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Abstract

Recently, numerous techniques and methods have been proposed to address
hard and complex algebraic and number theoretical problems related to cryp-
tography. We review several interpolation and approximation techniques. In
particular, we discuss techniques related to polynomial interpolation, discrete
Fourier transforms, as well as, polynomial approximation. Subsequently, we fo-
cus on a recently proposed approach to tackle these problems based on compu-
tational intelligence methods. More specifically, a study of the neural network
approach to address the discrete logarithm problem, the Diffie-Hellman map-
ping problem, and the factorization problem related to the RSA cryptosystem,
is attempted.
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1. Introduction

A number of hard and complex mathematical problems have been motivated by pub-
lic key cryptography during the past three decades. These problems are related to
computational algebra (finite fields, finite groups, ring theory), computational number
theory, probability, logic, Diophantine’s complexity, algebraic geometry, etc.

Cryptosystems rely on the assumption that these problems are computationally
intractable, in the sense that their computation cannot be completed in polynomial
time, e.g. factorization [39], discrete logarithm [1, 32, 33, 37], knapsack problem [24].
Numerous techniques have been proposed to address these problems including alge-
braic methods, number theory, software oriented methods, interpolation techniques,
and generic algorithms (e.g., see [1, 5, 21, 27, 29, 30, 32, 33, 37, 48].
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In this paper we focus on the interpolation and approximation techniques [3, 4,
5, 10, 16, 22, 25, 26, 27, 29, 30, 31, 41, 42, 48, 49]. More specifically, we consider
polynomial interpolation, discrete Fourier transforms and finally, polynomial approx-
imation.

In a sense Artificial Neural Networks (ANNs) can be considered as generalized
approximation techniques. ANNs can be defined as a mathematical model with the
ability to learn, adapt, generalize or alternatively, cluster and organize data. In this
paper, a study of the ability of ANNs to face the discrete logarithm problem, the
Diffie–Hellman mapping problem, and the factorization problem related to the RSA
cryptosystem, is attempted.

In the next section we briefly describe the cryptographic problems which are con-
sidered in this paper. In Section 3, we briefly expose interpolation and approximation
methods that have been applied to address the cryptographic problems under con-
sideration. In Section 4 we describe our approach as well as the experimental results
obtained. The paper ends in Section 5 with a short discussion and concluding remarks.

2. Algebraic and Number Theoretical Problems
Related to Cryptography

(a) The Discrete Logarithm Problem (DLP) [1, 32, 33, 37]. This problem amounts to
the creation of an efficient algorithm for the computation of an integer z satisfying
the following relation:

gz = h,

where g is a primitive element of a finite field, and h a non–zero element. The security
of various public–key and private–key cryptosystems [1, 5, 9, 26, 27, 29, 30, 33, 32,
37, 48, 49] is based on the assumption that DLP is computationally intractable. More
specifically, we refer to:

(1) the Diffie–Hellman exchange protocol [6, 32],

(2) the El Gamal public key cryptosystem as well as the El Gamal digital signature
scheme [9].

In the case of a finite field of prime order p a primitive root g modulo p is fixed, (that
is g is a generator of the multiplicative group Z∗p of Zp). We assume that u is the
smallest nonnegative integer with gu ≡ h(mod p). Then u is called the index, or the
discrete logarithm of h. Gauss [11] referred to the discrete logarithm as the index of
a number and pointed out some of its basic properties. He also described methods of
computing indices, finding primitive roots and changing bases.

(b) The Diffie Hellman key Problem (DHP) [3, 5, 10, 21, 48]. Let, α be a fixed
primitive element of Fq; x, y, satisfying, 0 6 x, y 6 q − 2, denote the private keys of
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two users; and β = αx, γ = αy stand for the corresponding public keys. Then the
problem amounts to computing αx·y from β and γ, where αx·y is the symmetric key
for secret communication between the two users.

