).

Alternatively, several methods have been suggested to adapt the learn-
ing rate during training. The adaptation is usually based on the following
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approaches: (1) start with a small learning rate and increase it exponen-
tially if successive iterations reduce the error, or rapidly decrease it if a
significant error increase occurs (Vogl, Mangis, Rigler, Zink, & Alkon, 1988;
Battiti, 1989), (2) start with a small learning rate and increase it if succes-
sive iterations keep gradient direction fairly constant, or rapidly decrease
it if the direction of the gradient varies greatly at each iteration (Chan &
Fallside, 1987) and (3) for each weight an individual learning rate is given,
which increases if the successive changes in the weights are in the same
direction and decreases otherwise. The well-known delta-bar-delta method
(Jacobs, 1988) and Silva and Almeida’s method (1990) follow this approach.
Another method, named quickprop, has been presented in Fahlman (1989).
Quickprop is based on independent secant steps in the direction of each
weight. Riedmiller and Braun (1993) proposed the Rprop algorithm. The
algorithm updates the weights using the learning rate and the sign of the
partial derivative of the error function with respect to each weight. This
approach accelerates training mainly in the flat regions of the error function
(Pfister & Rojas, 1993; Rojas, 1996).

Note that all the learning-rate adaptation methods mentioned employ
heuristic coefficients in an attempt to secure converge of the BP algorithm
to a minimizer of E and to avoid oscillations.

A different approach is to exploit the local shape of the error surface as
described by the direction cosines or the Lipschitz constant. In the first case,
the learning rate is a weighted average of the direction cosines of weight
changes at the current and several previous successive iterations (Hsin, Li,
Sun, & Sclabassi, 1995), while in the second case ηk is an approximation of
the Lipschitz constant (Magoulas, Vrahatis, & Androulakis, 1997).

In what follows, we present three globally convergent BP algorithms
with adaptive convergence rates.

2.1 BP Training Using Learning Rate Adaptation. Goldstein’s and
Armijo’s work on steepest–descent and gradient methods provides the basis
for constructing training procedures with adaptive learning rate.

The method of Goldstein (1962) requires the assumption that E ∈ C2 (i.e.,
twice continuously differentiable) on S(w0), where S(w0) = {w: E(w) ≤
E(w0)} is bounded, for some initial vector w0. It also requires that η is chosen
to satisfy the relation sup ‖H(w)‖ ≤ η−1 <∞ in some bounded region where
the relation E(w) ≤ E(w0) holds. The kth iteration of the algorithm consists
of the following steps:

Step 1. Choose η0 to satisfy sup ‖H(w)‖ ≤ η−1
0 < ∞ and δ to satisfy

0 < δ ≤ η0.

Step 2. Set ηk = η, where η is such that δ ≤ η ≤ 2η0 − δ and go to the
next step.

Step 3. Update the weights wk+1 = wk − ηkg(wk).
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However, the manipulation of the full Hessian is too expensive in com-
putation and storage for FNNs with several hundred weights (Becker & Le
Cun, 1988). Le Cun, Simard, & Pearlmutter (1993) proposed a technique,
based on appropriate perturbations of the weights, for estimating on–line
the principal eigenvalues and eigenvectors of the Hessian without calculat-
ing the full matrix H. According to experiments reported in Le Cun et al.
(1993), the largest eigenvalue of the Hessian is mainly determined by the
FNN architecture, the initial weights, and short–term, low–order statistics
of the training data. This technique could be used to determine η0, in step 1
of the above algorithm, requiring additional presentations of the training
set in the early training.

A different approach is based on the work of Armijo (1966). Armijo’s
modified SD algorithm automatically adapts the rate of convergence and
converges under less restrictive assumptions than those imposed by Gold-
stein. In order to incorporate Armijo’s search method for the adaptation of
the learning rate in the BP algorithm, the following assumptions are needed:

1. The function E is a real–valued function defined and continuous ev-
erywhere in Rn, bounded below in Rn.

2. For w0 ∈ Rn define S(w0) = {w: E(w) ≤ E(w0)}, then E ∈ C1 on
S(w0) and ∇E is Lipschitz continuous on S(w0), that is, there exists a
Lipschitz constant L > 0, such that

‖∇E(w)−∇E(v)‖ ≤ L‖w− v‖, (2.5)

for every pair w, v ∈ S(w0),

3. r > 0 implies that m(r) > 0, where m(r) = infw∈Sr(w0) ‖∇E(w)‖,
Sr(w0) = Sr ∩ S(w0), Sr = {w: ‖w− w∗‖ ≥ r}, and w∗ is any point for
which E(w∗) = infw∈Rn E(w), (if Sr(w0) is void, we define m(r) = ∞).

If the above assumptions are fulfilled and ηm = η0/qm−1, m = 1, 2, . . . ,
with η0 an arbitrary initial learning rate, then the sequence 2.1 can be writ-
ten as

wk+1 = wk − ηmk g(wk), (2.6)

where mk is the smallest positive integer for which

E
(

wk − ηmk g(wk)
)
− E(wk) ≤ −1

2
ηmk

∥∥∥∇E(wk)

∥∥∥2
, (2.7)

and it converges to the weight vector w∗, which minimizes the function
E (Armijo, 1966; Ortega & Rheinboldt, 1970). Of course, this adaptation
method does not guarantee finding the optimal learning rate but only an
acceptable one, so that convergence is obtained and oscillations are avoided.



