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Two new ramp secret sharing schemata based on polynomials are proposed. For both schemata, 
the secret is considered to be a polynomial created by the dealer. The participants are separated 
into 𝓁 ⩾ 2, groups, that are specified by the dealer’s levels 𝐿𝑖 for 𝑖 = 1, 2, … , 𝓁 and each level 
𝐿𝑖, 𝑖 ⩾ 2, is separated into subsets. The shares of the secret are given to participants in the 
form of polynomials. For the first proposed scheme, the dealer creates 𝓁 polynomials one for 
each level. Specific participants from every subset of each level have to cooperate all together in 
order to construct the polynomial of their level. Next all the authorized participants cooperate 
for computing the greatest common divisor of the polynomials in order to retrieve the secret. 
In the second scheme, the authorized participants cooperate per two levels using a bottom-up 
procedure. In both schemata the greatest common divisor can be evaluated by implementing 
numerical linear algebra methods, and precisely factorization of matrices of special form such 
as Sylvester matrices. The triangularization of these matrices can be obtained by exploiting their 
special structure for the reduction of the required floating point operations. The innovative idea 
of the paper at hand is the use of real polynomials in secret sharing schemata. This is particularly 
useful since the greatest common divisor can always be computed with efficient accuracy using 
effective numerical methods. New theoretical results are proved and provided that support the 
error analysis of our approach.

1. Introduction

The concepts of threshold secret sharing scheme and the ramp threshold secret sharing scheme are, in general, described as follows. 
A (𝜏, 𝜈) threshold secret sharing scheme is a method of distributing secret information, called shares to 𝜈 players, in such a way that 
any 𝜏 of the 𝜈 players can compute a secret, but no subset of 𝜉, for 𝜉 < 𝜏 , players can determine any information about the secret. The 
integer 𝜏 is called threshold that we assume to be 1 ⩽ 𝜏 ⩽ 𝜈. For details and a discussion on historical issues, we refer the interested 
reader to Blakley [3], Shamir [24] and Stinson [26].

In general, a (𝜆, 𝛼, 𝜈)-ramp threshold secret sharing scheme, where 𝜆, 𝛼 and 𝜈 are positive integers such that 𝜆 < 𝛼 ⩽ 𝜈 is a crypto-
graphic structure whereby a dealer distributes a share to each of 𝜈 players such that the following two properties are satisfied:
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a) Reconstruction: Any subset of 𝜅 players with 𝜅 ⩾ 𝛼 can compute the secret from the shares that they hold collectively.
b) Secrecy: No subset of 𝜇 players with 𝜇 ⩽ 𝜆 can determine any information about the secret.

We use 𝜆 and 𝛼 to denote the lower and upper thresholds of the scheme, respectively. It is evident that a (𝜆, 𝛼, 𝜈) ramp scheme is a 
generalization of a threshold scheme in which there are two thresholds. A (𝜏 −1, 𝜏, 𝜈) ramp scheme is exactly a (𝜏, 𝜈) threshold secret 
sharing scheme. The ramp schemata have been proposed by Blakley and Meadows [4] (for additional details, we refer the interested 
reader to Stinson [27,28]).

Polynomial factorization as well as factorization in general is considered to be a hard task. It is well-known that RSA is based on 
the difficulty of factoring integers. Concerning polynomial factorization the difficulty depends on the field from which the coefficients 
of the polynomial emanate. In a relatively recent approach proposed in Meletiou et al. [16], a ramp secret sharing scheme through 
Greatest Common Divisor (GCD) of polynomials has been presented. In that approach the shares are polynomials and the secret is a 
polynomial derived from the shares through multiplications and GCD computations.

In the paper at hand, two new ramp schemata are presented, where the polynomials are the shares while their GCD determine 
the secret. Since the GCD-secret is always a divisor of every share, the schemata are considered to be ramp ones. The novelty of the 
proposed schemata is that the corresponding secrets and shares are elements from the polynomial ring ℝ[𝑥]. It is worth mentioning 
that, the ring of real polynomials of one variable ℝ[𝑥], is a unique factorization domain in the sense that every real polynomial can 
always be factorized in a unique way to a product of irreducible components, that is to say to linear polynomials and to quadratic 
ones with real coefficients and complex roots. Given a real polynomial 𝑓 (𝑥) we can always factorize it to irreducible components 
by suitable numerical methods in polynomial time. In addition, for the case of polynomials over other fields a global optimization 
approach for determining the greatest common divisor is pointed out.

The rest of the paper is organized as follows. In Section 2 the required mathematical material is summarized. In Section 3 two new 
hierarchical (in the sense given in Remark 1 and Remark 10) ramp secret sharing schemata are presented and analyzed. In addition 
new theoretical results are proved and provided that support the error analysis of our approach. In Section 4 analytic examples 
illustrate the two proposed ramp schemata. The paper ends in Section 5 with conclusions and future research directions.

2. Background material

In order to retrieve the secret, the participants have to cooperate revealing their shares and compute the GCD of polynomials. 
The proposed schemata are ramp ones, since the participants can compute the roots of the polynomials of the corresponding levels 
described in Section 3 having a partial information about the secret. The choice of the method for computing the GCD of the 
polynomials depends on the particular polynomial field.

2.1. Real polynomials

Let ℝ[𝑥] be the ring of polynomials with real coefficients. In the following paragraphs, two algorithms for computing the GCD of 
polynomials are presented. A distinction can be made regarding the algorithm following the number of polynomials involved.

i) Case of two polynomials
Consider the following two polynomials 𝑎(𝑥), 𝑏(𝑥) ∈ℝ[𝑥]:

𝑎(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎1𝑥+ 𝑎0,

and

𝑏(𝑥) = 𝑏𝑝 𝑥
𝑝 + 𝑏𝑝−1 𝑥

𝑝−1 + 𝑏𝑝−2 𝑥
𝑝−2 +⋯+ 𝑏1𝑥+ 𝑏0,

with degrees 𝑛 and 𝑝 respectively, where 𝑝 ⩽ 𝑛. Then the (𝑛 + 𝑝) × (𝑛 + 𝑝) Sylvester matrix (cf. [1]), denoted by 𝑆(𝑎, 𝑏), of these 
polynomials can be defined as follows:

𝑆(𝑎, 𝑏) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 … … 𝑎1 𝑎0 0 0 … 0
0 𝑎𝑛 𝑎𝑛−1 … … … 𝑎1 𝑎0 0 … 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

0 … 0 𝑎𝑛 𝑎𝑛−1 … … … 𝑎1 𝑎0 0
0 … 0 0 𝑎𝑛 𝑎𝑛−1 … … … 𝑎1 𝑎0

𝑏𝑝 𝑏𝑝−1 𝑏𝑝−2 … 𝑏0 0 0 0 … 0 0
0 𝑏𝑝 𝑏𝑝−1 … 𝑏1 𝑏0 0 0 … 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

0 0 … 𝑏𝑝 𝑏𝑝−1 … 𝑏1 𝑏0 0 0 0
0 0 … 0 𝑏𝑝 𝑏𝑝−1 … 𝑏1 𝑏0 0 0
0 0 … 0 0 𝑏 𝑏 … 𝑏 𝑏 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

. (1)
318

⎢⎣ 𝑝 𝑝−1 1 0
0 0 … 0 0 0 𝑏𝑝 𝑏𝑝−1 … 𝑏1 𝑏0

⎥⎦
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Suppose that 𝑆(𝑎, 𝑏) = 𝐿𝑈 and 𝑆(𝑎, 𝑏) =𝑄𝑅 are, respectively, the LU and QR factorization of the Sylvester matrix 𝑆(𝑎, 𝑏) (see, 
e.g. [1,30]) of the above polynomials 𝑎(𝑥) and 𝑏(𝑥), then the last non vanishing row of the upper triangular matrix 𝑈 of LU or 
of the matrix 𝑅 of QR provides the coefficients of the greatest common divisor gcd

{
𝑎(𝑥), 𝑏(𝑥)

}
(cf. [1,15,30]). Since the Sylvester 

matrix has a special form, a modification of LU or QR factorization that have been presented by Triantafyllou and Mitrouli in 
[30] can be implemented in order to decrease the required floating point operations.

ii) Case of several polynomials
Consider the following polynomial 𝑎(𝑥) ∈ℝ[𝑥]:

𝑎(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎1𝑥+ 𝑎0,

of degree 𝑛, and the following 𝑚 polynomials 𝑏𝑖(𝑥) ∈ℝ[𝑥]:

𝑏𝑖(𝑥) = 𝑏𝑖,𝑘 𝑥
𝑘 + 𝑏𝑖,𝑘−1 𝑥

𝑘−1 +⋯+ 𝑏𝑖,1𝑥+ 𝑏𝑖,0, 𝑖 = 1,2,… ,𝑚,

of maximal degree 𝑝 with 𝑝 ⩽ 𝑛, then the (𝑚𝑛 + 𝑝) × (𝑛 + 𝑝) generalized Sylvester matrix of the polynomials 𝑓 (𝑥) and 𝑝𝑖(𝑥) for 
𝑖 = 1, 2, … , 𝑚 is defined as follows (cf. [1]):

𝑆 =

⎡⎢⎢⎢⎢⎢⎣

[
𝑆0

]
[
𝑆1

]
⋮[
𝑆𝑚

]
⎤⎥⎥⎥⎥⎥⎦
, (2)

where the 𝑝 × (𝑛 + 𝑝) matrix 𝑆0 is given as follows:

𝑆0 =

⎡⎢⎢⎢⎢⎣
𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 … 𝑎0 0 … 0

0 𝑎𝑛 𝑎𝑛−1 … 𝑎1 𝑎0 … 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋮
0 0 … 𝑎𝑛 𝑎𝑛−1 … 𝑎1 𝑎0

⎤⎥⎥⎥⎥⎦
, (3)

while the 𝑛 × (𝑛 + 𝑝) matrices 𝑆𝑖 for 𝑖 = 1, 2, … , 𝑚 are given by:

𝑆𝑖 =

⎡⎢⎢⎢⎢⎣
𝑏𝑖,𝑝 𝑏𝑖,𝑝−1 𝑏𝑖,𝑝−2 … 𝑏𝑖,0 0 … 0

0 𝑏𝑖,𝑝 𝑏𝑖,𝑝−1 … 𝑏𝑖,1 𝑏𝑖,0 … 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋮
0 0 … 𝑏𝑖,𝑝 𝑏𝑖,𝑝−1 … 𝑏𝑖,1 𝑏𝑖,0

⎤⎥⎥⎥⎥⎦
. (4)

Assume that 𝑆 = 𝐿𝑈 and 𝑆 = 𝑄𝑅 are respectively the LU and QR factorization of the generalized Sylvester matrix 𝑆 . Then, 
similarly to the previous case of two polynomials, the last non vanishing row of the upper triangular matrix 𝑈 of LU or of the 
matrix 𝑅 of QR provides the coefficients of the gcd

{
𝑎(𝑥), 𝑏1(𝑥), … , 𝑏𝑚(𝑥)

}
(cf. [1]).

Since the Sylvester matrix has a special structure, the modification of LU or QR factorization that have been presented by 
Triantafyllou and Mitrouli in [31] is applied here in order to decrease significantly the required floating point operations for 
triangularizing the Sylvester matrix.

2.2. Polynomials over other fields

It is worth mentioning that, in general, the cryptographic schemes, including ramp ones, are based on finite fields and discrete 
structures. At the paper at hand polynomials over the real ring are used. On the other hand it would be interesting to study the 
cases of elaborating with polynomials over other fields including among others finite fields (see, e.g. [26,28]). Specifically, for the 
proposed schemata the secrets, the shares and in general the cryptographic objects are polynomials from a polynomial ring 𝔽 [𝑥], 
where 𝔽 is a suitable field. In that sense the choice of the field is crucial. Also, efficient methods for the GCD computation are of great 
importance. It is worth mentioning that, concerning the real field, for 𝑎, 𝑏 ∈ℝ the equation 𝑎2 + 𝑏2 = 0 implies 𝑎 = 𝑏 = 0. Therefore, 
the gcd{𝑓 (𝑥), 𝑔(𝑥)} can be equivalently obtained by solving, among others, one of the following equations:

a) 𝑓 2(𝑥) + 𝑔2(𝑥) = 0,
b) |𝑓 (𝑥)| + |𝑔(𝑥)| = 0,
c) max

{|𝑓 (𝑥)|, |𝑔(𝑥)|} = 0.

For solving the above equations, the corresponding global minimizers can be obtained using computational intelligence and intel-
ligent optimization methods, including particle swarm optimization, differential evolution, memetic algorithms, among others (see, 
e.g. [6,8,20,21,23,29,32]). These methods are capable of handling non-differentiable, discontinuous, noisy and multimodal objective 
319

functions and in general they have gained increasing popularity in recent years due to their relative simplicity and their ability to 
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efficiently and effectively tackle several real-world applications. It is worth noting that the problem of factorization of polynomials 
over finite fields has been studied extensively. For these issues we refer the interested reader to [2,5,11,17,25].

In a future correspondence we intend to study the applicability of the proposed schemata of the paper at hand over other 
fields and discrete structure. As well as we intend to analyze the applicability, effectiveness and efficiency of the above mentioned 
computational intelligence and intelligent optimization methods for tackling the issues and aspects raised above.

3. Ramp secret sharing schemata

In this section we present two new ramp secret sharing schemata with a hierarchy defined later. An entity named dealer manages 
the whole procedure as follows: The dealer creates a polynomial 𝑝(𝑥) with several real roots. The secret is formed by the polynomial 
𝑝(𝑥). The dealer constructs 𝓁 ⩾ 2 levels 𝐿𝑖 for 𝑖 = 1, 2, … , 𝓁. Each level 𝐿𝑖, 𝑖 ⩾ 2, consists of subsets and the dealer separates the 
participants into these subsets. At each level the number of participants is the same across all subsets. The shares of the secret are 
given by the dealer to every participant in the form of specific polynomials. Note that the dealer must take into consideration that 
the subsets are mutually exclusive. Thus, a participant cannot own multiple shares of the secret and also is not able to appear on 
multiple levels.

In general, in ramp schemata there is a trade-off between security and efficiency (i.e. storage). Efficiency in terms of the informa-
tion ratio can be gained by allowing partial information related to the secret which is composed of several sub-secrets to leak out. Of 
course, in this case, the main disadvantage is the existence of sets of participants with partial information related to the secret.

3.1. Scheme 1: Hierarchical ramp secret sharing

For this scheme the dealer creates a polynomial 𝑝(𝑥) with several real roots which determine the secret and 𝓁 ⩾ 2 hierarchical 
levels of participants and shares to the participants of each level polynomials. The authorized groups of participants have to share 
their parts, construct polynomials and compute their GCD.

Remark 1. The dealer determines the hierarchy of the levels by defining:

a) a number of levels,
b) a number of participants associated to each level and
c) a number of participants that have to cooperate at each level.