Consider the special case of the DHP, where β = γ. The term Diffie Hellman
mapping refers to the function:

β = αx 7−→ αx2
.

The definition of the Diffie–Hellman Mapping Problem (DHMP) follows naturally
from the previous definition of DHP. Notice that since the following relation holds:

αx2 · αy2 · α2xy = α(x+y)2 ,

and the computation of αx·y from α2xy is feasible (square roots over finite fields), the
two problems DHMP and DHP are computationally equivalent.

(c) The factorization problem related to the RSA cryptosystem [39]. For the RSA
cryptosystem to be secure, the factorization of N = p · q must be computationally
intractable. The cryptanalyst has to compute a from b. To achieve this it is sufficient
to obtain φ(N) from N , or equivalently to factorize N , since φ(N) = (p − 1) · (q −
1) [23, 39].

3. Interpolation and Approximation Methods
In a finite field Fq every function can be represented as a polynomial (Lagrangian
interpolation). For every function f : Fq → Fq there exists a unique polynomial p(x)
of degree at most q− 1 coinciding with f . Interpolation is computationally attractive
only in the case of a polynomial with “small” number of non-zero coefficients.

Encryption (and decryption) functions are defined as functions over finite fields,
so it is natural to try to express them as polynomials.

Regarding the discrete logarithm function, the well–known formula of Wells [46]
exists:

loga(x) =
p−2∑

i=1

xi

1− ai
,

(
x 6= 0, a, x ∈ Zp, a is a generator of the Z∗p

)
.

The above mentioned formula can be generalized in the case of a field of prime power
order Fq and in the case of a not being a generator of the multiplicative group of the
field [26, 27, 29]. A discrete Fourier transform can also be used [27]:

loga(x) = (1, 2, . . . , p− 1) · (a−ij)
16i,j6p−1

·




x
x2

...
xp−1


 .
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For the Diffie–Hellman mapping the following formula has been found [48]:

K(x, y) = −
∑

16i,j6p−1

xiyja−ij .

The above expression can be represented by discrete Fourier transform as follows:

K(x, y) = (y, y2, . . . , yp−1) · (−a−ij)
16i,j6p−1

·




x
x2

...
xp−1


 .

The Diffie–Hellman key exchange is based on the fact that no easy representation of
the Diffie–Hellman mapping F (gu, gv) = gu.v, 0 < u, v < d is known. It can be easily
verified that the polynomial [48]:

F (x, y) = e ·
d−1∑

i,j=0

g−i·jxi · yj , e · d ≡ 1 mod p,

represents the Diffie–Hellman key function in the Fq field, q = pn. The largest
possible degree of F is 2 · (d − 1) and the largest number of non–zero coefficients is
d 2. Recently [10, 48] lower bounds for the degree of a two–variable polynomial have
been identified. We intend to present further results on this approach in a future
correspondence.

Regarding the approximation methods, we consider the notions “near”, “far”,
“greater than”, “less than”, “converges to”, “approaches to” etc. These notions have
meaning for the elements of real numbers R or for a function space which consists of
real functions of real variables. The field R is an ordered field, a topological field, etc.

At this point it should be mentioned that it is not possible to find a non trivial
distance, norm, order, or topology, which is compatible with the algebraic structure
of a finite field. Next, we provide an explanation why it is not possible to find a non
trivial topology. Let us assume that Fq is a topological field for a given topology T .
Addition and multiplication in Fq have to be continuous operations. Therefore every
polynomial is continuous. However every function can be represented as a polynomial,
so all functions are continuous. Thus, we conclude that the topology T is trivial.

However, the above mentioned notions are meaningless for the elements of a finite
field Fq, or a function space V ⊆ {f : Fq → Fq}. Thus, algorithms, techniques and
methods from real analysis cannot be used to approximate a solution in the case of
finite fields. This is one of the reasons why finite fields are algebraic structures used in
cryptography. Their elements can be used in order to represent plaintexts, ciphertexts
and keys.