Improving the Convergence of the Backpropagation Algorithm 1775

This is achieved using the inequality 2.7 which ensures that the error func-
tion is sufficiently reduced at each iteration.

Next, we give a procedure that combines this method with the batch BP
algorithm. Note that the vector g(wk) is evaluated over the entire training
set as in the batch BP algorithm, and the value of E at wk is computed with
a forward pass of the training set through the FNN.

Algorithm-1: BP with Adaptive Learning Rate.

Initialization. Randomly initialize the weight vector w0 and set the max-
imum number of allowed iterations MIT, the initial learning rate η0, the
reduction factor q, and the desired error limit ε.

Recursion. For k = 0, 1, . . . ,MIT.

1. Set η = η0, m = 1, and go to the next step.

2. If E
(
wk − ηg(wk)

) − E(wk) ≤ − 1
2η‖∇E(wk)‖2, go to step 4; otherwise,

set m = m+ 1 and go to the next step.

3. Set η = η0/qm−1, and return to step 2.

4. Set wk+1 = wk − ηg(wk).

5. If the convergence criterion E
(
wk − ηg(wk)

) ≤ ε is met, then terminate;
otherwise go to the next step.

6. If k < MIT, increase k and begin recursion; otherwise terminate.

Termination. Get the final weights wk+1, the corresponding error value
E(wk+1), and the number of iterations k.

Clearly, algorithm-1 is able to handle arbitrary learning rates, and, in this
way, learning by neural networks on a first-time basis for a given problem
becomes feasible.

2.2 BP Training by Adapting a Self-Determined Learning Rate. The
work of Cauchy (1847) and Booth (1949) suggests determining the learning
rate ηk by a Newton step for the equation E(wk − ηdk) = 0, for the case that
E: Rn → R satisfies E(w) ≥ 0 ∀w ∈ Rn. Thus

ηk = E(wk)/g(wk)>(dk),

where dk denotes the search direction. When dk = g(wk), the iterative
scheme 2.1 is reformulated as:

wk+1 = wk −
[

E(wk)

‖∇E(wk)‖2
]

g(wk). (2.8)
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The iterations (see equation 2.8) constitute a gradient method that has been
studied by Altman (1961). Obviously, the iterative scheme, 2.8, takes into
consideration information from both the error function and the gradient
magnitude. When the gradient magnitude is small, the local shape of E is
flat; otherwise it is steep. The value of the error function indicates how close
to the global minimizer this local shape is. Taking into consideration the
above pieces of information, the iterative scheme, 2.8, is able to escape from
local minima located far from the global minimizer.

In general, the error function has broad, flat regions adjoined with narrow
steep ones. This causes the iterative scheme, 2.8, to create very large learning
rates due to the small values of the denominator, pushing the neurons into
saturation, and thus it exhibits pathological convergence behavior. In order
to alleviate this situation and eliminate the possibility of using an unsuitable
self-determined learning rate, denoted by η0, we suggest a proper learning
rate “tuning.” Therefore, we decide whether the obtained weight vector is
acceptable by considering if condition 2.7 is satisfied. Unacceptable vectors
are redefined using learning rates defined by the relation ηk = η0/qmk−1,
for mk = 1, 2, . . . Moreover, this strategy allows using one-dimensional
minimization of the error function without losing global convergence. A
high-level description of the proposed algorithm that combines BP training
with the learning-rate adaptation method follows:

Algorithm-2: BP with Adaptation of a Self-Determined Learning Rate.

Initialization. Randomly initialize the weight vector w0 and set the max-
imum number of allowed iterations MIT, the reduction factor q and the
desired error limit ε.

Recursion. For k = 0, 1, . . . ,MIT.

1. Set m = 1, and go to the next step.

2. Set η0 = E(wk)/‖∇E(wk)‖2; also set η = η0.

3. If E(wk − ηg(wk)) − E(wk) ≤ − 1
2η‖∇E(wk)‖2 go to step 5; otherwise,

set m = m+ 1 and go to the next step.

4. Set η = η0/qm−1 and return to step 3.

5. Set wk+1 = wk − ηg(wk).

6. If the convergence criterion E
(
wk − ηg(wk)

) ≤ ε is met, then terminate;
otherwise go to the next step.

7. If k < MIT, increase k and begin recursion; otherwise terminate.

Termination. Get the final weights wk+1, the corresponding error value
E(wk+1), and the number of iterations k.
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2.3 BP Training by Adapting a Different Learning Rate for Each Weight
Direction. Studying the sensitivity of the minimizer to small changes by
approximating the error function quadratically, it is known that in a suffi-
ciently small neighborhood of w∗, the directions of the principal axes of the
corresponding elliptical contours (n-dimensional ellipsoids) will be given
by the eigenvectors of∇2E(w∗), while the lengths of the axes will be inversely
proportional to the square roots of the corresponding eigenvalues. Hence, a
variation along the eigenvector corresponding to the maximum eigenvalue
will cause the largest change in E, while the eigenvector corresponding to
the minimum eigenvalue gives the least sensitive direction. Thus, in gen-
eral, a learning rate appropriate in one weight direction is not necessarily
appropriate for other directions. Moreover, it may not be appropriate for all
the portions of a general error surface.