Notation 1. The levels defined by the dealer have the following form:

Level 1 ∶𝐿1 =
{
𝑃 (1)
1 , 𝑃 (1)

2 ,… , 𝑃 (1)
𝑟1

}
, |𝐿1| = 𝑟1 > 1,

Level 𝑖 ∶ 𝐿𝑖 =
{
𝑆(𝑖)
1 , 𝑆(𝑖)

2 ,… , 𝑆(𝑖)
𝑐𝑖

}
, |𝐿𝑖| = 𝑟𝑖 > 𝑟𝑖−1, 𝑖 > 1,

where:

a) 𝑆(𝑖)
𝑗 =

{
𝑃 (𝑖)
1𝑗 , 𝑃

(𝑖)
2𝑗 , … , 𝑃 (𝑖)

𝑘𝑖𝑗

}
,

b) 𝑖 is the serial (index) number of the level, 𝑖 = 1, 2, … , 𝓁,
c) 𝑗 is the serial number of the subset of the 𝑖-th level, 𝑗 = 1, 2, … , 𝑐𝑖,
d) 𝑘𝑖 is the number of participants in subset 𝑆(𝑖)

𝑗 ,
e) 𝑐𝑖 is the number of subsets of the 𝑖-th level, with 𝑐1 = 1,
f) 𝐿𝑖 is a 𝑘𝑖 × 𝑐𝑖 table, and
g) 𝑟𝑖 = 𝑘𝑖𝑐𝑖 denotes the total number of participants of level 𝐿𝑖 for 𝑖 = 2, 3, … , 𝓁.

Notation 2. Throughout the paper the symbol 𝐿 indicates levels, 𝑃 indicates participants while 𝑝 indicates polynomials.

Scheme 1. The proposed ramp hierarchical secret sharing scheme is described below using the following steps:

Step 1: The dealer constructs a polynomial 𝑝(𝑥) which determines the secret.
Step 2: The dealer creates the hierarchically structured set

𝐿 =
{
𝐿1,𝐿2,… ,𝐿𝓁

}
,

that constitutes a partitioning of the participants into 𝓁 hierarchically structured levels 𝐿𝑖, 𝑖 = 1, 2, … , 𝓁. Every 𝐿𝑖 has 𝑐𝑖
subsets of participants with 𝑐1 < 𝑐2 <⋯ < 𝑐𝓁 where 𝓁 ⩾ 2, (cf. Notation 1).

Step 3: The dealer provides different polynomials to all participants of Level 1. In what follows, the dealer shares a polynomial 
320

𝑝(𝑖)
ℎ𝑘
(𝑥) to every participant 𝑃 (𝑖)

ℎ𝑘
at Level 𝑖 for 𝑖 = 2, … , 𝓁, in such a way that
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𝑝𝑖(𝑥) =
𝑐𝑖∑
𝑘=1

𝑝(𝑖)
ℎ𝑘
(𝑥) , ℎ ∈ {1,2,… , 𝑘𝑖}, 𝑖 ∈ {2,3,… ,𝓁},

and for any ℎ, 𝑘 and 𝑖

gcd
{
𝑝(𝑖)
ℎ𝑘
(𝑥), 𝑝(𝑥)

}
= 1,

and for any 𝑖

gcd
{
𝑝𝑖(𝑥), 𝑝(𝑥)

}
≠ 1,

where 𝑝𝑖(𝑥) denotes the corresponding polynomial of Level 𝑖 and 𝑝(1)𝑗 (𝑥) denotes the polynomial of the 𝑗-th participant of 
Level 1.
The dealer distributes the shares such that, if the 𝑗-th participant of all the subsets of the Level 𝑖 cooperates by adding their 
polynomials they are able to obtain the polynomial 𝑝𝑖(𝑥), for 𝑖 = 2, 3, … , 𝓁. For security purposes see regarding the choice of 
polynomials Remarks 3 and 7.

Step 4: From every Level 𝑖 for 𝑖 = 2, 3, … , 𝓁 one specific participant is selected, e.g. the 𝑞-th, named 𝑃 (𝑖)
𝑞𝑗 from every subset 𝑆(𝑖)

𝑗 ={
𝑃 (𝑖)
1𝑗 , 𝑃

(𝑖)
2𝑗 , … , 𝑃 (𝑖)

𝑘𝑖𝑗

}
, 𝑞 ∈ {1, 2, … , 𝑘𝑖} such that

𝑝𝑖(𝑥) =
𝑐𝑖∑
𝑘=1

𝑝(𝑖)
𝑞𝑘
(𝑥).

Step 5: The participants that are selected by the dealer at each Level 𝑖 share their polynomials 𝑝𝑖(𝑥), 𝑖 = 2, 3, … , 𝓁 with the poly-

nomial of a participant from Level 1, say the 𝑞-th one, denoted by 𝑝(1)𝑞 . Next, all of them compute the secret given by the 
polynomial 𝑝(𝑥) as follows:

gcd
{
𝑝(1)𝑞 (𝑥), 𝑝2(𝑥), 𝑝3(𝑥), … , 𝑝𝓁(𝑥)

}
= 𝑝(𝑥).

Remark 2. In the above steps we use the notation 𝑝(1)𝑗 (𝑥) only for the polynomials of the participants of Level 1, while for the rest 
levels we use the notation 𝑝𝑖(𝑥) that corresponds to the polynomial of Level 𝑖, obtained by manipulations between the polynomials 
of the participants at Level 𝑖, for 𝑖 = 2, 3, … , 𝓁.

In Table 1 the main steps of Scheme 1 are exhibited. The secret can be obtained by the gcd
{
𝑝(1)𝑖 (𝑥), 𝑝2(𝑥), … , 𝑝𝓁(𝑥)

}
for any 

polynomial 𝑝(1)𝑖 (𝑥) where 𝑖 ∈ {1, 2, … , 𝑘1}. The polynomials 𝑝2(𝑥), … , 𝑝𝓁(𝑥) at each level are obtained if all the participants with the 
same color at each level add their polynomials.

Remark 3. The authorized participants of the subsets of a level 𝐿𝑖, 𝑖 = 1, 2, … , 𝓁 can obtain the roots of the polynomial 𝑝𝑖(𝑥) of that 
level. Some of them constitute the secret but the number of computed roots is much larger than the number of the roots of the secret. 
The participants do not know which of them constitute the secret. The number of all combinations is so large that they are not able 
to retrieve the secret in a reasonable computing time.

Remark 4. The root-finding computation complexity of a polynomial of degree 𝑛, that has been presented in [19] is of order 
𝑂
(
𝑛12 + 𝑛9 (log |𝑝|)3). It is clear that the dealer should choose polynomials of higher degrees as shares for the participants, as they 

require greater computational effort in the root-finding process. This leads to an overall increased computational effort at each level.

Next, we present some observations that can be considered and used as variants of the proposed schemata. In a future correspon-
dence we intend to analyze rigorously the impact of these variants on the proposed schemata.

Remark 5. It is worth noting that, in order to increase the security of the proposed Scheme 1, the dealer can introduce an inner 
tolerance tol > 0, such that any entry with absolute value less than tol will be zeroed with immediate effect on the numerical 
computation of the GCD of polynomials. Different tolerances lead to different ranks of the generalized Sylvester matrix leading to 
different degrees of GCD (see Example 2 in [30], [18]). In the final step the dealer informs the participant of Level 1 about the inner 
tolerance for the correct GCD to be computed. It is worth mentioning here that the tolerance issue plays a remarkable role since it 
can increase significantly the security of the scheme.

Remark 6. For non-integer real roots, participants may lack awareness regarding the precision of each computed root. To address 
this, the dealer can introduce a secondary tolerance linked to the number of significant digits associated with the roots. Furthermore, 
the dealer has the option to complicate the computational process of root finding at a specific level 𝐿𝑖 by introducing a secret having 
initially multiple roots and finally selecting a secret with altered discrete roots by slightly perturbing the initial ones. This results in 
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heightened difficulty in the root-finding process at a specific level when employing conventional tools such as Newton-Raphson for 
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Table 1

Exhibition of the main steps of Scheme 1. The secret can be 
obtained by the gcd{𝑝(1)𝑖 (𝑥), 𝑝2(𝑥),… , 𝑝𝓁 (𝑥)

}
for any 𝑝(1)𝑖 (𝑥),

𝑖 ∈ {1, 2, … , 𝑘1}. The polynomials 𝑝2(𝑥), … , 𝑝𝓁 (𝑥) at each 
level are obtained if all the participants with the same color 
at each level add their polynomials.

𝐿1

𝑃 (1)
1 → 𝑝(1)1 (𝑥) 𝑃 (1)

2 → 𝑝(1)2 (𝑥) … 𝑃 (1)
𝑘1

→ 𝑝(1)
𝑘1
(𝑥)

𝐿2

𝑆(2)
1 𝑆(2)

2 … 𝑆(2)
𝑐2

𝑃 (2)
11 𝑃 (2)

21 … 𝑃 (2)
𝑐21

(+)
⟶ 𝑝2(𝑥)

𝑃 (2)
12 𝑃 (2)

22 … 𝑃 (2)
𝑐22

(+)
⟶ 𝑝2(𝑥)

⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (2)
1𝑘2

𝑃 (2)
2𝑘2

… 𝑃 (2)
𝑐2𝑘2

(+)
⟶ 𝑝2(𝑥)

⋮

𝐿𝓁

𝑆(𝓁)
1 𝑆(𝓁)

2 . . . 𝑆(𝓁)
𝑐𝓁

𝑃 (𝓁)
11 𝑃 (𝓁)

21 … 𝑃 (𝓁)
𝑐𝓁1

(+)
⟶ 𝑝𝓁 (𝑥)

𝑃 (𝓁)
12 𝑃 (𝓁)

22 … 𝑃 (𝓁)
𝑐𝓁2

(+)
⟶ 𝑝𝓁 (𝑥)

⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (𝓁)
1𝑘𝓁

𝑃 (𝓁)
2𝑘𝓁

… 𝑃 (𝓁)
𝑐𝓁𝑘𝓁

(+)
⟶ 𝑝𝓁 (𝑥)

root determination. For instance, let us suppose that the dealer has selected as an initial secret the polynomial 𝑝(𝑥) = 𝑥2 having a 
double root at point zero. Perturbing the secret as 𝑝(𝑥) = 𝑥2 + 𝜀, then:

a) for 𝜀 > 0, the participants will compute two conjugated complex roots,
b) for 𝜀 < 0, the participants will compute two real simple discrete roots.

Due to the proximity of the roots, described by Runge’s phenomenon [22] and Faber’s theorem [10], the authorized participants at 
a specific level may lack certainty in confirming that they have computed the entire set of roots.

Remark 7. The dealer can multiply the share of each participant by a common polynomial 𝑓 (𝑥) of high degree with additional roots 
that are not related to the secret. In this case, if the authorized participants of a certain level compute all the roots of their polynomial 
the total number of computed roots will be significantly increased, thus resulting to an increased number of root combinations in a 
potential adversary attack. This is so because the dealer is in a position to give a few common roots to the participants of different 
levels that are related to the secret but in the same time to give also several common roots that are not related to the secret. At 
the final step, the dealer informs the participant of Level 1 about the polynomial 𝑓 (𝑥) that contains the common roots that are not 
related to the secret. It is worth noting here that if there are many common roots that are not related to the secret, this obviously 
increases significantly the security of the scheme.

3.1.1. Analyzing Scheme 1
For the computation of the polynomial 𝑝(𝑥), one participant from Level 1 is required. Thus, Level 1 is the most significant one in 

the sense that only one participant of Level 1 is required to cooperate with participants of the lower levels. Indeed, the participants 
of the 𝑖-th Level, 𝑖 = 2, 3, … , 𝓁 have to cooperate with other participants of the same level in order to compute the corresponding 
polynomial to that level.

In the 𝑖-th Level, there are 𝑐𝑖 subsets 𝑆(𝑖)
𝑗 = {𝑃 (𝑖)

1𝑗 , 𝑃
(𝑖)
2𝑗 , … , 𝑃 (𝑖)

𝑘𝑖𝑗
} of participants. From every 𝑆(𝑖)

𝑗 , 𝑗 = 1, 2, … , 𝑐𝑖, one participant has 

to participate. Assume that the participant is the 𝑞-th one. Thus, from the first subset of Level 𝑖, the 𝑃 (𝑖)
𝑞1 participant cooperates with 

the participant 𝑃 (𝑖)
𝑞2 of the second subset of Level 𝑖 and finally with the 𝑞-th participant 𝑃 (𝑖)

𝑞𝑘𝑖
of the last subset of Level 𝑖. Then they 

have to sum their polynomials in order to compute the polynomial of Level 𝑖 and this should be done for every 𝑖 = 2, … , 𝓁. Finally, 
all these participants cooperate with the corresponding one of Level 1 and compute the GCD of their polynomials in order to retrieve 
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the secret 𝑝(𝑥).
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3.1.2. Error analysis of Scheme 1
Assume that 𝑥 ∈ℝ and 𝑓𝑙(𝑥) = 𝑥 are the corresponding number of 𝑥 in the floating point arithmetic that is used. Thus, ̂𝑥= 𝑥(1 +𝜀), |𝜀| ⩽ 𝑢, where 𝑢 = 1

2𝛽
1−𝑡 is the unit round off, 𝛽 and 𝑡 are the base and the number of the significant digits of the used floating point 

arithmetic. For instance, in IEEE754 of double precision, 𝛽 = 2 and 𝑡 = 53, thus 𝑢 = 1
2 × 21−53 (see e.g. [14]). This means that 

1 + 1
2 × 21−53 = 1, while 1 + 21−53 > 1 in any machine that uses the floating point arithmetic IEEE754 of double precision.

Suppose that all the coefficients of the polynomials are floating point numbers, thus there is no error in representing a real number 
as a floating point one. More details related to the errors during numerical computations and matrix factorization through orthogonal 
transformations can be found in [9,13,33]. Using the algorithm presented by Triantafyllou and Mitrouli in [31] for computing the 
GCD of several polynomials and the classical bound of the norm of the error concerning the QR factorization of a matrix [9,12,7], 
we extend the error analysis and propose and prove the new Lemma 1 related to the intermediate stages of iteratively applications of 
the QR factorization in specific blocks of the modified generalized Sylvester matrix. To this end, for completeness purposes we recall 
the definition of the modified generalized Sylvester matrix (cf. [31]). Let 𝑝𝑖(𝑥), 𝑖 = 1, 2, … , 𝓁 be the 𝓁 polynomials corresponding to the 
𝓁 levels, with

𝑝𝑖(𝑥) = 𝑝𝑖,𝑛𝑥
𝑛 + 𝑝𝑖,𝑛−1𝑥

𝑛−1 +⋯+ 𝑝𝑖,1𝑥+ 𝑝𝑖,0, 𝑖 = 1,2,… ,𝓁 − 1, (5)

and

𝑝𝓁(𝑥) = 𝑎𝑚𝑥
𝑚 + 𝑎𝑚−1𝑥

𝑚−1 +⋯+ 𝑎1𝑥+ 𝑎0,

where 𝑚, 𝑛 are the largest and the second larger degree of those polynomials, 𝑛 ⩽𝑚. For simplicity and without loss of generality we 
assumed that the polynomial of maximum degree 𝑚 is the 𝓁-th one and thus 𝑆0 corresponds to 𝑝𝓁(𝑥).