Since the notion “approximation” has no meaning in the classical sense in the finite
field case, the need for new definitions arises. In particular, we say that the polynomial
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p(x) “approaches” the function f : Fq → Fq if p(x) = f(x), for all x ∈ S ⊆ Fq and
the cardinality of S is of “reasonable” size. The degree of p(x) is considered as the
complexity measure of the problem [5, 41, 42].

In the case of the Zp field, S ⊆ Z∗p and n the degree of the polynomial whose
restriction on S coincides with the restriction of the index function (the discrete
logarithm), we have the following bound [5]:

n > |S| (|S| − 1)
2(p− 2)

.

A probabilistic approach has been given in the case S ⊆ Z∗p, |S| = m, the elements of S

are random and uniformly distributed. Trivially there exists a polynomial of degree
m − 1 which represents the restriction of the discrete logarithm on S (Lagrangian
interpolation). The probability P to find a polynomial of degree m − k with this
property has upper bound:

P 6
(

2m

p− 2

) k
2

.

Generalizations have been given in [5, 41] for a polynomial of two variables F (x, y)
satisfying F (x, indx) = 0. Also bounds have been given for the approximation of the
Diffie–Hellman key mapping.

The polynomials which “approximate” the discrete logarithm function and the
Diffie–Hellman mapping coincide with the function on a subset S of the finite field.
They do not “come close” to the function. Regarding the complement of S no infor-
mation can be obtained. Actually, this is a kind of interpolation of the restriction of
the functions. For recent results of this approach refer to [42].

Other approaches include the consideration of the domain (or the range) of the the
discrete logarithm function and the Diffie–Hellman mapping to be one of Zp, Zp−1,
the k-dimensional Boolean cube, and the real (complex) numbers. In particular,
for the case of real numbers the discrete logarithm function and the Diffie–Hellman
mapping have been addressed as real functions and have been approximated by real
polynomials [42]. The approximating polynomials have been used in various ways.
For instance, it is possible to consider the polynomial to coincide with the approxi-
mated function on a subset of the domain as before. Another case is to consider the
polynomial to come close to the function, since distance between real functions can
be defined in various ways. Similar results can be obtained for all the above cases.
However, the lower bounds for the computation of the discrete logarithm function
and the Diffie–Hellman mapping are not satisfactory. Thus, the discrete logarithm
function is indeed a computationally hard function.

Another approach is to consider the notion of linear complexity in order to measure
the complexity of a problem. We recall that the linear complexity [7, 8, 15, 22]
of a sequence {si} is the smallest positive integer m such that there are constants
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c1, c2, . . . , cm satisfying the equation:

si = c1 · si−1 + c2 · si−2 + · · ·+ cm · si−m, ∀ i > m.

According to this approach, it is well known that the discrete logarithm function
and the Diffie–Hellman mapping can be represented as sequences, whose elements are
taken from a finite field, and thus the linear complexity can be used as a complexity
measure. Also, in these cases lower bounds can be derived indicating the difficulty of
computing indices over finite fields.

Furthermore, Boolean functions of n-variables have been used to describe cryp-
tography related decision problems. The Boolean functions permit representations as
multivariate polynomials [42]. Interesting results related to the factorization problem
inspired from cryptography can been found in [36]. In particular, lower bounds for
the degree and the sparsity of polynomials representing the Boolean function, which
decides whether a given n-bit integer is square free, have been found. The represen-
tation takes place for polynomials over Zn as well as for real polynomials. The lower
bounds 0.14 lnn and n

5 ln n have been computed for the degree and the sparsity of the
polynomials, respectively.

Finally, we would like to point out here that Shor in [43] has shown that polynomial
algorithms for factorization and index computation exist for quantum computers.
Provided that quantum computing becomes an available technology in the future,
RSA and discrete logarithm based cryptosystems will break.