Thus, the fundamental algorithmic issue is to find the proper learning
rate that compensates for the small magnitude of the gradient in the flat
regions and dampens the large weight changes in highly deep regions. A
common approach to avoid slow convergence in the flat directions and
oscillations in the steep directions, as well as to exploit the parallelism in-
herent in the evaluation of E(w) and g(w) by the BP algorithm, consists of
using a different learning rate for each direction in weight space (Jacobs,
1988; Fahlman, 1989; Silva & Almeida, 1990; Pfister & Rojas, 1993; Ried-
miller & Braun, 1993). However, attempts to find a proper learning rate for
each weight usually result in a trade-off between the convergence speed
and the stability of the training algorithm. For example, the delta-bar-delta
method (Jacobs, 1988) or the quickprop method (Fahlman, 1989) introduces
additional highly problem-dependent heuristic coefficients to alleviate the
stability problem.

Below, we derive a new method that exploits the local information re-
garding the direction and the morphology of the error surface at the current
point in the weight space in order to adapt dynamically a different learning
rate for each weight. This learning-rate adaptation is based on estimation
of the local Lipschitz constant along each weight direction.

It is well known that the inverse of the Lipschitz constant L can be used
to obtain the optimal learning rate, which is 0.5L−1 (Armijo, 1966). Thus, in
the steep regions of the error surface, L is large, and a small value for the
learning rate is used in order to guarantee convergence. On the other hand,
when the error surface has flat regions, L is small, and a large learning rate
is used to accelerate the convergence speed. However, in neural network
training, neither the morphology of the error surface nor the value of L is
known a priori. Therefore, we take the maximum (infinity) norm in order
to obtain a local estimation of the Lipschitz constant L (see relation 2.5) as
follows:

3k = max
1≤j≤n

|∂jE(wk)− ∂jE(wk−1)|/ max
1≤j≤n

|wk
j − wk−1

j |, (2.9)
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where wk and wk−1 are a pair of consecutive weight updates at the kth
iteration.

In order to take into consideration the shape of the error surface to adapt
dynamically a different learning rate for each weight, we estimate3k along
the ith direction, i = 1, . . . ,n, at the kth iteration by

3k
i = |∂iE(wk)− ∂iE(wk−1)|/|wk

i − wk−1
i |, (2.10)

and we use the inverse of3k
i to estimate the learning rate of the ith coordinate

direction.
The reason for choosing3k

i instead of3k is that when large changes of the
ith weight occur and the error surface along the ith direction is flat, we have
to take a larger learning rate along this direction. This can be done by taking
equation 2.10 instead of 2.9, since in this case equation 2.10 underestimates
3k. On the other hand, when small changes of the ith weight occur and the
error surface along the ith direction is steep, equation 2.10 overestimates3k,
and thus the learning rate to this direction is dynamically reduced in order
to avoid oscillations. Therefore, the larger the value of 3k

i is, the smaller
learning rate is used and vice versa. As a consequence, the iterative scheme,
equation 2.1, is reformulated as:

wk+1 = wk − γk diag
{

1/3k
1, . . . , 1/3k

n

}
∇E(wk), (2.11)

where γk is a relaxation coefficient. By properly running γk, we are able to
avoid temporary oscillations and/or to enhance the rate of convergence
when we are far from a minimum.

A search technique for γk consists of finding the weight vectors of the
sequence {wk}∞k=0 that satisfy the following condition:

E(wk+1)− E(wk) ≤ −1
2
γmk

∥∥∥diag
{

1/3k
1, . . . , 1/3k

n

}
∇E(wk)

∥∥∥2
. (2.12)

If a weight vector wk+1 does not satisfy the above condition, it has to be
evaluated again using Armijo’s search method. In this case, Armijo’s search
method gradually reduces inappropriate γk values to acceptable ones by
finding the smallest positive integer mk = 1, 2, . . . such that γmk = γ0/qmk−1

satisfies condition 2.12.
The BP algorithm, in combination with the above learning-rate adap-

tation method, provides an accelerated training procedure. A high-level
description of the new algorithm is given below.

Algorithm-3: BP with Adaptive Learning Rate for Each Weight.

Initialization. Randomly initialize the weight vector w0 and set the maxi-
mum number of allowed iterations MIT, the initial relaxation coefficient γ0,
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the initial learning rate for each weight η0, the reduction factor q, and the
desired error limit ε.

Recursion. For k = 0, 1, . . . ,MIT.

1. Set γ = γ0, m = 1, and go to the next step.

2. If k ≥ 1 set 3k
i = |∂iE(wk) − ∂iE(wk−1)|/|wk

i − wk−1
i |, i = 1, . . . ,n;

otherwise set 3k = η−1
0 I.

3. If E(wk − γ diag{1/3k
1, . . . , 1/3k

n}∇E(wk))− E(wk) ≤
− 1

2γ ‖diag{1/3k
1, . . . , 1/3k

n}∇E(wk)‖2, go to step 5; otherwise, set m =
m+ 1 and go to the next step.

4. Set γ = γ0/qm−1, and return to step 3.

5. Set wk+1 = wk − γ diag{1/3k
1, . . . , 1/3k

n}∇E(wk).