Definition 1. The (𝓁 − 1) × (𝑛 + 1) matrix 𝐵0 is formed by the coefficients of the polynomials of the Eq. (5) as follows:

𝐵0 =

⎡⎢⎢⎢⎢⎣
𝑝1,𝑛 𝑝1,𝑛−1 𝑝1,𝑛−2 … 𝑝1,0

𝑝2,𝑛 𝑝2,𝑛−1 𝑝2,𝑛−2 … 𝑝2,0
⋮ ⋮ ⋮ ⋱ ⋮

𝑝𝓁−1,𝑛 𝑝𝓁−1,𝑛−1 𝑝𝓁−1,𝑛−2 … 𝑝𝓁−1,0

⎤⎥⎥⎥⎥⎦
. (6)

Similarly, by selecting the second rows from every block 𝑆𝑖, 𝑖 = 1, 2, …, 𝓁 −1 of the generalized Sylvester matrix 𝑆 of Eq. (2) the 
block matrix 

[
[𝜃][𝐵0]

]
is constructed, where 𝜃 is a column vector with zero entries that their number coincides with the number of 

rows of the matrix 𝐵0. Next, by selecting the third rows from every block 𝑆𝑖, 𝑖 = 1, 2, … , 𝓁 −1 of the generalized Sylvester matrix 𝑆 , 
the block matrix 

[
[𝜃]

[
[𝜃][𝐵0]

]
is constructed and this procedure is continued until the last row of every block 𝑆𝑖, 𝑖 = 1, 2, … , 𝓁 − 1

has been taken into account. Thus, the modified Sylvester matrix obtains the following form:

𝑆∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
𝐵0

][
𝜃
][
𝜃
][
𝜃
]

…
[
𝜃
][
𝜃
][

𝜃
][
𝐵0

][
𝜃
][
𝜃
]

…
[
𝜃
][
𝜃
][

𝜃
][
𝜃
][
𝐵0

][
𝜃
]

…
[
𝜃
][
𝜃
]

⋱[
𝜃
][
𝜃
][
𝜃
][
𝜃
]

…
[
𝐵0

][
𝜃
][

𝜃
][
𝜃
][
𝜃
][
𝜃
]

…
[
𝜃
][
𝐵0

][
𝑆0

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Notice that the above modified generalized Sylvester matrix has 𝑚 same (𝓁 − 1) × (𝑛 + 1) blocks, that are right shifted one column 
each time.

Notation 3. For any two matrices 𝑋 and 𝑌 , we denote the following blockwise matrix by 𝐵𝑆 (𝑋, 𝑌 , 𝜃):

𝐵𝑆 (𝑋,𝑌 , 𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
𝑋
][
𝜃
][
𝜃
][
𝜃
]

…
[
𝜃
][
𝜃
][

𝜃
][
𝑋
][
𝜃
][
𝜃
]

…
[
𝜃
][
𝜃
][

𝜃
][
𝜃
][
𝑋
][
𝜃
]

…
[
𝜃
][
𝜃
]

⋱[
𝜃
][
𝜃
][
𝜃
][
𝜃
]

…
[
𝑋
][
𝜃
][

𝜃
][
𝜃
][
𝜃
][
𝜃
]

…
[
𝜃
][
𝑋
][

𝑌
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where 𝜃 denotes the column vector with zero entries that their number coincides with the number of rows of the matrix 𝑋, can be 
used to form modified Sylvester matrices. For example the matrix 𝑆∗ given in Relation (7) can be written as follows:
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𝑆∗ =𝐵𝑆 (𝐵0, 𝑆0, 𝜃). (9)
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Notation 4. The following block matrix will be frequently used:

𝐵𝐵(𝑋,𝛩) =

[ [
𝑋
][
𝛩
][

𝛩
][
𝑋
] ] , (10)

where 𝛩 is a zero matrix with the same rows of 𝑋 and different columns.

In order to efficiently compute the QR factorization of 𝑆∗, starting from the matrix 𝐵0 of Eq. (6) we define the blocks 𝑅𝑖, 𝐵𝑖 as 
follows:

Definition 2. Let 𝑄𝑖, 𝑅𝑖 be the result of the QR factorization of the matrix 𝐵𝑖, 𝑖 = 0, 1, … , 𝑘 − 1 that can be written as 𝑄𝑖𝑅𝑖 ← 𝐵𝑖. Then 
the 𝐵𝑖+1 is defined as follows:

𝐵𝑖+1 =𝐵𝐵

(
𝑅𝑖,𝛩

)
, 𝑖 = 0,1,… , 𝑘− 2, (11)

where 𝑅𝑖 is the upper triangular matrix of the QR factorization of 𝐵𝑖. The rows of 𝐵𝑖+1 are two times the rows of 𝐵𝑖 while its columns are 
increased by 2𝑖. The matrix 𝐵0 is defined in Eq. (6).

Remark 8. In the rest of the paper by 𝜑(𝑥, 𝑦) we denote a slowly growing function of 𝑥, 𝑦 as it is described by 𝜑(𝑥) in [7]. It is worth 
noting that, according to [7], in the case where 𝑥 ≠ 𝑦 the roundoff property is the same as in the case where 𝑥 = 𝑦. In addition, the 
QR factorization of a nonsquare matrix using Housholder transformations is stable (cf. [7]). Note that the bound on the numerical 
error of the QR factorization of any 𝑚 × 𝑛 matrix 𝐴 can be found in [13, p. 360] or equivalently in [7, p. 145]. Precisely, if 𝐴 is an 
𝑚 × 𝑛 matrix then the QR factorization of 𝐴 is the exact factorization of a slightly perturbed matrix 𝐴 + 𝛥𝐴 such that 𝐴 + 𝛥𝐴 =𝑄𝑅, 
where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑅 is an upper triangular 𝑚 × 𝑛 matrix. The Frobenius norm of the error 𝛥𝐴 is bounded 
by ‖𝛥𝐴‖𝐹 ⩽ �̃�𝑚𝑛 ‖𝐴‖𝐹 (cf. [13, p. 68 and p. 360]) or equivalently by ‖𝛥𝐴‖𝐹 ⩽ 𝜑(𝑚, 𝑛) 𝑢 ‖𝐴‖𝐹 (cf. [7, p. 145]), where 𝑢 is the unit 
round off error.

For clarification purposes, we give briefly present the main steps of the algorithm for computing the GCD of the polynomials of 
all levels that provides the secret:

a) construct the modified Sylvester matrix 𝑆∗ of the polynomials,
b) triangularize 𝑆∗ by applying iterative a blockwise QR factorization to the block matrices 𝐵0 given by Eq. (6) and 𝐵𝑖 =

𝐵𝐵

(
𝑅𝑖−1, 𝛩

)
, 𝑖 = 1, 2, … , 𝑘 − 1 of 𝑆∗.

The last non-zero row of the final upper trapezoidal matrix gives the coefficients of the GCD of polynomials [1].
The triagularization of 𝑆∗ is achieved through properly iterative applications of the QR factorization implemented to the blocks 

𝐵𝑖. Note that the QR factorization at iteration 𝑖 is applied by grouping the blocks from step 𝑖 − 1 so that it decreases the number 
of blocks while increasing the size of the blocks. Using the bounds mentioned in Remark 8, it is possible to derive a series of upper 
bounds (depending only on 𝐵0) on the error of the QR factorizations of block matrices given by Eq. (11).

Next, a comprehensive and detailed proof of the new proposed Lemma 1 is provided.

Lemma 1. Let 𝑆∗ be the modified generalized Sylvester matrix of the polynomials 𝑝𝑖(𝑥), 𝑖 = 1, 2, … , 𝓁. The QR decompositions applied to the 
same blocks 𝐵𝑖, 𝑖 = 0, 1, … , 𝑘 − 1 given in Definition 2, in the intermediate stages of the triangularization of 𝑆∗ is the exact QR factorization 
of small perturbed matrices 𝐵𝑖 + 𝛥𝐵𝑖, where 𝛥𝐵𝑖 are small perturbation matrices, such that:

𝐵𝑖 + 𝛥𝐵𝑖 =𝑄𝑖 𝑅𝑖, 𝑖 = 0,1,… , 𝑘− 1, (12)

with

‖‖𝛥𝐵𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)2𝜎𝑖∕2 (𝓁 − 1)𝑖∕2 𝑢 ‖‖𝐵0‖‖𝐹 for 𝜎𝑖 =

𝑖∑
𝑗=0

𝑗, (13)

where 𝜑(𝑚𝑖, 𝑛𝑖) is a slowly growing function of 𝑚𝑖 = 2𝑖(𝓁 − 1) and 𝑛𝑖 = 𝑛 + 2𝑖 that respectively determine the rows and the columns of 𝐵𝑖 at 
step 𝑖, 𝑢 is the unit round off error and

𝑘 = ⌈log2𝑚⌉+ 1 (14)

determines the required number of the iterations of the QR factorization.

Proof. The procedure implements iteratively the QR factorization to the matrices 𝐵𝑖, 𝑖 = 0, 1, … , 𝑘 − 1. At the first iteration, the QR 
factorization is implemented on the first block 𝐵0 of 𝑆∗. Let 𝑅0 be the computed upper triangular or trapezoidal QR factor of the 
(𝓁 − 1) × (𝑛+ 1) matrix 𝐵0 (cf. Eq. (6)) obtained by the Householder transformations. The corresponding QR decomposition is the 
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exact factorization of the block 𝐵0 perturbed by the matrix 𝛥𝐵0 such that:
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𝐵0 + 𝛥𝐵0 =𝑄0𝑅0, with ‖‖𝛥𝐵0‖‖𝐹 ⩽ �̃�𝑚0𝑛0
‖‖𝐵0‖‖𝐹 ,

where the matrices 𝐵0, 𝑅0, 𝛥𝐵0 are of size (𝓁 − 1) × (𝑛 + 1), while the orthogonal matrix 𝑄0 is of size (𝓁 − 1) × (𝓁 − 1), with 
�̃�𝑚𝑛 = 𝑚�̃�𝑛 = 𝑐 𝑚𝑛𝑢∕(1 − 𝑐 𝑛𝑢), �̃�𝑛 = 𝑐 𝑛𝑢∕(1 − 𝑐 𝑛𝑢) and 𝑐 is a small integer constant whose value is unimportant [13, p. 68 and p. 
360]. Thus, the matrix 𝑅0 is written as follows:

𝑅0 =𝑄⊤
0 (𝐵0 + 𝛥𝐵0). (15)

For simplicity, henceforth we will refer to the upper bound of the Frobenius norm of the error in the QR decomposition as follows 
(cf. [7, p. 145]):

‖‖𝛥𝐵0‖‖𝐹 ⩽ 𝜑(𝑚0, 𝑛0)𝑢‖‖𝐵0‖‖𝐹 . (16)

At the Iteration 2, the QR decomposition is applied to the 2(𝓁 − 1) × (𝑛+ 2) block matrix:

𝐵1 =𝐵𝐵

(
𝑅0, 𝜃

)
=
[ [𝑅0

][
𝜃
][

𝜃
][
𝑅0

] ] . (17)

The number of rows of 𝐵1 is twice the rows of 𝐵0, while the number of its columns is one more than those of 𝐵0. Let 𝑅1 be 
the computed upper triangular QR factor of 𝐵1, obtained by the Householder transformations. Similarly, the corresponding QR 
decomposition is the exact factorization of a small perturbed block 𝐵1 such as:

𝐵1 + 𝛥𝐵1 =𝑄1𝑅1,

where 𝐵1, 𝑅1, 𝛥𝐵1 are 2(𝓁 − 1) × (𝑛 + 2) matrices, while the orthogonal matrix 𝑄1 is of size 2(𝓁 − 1) × 2(𝓁 − 1), with

‖‖𝛥𝐵1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)𝑢 ‖‖𝐵1‖‖𝐹 ,
where 𝑚1 = 2(𝓁 − 1) and 𝑛1 = 𝑛 + 2. Consequently, we obtain:

𝑅1 =𝑄⊤
1 (𝐵1 + 𝛥𝐵1). (18)

The following term ‖‖𝛥𝐵1‖‖𝐹 can be bounded as follows:

‖‖𝛥𝐵1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)𝑢 ‖‖𝐵1‖‖𝐹 = 𝜑(𝑚1, 𝑛1)𝑢
‖‖‖‖‖
[ [𝑅0

][
𝜃
][

𝜃
][
𝑅0

] ]‖‖‖‖‖𝐹
= 𝜑(𝑚1, 𝑛1)𝑢

√
2‖𝑅0‖𝐹 = 𝜑(𝑚1, 𝑛1)𝑢

√
2‖‖‖𝑄⊤

0 (𝐵0 + 𝛥𝐵0)
‖‖‖𝐹

= 𝜑(𝑚1, 𝑛1)𝑢
√
2‖‖‖𝑄⊤

0
‖‖‖𝐹 ‖‖𝐵0 + 𝛥𝐵0‖‖𝐹

⩽ 𝜑(𝑚1, 𝑛1)𝑢
√
2
√
𝓁 − 1 ‖‖‖𝑄⊤

0
‖‖‖2 ‖‖𝐵0 + 𝛥𝐵0‖‖𝐹

= 𝜑(𝑚1, 𝑛1)𝑢
√
2
√
𝓁 − 1 ‖‖𝐵0 + 𝛥𝐵0‖‖𝐹

⩽ 𝜑(𝑚1, 𝑛1)
√
2
√
𝓁 − 1𝑢

(‖‖𝐵0‖‖𝐹 + ‖‖𝛥𝐵0‖‖𝐹 )
⩽ 𝜑(𝑚1, 𝑛1)

√
2
√
𝓁 − 1𝑢

(‖‖𝐵0‖‖𝐹 +𝜑(𝑚0, 𝑛0)𝑢 ‖‖𝐵0‖‖𝐹 )
= 𝜑(𝑚1, 𝑛1)

√
2
√
𝓁 − 1𝑢 ‖‖𝐵0‖‖𝐹 +𝑂

(
𝑢2
)

≃ 𝜑(𝑚1, 𝑛1)
√
2
√
𝓁 − 1𝑢 ‖‖𝐵0‖‖𝐹 .