4. Neural Network Approach
In the past, computing was based on the concept of programmed computing. In
this context, for each individual problem, suitable algorithms are designed and im-
plemented. An alternative perspective, inspired by biological systems, was proposed
in the form of Artificial Neural Networks (ANNs) and genetic algorithms. The func-
tionality of biological systems is based on interconnections of specialized physical
cells called neurons. ANNs comprise a mathematical model with the ability to learn,
adapt, generalize, or to cluster and organize data, by simulating their biological coun-
terparts. All these operations are based on parallel processing of data and can be
considerably advantageous and fast, compared to alternative techniques.

In an attempt to provide a strict definition we could say that an ANN is a structure
composed of a number of interconnected units (artificial neurons), each unit charac-
terized by an input/output (I/O) relation and implementing a local computation.
The output of any unit is determined by its I/O characteristics, its interconnection to
other units, and possibly external inputs. Although “hand crafting” an ANN is pos-
sible, networks usually develop an overall functionality through training. Evidently,
this definition embraces a diverse family of networks. The overall functionality of a
network is determined by the topology, the training algorithm applied, as well as,
neuron characteristics. One very important type of ANNs is feedforward ANNs. In
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feedforward networks, all paths lead to one direction. Moreover, the neurons can be
disjointedly split in formulations, called layers. In multilayer feedforward networks,
the inputs form an input layer, while the output neurons form the output layer. All
other neurons are assigned to a number of hidden layers. Each neuron in a layer is
fully connected to all the neurons of the successive layer. This structure renders it
possible to describe networks of this kind with a series of integers that stand for the
number of neurons at each layer. For example a network with a topology 4-5-5-1 is a
network with 4 inputs at the input layer, two hidden layers with 5 neurons each, and
an output layer with a single neuron.

The operation of such networks consists of a series of iterative steps. At the
beginning the states of the input layer neurons are assigned to generally real inputs,
and the remaining hidden and output layer neurons are passive. In the next step
the neurons of the first hidden layer collect and sum their inputs and compute their
output. This procedure is propagated to the following layers until the final outputs
of the network are computed.

The computational power of neural networks derives from their inherent ability
to adapt to specific problems. In [13, 47] the following statement has been proved:
“Standard feedforward networks with only a single hidden layer can approximate any
continuous function uniformly on any compact set and any measurable function to
any desired degree of accuracy”. It has also been proved [35] that a single hidden layer
feedforward network with r units in the hidden layer, has a lower bound on the degree
of the approximation of any function. The lower bound obstacle can be alleviated if
more than one hidden layers are used. Mairov and Pincus in [35] have proved that, on
the unit cube in Rn any continuous function can be uniformly approximated, to within
any error by using a two hidden layer network having 2n + 1 units in the first layer
and 4n + 3 units in the second. This implies that any lack of success in applications
can be attributed to inadequate training, an insufficient number of hidden units, or
the lack of a deterministic relationship between input and target.

During the training process patterns for which the desired outputs are a priori
known, are presented to the network. A training set T of P patterns, is defined as:

T =
{

(xk, dk)
∣∣∣∣

xk = (xk1, . . . , xkn)
dk = (dk1, . . . , dkm) , k = 1, . . . , P

}
,

where xk ∈ Rn is the input vector of the kth training pattern and dk ∈ Rm is the
vector of the desired output for the specific pattern. The ultimate goal of training
is to assign to the free parameters of the network W , values such that the output of
the network based on that set of weights will be the desired one (at the beginning
weights are assigned random values), i.e. it holds that, y(W,xk) = dk, k = 1, . . . , P .
The adaptation process starts by presenting all the patterns to the network and
computing a total error function E =

∑P
k=1 Ek, where Ek is the partial network error

with respect to the kth training pattern, and is computed by summing the squared
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discrepancies between the actual network outputs and the desired values of the kth
training pattern.