6. If the convergence criterion E(wk− γ diag{1/3k
1, . . . , 1/3k

n}∇E(wk)) ≤
ε is met then terminate; otherwise go to the next step.

7. If k < MIT, increase k and begin recursion; otherwise terminate.

Termination. Get the final weights wk+1, the corresponding error value
E(wk+1), and the number of iterations k.

A common characteristic of all the methods that adapt a different learning
rate for each weight is that they require at each iteration the global informa-
tion obtained by taking into consideration all the coordinates. To this end,
learning-rate lower and upper bounds are usually suggested (Pfister & Ro-
jas, 1993; Riedmiller & Braun, 1993) to avoid the usage of an extremely small
or large learning-rate component, which misguides the resultant search di-
rection. The learning-rate lower bound (ηlb) is related to the desired accuracy
in obtaining the final weights and helps to avoid unsatisfactory convergence
rate. The learning-rate upper bound (ηub) helps limiting the influence of a
large learning-rate component on the resultant descent direction and de-
pends on the shape of the error function; in the case ηub is exceeded for
a particular weight, its learning rate in the kth iteration is set equal to the
previous one of the same direction. It is worth noticing that the values of
neither ηlb nor ηub affect the stability of the algorithm, which is guaranteed
by step 3.

3 Experimental Study

The proposed training algorithms were applied to several problems. The
FNNs were implemented in PC-Matlab version 4 (Demuth & Beale, 1992),
and 1000 simulations were run in each test case. In this section, we give
comparative results for eight batch training algorithms: backpropagation
with constant learning rate (BP); backpropagation with constant learning
rate and constant momentum (BPM) (Rumelhart et al., 1986); adaptive back-
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propagation with adaptive momentum (ABP) proposed by Vogl et al. (1988);
backpropagation with adaptive learning rate for each weight (SA), proposed
by Silva and Almeida (1990); resilient backpropagation with adaptive learn-
ing rate for each weight (Rprop), proposed by Riedmiller and Braun (1993);
backpropagation with adaptive learning rate (Algorithm-1); backpropaga-
tion with adaptation of a self-determined learning rate (Algorithm-2); and
backpropagation with adaptive learning rate for each weight (Algorithm-3).

The selection of initial weights is very important in FNN training (Wessel
& Barnard, 1992). A well-known initialization heuristic for FNNs is to select
the weights with uniform probability from an interval (wmin,wmax), where
usually wmin = −wmax. However, if the initial weights are very small, the
backpropagated error is so small that practically no change takes place for
some weights, and therefore more iterations are necessary to decrease the
error (Rumelhart et al., 1986; Rigler, Irvine, & Vogl, 1991). In the worst case
the error remains constant and the learning stops in an undesired local
minimum (Lee, Oh, & Kim, 1993). On the other hand, very large values
of weights speed up learning, but they can lead to saturation and to flat
regions of the error surface where training is considerably slow (Lisboa &
Perantonis, 1991; Rigler et al., 1991; Magoulas, Vrahatis, & Androulakis,
1996).

Thus, in order to evaluate the performance of the algorithms better, the
experiments were conducted using the same initial weight vectors that have
been randomly chosen from a uniform distribution in (−1, 1), since conver-
gence in this range is uncertain in conventional BP. Furthermore, this weight
range has been used by others (see Hirose, Yamashita, & Hijiya, 1991; Hoe-
hfeld & Fahlman, 1992; Pearlmutter 1992; Riedmiller, 1994). Additional ex-
periments were performed using initial weights from the popular interval
(−0.1, 0.1) in order to investigate the convergence behavior of the algo-
rithms in an interval that facilitates training. In this case, the same heuristic
learning parameters as in (−1, 1) have been employed (see Table 1), so as to
study the sensitivity of the algorithms to the new interval.

The reduction factor required by the Goldstein/Armijo line search is q =
2, as proposed by Armijo (1966). The values of the learning parameters
used in each problem are shown in Table 1. The initial learning rate was
kept constant for each algorithm tested. It was chosen carefully so that
the BP algorithm rapidly converges without oscillating toward a global
minimum. Then all the other learning parameters were tuned by trying
different values and comparing the number of successes exhibited by three
simulation runs that started from the same initial weights. However, if an
algorithm exhibited the same number of successes out of three runs for two
different parameter combinations, then the average number of epochs was
checked, and the combination that provided the fastest convergence was
chosen.

To obtain the best possible convergence, the momentum term m is nor-
mally adjusted by trial and error or even by some kind of random search
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Table 1: Learning Parameters Used in the Experiments.