In the previous relations we have used that ‖𝐴‖𝐹 ⩽
√
𝑟‖𝐴‖2, where 𝑟 is the rank of matrix 𝐴, ‖𝐴‖2 = 1 for an orthogonal matrix 𝐴

and we have omitted the negligible term 𝑂
(
𝑢2
)
. In conclusion we have:

‖‖𝛥𝐵1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)
√
2
√
𝓁 − 1𝑢 ‖‖𝐵0‖‖𝐹 . (19)

Next, the QR decomposition is applied to the 22(𝓁 − 1) × (𝑛 + 22) matrix 𝐵2:

𝐵2 =𝐵𝐵

(
𝑅1,𝛩

)
≡

[ [𝑅1
][
𝜃
][
𝜃
][

𝜃
][
𝜃
][
𝑅1

] ] , (20)

where the number of rows of 𝐵2 are twice the rows of 𝐵1, while its columns are two more than those of 𝐵1. Hence, 𝑚2 = 22(𝓁 − 1)
and 𝑛2 = 𝑛 + 22. Assume that 𝑅2 is the computed upper triangular QR factor of 𝐵2, obtained by the Householder transformations, 
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then the QR decomposition is the exact factorization of a small perturbed block 𝐵2 such as:
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𝐵2 + 𝛥𝐵2 =𝑄2𝑅2,

where 𝐵2, 𝑅2, 𝛥𝐵2 are 22(𝓁 − 1) × (𝑛 + 22) matrices, while the orthogonal matrix 𝑄2 is of size 22(𝓁 − 1) × 22(𝓁 − 1), with

‖‖𝛥𝐵2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)𝑢 ‖‖𝐵2‖‖𝐹 .
At this iteration the matrix 𝑅2 is obtained as follows:

𝑅2 =𝑄⊤
2 (𝐵2 + 𝛥𝐵2). (21)

The following term ‖‖𝛥𝐵2‖‖𝐹 can be bounded as:

‖‖𝛥𝐵2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)𝑢 ‖‖𝐵2‖‖𝐹 = 𝜑(𝑚2, 𝑛2)𝑢
‖‖‖‖‖
[ [𝑅1

][
𝜃
][
𝜃
][

𝜃
][
𝜃
][
𝑅1

] ]‖‖‖‖‖𝐹
= 𝜑(𝑚2, 𝑛2)𝑢

√
2 ‖‖𝑅1‖‖𝐹

= 𝜑(𝑚2, 𝑛2)𝑢
√
2 ‖‖‖𝑄⊤

1 (𝐵1 + 𝛥𝐵1)
‖‖‖𝐹

= 𝜑(𝑚2, 𝑛2)𝑢
√
2‖‖‖𝑄⊤

1
‖‖‖𝐹 ‖‖𝐵1 + 𝛥𝐵1‖‖𝐹

⩽ 𝜑(𝑚2, 𝑛2)𝑢
√
2
√
2(𝓁 − 1)‖‖‖𝑄⊤

1
‖‖‖2 ‖‖𝐵1 + 𝛥𝐵1‖‖𝐹 .

Since ‖‖‖𝑄⊤
1
‖‖‖2 = 1 we equivalently obtain:

‖‖𝛥𝐵2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)𝑢
√
2
√
2(𝓁 − 1)

(‖‖𝐵1‖‖𝐹 + ‖‖𝛥𝐵1‖‖𝐹 )
= 𝜑(𝑚2, 𝑛2)

√
2
√
2(𝓁 − 1)𝑢

(√
2‖‖𝑅0‖‖𝐹 + ‖‖𝛥𝐵1‖‖𝐹)

⩽ 𝜑(𝑚2, 𝑛2)
√
2
√
2(𝓁 − 1)𝑢

(√
2‖‖𝑅0‖‖𝐹 +𝜑(𝑚1, 𝑛1)𝑢‖‖𝐵1‖‖𝐹)

= 𝜑(𝑚2, 𝑛2)
√
2
2√

2(𝓁 − 1)𝑢‖‖𝑅0‖‖𝐹 +𝑂
(
𝑢2
)

≃ 𝜑(𝑚2, 𝑛2)
√
2
2√

2(𝓁 − 1)𝑢‖‖𝑅0‖‖𝐹
= 𝜑(𝑚2, 𝑛2)

√
2
2√

2(𝓁 − 1)𝑢‖‖‖𝑄⊤
0 (𝐵0 + 𝛥𝐵0)

‖‖‖𝐹 .
From the above we can easily obtain the following:

‖‖𝛥𝐵2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)
√
2
2√

2(𝓁 − 1)
√
𝓁 − 1𝑢‖‖𝐵0‖‖𝐹 +𝑂

(
𝑢2
)

≃ 𝜑(𝑚2, 𝑛2)
√
2
2√

21(𝓁 − 1)2 𝑢‖‖𝐵0‖‖𝐹 .
Finally we conclude that:

‖‖𝛥𝐵2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)
√
20+1+2(𝓁 − 1)2 𝑢‖‖𝐵0‖‖𝐹 . (22)

Assume that at the (𝑖 − 1)-th iteration the matrix 𝑅𝑖−1 is the computed upper triangular QR factor of 𝐵𝑖−1, obtained by the 
Householder transformations. Then the QR decomposition is the exact factorization of a small perturbed block 𝐵𝑖−1 such as:

𝐵𝑖−1 + 𝛥𝐵𝑖−1 =𝑄𝑖−1𝑅𝑖−1,

where 𝐵𝑖−1, 𝑅𝑖−1, 𝛥𝐵𝑖−1 are 2𝑖−1(𝓁 − 1) × (𝑛 + 2𝑖−1) matrices, while the orthogonal matrix 𝑄𝑖−1 is of size 2𝑖−1(𝓁 − 1) × 2𝑖−1(𝓁 − 1), 
with

‖‖𝛥𝐵𝑖−1‖‖𝐹 ⩽ 𝜑(𝑚𝑖−1, 𝑛𝑖−1)
√
2
𝑖−1√

2𝜎𝑖−2 (𝓁 − 1) 𝑖−1 𝑢 ‖‖𝐵0‖‖𝐹 , (23)

where 𝜎𝑖−2 =
∑𝑖−2

𝑗=0 𝑗.
Next by using the notation given in Definition 2 the matrix 𝐵𝑖 can be written as follows:

𝐵𝑖 =𝐵𝐵

(
𝑅𝑖−1,𝛩

)
=
[ [𝑅𝑖−1

][
𝛩
][

𝛩
][
𝑅𝑖−1

] ] .
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Thus, at the 𝑖-th iteration we obtain:
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‖‖𝛥𝐵𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)𝑢 ‖‖𝐵𝑖

‖‖𝐹 = 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
‖‖‖‖‖
[ [𝑅𝑖−1

][
𝛩
][

𝛩
][
𝑅𝑖−1

] ]‖‖‖‖‖𝐹
= 𝜑(𝑚𝑖, 𝑛𝑖)𝑢

√
2‖𝑅𝑖−1‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
√
2 ‖‖‖𝑄⊤

𝑖−1(𝐵𝑖−1 + 𝛥𝐵𝑖−1)
‖‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
√
2‖‖‖𝑄⊤

𝑖−1
‖‖‖𝐹 ‖‖𝐵𝑖−1 + 𝛥𝐵𝑖−1‖‖𝐹

⩽ 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
√
2
√
2𝑖−1(𝓁 − 1)‖‖‖𝑄⊤

𝑖−1
‖‖‖2 ‖‖𝐵𝑖−1 + 𝛥𝐵𝑖−1‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
√
2
√
2𝑖−1(𝓁 − 1)‖‖𝐵𝑖−1 + 𝛥𝐵𝑖−1‖‖𝐹

⩽ 𝜑(𝑚𝑖, 𝑛𝑖)𝑢
√
2
√
2𝑖−1(𝓁 − 1)

(‖‖𝐵𝑖−1‖‖𝐹 + ‖‖𝛥𝐵𝑖−1‖‖𝐹 ) .
Equivalently we have:

‖‖𝛥𝐵𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
√
2𝑖−1(𝓁 − 1)𝑢

(√
2‖‖𝑅𝑖−2‖‖𝐹 + ‖‖𝛥𝐵𝑖−1‖‖𝐹)

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
2√

2𝑖−1(𝓁 − 1)𝑢‖‖𝑅𝑖−2‖‖𝐹 +𝑂
(
𝑢2
)

≃ 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
2√

2𝑖−1(𝓁 − 1)𝑢‖‖𝑅𝑖−2‖‖𝐹
= 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
2√

2𝑖−1
√
𝓁 − 1𝑢‖‖‖𝑄⊤

𝑖−2(𝐵𝑖−2 + 𝛥𝐵𝑖−2)
‖‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
2√

2𝑖−1
√
𝓁 − 1𝑢‖‖‖𝑄⊤

𝑖−2
‖‖‖𝐹 ‖‖𝐵𝑖−2 + 𝛥𝐵𝑖−2‖‖𝐹

⩽ 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
2√

2𝑖−1 𝑢
√
2𝑖−2(𝓁 − 1)2

(‖‖𝐵𝑖−2‖‖𝐹 + ‖‖𝛥𝐵𝑖−2‖‖𝐹 )
= 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
2√

2(𝑖−1)+(𝑖−2)
√
𝓁 − 1

2
𝑢
(‖‖𝐵𝑖−2‖‖𝐹 + ‖‖𝛥𝐵𝑖−2‖‖𝐹 )

.

Using iteratively the previous approach and the notation 𝜎𝑖−1 =
∑𝑖−1

𝑗=0 𝑗 we obtain:

‖‖𝛥𝐵𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
(‖‖𝐵1‖‖𝐹 + ‖‖𝛥𝐵1‖‖𝐹 )

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
(√

2‖‖𝑅0‖‖𝐹 + ‖‖𝛥𝐵1‖‖𝐹 )
= 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
√
2‖‖𝑅0‖‖𝐹 +𝑂

(
𝑢2
)
.

Next by removing the negligible term 𝑂
(
𝑢2
)

we have:

‖‖𝛥𝐵𝑖
‖‖𝐹 ≲ 𝜑(𝑚𝑖, 𝑛𝑖)

√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
√
2‖‖𝑅0‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
√
2‖‖‖𝑄⊤

0 (𝐵0 + 𝛥𝐵0)
‖‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
√
2 ‖‖‖𝑄⊤

0
‖‖‖𝐹 ‖‖𝐵0 + 𝛥𝐵0‖‖𝐹

⩽ 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
𝑖−1√

2𝜎𝑖−1
√
𝓁 − 1

𝑖−1
𝑢
√
2
√
𝓁 − 1 ‖‖𝐵0 + 𝛥𝐵0‖‖𝐹

⩽ 𝜑(𝑚𝑖, 𝑛𝑖)
√
2
𝑖√

2𝜎𝑖−1
√
𝓁 − 1

𝑖
𝑢
(‖‖𝐵0‖‖𝐹 + ‖‖𝛥𝐵0‖‖𝐹 )

= 𝜑(𝑚𝑖, 𝑛𝑖)
√
2𝜎𝑖

√
𝓁 − 1

𝑖
𝑢‖‖𝐵0‖‖𝐹 +𝑂

(
𝑢2
)

≃ 𝜑(𝑚𝑖, 𝑛𝑖) 2𝜎𝑖∕2(𝓁 − 1)𝑖∕2 𝑢‖‖𝐵0‖‖𝐹 ,
where the relation ‖‖‖𝑄⊤

0
‖‖‖𝐹 ⩽

√
𝓁 − 1‖‖‖𝑄⊤

0
‖‖‖2 =√

𝓁 − 1 is used. Thus, we conclude that:
327

‖‖𝛥𝐵𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)2𝜎𝑖∕2(𝓁 − 1)𝑖∕2𝑢‖‖𝐵0‖‖𝐹 . (24)
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Hence, by induction the above relation holds for any 𝑖 = 0, 1, … , 𝑘 −1, where 𝑘 determines the maximum number of iterations of the 
implementation of the QR factorization process.

The number 𝑘 can be specified using the following procedure. For the 𝑖-th step the number of rows of the block 𝐵𝑖 is doubled 
at each step and the number of its columns is increased by 2𝑖−1. Thus, the number of rows of 𝐵𝑖 is 2𝑖(𝓁 − 1) while the number of 
its columns is 𝑛 + 2𝑖. At any step during the procedure, if the number of the same blocks 𝐵𝑖 is odd, the last one is moved under 
𝑆0 in order to have even number of same blocks for implementing the next iteration. At the first step, there are 𝑚 same blocks 𝐵0. 
Since the rows are doubled, then at the second step there are 𝑚∕2 same blocks 𝐵1. In the case where 𝑚 is odd the last same block 
is moved under 𝑆0. At the third step there are 𝑚∕22 same blocks 𝐵2 and so on. Assume that 𝑗 is the number of implementations of 
QR factorization such that the number of the remaining same blocks is two. Note that, in case where the remaining same blocks are 
three, the last one is moved under 𝑆0. Thus, at the 𝑗-th step the remaining same blocks are always two. Hence, it holds that 𝑚∕2𝑗 = 2
which results to 𝑗 = ⌈log2𝑚⌉ − 1 applications of the QR factorization to the blocks 𝐵𝑖. In addition, one more QR factorization is 
applied to the first block 𝐵0 and one more is applied to the block 𝑆0 as well as to any other blocks that are moved below 𝑆0 .

Hence, the maximum number of the required implementations of the QR factorization is given by (cf. [31]):

𝑘 = ⌈log2𝑚⌉+ 1.

Thus, the lemma is proved. □

Remark 9. The number of the same blocks in the modified generalized Sylvester matrix can be handled by the dealer as follows. 
Particularly, the dealer is in a position to design the scheme such that the number of the same blocks to be even at every step. Thus, 
it is not required for any block to be moved under 𝑆0. This can be done if the maximum degree 𝑚 of polynomials and consequently 
the number of the same blocks is a power of two. In that way less computations are required and therefore a smaller number of 
errors regarding the floating point manipulations take place.

We now prove the stability of the iterative block QR decomposition of 𝑆∗ . To this end we use the following notations.

Notation 5. The following block matrix will be frequently used in what follows:

𝐵𝑄(𝑄,𝐼,𝛩,𝛩,𝛩) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
𝑄
][
𝛩
][
𝛩
][
𝛩
]
…

[
𝛩
][
𝛩
][

𝛩
][
𝑄
][
𝛩
][
𝛩
]
…

[
𝛩
][
𝛩
][

𝛩
][
𝛩
][
𝑄
][
𝛩
]
…

[
𝛩
][
𝛩
]

⋱[
𝛩
][
𝛩
][
𝛩
][
𝛩
]
…

[
𝑄
][
𝛩
][

𝛩
][
𝛩
][
𝛩
][
𝛩
]
…

[
𝛩
][
𝐼
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where 𝑄 is a 𝜈 × 𝜈 orthogonal matrix derived here by the QR factorization square, 𝛩 is a 𝜈 × 𝜈 zero matrix, 𝐼 is a 𝜇 × 𝜇 identity 
matrix, 𝛩 is a 𝜇 × 𝜈 zero matrix while 𝛩 is a 𝜈 × 𝜇 zero matrix.