Each full pass of all the patterns that belong to the training set, T , is called
a training epoch. If the adaptation method succeeds in minimizing the total error
function then it is obvious that its aim has been fulfilled. Thus training is a non-
trivial minimization problem. The most popular training method is back propagation
method [12], which is based on the well-known steepest descent method. The back
propagation learning process applies small iterative steps which correspond to the
training epochs. At each epoch t the method updates the weight values proportionally
to the gradient of the error function E(w).

The whole process is repeated until the overall error value drops below a pre-
determined threshold. At this point we conclude that the network has learned the
problem “satisfactorily”. The total number of epochs required can be considered
as the speed of the method. More sophisticated training techniques can be found
in [12, 14, 17, 18, 20, 38, 45].

4.1. Experimental Results
The numerical experiments performed address the discrete logarithm problem in mod-
ular arithmetic, and the factorization problem, through neural networks. The empiri-
cal tests were performed using a C++ neural network interface built under Linux oper-
ating system with the gcc compiler. The training methods considered were: Standard
Back Propagation (BP) [40], Back Propagation with Variable Stepsize (BPVS) [18],
Resilient Back Propagation (RPROP) [38] and On-Line Adaptive Back Propagation
(OABP) [17]. All the methods were extensively tested with a wide range of param-
eters. No single method exhibited significantly different performance relative to the
others, with the negative exception of standard back propagation, which encountered
grave difficulties in training most of the times. Relative to speed measures RPROP
proved to be the fastest. Finally, BPVS managed to train networks in occasions when
all other methods failed.

Choosing the “optimal” network architecture for any particular problem is very
difficult and remains an open problem up to date. Inevitably, our approach also
suffers from this problem. To find a small network that performs the task at hand
satisfactorily, we proceed as follows. Starting with a network with a total number of
weights smaller than the considered number we reduce its architecture as much as it
is permitted by the training method considered. Decreasing the size of the network
we observed that all training methods yielded suboptimal solutions, which can be
attributed to the local minima effect. To alleviate convergence to local minima we
applied the recently proposed deflection technique [19] and the function “stretching”
method [34].

A large variety of network topologies were considered. As expected, different
topologies exhibited great differences in the results. After extensive experimentation,
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we came to the conclusion that networks with 2 hidden layers were much easier to
train. A crucial part of the whole procedure is the normalization step of the training
process. This step takes place before training, and transforms the data in such a way
that the network will find it easier to adapt to. Assuming that the data presented to
the network are in Zp, where p is prime, the space S = [−1, 1], is split in p sub-spaces.
Thus, numbers in the data are transformed to analogous ones in the space S. At
the same time, the network output is transformed to a number within Zp using the
inverse operation.

To evaluate network performance two different measures were considered. The
first measure, which we call complete measure and denote it by µ0, measures the
percentage of the training data, for which the network was able to compute the exact
target value. This measure proved insufficient as a performance indicator. The fact
that network output was restricted within the range [−1, 1], played a significant role.
Very small differences in output, rendered the network unable to compute the exact
target but rather to be very close to it. Thus, a second measure, which we call near
measure and denote it by µ±v, was incorporated. This measure reflects the percentage
of the data for which the difference between desired and actual output does not exceed
±v of the real target. The second measure captured the real capability of the network,
since when the training procedure was allowed to continue for longer time periods the
first measure kept rising to reach the second one.

It is important to mention that the “near” measure µ± plays different roles for
the DLP and the DHMP. The “near” µ± measure is very important in the case of the
DLP. If the size of the (±v) interval is O(log(p)) then the “near” measure can replace
the “complete” µ0 one. In general, for some “small” values of v the “near” measure is
acceptable since the discrete logarithm computation can be verified i.e. computation
of exponents over finite fields [37]. However, the verification of the DH-mapping is
an open problem (the DHDMP). Sets of possible values for the DH-mapping can be
used to compute sets of possible values for the DH-key. The values of the DH-key
can be tested in practice; they are symmetric keys of communication between the two
users. The percentage of success for the “near” measure for DHMP can be compared
with the corresponding percentage for the DLP. The results of the comparison can be
related to the conjecture that the two problems are computationally equivalent.