Algorithm 8× 8 font sin(x) cos(2x) Vowel Spotting

BP η0 = 1.2 η0 = 0.002 η0 = 0.0034
BPM η0 = 1.2 η0 = 0.002 η0 = 0.0034

m = 0.9 m = 0.8 m = 0.7
ABP η0 = 1.2 η0 = 0.002 η0 = 0.0034

m = 0.1 m = 0.8 m = 0.1
ηinc = 1.05 ηinc = 1.05 ηinc = 1.07
ηdec = 0.7 ηdec = 0.65 ηdec = 0.8
ratio = 1.04 ratio = 1.04 ratio = 1.04

SA η0 = 1.2 η0 = 0.002 η0 = 0.0034
u = 1.005 u = 1.005 u = 1.3
d = 0.6 d = 0.5 d = 0.7

Rprop η0 = 1.2 η0 = 0.002 η0 = 0.0034
u = 1.3 u = 1.1 u = 1.3
d = 0.7 d = 0.5 d = 0.7
ηlb = 10−5 ηlb = 10−5 ηlb = 10−5

ηub = 1 ηub = 1 ηub = 1
Algorithm-1 η0 = 1.2 η0 = 0.002 η0 = 0.0034
Algorithm-2 a a a

Algorithm-3 η0 = 1.2 η0 = 0.002 η0 = 0.0034
γ0 = 15 γ0 = 1.5 γ0 = 1.5
ηlb = 10−5 ηlb = 10−5 ηlb = 10−5

ηub = 1 ηub = 0.01 ηub = 1
a No heuristics required.

(Schaffer, Whitley, & Eshelman, 1992). Since the optimal value is highly de-
pendent on the learning task, no general strategy has been developed to
deal with this problem. Thus, the optimal value of m is experimental but
depends on the learning rate chosen. In our experiments, we have tried nine
different values for the momentum ranging from 0.1 to 0.9, and we have
run three simulations combining all these values with the best available
learning rate for the BP. On the other hand, it is well known that the “op-
timal” learning rate must be reduced when momentum is used. Thus, we
also tested combinations with reduced learning rates.

Much effort has been made to tune properly the learning-rate increment
and decrement factors ηinc, u, ηdec, and d. To be more specific, various differ-
ent values in steps of 0.05 to 2.0 were tested for the learning-rate increment
factor, and different values between 0.1 and 0.9, in steps of 0.05, were tried
for the learning-rate decrement factor. The error ratio parameter, denoted
ratio in Table 1, was set equal to 1.04. This value is generally suggested in
the literature (Vogl et al., 1988), and indeed it has been found to work bet-
ter than others tested. The lower and upper learning-rate bound, ηlb and
ηub, respectively, were chosen so as to avoid unsatisfactory convergence
rates (Riedmiller & Braun, 1993). All of the combinations of these parame-
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ter values were tested on three simulation runs starting from the same initial
weights. The combination that exhibited the best number of successes out
of three runs was finally chosen. If two different parameter combinations
exhibited the same number of successes (out of three), then the combination
with the smallest average number of epochs was chosen.

3.1 Description of the Experiments and Presentation of the Results.
Here we compare the performance of the eight algorithms in three exper-
iments: (1) a classification problem using binary inputs and targets, (2) a
function approximation problem, and (3) a real-world classification task
using continuous-valued training data that contain random noise.

A consideration that is worth mentioning is the difference in cost be-
tween gradient and error function evaluations in each iteration: for the BP,
the BPM, the ABP, the SA, and the Rprop, one gradient evaluation and one
error function evaluation are necessary in each iteration; for Algorithm-1,
Algorithm-2, and Algorithm-3, there are a number of additional error func-
tion evaluations when the Goldstein/Armijo condition, 2.3, is not satisfied.
Note that in training practice, a gradient evaluation is usually considered
three times more costly than an error function evaluation (Møller, 1993).
Thus, we compare the algorithms in terms of both gradient and error func-
tion evaluations.

The first experiment refers to the training of a 64-6-10 FNN (444 weights,
16 biases) for recognizing an 8× 8 pixel machine-printed numeral ranging
from 0 to 9 in Helvetica Italic (Magoulas, Vrahatis, & Androulakis, 1997).
The network is based on neurons of the logistic activation model. Numerals
are given in a finite sequence C = (c1, c2, . . . , cp) of input–output pairs
cp = (up, tp) where up are the binary input vectors in R64 determining the
8 × 8 binary pixel and tp are binary output vectors in R10, for p = 0, . . . , 9
determining the corresponding numerals. The termination condition for all
algorithms tested is an error value E ≤ 10−3.

The average performance is shown in Figure 1. The first bar corresponds
to the mean number of gradient evaluations and the second to the mean
number of error function evaluations. Detailed results are presented in
Table 2, where µ denotes the mean number of gradient or error function
evaluations required to obtain convergence, σ the corresponding standard
deviation, Min/Max the minimum and maximum number of gradient or
error function evaluations, and % the percentage of simulations that con-
verge to a global minimum. Obviously the number of gradient evaluations
is equal to the number of error function evaluations for the BP, the BPM, the
ABP, the SA, and the Rprop.

The second experiment concerns the approximation of the function f (x) =
sin(x) cos(2x)with domain 0 ≤ x ≤ 2π using 20 input-output points. A 1-10-
1 FNN (20 weights, 11 biases) that is based on hidden neurons of hyperbolic
tangent activations and on a linear output neuron is used (Van der Smagt,
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Figure 1: Average of the gradient and error function evaluations for the numeric
font learning problem.

Table 2: Comparative Results for the Numeric Font Learning Problem.