Definition 3. We define the following perturbation block matrix 𝛥𝐸𝑖:

𝛥𝐸𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

[
𝛥𝐵𝑖

][
𝛩𝑖

][
𝜃
]

…
[
𝜃
][
𝛩𝑖

][
𝛩𝑖

][
𝛥𝐵𝑖

][
𝜃
]

…
[
𝜃
][
𝛩𝑖

]
⋱[

𝜃
][
𝜃
]
…

[
𝜃
]

…
[
𝜃
][
𝛥𝐵𝑖

][
𝛩
]

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑖 = 0,1,… , 𝑘− 1, (26)

where 𝛥𝐵𝑖 is the 2𝑖(𝓁 − 1) × (𝑛 + 2𝑖) that it has been used in Lemma 1, 𝛩𝑖 is a zero matrix of size 2𝑖(𝓁 − 1) × (𝑛 + 2𝑖), 𝛩𝑖 is a zero matrix 
of size 2𝑖(𝓁 − 1) × 2𝑖, while 𝜃 is a zero column vector with 2𝑖(𝓁 − 1) entries and 𝛩 is a 𝑛 × (𝑚 + 𝑛) zero matrix.

Observations 1. The following explicitly clarified observations have to be taken into consideration for providing a comprehensive and 
detailed proof of the new proposed Theorem 1 that follows.

a) Let 𝑆0 and 𝐵0 be the matrices given by Eqs. (3) and (6) respectively and 𝑆∗ be the modified generalized Sylvester matrix of the 
polynomials 𝑝𝑖(𝑥), 𝑖 = 1, 2, … , 𝓁 given by Eq. (7).

b) Let 𝑄𝑖𝐵𝑖+1 =𝐵𝑖 + 𝛥𝐵𝑖, 𝑖 = 0, 1, … , 𝑘 − 1 be the exact QR factorization of a slightly perturbed block 𝐵𝑖, given by Eq. (11), where 
𝑄𝑖 is an orthogonal matrix and 𝛥𝐵𝑖 a small perturbation matrix.

c) Set 𝑆0 = 𝑆∗ and let ̂𝑄𝑖 =𝐵𝑄(𝑄𝑖, 𝐼,𝛩, 𝛩, 𝛩) be the orthogonal matrix given by Eq. (25) that fulfills the block-QR factorization 
�̂�𝑖𝑆𝑖+1 = 𝑆𝑖+𝛥𝐸𝑖, 𝑖 = 0, 1, … , 𝑘 −2, where 𝛥𝐸𝑖 is a small perturbation matrix given by Eq. (26). For 𝑖 = 𝑘 −1 an additional block 
328

QR factorization is performed for triangularizing the matrix 𝑆𝑘−1 giving an orthogonal matrix �̂�𝑘−1 and an upper triangular 
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matrix 𝑆𝑘 such that �̂�𝑘−1𝑆𝑘 = 𝑆𝑘−1 + 𝛥𝐸𝑘−1. The last non zero row of 𝑆𝑘 gives the coefficients of the GCD of the polynomials 
[1].

d) Let the (𝓁𝑚 +𝑛) ×(𝓁𝑚 +𝑛) orthogonal matrix �̃�0 be the product �̂�⊤
𝑘−1 �̂�

⊤
𝑘−2⋯ �̂�⊤

1 �̂�
⊤
0 , where 𝓁 is the number of levels of Scheme 

1 and 𝑚, 𝑛 are the largest degree and the second larger degree of the considered polynomials.

Theorem 1. According to Observations 1 consider the following iterative application of the QR factorization to the blocks 𝐵𝑖 of the matrix 𝑆𝑖:

𝑆𝑖+1 = �̂�⊤
𝑖 (𝑆𝑖 + 𝛥𝐸𝑖), 𝑖 = 0,1,… , 𝑘− 1, (27)

with

‖‖𝛥𝐸𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖)2 (𝜎𝑖−1+1)∕2 (𝓁 − 1) 𝑖∕2 𝑢‖‖𝑆∗‖‖𝐹 , 𝑖 = 0,1,… , 𝑘− 1, (28)

where 𝜎𝑖 =
∑𝑖

𝑗=0 𝑗, for 𝜎−1 = 0, 𝜑(𝑚𝑖, 𝑛𝑖) are slowly growing functions of 𝑚𝑖, 𝑛𝑖 and 𝑢 is the unit round off error.

The final exact QR factorization of 𝑆∗ is given by the following trapezoidal (𝓁𝑚 + 𝑛) × (𝑚 + 𝑛) matrix resulting from the iterative block 
QR factorizations:

𝑆𝑘 = �̃�0 𝑆
∗ +  , with 𝑘 = ⌈log2𝑚⌉+ 1, (29)

where 𝑘 is the required number of iterations. In addition, the Frobenius norm of the above error matrix  is bounded as follows:

‖‖𝐹 ⩽
√
𝓁𝑚+ 𝑛

𝑘−1∑
𝑖=0

{
𝜑(𝑚𝑖, 𝑛𝑖) 2 (𝜎𝑖−1+1)∕2 (𝓁 − 1)𝑖∕2

}
𝑢 ‖‖𝑆∗‖‖𝐹 . (30)

Proof. Consider the following (𝓁𝑚 + 𝑛) × (𝑚 + 𝑛) modified generalized Sylvester matrix 𝑆∗ of the polynomials of all the levels (cf. 
Notation 3):

𝑆∗ =𝐵𝑆 (𝐵0, 𝑆0, 𝜃).

The matrix 𝑆∗ has 𝑚 same (𝓁−1) × (𝑛 +1) blocks 𝐵0. Using Lemma 1, by applying the QR factorization to 𝐵0, we compute the exact 
QR factorization of a slightly perturbed matrix 𝐵0 such that:

𝐵0 + 𝛥𝐵0 =𝑄0𝑅0, (31)

with ‖‖‖𝛥𝐵0
‖‖‖𝐹 ⩽ 𝜑(𝑚0, 𝑛0)𝑢

‖‖‖𝐵0
‖‖‖𝐹 , (32)

where 𝜑(𝑚0, 𝑛0) is a slowly growing function of 𝑚0, 𝑛0 (cf. [7]), 𝑚0 = 𝓁 − 1 is the number of rows and 𝑛0 = 𝑛 + 1 is the number of 
columns of 𝐵0.

Consider the (𝓁𝑚+ 𝑛) × (𝓁𝑚+ 𝑛) block matrix �̂�0 (cf. Notation 5):

�̂�0 = 𝐵𝑄(𝑄0, 𝐼,𝛩,𝛩,𝛩),

where 𝑄0 is an orthogonal (𝓁 − 1) × (𝓁 − 1) matrix derived by the QR factorization of the matrix 𝐵0 , 𝐼 is an 𝑛 × 𝑛 identity matrix, 𝛩
is an (𝓁 − 1) × (𝓁 − 1) zero matrix, 𝛩 is an 𝑛 × (𝓁 − 1) zero matrix and 𝛩 is an (𝓁 − 1) × 𝑛 zero matrix. The first iteration of the QR 
factorization to the blocks of 𝑆∗ can be achieved as follows:

𝑆1 ≃ �̂�⊤
0 𝑆∗ =𝐵𝑆 (𝑅0, 𝑆0, 𝜃).

The above matrix 𝑆1 is the exact result of the application of the QR factorization to slightly perturbed blocks 𝐵0 of 𝑆∗ such that:

𝑆∗ + 𝛥𝐸0 = �̂�0 𝑆1,

where the (𝓁𝑚 + 𝑛) × (𝑚 + 𝑛) matrix 𝛥𝐸0 is given by:

𝛥𝐸0 =𝐵𝑆 (𝛥𝐵0,𝛩, 𝜃).

For the Frobenius norms of 𝛥𝐸0 and 𝑆∗ hold that:

‖‖𝛥𝐸0‖‖𝐹 =
(∑

𝑖

∑
𝑗

{𝛥𝐸0}2𝑖𝑗
)1∕2

=
√
𝑚‖‖𝛥𝐵0‖‖𝐹 , (33)

and

‖𝑆∗‖2 =𝑚
∑∑

{𝐵 }2 +
∑∑

{𝑆 }2 =𝑚‖𝐵 ‖2 + ‖𝑆 ‖2 .
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‖ ‖𝐹
𝑖 𝑗

0 𝑖𝑗
𝑖 𝑗

0 𝑖𝑗 ‖ 0‖𝐹 ‖ 0‖𝐹
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Consequently we obtain:

‖‖𝐵0‖‖2𝐹 =𝑚−1 ‖‖𝑆∗‖‖2𝐹 −𝑚−1 ‖‖𝑆0‖‖2𝐹 ⩽𝑚−1 ‖‖𝑆∗‖‖2𝐹 +𝑚−1 ‖‖𝑆∗‖‖2𝐹 = 2𝑚−1 ‖‖𝑆∗‖‖2𝐹 ,
which implies that

‖‖𝐵0‖‖𝐹 ⩽
√
2√
𝑚
‖‖𝑆∗‖‖𝐹 . (34)

By virtue of Lemma 1 and using Eqs. (32) and (34) the Eq. (33) becomes:

‖‖𝛥𝐸0‖‖𝐹 ⩽ 𝜑(𝑚0, 𝑛0)
√
2𝑢‖‖𝑆∗‖‖𝐹 .

For the matrix 𝑆1 it holds the following:

𝑆1 =𝑄⊤
0
(
𝑆∗ + 𝛥𝐸0

)
=𝐵𝑆 (𝑅0, 𝑆0, 𝜃).

Consider the 2(𝓁 − 1) × (𝑛 + 2) upper left block 𝐵1 of 𝑆1:

𝐵1 =
[ [𝑅0

][
𝜃
][

𝜃
][
𝑅0

] ] .
By applying the QR factorization to the above matrix 𝐵1 the computed orthogonal and upper triangular matrices 𝑄1 and 𝑅1 are 
respectively the exact factors of the QR factorization of a slightly perturbed matrix 𝐵1 such that 𝐵1 + 𝛥𝐵1 =𝑄1𝑅1. Using Lemma 1
we obtain that:

‖‖𝛥𝐵1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)
√
2
√
𝓁 − 1𝑢‖‖𝐵0‖‖𝐹 ,

where 𝑛1 = 𝑛0 + 1 = 𝑛 + 2 is the number of columns of 𝐵1 and 𝑛0 is the number of columns of 𝐵0.
Similarly, the application of the QR factorization to the blocks of 𝑆1 is achieved as follows:

𝑆2 ≃ �̂�⊤
1 𝑆1 =𝐵𝑆 (𝑅1, 𝑆0, 𝜃).

The above matrix 𝑆2 is the exact result of the application of the QR factorization to slightly perturbed blocks 𝐵1 of 𝑆1 such that 
𝑆1 + 𝛥𝐸1 = �̂�1𝑆2, with

‖‖𝛥𝐸1‖‖𝐹 =
√

𝑚

2
‖‖𝛥𝐵1‖‖𝐹 ⩽

√
𝑚

2
𝜑(𝑚1, 𝑛1)

√
2
√
𝓁 − 1𝑢‖‖𝐵0‖‖𝐹 .

Consequently, using Eq. (34) we get:

‖‖𝛥𝐸1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)
√
𝑚(𝓁 − 1)

√
2𝑢 1√

𝑚
‖‖𝑆∗‖‖𝐹 ,

or equivalently

‖‖𝛥𝐸1‖‖𝐹 ⩽ 𝜑(𝑚1, 𝑛1)
√
2
√
𝓁 − 1𝑢‖‖𝑆∗‖‖𝐹 ,

where

�̂�1 = 𝐵𝑄(𝑄1, 𝐼,𝛩,𝛩,𝛩).

The matrix �̂�1 has 𝑚∕2 same blocks 𝑄1 since 𝐵1 has the double rows of 𝐵0 and

𝛥𝐸1 =𝐵𝑆 (𝛥𝐵1,𝛩, 𝜃).

For the matrix 𝑆2 it holds that:

𝑆2 = �̂�⊤
1
(
𝑆1 + 𝛥𝐸1

)
= �̂�⊤

1
(
�̂�⊤

0
(
𝑆∗ + 𝛥𝐸0

)
+ 𝛥𝐸1

)
=𝐵𝑆 (𝑅1, 𝑆0, 𝜃).

At the third iteration of our approach we apply the QR factorization to the following 22 (𝓁 − 1) × (𝑛 + 22) matrix 𝐵2:

𝐵2 =
[ [𝑅1

][
𝜃
][
𝜃
][

𝜃
][
𝜃
][
𝑅1

] ] .
Note that 𝐵2 is the upper left block of the matrix 𝑆2 .

Assume that 𝑄2 and 𝑅2 are respectively the computed orthogonal and upper triangular matrices of the QR factorization of 𝐵2 . 
This concerns the exact QR factorization of a slight perturbation 𝛥𝐵2 of matrix 𝐵2 such that:
330

𝐵2 + 𝛥𝐵2 =𝑄2𝑅2.
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Consider the matrix

�̂�2 = 𝐵𝑄(𝑄2, 𝐼,𝛩,𝛩,𝛩).

Similarly to the previous steps we have 𝑆2 + 𝛥𝐸2 = �̂�2 𝑆3. By virtue of Lemma 1 using Eq. (22) we obtain:

‖‖𝛥𝐸2‖‖𝐹 =
√

𝑚

4
‖‖𝛥𝐵2‖‖𝐹 ⩽

√
𝑚

4
𝜑(𝑚2, 𝑛2)

√
2
3√

𝓁 − 1
2
𝑢‖‖𝐵0‖‖𝐹 ,

where 𝑚∕4 is the number of the same blocks 𝐵2. Using Eq. (34) we have:

‖‖𝛥𝐸2‖‖𝐹 ⩽ 𝜑(𝑚2, 𝑛2)
√
2
2√

𝓁 − 1
2
𝑢‖‖𝑆∗‖‖𝐹 .

The matrix 𝑆3 is written as follows:

𝑆3 = �̂�⊤
2
(
�̂�⊤

1
(
�̂�⊤

0
(
𝑆∗ + 𝛥𝐸0

)
+ 𝛥𝐸1

)
+ 𝛥𝐸2

)
.