4.1.1. Facing the discrete logarithm problem and the Diffie–Hellman mapping problem.
Starting with a small prime number, as for example, the number 19, networks with
up to 13 weights were trained with success reaching up to 100% . Results for DHMP
and DLP problem are exhibited in Table 1.

A well–known advantage of neural networks is their ability to generalize the ac-
quired knowledge. To test their generalization ability, the training set was reduced
by three randomly selected patterns. These patterns were presented to the network
after the training process had been completed, as an unknown test data set. In this
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Topology Epochs µ0 µ±2 Problem

1-3-3-1 3000 80% 90% DHMP

1-3-3-1 6000 90% 100% DHMP

1-3-3-1 6000 40% 70% DLP

1-5-6-1 13000 100% 100% DLP

Table 1: Results for the DHMP problem with elements in Z19.

case the networks for the DLP problem managed to achieve better results, as shown
in Table 2.

Topology µ0 µ±2 Problem

1-5-6-1 33% 66% DLP

1-5-6-1 0% 33% DHMP

Table 2: Results for unknown data set with elements in Z19.

Next, trying a larger prime number, the task of training networks becomes harder.
Having so many numbers in the range [−1, 1] poses problems for the adaptation pro-
cess due to the fact that the normalization problem is not fully solved. Consequently,
small changes in the network output can cause complete failure. This raises the need
for larger architectures. On the other hand, the generalization to unknown data does
not fail. Thus, by choosing as prime numbers the numbers 83 and 97 we can get the
results exhibited in Tables 3 and 4. The most promising future direction of research
seems at this point to be addressing the normalization issue.

Topology Epochs µ0 µ±2 µ±5 µ±10 Problem

1-5-5-1 20000 20% 30% 48% 70% DLP

1-5-5-1 20000 20% 35% 51% 70% DHMP

Table 3: Results for networks trained with elements in Z83.

Keeping in mind the generalization problem, it is obvious that for larger prime
numbers the training process will encounter the problem of local minima. To alleviate
this obstacle two recently proposed techniques have been applied [19, 34]. Incorpo-
rating these techniques resulted to faster training most of the times. Furthermore,
a rise of 10% for most results was also witnessed. Results for the techniques that
were found to be superior for larger prime numbers are exhibited in Table 4. As it is
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exhibited, very small networks are trained with elements in Z97 and give satisfactory
results for the measure µ±.

Topology Epochs µ0 µ±2 µ±5 µ±10 Problem

1-5-5-1 25000 20% 30% 48% 70% DLP

1-5-5-1 20000 20% 35% 51% 70% DHMP

Table 4: Results for networks trained with elements in Z97.

Using even larger primes the problem seems to become too difficult to tackle. In
Table 5, a very poor network performance is illustrated, for the DLP problem and for
elements in Z997. Similar results were obtained for the DHMP.

Topology µ0 µ±5 µ±10 µ±20

1-5-5-1 3% 8% 20% 30%

1-9-9-1 5% 9% 25% 30%

Table 5: Results for networks trained with elements in Z997.

4.1.2. Addressing the Factorization Problem. Finally, the ability of neural networks
to break the RSA cryptosystem is investigated. Trying to approximate the φ(N)
mapping (p · q → (p− 1)(q− 1)), input patterns were numbers N = p · q where p and
q are primes, and target patterns where the ϕ(N) = (p− 1)(q − 1) numbers. In this
case results are different. The normalization problem ceases to be an obstacle. What
is really intriguing in this case is the generalization performance of the networks,
reported in Table 6. Excluding a portion of the data set (33%) from the training set
and using it as a Test Set, gives the results exhibited in Table 6. Clearly, the networks
are able not only to adapt to the training data, but also to achieve very good results
with respect to the test sets.