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BP 14,489 2783.7 9421/19,947 14,489 2783.7 9421/19,947 66
BPM 10,142 2943.1 5328/18,756 10,142 2943.1 5328/18,756 54
ABP 1975 2509.5 228/13,822 1975 2509.5 228/13,822 91
SA 1400 170.6 1159/1897 1400 170.6 1159/1897 68
Rprop 289 189.1 56/876 289 189.1 56/876 90
Algorithm-1 12,225 1656.1 8804/16,716 12,229 1687.4 8909/16,950 99
Algorithm-2 304 189.9 111/1215 2115 1599.5 531/9943 100
Algorithm-3 360 257.9 124/1004 1386 388.5 1263/3407 100

1994). Training is considered successful when E ≤ 0.0125. Comparative re-
sults are shown in Figure 2 and in Table 3, where the abbreviations are as in
Table 2.

In the third experiment a 15-15-1 FNN (240 weights and 16 biases), based
on neurons of hyperbolic tangent activations, is used for vowel spotting.
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Table 3: Comparative Results for the Function Approximation Problem.

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BP 1,588,720 1,069,320 284,346/4,059,620 1,588,720 1,069,320 284,346/4,059,620 100
BPM 578,848 189,574 243,111/882,877 578,848 189,574 243,111/882,877 100
ABP 388,457 160,735 99,328/694,432 388,457 160,735 99,328/694,432 100
SA 559,684 455,807 94,909/1,586,652 559,684 455,807 94,909/1,586,652 85
Rprop 405,033 93,457 60,162/859,904 405,033 93,457 60,162/859,904 80
Algorithm-1 886,364 409,237 287,562/1,734,820 1,522,890 852,776 495,348/352,5231 100
Algorithm-2 62,759 15,851 25,282/81,488 576,532 1 48,064 244,698/768,254 100
Algorithm-3 198,172 82,587 101,460/369,652 311,773 116,958 148,256/539,137 100
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Figure 2: Average of the gradient and error function evaluations for the function
approximation problem.

Vowel spotting provides a preliminary acoustic labeling of speech, which
can be very important for both speech and speaker recognition procedures.
The speech signal, originating from a high-quality microphone in a very
quiet environment, is recorded, sampled, at 16 KHz, and digitized at 16-bit
precision. The sampled speech data are then segmented into 30 ms frames
with a 15 ms sliding window in overlapping mode. After applying a Ham-
ming window, each frame is analyzed using the perceptual linear predictive
(PLP) speech analysis technique to obtain the characteristic features of the
signal. The choice of the proper features is based on a comparative study
of several speech parameters for speaker-independent speech recognition
and speaker recognition purposes (Sirigos, Fakotakis, & Kokkinakis, 1995).
The PLP analysis includes spectral analysis, critical-band spectral resolu-
tion, equal-loudness preemphasis, intensity-loudness power law, and au-
toregressive modeling. It results in a fifteenth-dimensional feature vector
for each frame.

The FNN is trained as speaker independent using labeled training data
from a large number of speakers from the TIMIT database (Fisher, Zue,
Bernstein, & Pallet, 1987) and classifies the feature vectors into {−1, 1} for the
nonvowel-vowel model. The network is part of a text-independent speaker
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Table 4: Comparative Results for the Vowel Spotting Problem.

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BP 905 1067.5 393/6686 905 1067.5 393/6686 63
BPM 802 1852.2 381/9881 802 1852.2 381/9881 57
ABP 1146 1374.4 302/6559 1146 1374.4 302/6559 73
SA 250 157.5 118/951 250 157.5 118/951 36
Rprop 296 584.3 79/3000 296 584.3 79/3000 80
Algorithm-1 788 1269.1 373/9171 898 1573.9 452/9308 65
Algorithm-2 85 93.3 15/571 1237 2214.0 77/14,154 98
Algorithm-3 169 90.4 108/520 545 175.8 315/1092 82

identification and verification system that is based on using only the vowel
part of the signal (Fakotakis & Sirigos, 1997).

The fact that the system uses only the vowel part of the signal makes the
cost of falsely accepting a nonvowel and considering it as a vowel much
more than the cost of rejecting a vowel and considering it as nonvowel. An
incorrect decision regarding a nonvowel will produce unpredictable errors
to the speaker classification module of the system, which uses the response
of the FNN and is trained only with vowels (Fakotakis & Sirigos, 1996, forth-
coming). Thus, in order to minimize the false-acceptance error rate, which
is more critical than the false-rejection error rate, we bias the training proce-
dure by taking 317 nonvowel patterns and 43 vowel patterns. The training
terminates when the classification error is less than 2%. After training, the
generalization capability of the successfully trained FNNs is examined with
769 feature vectors taken from different utterances and speakers. In this ex-
amination, a small set of rules is used. These rules are based on the principle
that the cost of rejecting a vowel is much less than the cost of incorrectly
accepting a nonvowel and concern the distance, duration, and amplitude
of the responses of the FNN (Sirigos et al., 1996; Fakotakis & Sirigos, 1996,
forthcoming.

The results of the training phase are shown in Figure 3 and in Table 4,
where the abbreviations are as in Table 2. The performance of the FNNs that
were trained using adaptive methods is exhibited in Figure 4 in terms of the
average improvement on the error rate percentage that has been achieved
by BP-trained FNNs. For example, FNNs trained with Algorithm-1 improve
the error rate achieved by the BP by 1%; from 9% the error rate drops to 8%.
Note that the average improvement of the error rate percentage achieved by
the BPM is equal to zero, since BPM-trained FNNs exhibit the same average
error rate as BP—9%.