Suppose that at the (𝑖 − 1)-th iteration it holds that:

𝑆𝑖−1 + 𝛥𝐸𝑖−1 = �̂�𝑖−1𝑆𝑖, (35)

with

‖‖𝛥𝐸𝑖−1‖‖𝐹 ⩽ 𝜑(𝑚𝑖−1, 𝑛𝑖−1) 2(𝜎𝑖−2+1)∕2 (𝓁 − 1)(𝑖−1)∕2 𝑢‖‖𝑆∗‖‖𝐹 . (36)

At the 𝑖-th step it holds that:

𝑆𝑖 + 𝛥𝐸𝑖 = �̂�𝑖𝑆𝑖+1, (37)

with

‖‖𝛥𝐸𝑖
‖‖𝐹 =

√
𝑚

2𝑖
‖‖𝛥𝐵𝑖

‖‖𝐹 . (38)

By virtue of Lemma 1, using Eq. (24) and Eq. (34) we obtain an upper bound for the ‖‖𝛥𝐸𝑖
‖‖𝐹 as follows:

‖‖𝛥𝐸𝑖
‖‖𝐹 ⩽

√
𝑚

2𝑖
𝜑(𝑚𝑖, 𝑛𝑖) 2𝜎𝑖∕2 (𝓁 − 1) 𝑖∕2 𝑢‖‖𝐵0‖‖𝐹

⩽
√

𝑚

2𝑖
𝜑(𝑚𝑖, 𝑛𝑖) 2𝜎𝑖∕2 (𝓁 − 1) 𝑖∕2 𝑢

√
2√
𝑚
‖‖𝑆∗‖‖𝐹

= 𝜑(𝑚𝑖, 𝑛𝑖) 2(𝜎𝑖−1+1)∕2 (𝓁 − 1) 𝑖∕2 𝑢‖𝑆∗‖𝐹 .
Thus, for the 𝑖-th iteration we conclude that:

‖‖𝛥𝐸𝑖
‖‖𝐹 ⩽ 𝜑(𝑚𝑖, 𝑛𝑖) 2(𝜎𝑖−1+1)∕2 (𝓁 − 1)𝑖∕2𝑢‖‖𝑆∗‖‖𝐹 , for 𝑖 = 0,1,… , 𝑘− 1,

where 𝑘 = ⌈log2𝑚⌉ + 1.
Next, by using Relation (27) the matrix 𝑆𝑘 can be given as follows:

𝑆𝑘 = �̂�⊤
𝑘−1 �̂�

⊤
𝑘−2⋯ �̂�⊤

1 �̂�⊤
0 𝑆∗ + �̂�⊤

𝑘−1 �̂�
⊤
𝑘−2⋯ �̂�⊤

0 𝛥𝐸0+

+ �̂�⊤
𝑘−1 �̂�

⊤
𝑘−2⋯ �̂�⊤

1 𝛥𝐸1 +⋯+ �̂�⊤
𝑘−1 �̂�

⊤
𝑘−2 𝛥𝐸𝑘−2 + �̂�⊤

𝑘−1𝛥𝐸𝑘−1.

Since the product of orthogonal matrices is an orthogonal matrix, by using the notation:

�̃�𝑗 = �̂�⊤
𝑘−1 �̂�

⊤
𝑘−2⋯ �̂�⊤

𝑗 , for 𝑗 = 0,1,… , 𝑘− 1,

the matrix 𝑆𝑘 can be written as follows:

𝑆𝑘 = �̃�0 𝑆
∗ + �̃�0 𝛥𝐸0 + �̃�1 E1 +⋯+ �̃�𝑘−2 𝛥𝐸𝑘−2 + �̃�𝑘−1𝛥𝐸𝑘−1.

The above relation can be written as follows:

𝑆𝑘 = �̃�0 𝑆
∗ +  ,

where
331

 = �̃�0 𝛥𝐸0 + �̃�1 𝛥𝐸1 +⋯+ �̃�𝑘−2 𝛥𝐸𝑘−2 + �̃�𝑘−1𝛥𝐸𝑘−1,
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Table 2

Order of the bound of the error in Eq. (13) in terms of the number of levels 𝓁
and 𝑚 that indicates the maximum degree of the considered polynomials.

𝓁 𝑚 𝑞1 = 2𝜎𝑘∕2 (𝓁 − 1)𝑘∕2 𝑞2 = 2𝜎𝑘∕2 (𝓁 − 1)𝑘∕2 𝑢

10 10 4.398769864405275 × 104 4.883615583490014 × 10−12
10 100 1.719926784000000 × 109 1.909502316266298 × 10−7
10 500 1.120824015769286 × 1013 1.244364628860000 × 10−3
20 10 2.848452422491905 × 105 3.162417463999817 × 10−11
20 100 3.416286822400000 × 1010 3.792840288951993 × 10−6
20 500 4.699946188118873 × 1014 5.217988472548800 × 10−2
30 10 8.198227433000379 × 105 9.101860857230614 × 10−11
30 100 1.854094704640000 × 1011 2.058458630926907 × 10−5
30 500 3.893273110505203 × 1015 4.322401448436880 × 10−1

Table 3

Upper bounds of the error given by Relation (28) in terms of the number 
of levels 𝓁 and 𝑚, 𝑛 that indicate the maximum and the second maximum 
degrees of the considered polynomials respectively. The upper bounds 
exhibited for 𝑛 =𝑚 can be used for obtaining upper bounds for the cases 
where 𝑛 <𝑚. The constant 𝜍 is given by 𝜍 =max𝑖

{
𝜑(𝑚𝑖, 𝑛𝑖)

}
.

𝓁 (𝑚,𝑛)
√
𝓁𝑚+ 𝑛

∑𝑘−1
𝑖=0

{
𝜑(𝑚𝑖, 𝑛𝑖) 2 (𝜎𝑖−1+1)∕2 (𝓁 − 1)𝑖∕2

}
𝑢

10 (10,10) 𝜍 × 1.220381792939832 × 10−12
10 (100,100) 𝜍 × 1.722399261064825 × 10−8
10 (500,500) 𝜍 × 6.137129109342957 × 10−5
20 (10,10) 𝜍 × 7.177318144680123 × 10−12
20 (100,100) 𝜍 × 3.208395515893840 × 10−7
20 (500,500) 𝜍 × 2.430872035454000 × 10−2
30 (10,10) 𝜍 × 1.995122339686522 × 10−11
30 (100,100) 𝜍 × 1.702624960813450 × 10−6
30 (500,500) 𝜍 × 1.974772651999400 × 10−2

determines the total error of the decomposition. Next, we compute an upper bound of the Frobenius norm of the error  of the 
considered decompositions.‖‖‖‖‖‖𝐹 = ‖‖‖�̃�0 𝛥𝐸0 + �̃�1 𝛥𝐸1 +⋯+ �̃�𝑘−2 𝛥𝐸𝑘−2 + �̃�𝑘−1𝛥𝐸𝑘−1

‖‖‖𝐹
⩽ ‖‖‖�̃�0

‖‖‖𝐹 ‖‖‖𝛥𝐸0
‖‖‖𝐹 + ‖‖‖�̃�1

‖‖‖𝐹 ‖‖‖𝛥𝐸1
‖‖‖𝐹 +⋯+

+‖‖‖�̃�⊤
𝑘−2

‖‖‖𝐹 ‖‖‖𝛥𝐸𝑘−2
‖‖‖𝐹 + ‖‖‖�̃�⊤

𝑘−1
‖‖‖𝐹 ‖‖‖𝛥𝐸𝑘−1

‖‖‖𝐹
⩽ max

𝑖

{‖‖‖�̃�𝑖
‖‖‖𝐹} 𝑘−1∑

𝑗=0

‖‖‖𝛥𝐸𝑗
‖‖‖𝐹

⩽
√
𝓁𝑚+ 𝑛 max

𝑖

{‖‖‖�̃�𝑖
‖‖‖2} 𝑘−1∑

𝑗=0

‖‖‖𝛥𝐸𝑗
‖‖‖𝐹 .

Hence, by virtue of Relation (28) we conclude that

‖‖‖‖‖‖𝐹 ⩽
√
𝓁𝑚+ 𝑛

𝑘−1∑
𝑗=0

𝜑(𝑚𝑖, 𝑛𝑖) 2(𝜎𝑖−1+1)∕2 (𝓁 − 1)𝑖∕2 𝑢 ‖‖𝑆∗‖‖𝐹 .
Thus, the theorem is proved. □

In Table 2 the quantities 𝑞1 = 2𝜎𝑘∕2(𝑙 − 1)𝑘∕2 and 𝑞2 = 𝑞1 𝑢 of the bound of Lemma 1 are exhibited, where 𝑘 = ⌈log2𝑚⌉ + 1 is the 
number of applications of the QR factorization, 𝓁 is the number of the levels which equals to the number of polynomials, 𝑚 is the 
maximum degree of polynomials, 𝑢 is the unit round off error and 𝜎𝑖 =

∑𝑖
𝑗=0 𝑗. The quantity 𝑞2 approximates the order of the final 

error, in terms of the number of polynomials and the maximum degree of them.

In Table 3 the bound 
√
𝓁𝑚+ 𝑛

∑𝑘−1
𝑖=0

{
𝜑(𝑚𝑖, 𝑛𝑖) 2 (𝜎𝑖−1+1)∕2 (𝓁 − 1)𝑖∕2

}
𝑢 of the Frobenius norm of the error matrix  in Relation (30)

of Theorem 1 is exhibited, where 𝑘, 𝓁, 𝑚, 𝑢 and 𝜎𝑖 are the same notations given in Table 2, with 𝜎−1 = 0 and 𝑛 is the second larger 
degree of polynomials. The constant 𝜍 refers to the max𝑖

{
𝜑(𝑚𝑖, 𝑛𝑖)

}
, where 𝜑(𝑚𝑖, 𝑛𝑖) is a slowly growing function of 𝑚𝑖, 𝑛𝑖. The 

considered bound in Table 3 is important since it approximates the total error for the whole process of the iteratively applications of 
332

the QR factorization.
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3.1.3. Computational complexity of Scheme 1
Assume that 𝑝(1)𝑞 (𝑥), 𝑝𝑖(𝑥) ∈ ℝ[𝑥], 𝑖 = 2, 3, … , 𝓁 are 𝓁 the polynomials of the levels 𝐿𝑖, 𝑖 = 1, 2, … , 𝓁. Then the computational 

complexity of the algorithm for computing the GCD of polynomials by applying the modified version of LU factorization with partial 
pivoting to the modified Sylvester matrix in flops is (cf. [31]):

𝑁 (1)
LU = 1

2
(𝑚+ 𝑛)3

(
2 log2𝑚− 1

3

)
+ (𝑚+ 𝑛)2

(
𝑛+ 2(𝓁 − 1) log2𝑚

)
, (39)

where 𝑚, 𝑛 are the maximum and the second maximum degree of the polynomials respectively, 𝓁 is the number of levels and 1 flop is 
the required time for computing one addition and one multiplication. In case where the implementation of the iterative applications 
of the block QR decomposition instead of the modified LU factorization, the final complexity of the method is given by the total 
required number of flops 𝑁 (1)

QR (cf. [31]):

𝑁 (1)
QR = (𝑚+ 𝑛)3

(
2 log2𝑚− 1

3

)
+ (𝑚+ 𝑛)2

(
𝑛+ 2(𝓁 − 1) log2𝑚

)
. (40)

3.1.4. Benefits of Scheme 1
A benefit of this scheme is that in the case where the selected participant of the starting Level 1 is not able to cooperate for any 

reason, then the participant is substituted by any other participant of Level 1. The same remains true if anyone of the participants of 
the Level 𝑖 can not cooperate, but in that case the whole tuple has to be substituted by another one (any tuple of a level sums to the 
polynomial corresponding to that level). Let us suppose that the 𝑞-th participant of the 𝑗-th subset of Level 𝑖 can not cooperate with 
the other ones. Then all the 𝑐𝑖 𝑞-th participants of the subsets of Level 𝑖 are substituted with e.g. 𝑟-th ones of the subsets of the same 
level, 𝑞, 𝑟 ∈ {1, 2, … , 𝑘𝑖}, 𝑞 ≠ 𝑟.

Another benefit is that the sum of the shares of every 𝑞-th participant of the subset 𝑆(𝑖)
𝑗 , 𝑗 = 1, 2, … , 𝑐𝑖 of any level 𝑖 has to result 

to 𝑝𝑖(𝑥), 𝑖 = 2, 3, … , 𝓁. Thus, if the participants of any selected authorized subset 𝑆 =
(
𝑃 (𝑖)
𝑞1 , 𝑃

(𝑖)
𝑞2 , … , 𝑃 (𝑖)

𝑞𝑐𝑖

)
add their shares and the 

sum is not the polynomial 𝑝𝑖(𝑥) that all other tuples of the same level have computed, then we conclude that one or more participants 
of the tuple have given false information. The calculation process for the entire tuple will be deemed inaccurate by the dealer. The 
dealer is required to replace the entire subset 𝑆 of Level 𝑖 with another authorized set of the same level until certain subsets yield 
the same polynomial 𝑝𝑖(𝑥). This issue introduces a self-correcting mechanism in Scheme 1.

Since the 𝑐𝑖 is the number of subsets of the level 𝐿𝑖 and 𝑐1 < 𝑐2 <⋯ < 𝑐𝓁 , 𝓁 ⩾ 2, 𝑖 ∈ {1, 2, … , 𝓁}, the higher index 𝑐𝑖, the less 
significance of the level is, because more participants of the level are necessary in order to compute the polynomial 𝑝𝑖(𝑥) of their 
level. Thus, the scheme exhibits a hierarchical structure.

3.2. Scheme 2: bottom-up hierarchical ramp secret sharing

This scheme is a variation of the scheme that is described in §3.1. The Notation 1 is also used for Scheme 2. Similarly to Scheme 
1 the dealer creates a polynomial 𝑝(𝑥) with several roots which constitutes the secret as it is described in §3.1. The first four steps of 
§3.1 remain the same.

The main difference lies into Step 5 for both schemata regarding the cooperation of the participants. Specifically, while in 
Scheme 1 the authorized participants compute the secret as the GCD of the polynomials of all levels all together, in Scheme 2, the 
authorized participants of the levels cooperate pairwise bottom up, starting by computing the GCD of their polynomials per two 
levels from the last level to the first one. Also, in Scheme 2 there is an additional step. In this step, named Step 6, the authorized 
participant of Level 1 has been informed about the computed GCDs of the polynomials of the other levels and by multiplying them 
computes the secret.

Remark 10. The hierarchy of the levels is defined by the importance of the information that can derive each level. Thus, by using a 
bottom-up hierarchy every level computes a polynomial containing a part of the secret. The retrieved information of Level 𝑖 is more 
significant than the one of Level 𝑗 if 𝑖 < 𝑗 for 𝑖, 𝑗 ∈ {1, 2, … , 𝓁}, 𝑖 ≠ 𝑗.