The next step is to use larger keys. So if we use all the prime numbers between
7000 and 8000, we construct keys that are between 49× 106 and 7× 107. A portion
of 20% of the dataset is used as a training set and the remaining 80% as a test set.
From the results that are exhibited in Table 7, it is evident that small networks have
been trained to a very good performance on both training and test datasets. Even
when the portion of the training set is small, the networks learn the dynamics behind
the data and achieve good generalization results.
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Topology Epochs µ0 µ±2 µ±5 µ±10 µ±20 Type

1-5-5-1 80000 3% 15% 35% 65% 90% Train Set

1-5-5-1 80000 5% 20% 40% 60% 90% Test Set

1-7-8-1 50000 6% 20% 50% 70% 100% Train Set

1-7-8-1 50000 5% 20% 50% 70% 90% Test Set

Table 6: φ(N) mapping results for networks trained with a 66% of the data set with
N = p · q 6 104.

Topology µ±3 µ±50 µ±100 Type

1-5-5-1 30% 65% 90% Train Set

1-5-5-1 30% 60% 90% Test Set

Table 7: φ(N) mapping results for networks trained with a 22% of the data set with
49× 106 6 N = p · q 6 7× 107.

5. Discussion and Concluding Remarks
In the present paper, we review some interpolation and approximation techniques
and in particular we discuss techniques related to polynomial interpolation, discrete
Fourier transforms as well as polynomial approximation. Furthermore, a study of
the neural network approach to address the Discrete Logarithm Problem (DLP), the
Diffie–Hellman Mapping Problem (DHMP), and the factorization problem related
to the RSA cryptosystem has been attempted. It is known that if a method for
computing indices over finite fields is available, then the RSA cryptosystem will break.
In other words, the DLP is no easier than the factorization problem related to the
RSA. Our experimental results conform to this conclusion.

To the best of our knowledge, this is the first attempt to apply neural networks
to tackle difficult problems related to Cryptography (see also [28]). Our experience
indicates that it is possible to train feedforward neural networks to address this very
difficult problem. In particular for small prime numbers we have shown that it is pos-
sible to train a Neural Network with a total number of weights smaller than the con-
sidered prime number which computes the discrete logarithm and the Diffie–Hellman
functions. Naturally, this being our first attempt toward this direction, we strongly
believe that numerous issues that remain open have to be addressed in order to ob-
tain a comprehensive view of the ability of neural networks to simulate the suggested
functions.

In general, the problem can be considered solved if the measure µ0 is 100% and
the architectural topology is small enough (number of weights O(log(p)). On the
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other hand, measures like µ± seem promising in the sense that although the exact
target might not be accomplished, the output of the network is indeed close to that.
Thus, with a predetermined number of trial and error procedures the problem can be
resolved. The “near” µ± measure is very important in the case of the DLP. If the size
of the (±v) interval is O(log(p)) then the “near” measure can replace the “complete”
µ0 one. In general, for “small” values of v the “near” measure is acceptable since the
discrete logarithm computation can be verified (computation of exponents over finite
fields).

Here we have considered only artificial feedforward neural networks. In a future
correspondence we intent to apply various other networks and learning techniques
such as Learning Rate Adaptation methods [20, 45], Non-Monotone neural networks
[2], Probabilistic neural networks [44], Self-Organized Map algorithm [14], Recurrent
networks and Radial Basis function networks [12].

In conclusion our experience indicates that the Neural Network approach on prob-
lems related to cryptography is promising. The results we obtained for the RSA re-
lated factorization problem are highly supportive of this claim, even though data with
larger numbers need to be considered. On the other hand, DLP and DHMP seem
to be harder to solve through this approach, despite the fact that numerous issues
remain unaddressed and further work is required.

Acknowledgements. We thank the referees for their meticulous comments and sug-
gestions that greatly helped to improve the paper.
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