The convergence performance of the algorithms was also tested using
initial weights that were randomly chosen from a uniform distribution in
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Figure 3: Average of the gradient and error function evaluations for the vowel
spotting problem.

(−0.1, 0.1) and by keeping all learning parameters as in Table 1. Detailed
results are exhibited in Tables 5 through 7 for the three new algorithms, the
BPM (that provided accelerated training compared to the simple BP) and
the Rprop (that exhibited better average performance in the experiments
than all the other popular methods tested). Note that in Table 5, where the
results of the numeric font learning problem are presented, the learning rate
of the BPM had to be retuned, since BPM with η0 = 1.2 and m = 0.9 never
found a “global” minimum. A reduced value for the learning rate, η0 = 0.1,
was necessary to achieve convergence. However, the combination η0 = 0.1
and m = 0.9 considerably slows BPM when the initial weights are in the
interval (−1, 1). In this case, the average number of gradient evaluations
and the average number of error function evaluations went from 10142 (see
Table 2) to 156,262. At the same time, there is only a slight improvement in
the number of successful simulations (56% instead of 54% in Table 2).

3.2 Discussion. As can be seen from the results exhibited in Tables 2
through 4, the average performance of the BP is inferior to the performance
of the adaptive methods, even though much effort has been made to tune the
learning rate properly. However, it is worth noticing the case of the vowel-
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Table 5: Results of Simulations for the Numeric Font Learning Problem with Initial Weights in (−0.1,+0.1).

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BPM a 151,131 18,398.4 111,538/197,840 151,131 18,398.4 111,538/197,840 100
Rprop 321 416.6 38/10,000 321 416.6 38/10,000 100
Algorithm-1 11,231 1160.4 8823/14,698 11,292 1163.9 8845/14,740 100
Algorithm-2 280 152.1 94/802 1953 1246.8 415/6144 100
Algorithm-3 295 103.1 81/1336 1342 319.6 849/3010 100

a With retuned learning parameters. See the text for details.



Im
proving

the
C

onvergence
ofthe

B
ackpropagation

A
lgorithm

1789

 

Table 6: Results of Simulations for the Function Approximation Problem with Initial Weights in (−0.1,+0.1).

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BPM 486,120 76,102 139,274/1028,933 486,120 76,102 139,274/1,028,933 100
Rprop 350,732 83,734 64,219/553,219 350,732 83,734 64,219/553,219 48
Algorithm-1 1,033,520 419,016 484,846/1,633,410 2,341,300 1,102,970 917,181/4,235,960 100
Algorithm-2 65,028 21,625 30,067/129,025 495,796 238,001 227,451/979,000 100
Algorithm-3 146,166 54,119 73,293/245,255 222,947 88,980 107,292/389,373 100
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Figure 4: Average improvement of the error rate percentage achieved by the
adaptive methods over BP for the vowel spotting problem.

Table 7: Results of Simulations for the Vowel Spotting Problem with Initial
Weights in (−0.1,+0.1).

Algorithm Gradient Evaluation Function Evaluation Success

µ σ Min/Max µ σ Min/Max %

BPM 1493 837.2 532/15,873 1493 837.2 532/15,873 62
Rprop 513 612.8 53/11,720 513 612.8 53/11,720 82
Algorithm-1 1684 1267.2 864/9286 2148 1290.3 1214/9644 74
Algorithm-2 88 137.8 44/680 1909 2105.9 327/14,742 98
Algorithm-3 206 127.7 117/508 566 176.5 321/1420 92

spotting problem, where the BP algorithm is sufficiently fast, needing, on
average, fewer gradient and function evaluations than the ABP algorithm.
It also exhibits less error function evaluations but needs significantly more
(820) gradient evaluations than Algorithm-2.

The use of a fixed momentum term helps accelerate the BP training but
deteriorates the reliability of the algorithm in two out of the three experi-
ments, when initial weights are in the interval (−1, 1). BPM with smaller ini-
tial weights, in the interval (−0.1, 0.1), provides more reliable training (see
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Tables 5 through 7). However, the use of small weights results in reduced
training time only in the function approximation problem (see Table 6).

In the vowel spotting problem, BPM outperforms ABP with respect to
the number of gradient and error function evaluations. It also outperforms
Algorithm-1 and Algorithm-2 regarding the average number of error func-
tion evaluations. Unfortunately, BPM has a smaller percentage of success
and requires more gradient evaluations than Algorithm-1 and Algorithm-2.
Regarding the generalization capability of the algorithm, it is almost similar
to the BP generalization in both weight ranges and is inferior to all the other
adaptive methods.

Algorithm-1 has the ability to handle arbitrary large learning rates. Ac-
cording to the experiments we performed, the exponential schedule of
Algorithm-1 appears fast enough for certain neural network applications,
resulting in faster training when compared with the BP, but in slower train-
ing when compared with BPM and the other adaptive BP methods. Specif-
ically, Algorithm-1 requires significantly more gradient and error function
evaluations in the function approximation problem than all the other adap-
tive methods when the initial weights are in the range (−0.1, 0.1). In the
vowel spotting problem, its convergence speed is also reduced compared
to its own speed in the interval (−1, 1). However, it reveals a higher per-
centage of successful runs.