Scheme 2. The proposed bottom-up ramp hierarchical secret sharing scheme is described below using the following steps:

Step 1: The dealer constructs a polynomial 𝑝(𝑥) which is the secret.
Step 2: Using Notation 1 the dealer creates the hierarchically structured set

𝐿 =
{
𝐿1,𝐿2,… ,𝐿𝓁

}
,

of 𝓁 levels of participants, 𝐿𝑖, 𝑖 = 1, 2, … , 𝓁 as they are denoted in Notation 1. The set 𝐿 is a partitioning of 𝓁 hierarchically 
structured levels, where for the number of subsets 𝑐𝑖 of the levels it holds that 𝑐1 < 𝑐2 <⋯ < 𝑐𝓁 , where 𝓁 ⩾ 2.

Step 3: The dealer provides different polynomials to all participants of Level 1. In what follows, the dealer distributes the shares 
𝑝(𝑖)
ℎ,𝑘

(𝑥) (i.e. the polynomials) to each participant 𝑃 (𝑖)
ℎ𝑘
(𝑥) at Level 𝑖 for 𝑖 = 2, 3, … , 𝓁, in such a way that

𝑐𝑖∑ (𝑖)
333

𝑝𝑖(𝑥) =
𝑘=1

𝑝
ℎ𝑘
(𝑥), ℎ ∈ {1,2,… , 𝑘𝑖}, 𝑖 ∈ {2,3,… ,𝓁},
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where 𝑖 denotes the Level and it holds that gcd
{
𝑝(𝑖)
ℎ𝑘
(𝑥), 𝑝(𝑥)

}
= 1 for any ℎ, 𝑘 and 𝑖, 𝑝𝑖(𝑥) denotes the corresponding 

polynomial for Level 𝑖, 𝑖 = 2, 3, … , 𝓁 (created by the dealer), 𝑝(1)𝑗 (𝑥) denotes the polynomial of the 𝑗-th participant of 
Level 1 and gcd

{
𝑝𝑖(𝑥), 𝑝(𝑥)

}
≠ 1 for any 𝑖, as well as gcd

{
𝑝(1)𝑗 (𝑥), 𝑝(𝑥)

}
≠ 1, 𝑗 ∈ {1, 2, … , 𝑘1}.

Step 4: The dealer selects one specific participant, e.g. the 𝑗-th, named 𝑃 (𝑖)
𝑗𝑙

from every subset 𝑆(𝑖)
𝑙

=
{
𝑃 (𝑖)
1𝑙 , 𝑃

(𝑖)
2𝑙 , … , 𝑃 (𝑖)

𝑘𝑖𝑙

}
from every 

level 𝑖, 𝑖 = 1, 2, … , 𝓁, 𝑗 ∈ {1, 2, … , 𝑘𝑖} such that

𝑝𝑖(𝑥) =
𝑐𝑖∑
𝑘=1

𝑝(𝑖)
𝑗𝑘
(𝑥).

Step 5: The authorized participants of levels 𝑖 and (𝑖 + 1), compute the GCD of their polynomials 𝑝𝑖(𝑥) and 𝑝𝑖+1(𝑥), 𝑖 = 𝓁 − 1, 𝓁 −
2, … , 3, 2 with a bottom-up process and provide the total gathering pieces of information to the authorized participants of 
the next level. That is to say:

𝑔𝑖(𝑥) = gcd
{
𝑝𝑖+1(𝑥), 𝑝𝑖(𝑥)

}
, 𝑖 = 𝓁 − 1,𝓁 − 2,… ,3,2.

Assume that the dealer selects the 𝑗-th participant of Level 1. Then 𝑃 (1)
𝑗 cooperates with the authorized participants of Level 

2 and computes the GCD of their polynomials. Thus,

𝑔1(𝑥) = gcd
{
𝑝2(𝑥), 𝑝

(1)
𝑗 (𝑥)

}
.

Step 6: The secret 𝑝(𝑥) is computed by the selected by the dealer 𝑗-th participant of Level 1, 𝑗 ∈ {1, 2, … , 𝑘1}, by multiplying the 
computed GCDs 𝑔𝑖(𝑥), 𝑖 = 𝓁 − 1, … , 2, 1. Thus,

𝑝(𝑥) =
𝓁−1∏
𝑖=1

𝑔𝑖(𝑥). (41)

In Table 4 the main steps of Scheme 2 are exhibited. The secret can be obtained by Eq. (41). The polynomials 𝑝2(𝑥), … , 𝑝𝓁(𝑥) at 
each level are obtained if all the participants with the same color at each level add their polynomials.

3.2.1. Analyzing Scheme 2
Similarly to the Scheme 1, for the computation of the polynomial 𝑝(𝑥), one participant from Level 1 is required. On the other 

hand, as it is already mentioned before, the participants selected from Level 𝑖 will cooperate with those of (𝑖 − 1)-th Level for, 
𝑖 = 𝓁, 𝓁 − 1 , … , 2, in a bottom-up cooperation of two levels every time. The selected participants (of the same color, cf. Table 4) of 
the 𝓁-th Level provide their computed polynomial 𝑝𝓁(𝑥) to the authorized participants (of the same color, possibly with a different 
color than the previous one) of the next Level 𝐿𝓁−1. The participants of Level 𝐿𝓁−1 compute the GCD 𝑔𝓁−1(𝑥) of their polynomial 
𝑝𝓁−1(𝑥) with 𝑝𝓁(𝑥) such that to retrieve the less significant information about the secret that has be given by the dealer. As the 
process continues with this bottom-up procedure, the higher in hierarchy levels will retrieve the more significant information about 
the secret. Finally, a participant of Level 1 will compute the secret 𝑝(𝑥).

The benefits of this scheme are similar with those described in §3.1.4.

3.2.2. Computational complexity of Scheme 2
Assume that 𝑓 (𝑥), 𝑞(𝑥) ∈ℝ[𝑥] are two polynomials of degree 𝑛 and 𝑝 respectively, where 𝑝 ⩽ 𝑛. The computational complexity 

of the algorithm for computing the GCD of the two polynomials is (2(𝑝 𝑛 + (𝑛 − 𝑝) 𝑛2)) flops. The computation has been performed 
by applying the modified version of QR factorization to the modified Sylvester matrix, described in [30]. Since in the proposed 
Scheme 2, (𝓁 − 1) GCDs of two polynomials have to be computed, the final complexity of the method is given by the total required 
number flops 𝑁 (2)

f lops:

𝑁 (2)
f lops = (𝓁 − 1)

(
2(𝑝𝑛+ (𝑛− 𝑝)𝑛2)

)
. (42)

3.2.3. Error analysis of Scheme 2
The QR factorization applied to the Sylvester matrix 𝑆 , used for the computation of the GCD of two polynomials of degrees 𝑚

and 𝑛 is the exact QR factorization of a slightly perturbed matrix 𝑆 +𝐸 such that 𝑆 +𝐸 =𝑄𝑅. In the case where the inner products 
are accumulated in double precision, the Frobenius norm of 𝐸 is bounded as follows (cf. [7, p. 145], [33, p. 236]):

‖𝐸‖𝐹 ⩽ 12.5 (𝑚+ 𝑛)𝑢‖𝑆‖𝐹 ,

334

where 𝑢 denotes the unit round off error. Note that the above bound of the error concerns the cooperation of two levels.
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Table 4

Exhibition of the main steps of Scheme 2. The secret is obtained by a participant of Level 1 by multiplying the GCDs 
𝑔𝑖(𝑥), 𝑖 = 1, 2, … , 𝓁 − 1.

𝑝(𝑥) = 𝑔𝓁−1(𝑥)𝑔𝓁−2(𝑥)⋯𝑔2(𝑥)𝑔1(𝑥)
↑⏐⏐⏐⏐
𝐿1

𝑃 (1)
1 → 𝑝(1)1 (𝑥) 𝑃 (1)

2 → 𝑝(1)2 (𝑥) … 𝑃 (1)
𝑘1

→ 𝑝(1)
𝑘1
(𝑥)

↑⏐⏐⏐⏐
𝑝2(𝑥), {𝑔𝓁−1(𝑥), 𝑔𝓁−2(𝑥),… , 𝑔2(𝑥)}

𝐿2
𝑆(2)
1 𝑆(2)

2 … 𝑆(2)
𝑐2

𝑃 (2)
11 𝑃 (2)

21 … 𝑃 (2)
𝑐21

(+)
⟶ 𝑝2(𝑥)→ 𝑔2(𝑥) = gcd{𝑝2(𝑥), 𝑝3(𝑥)}

𝑃 (2)
12 𝑃 (2)

22 … 𝑃 (2)
𝑐22

(+)
⟶ 𝑝2(𝑥)→ 𝑔2(𝑥) = gcd{𝑝2(𝑥), 𝑝3(𝑥)}

⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (2)
1𝑘2

𝑃 (2)
2𝑘2

… 𝑃 (2)
𝑐2𝑘2

(+)
⟶ 𝑝2(𝑥)→ 𝑔2(𝑥) = gcd{𝑝2(𝑥), 𝑝3(𝑥)}

↑⏐⏐⏐⏐
𝑝3(𝑥), {𝑔𝓁−1(𝑥), 𝑔𝓁−2(𝑥),… , 𝑔3(𝑥)}

⋮

↑⏐⏐⏐⏐
𝑝𝓁−2(𝑥), {𝑔𝓁−1(𝑥), 𝑔𝓁−2(𝑥)}

𝐿𝓁−2
𝑆(𝓁−2)
1 𝑆(𝓁−2)

2 . . . 𝑆(𝓁−2)
𝑐𝓁−2

𝑃 (𝓁−2)
11 𝑃 (𝓁−2)

21 … 𝑃 (𝓁−2)
𝑐𝓁−21

(+)
⟶ 𝑝𝓁−2(𝑥)→ 𝑔𝓁−2(𝑥) = gcd{𝑝𝓁−2(𝑥), 𝑝𝓁−1(𝑥)}

𝑃 (𝓁−2)
12 𝑃 (𝓁−2)

22 … 𝑃 (𝓁−2)
𝑐𝓁−22

(+)
⟶ 𝑝𝓁−2(𝑥)→ 𝑔𝓁−2(𝑥) = gcd{𝑝𝓁−2(𝑥), 𝑝𝓁−1(𝑥)}

⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (𝓁−2)
1𝑘𝓁−2

𝑃 (𝓁−2)
2𝑘𝓁−2

… 𝑃 (𝓁−2)
𝑐𝓁−2𝑘𝓁−2

(+)
⟶ 𝑝𝓁−2(𝑥)→ 𝑔𝓁−2(𝑥) = gcd{𝑝𝓁−2(𝑥), 𝑝𝓁−1(𝑥)}

↑⏐⏐⏐⏐
𝑝𝓁−1(𝑥), {𝑔𝓁−1(𝑥)}

𝐿𝓁−1
𝑆(𝓁−1)
1 𝑆(𝓁−1)

2 . . . 𝑆(𝓁−1)
𝑐1−1

𝑃 (𝓁−1)
11 𝑃 (𝓁−1)

21 … 𝑃 (𝓁−1)
𝑐𝓁−11

(+)
⟶ 𝑝𝓁=1(𝑥)→ 𝑔𝓁−1(𝑥) = gcd{𝑝𝓁−1(𝑥), 𝑝𝓁(𝑥)}

𝑃 (𝓁−1)
12 𝑃 (𝓁−1)

22 … 𝑃 (𝓁−1)
𝑐𝓁−12

(+)
⟶ 𝑝𝓁−1(𝑥)→ 𝑔𝓁−1(𝑥) = gcd{𝑝𝓁−1(𝑥), 𝑝𝓁(𝑥)}

⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (𝓁−1)
1𝑘𝓁−1

𝑃 (𝓁−1)
2𝑘𝓁−1

… 𝑃 (𝓁−1)
𝑐𝓁−1𝑘𝓁−1

(+)
⟶ 𝑝𝓁−1(𝑥)→ 𝑔𝓁−1(𝑥) = gcd{𝑝𝓁−1(𝑥), 𝑝𝓁(𝑥)}

↑⏐⏐⏐⏐
𝑝𝓁(𝑥)

𝐿𝓁

𝑆(𝓁)
1 𝑆(𝓁)

2 𝑆(𝓁)
3 . . . 𝑆(𝓁)

𝑐𝓁

𝑃 (𝓁)
11 𝑃 (𝓁)

21 𝑃 (𝓁)
31 … 𝑃 (𝓁)

𝑐𝓁1
(+)
⟶ 𝑝𝓁 (𝑥)

𝑃 (𝓁)
12 𝑃 (𝓁)

22 𝑃 (𝓁)
32 … 𝑃 (𝓁)

𝑐𝓁2
(+)
⟶ 𝑝𝓁 (𝑥)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑃 (𝓁)
1𝑘𝓁

𝑃 (𝓁)
2𝑘𝓁

𝑃 (𝓁)
3𝑘𝓁

… 𝑃 (𝓁)
𝑐𝓁𝑘𝓁

(+)
⟶ 𝑝𝓁 (𝑥)

4. Illustrative examples

4.1. Ramp hierarchical secret sharing Scheme 1

The following example illustrates the Scheme 1. Let us suppose that the secret is the polynomial 𝑝(𝑥) = 𝑥3 − 6𝑥2 + 11𝑥 + 6 =
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) and the dealer creates three levels and subsets in them as presented in Table 5.

Level 3 consists of 4 subsets of participants. The participants of this level with the same row-index can add their shares and 
compute the polynomial of Level 3. Thus, either participants 𝑃 (3)

11 , 𝑃
(3)
12 , 𝑃

(3)
13 , 𝑃

(3)
14 will add their polynomials,

𝑝3(𝑥) = 𝑝(3)11 (𝑥) + 𝑝(3)12 (𝑥) + 𝑝(3)13 (𝑥) + 𝑝(3)14 (𝑥)

= 𝑥6 − 21𝑥5 + 175𝑥4 − 735𝑥3 + 1624𝑥2 − 1764𝑥+ 720
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 4)(𝑥− 5)(𝑥− 6),

or participants 𝑃 (3)
21 , 𝑃

(3)
22 , 𝑃

(3)
23 , 𝑃

(3)
24 will add their polynomials,

𝑝3(𝑥) = 𝑝(3)21 (𝑥) + 𝑝(3)22 (𝑥) + 𝑝(3)23 (𝑥) + 𝑝(3)24 (𝑥).

Similarly, three participants with the same row-index (color) from Level 2 add their shares and compute the polynomial of the Level. 
335

If 𝑃 (2)
11 , 𝑃

(2)
12 , 𝑃

(2)
13 add their polynomials, they compute the polynomial of Level 2. Thus,
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Table 5

Example of the levels, subsets and participants that are implemented in Scheme 1.

Level Subset Partici-
pant

Polynomial

1 𝑃 (1)
1 𝑝(1)1 (𝑥) = 𝑥6 − 28𝑥5 + 302𝑥4 − 1580𝑥3 +

+4149𝑥2 − 5112𝑥 + 2268
𝑃 (1)
2 𝑝(1)2 (𝑥) = 𝑥6 − 27𝑥5 + 280𝑥4 − 1410𝑥3 +

+3589𝑥2 − 4323𝑥 + 1890
2 𝑆(2)

1 𝑃 (2)
11 𝑝(2)11 (𝑥) = 3𝑥5 − 35𝑥4 + 65𝑥3 + 174𝑥 + 100

𝑃 (2)
21 𝑝(2)21 (𝑥) = 10𝑥5 − 90𝑥4 − 100𝑥2 + 274𝑥 − 20

𝑆(2)
2 𝑃 (2)

12 𝑝(1)12 (𝑥) = −2𝑥5 + 30𝑥4 − 260𝑥2 + 100𝑥 + 300
𝑃 (2)
22 𝑝(2)22 (𝑥) = −8𝑥5 − 25𝑥4 + 65𝑥3 − 10𝑥2 − 60

𝑆(2)
3 𝑃 (2)

13 𝑝(2)13 (𝑥) = −12𝑥4 + 40𝑥3 − 35𝑥2 − 100𝑥 − 568
𝑃 (2)
23 𝑝(2)23 (𝑥) = −𝑥5 + 98𝑥4 + 40𝑥3 − 185𝑥2 +

+100𝑥 − 88
3 𝑆(3)

1 𝑃 (3)
11 𝑝(3)11 (𝑥) = 𝑥6 + 1624𝑥2 + 400

𝑃 (3)
21 𝑝(2)21 (𝑥) = 15𝑥6 − 71𝑥5 − 835𝑥3 − 700𝑥 + 20

𝑆(3)
2 𝑃 (3)

12 𝑝(3)12 (𝑥) = −21𝑥5 − 735𝑥3 + 120
𝑃 (3)
22 𝑝(3)22 (𝑥) = −10𝑥6 − 100𝑥4 + 45𝑥3 + 1000𝑥2 −

−464𝑥 + 100
𝑆(3)
3 𝑃 (3)

13 𝑝(3)13 (𝑥) = 175𝑥4 − 15𝑥3 − 50
𝑃 (3)
23 𝑝(3)23 (𝑥) = −4𝑥6 + 10𝑥5 + 150𝑥4 + 55𝑥3 +

+600𝑥2 + 50
𝑆(3)
4 𝑃 (3)

14 𝑝(3)14 (𝑥) = 15𝑥3 − 1764𝑥 + 250
𝑃 (3)
24 𝑝(3)24 (𝑥) = 40𝑥5 + 125𝑥4 + 24𝑥2 − 600𝑥 + 550

𝑝2(𝑥) = 𝑝(2)11 (𝑥) + 𝑝(2)12 (𝑥) + 𝑝(2)13 (𝑥)

= 𝑥5 − 17𝑥4 + 105𝑥3 − 295𝑥2 + 374𝑥− 168
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 4)(𝑥− 7).

The same polynomial can be derived by the participants of every subset of Level 2 with the same row-index (color), thus

𝑝2(𝑥) = 𝑝(2)21 (𝑥) + 𝑝(2)22 (𝑥) + 𝑝(2)23 (𝑥).

Finally, any participant of Level 1, can cooperate with the participants of the lower levels for computing the GCD of their polynomials 
in order to retrieve the secret

𝑝(𝑥) = gcd
{
𝑝(1)1 (𝑥), 𝑝2(𝑥), 𝑝3(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3),

or equivalently

𝑝(𝑥) = gcd
{
{𝑝(1)2 (𝑥), 𝑝2(𝑥), 𝑝3(𝑥)

}
.

It is worth noting here that, every level can factor its polynomial which includes the 𝑝(𝑥) (ramp scheme), but can not clarify which 
factors have to be multiplied with in order to compute the secret. If any two levels compute the GCD of their polynomials, they will 
be led to a polynomial of higher degree than 𝑝(𝑥) which will include the secret but again they can not clarify the correct factors.

As it is exhibited in Table 5 the first participant of Level 1 has received the polynomial

𝑝(1)1 (𝑥) = 𝑥6 − 28𝑥5 + 302𝑥4 − 1580𝑥3 + 4149𝑥2 − 5112𝑥+ 2268
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 6)(𝑥− 7)(𝑥− 9),

and the second participant of Level 1 the polynomial

𝑝(1)2 (𝑥) = 𝑥6 − 27𝑥5 + 280𝑥4 − 1410𝑥3 + 3589𝑥2 − 4323𝑥+ 1890
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 5)(𝑥− 7)(𝑥− 9).

The authorized participants of Level 2 compute the polynomial

𝑝2(𝑥) = 𝑥5 − 17𝑥4 + 105𝑥3 − 295𝑥2 + 374𝑥− 168
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 4)(𝑥− 7),
336

and the authorized participants of Level 3 compute the polynomial
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Table 6

Example of the levels, subsets and participants that are implemented in Scheme 2.

Level Subset Partici-
pant

Polynomial

1 𝑃 (1)
1 𝑝(1)1 (𝑥) = 𝑥3 − 17𝑥2 + 86𝑥 − 112 =

= (𝑥 − 8)(𝑥 − 7)(𝑥 − 2)
𝑃 (1)
2 𝑝(1)2 (𝑥) = 𝑥3 − 18𝑥2 + 95𝑥 − 126 =

= (𝑥 − 9)(𝑥 − 7)(𝑥 − 2)
2 𝑆(2)

1 𝑃 (2)
11 𝑝(2)11 (𝑥) = 35𝑥3 + 10𝑥2 + 14𝑥 + 10

𝑃 (2)
21 𝑝(2)21 (𝑥) = 10𝑥3 − 10𝑥2 − 27𝑥 − 20

𝑆(2)
2 𝑃 (2)

12 𝑝(2)12 (𝑥) = −30𝑥3 − 2𝑥2 + 10𝑥 − 30
𝑃 (2)
22 𝑝(2)22 (𝑥) = −8𝑥3 − 2𝑥2 + 30𝑥 − 4

𝑆(2)
3 𝑃 (2)

13 𝑝(2)13 (𝑥) = −4𝑥3 − 17𝑥2 − 20𝑥 − 2
𝑃 (2)
23 𝑝(2)23 (𝑥) = 𝑥3 + 32𝑥2 + 20𝑥3 − 13𝑥 + 12

3 𝑆(3)
1 𝑃 (3)

11 𝑝(3)11 (𝑥) = 5𝑥4 + 50𝑥2 − 10𝑥 + 10
𝑃 (3)
21 𝑝(3)21 (𝑥) = −4𝑥4 − 33𝑥3 − 70𝑥 + 5

𝑆(3)
2 𝑃 (3)

12 𝑝3)12(𝑥) = −2𝑥4 − 3𝑥3 − 40𝑥 + 20
𝑃 (3)
22 𝑝(3)22 (𝑥) = −10𝑥+12𝑥3 + 10𝑥2 − 40𝑥 + 10

𝑆(3)
3 𝑃 (3)

13 𝑝(3)13 (𝑥) = −𝑥4 − 10𝑥2 − 40𝑥 + 18
𝑃 (3)
23 𝑝(3)23 (𝑥) = −5𝑥4 + 8𝑥3 + 60𝑥2 + 50

𝑆(3)
4 𝑃 (3)

14 𝑝(3)14 (𝑥) = 𝑥4 − 2𝑥3 + 19𝑥2 − 17𝑥 + 12
𝑃 (3)
24 𝑝(3)24 (𝑥) = 20𝑥4 − 11𝑥2 + 3𝑥 − 5

𝑝(3)11 (𝑥) + 𝑝(3)12 (𝑥) + 𝑝(3)13 (𝑥) + 𝑝(3)14 (𝑥) =
= 𝑝3(𝑥) = 𝑥6 − 21𝑥5 + 175𝑥4 − 735𝑥3 + 1624𝑥2 − 1764𝑥+ 720
= (𝑥− 6)(𝑥− 5)(𝑥− 4)(𝑥− 3)(𝑥− 2)(𝑥− 1).

Hence, we obtain:

gcd
{
𝑝(1)1 (𝑥), 𝑝(1)2 (𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 7)(𝑥− 9),

gcd
{
𝑝(1)1 (𝑥), 𝑝2(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 7),

gcd
{
𝑝(1)1 (𝑥), 𝑝3(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 6) and

gcd
{
𝑝2(𝑥), 𝑝3(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 4).

Similarly,

gcd
{
𝑝(1)2 (𝑥), 𝑝2(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 7) and

gcd
{
𝑝(1)2 (𝑥), 𝑝3(𝑥)

}
= (𝑥− 1)(𝑥− 2)(𝑥− 3)(𝑥− 5).

Thus, any combination of unauthorized participants or any combination of Levels less than 𝓁 cannot compute the secret. They are 
in a position to obtain a partial information about the secret since they can factor their polynomials or their GCDs but they do not 
know which of the computed roots is part of the secret and with which sequence if it is required. In addition, as it is mentioned in 
Remarks 3-7, the dealer can increase significant the computational complexity of the root finding procedure.

4.2. Bottom-up ramp hierarchical secret sharing Scheme 2

The following example illustrates the Scheme 2. Let us suppose that the secret is the polynomial 𝑝(𝑥) = 𝑥2 −3𝑥 +2 = (𝑥 −1)(𝑥 −2)
and the dealer creates three levels and subsets in them as they are presented in Table 6.

As in the previous scheme, participants having the same row-index from every subset in Level 𝑖 add their polynomials and 
compute the polynomial of their level 𝑖, 𝑖 = 2, 3. Thus, in Level 2, either the participants of the tuple 

(
𝑃 (2)
11 , 𝑃

(2)
12 , 𝑃

(2)
13

)
add their 

polynomials and compute the polynomial 𝑝2(𝑥) as follows

𝑝2(𝑥) = 𝑝(2)11 (𝑥) + 𝑝(2)12 (𝑥) + 𝑝(2)13 (𝑥)

= 𝑥3 − 9𝑥2 + 20𝑥− 12 = (𝑥− 6)(𝑥− 2)(𝑥− 1),

or the participants of the tuple 
(
𝑃 (2)
21 , 𝑃

(2)
22 , 𝑃

(2)
23

)
add their polynomials in order to compute the same polynomial
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𝑝2(𝑥) = 𝑝(2)21 (𝑥) + 𝑝(2)22 (𝑥) + 𝑝(2)23 (𝑥).



Applied Numerical Mathematics 208 (2025) 317–339G.C. Meletiou, N.K. Papadakis, D.S. Triantafyllou, M.N. Vrahatis

Similarly, at Level 3, either the participants of the tuple 
(
𝑃 (3)
11 , 𝑃

(3)
12 , 𝑃

(3)
13 , 𝑃

(3)
14

)
add their polynomials in order to compute the 

polynomial 𝑝3(𝑥):

𝑝3(𝑥) = 𝑝(3)11 (𝑥) + 𝑝(3)12 (𝑥) + 𝑝(3)13 (𝑥) + 𝑝(3)14 (𝑥)

= 𝑥4 − 13𝑥3 + 59𝑥2 − 107𝑥+ 60 = (𝑥− 5)(𝑥− 4)(𝑥− 3)(𝑥− 1),

or the participants of the tuple 
(
𝑃 (3)
21 , 𝑃

(3)
22 , 𝑃

(3)
23 , 𝑃

(3)
24

)
add their polynomials in order to compute the same polynomial 𝑝3(𝑥) =

𝑝(3)21 (𝑥) + 𝑝(3)22 (𝑥) + 𝑝(3)23 (𝑥) + 𝑝(3)24 (𝑥).
The difference here is that this scheme is a bottom-up one. The two lower levels, namely Levels 3 and 2, are cooperating in order 

to compute the GCD of their polynomials. Thus,

𝑔2(𝑥) = gcd
{
𝑝3(𝑥), 𝑝2(𝑥)

}
= 𝑥− 1.

Next, the authorized participants in Level 2 inform the authorized participant in Level 1 about the computed factor (𝑥 − 1). The 
authorized participants of Levels 2 and 1 are now cooperating for computing their GCD. From Level 1 any of 𝑃 (1)

1 or 𝑃 (1)
2 is able to 

participate. Thus,

𝑔1(𝑥) = gcd
{
𝑝(1)1 (𝑥), 𝑝2(𝑥)

}
= 𝑥− 2,

or

𝑔1(𝑥) = gcd
{
𝑝(1)2 (𝑥), 𝑝2(𝑥)

}
= 𝑥− 2.

The single participant in Level 1 that cooperated with Level 2, multiplies the polynomials 𝑔1(𝑥) and 𝑔2(𝑥) resulting to the secret 
𝑝(𝑥) = 𝑔1(𝑥) ⋅ 𝑔2(𝑥).

5. Conclusions and future research directions

Two ramp secret sharing schemata have been derived. Both schemata follow a hierarchical structure. Scheme 2 operates by 
following a bottom-up procedure across a predefined number of levels which constitute the hierarchy of the participants. In both 
proposed approaches the hierarchy is defined by two factors. Specifically, (a) the number of participants defining each level, and (b) 
the number of the specific participants required to collaborate in order to compute the polynomial of their respective level.

Both proposed schemata are characterized by the following issues and aspects. A lower position in levels indicates lower signif-
icance for the participants involved. An entity referred to as the dealer manages the entire process. The dealer initiates by creating 
a polynomial with several real roots. The polynomial constitutes the secret shares. The dealer organizes the levels, where each level 
comprises a number of subsets. The dealer, also, distributes shares of the secret to each participant in the form of specific polyno-
mials. The proposed schemata, utilize fast, efficient and effective numerical linear algebra algorithms for computing the greatest 
common divisor of polynomials. Specifically orthogonal transformations such as Householder transformations are applied. In terms 
of theoretical results, our error analysis demonstrates the stability of the proposed procedure. The algorithms employed triangularize 
Sylvester matrices, which possess a distinctive structure, with the aim of minimizing the required floating-point operations.

In a future correspondence we intend to rigorously study and analyze the variants of the proposed schemata that we have 
mentioned at the paper at hand. It is worth mentioning that, an innovation of the proposed approaches is, among others, that 
they rely on solely over the ring of real polynomials. The dealer effortlessly is able to modify the proposed schemata by creating 
variants to enhance security, achieving increased difficulty for attackers, including, among others the following: (a) the adjustment 
of the associated root identification within a specific tolerance range, (b) the parametrical manipulation of specific polynomial 
features regarding the number, the multiplicity and the density of the related roots in a specific interval, (c) the enhancement of the 
complexity in the root-finding process for tackling possible attacks by expanding the set of the number of zeros of the polynomials. 
This can be achieved by expanding additional shares that have no relation with the secret (fake shares). In addition, in the proposed 
schemata, the dealer has the capability to identify non-conforming participants, or those who provided incorrect information about 
their shares. The subset containing faulty information can be properly and promptly identified and replaced by another.

Finally, we would like to point out that, in general, the new proposed Theorem 1 can be applied to other cases for the determina-
tion of the upper bounds of the error for computing the GCD of polynomials in terms of the degree and the number of polynomials.
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