In conclusion, regarding training speed, Algorithm-1 can only be con-
sidered as an alternative to the BP algorithm since it allows training with
arbitrary large initial learning rates and reduces the necessary number of
gradient evaluations. In this respect, steps 2 and 3 of Algorithm-1 can serve
as a heuristic free tuning mechanism that can be incorporated into an adap-
tive training algorithm to guarantee that a weight update provides sufficient
reduction in the error function at each iteration. In this way, the user can
avoid spikes in the error function as result of the “jumpy” behavior of the
weights. It is well known that this kind of behavior pushes the neurons into
saturation, causing the training algorithm to be trapped in an undesired
local minimum (Kung, Diamantaras, Mao, & Taur, 1991; Parlos, Fernandez,
Atiya, Muthusami, & Tsai, 1994). Regarding convergence reliability and
generalization, Algorithm-1 outperforms BP and BPM.

On average, Algorithm-2 needs fewer gradient evaluations than all the
other methods tested. This fact is considered quite important, especially in
learning tasks that the algorithm exhibits a high percentage of success. In ad-
dition Algorithm-2 does not heavily depend on the range of initial weights,
provides better generalization than BP, BPM, and ABP, and does not use
any initial learning rate. This algorithm exhibits the best performance with
respect to the percentage of successful runs in all problems tested, including
the vowel spotting problem, where it had the highest percentage of success.
The algorithm takes advantage of its inherent mechanism to prevent entrap-
ment in the neighborhood of a local minimum. With respect to the mean
number of gradient evaluations, Algorithm-2 exhibits the best average in
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the second and third experiments. In addition, it clearly outperforms BP
and BPM in the first two experiments with respect to the mean number of
error function evaluations. However, since fewer runs have converged to
a global minimum for the BP in the third experiment, BP reveals a lower
mean number of function evaluations for the converged runs.

Algorithm-3 exploits knowledge related to the local shape of the error
surface in the form of the Lipschitz constant estimation. The algorithm ex-
hibits a good average behavior with regard to the percentage of success and
the mean number of error function evaluations. Regarding the mean num-
ber of gradient evaluations, which are considered more costly than error
function evaluations, it outperforms all other methods tested in the second
and third experiments (except Algorithm-2). In the case of the first experi-
ment, Algorithm-3 needs more gradient and error function evaluations than
Rprop, but provides more stable learning and thus a greater possibility of
successful training, when the initial weights are in the range (−1, 1). In addi-
tion, the algorithm appears, on average, less sensitive to the range of initial
weights than the other methods that adapt a different learning rate for each
weight, SA and Rprop.

It is also interesting to observe the performance of the rest of the adaptive
methods. The method of Vogl et al. (1988), ABP, has a good average perfor-
mance on all problems, while the method of Silva and Almeida (1990), SA,
although it provides rapid convergence, has the lowest percentage of success
of all adaptive algorithms tested in the two pattern recognition problems
(numeric font and vowel spotting). This algorithm exhibits stability prob-
lems because the learning rates increase exponentially when many iterations
are performed successively. This behavior results in minimization steps that
increase some weights by large amounts, pushing the outputs of some neu-
rons into saturation and consequently into convergence to a local minimum
or maximum. The Rprop algorithm is definitely faster than the other al-
gorithms in the numeric font problem, but it has a lower percentage of
success than the new methods. In the vowel spotting experiment, it exhibits
a lower mean number of error function evaluations than the proposed meth-
ods. However, it requires more gradient evaluations than Algorithm-2 and
Algorithm-3, which are considered more costly. When initial weights in the
range (−0.1, 0.1) are used, the behavior of the Rprop highly depends on the
learning task. To be more specific, in the numeric font learning experiment
and in vowel spotting, its percentages of successful runs are 100% and 82%,
respectively, with a small additional cost in the average error function and
gradient evaluations. On the other hand, in the function approximation ex-
periment, Rprop’s convergence speed is improved, but its percentage of suc-
cess is significantly reduced. This seems to be caused by shallow local min-
ima that prevent the algorithm from reaching the desired global minimum.

Finally, the results in the vowel spotting experiment, with respect to
the generalization performance of the tested algorithms, indicate that the
increased convergence rates achieved by the adaptive algorithms by no
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means affect their generalization capability. On the contrary, the generaliza-
tion performance of these methods is better than the BP method. In fact, the
classification accuracy achieved by Algorithm-3 and Rprop is the best of all
the tested methods.

4 Conclusions

In this article, we reported on three new gradient-based training methods.
These new methods ensure global convergence, that is, convergence to a
local minimizer of the error function from any starting point. The proposed
algorithms have been compared with several training algorithms, and their
efficiency has been numerically confirmed by the experiments we presented.
The new algorithms exhibit the following features:

• They combine inexact line search techniques with second-order related
information without calculating second derivatives.

• They provide accelerated training without oscillation by ensuring that
the error function is sufficiently decreased with every iteration.

• Algorithm-1 and Algorithm-3 allow convergence for wide variations
in the learning-rate values, while Algorithm-2 eliminates the need for
user-defined learning parameters.

• Their convergence is guaranteed under suitable assumptions. Specifi-
cally, the convergence characteristics of Algorithm-2 and Algorithm-3
are not sensitive to the two initial weight ranges tested.

• They provide stable learning and therefore a greater possibility of good
performance.
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