
ELSEVIER

An International Joumal
Available online at www.sciencedirect,com computers &

• ~ . . .o . (~ ° , . . o . . mathematics
with applications

Computers and Mathematics with Applications 51 (2006) 527-536
www.elsevier.com/locate/camwa

Determin ing the N u m b e r of
Real Roots of Polynomials
through Neural Networks

B. MOURRAIN
Project GALAAD, INRIA Sophia Antipolis, 2004 route des Lucioles,

B.P. 93, 06902 Sophia Antipolis, Cedex, France
Bernard. Mourrain~sophia. inria, fr

N. G. PAVLIDIS, D. K. TASOULIS AND M. N. VRAHATIS
Computational Intelligence Laboratory (CI Lab), Department of Mathematics

University of Patras, GR-26110 Patras, Greece
and

University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR-26110 Patras, Greece
<npav><dtas><vrahatis>~math. upatras, gr

(Received and accepted July PO05)

A b s t r a c t - - T h e ability of feedforward neural networks to identify the number of real roots of
univariate polynomials is investigated. Furthermore, their ability to determine whether a system of
multivariate polynomial equations has real solutions is examined on a problem of determining the
structure of a molecule. The obtained experimental results indicate that neural networks are capable
of performing this task with high accuracy even when the training set is very small compared to the
test set. © 2006 Elsevier Ltd. All rights reserved.

K e y w o r d s - - R o o t s of polynomials, Neural networks, Number of zeros.

1. I N T R O D U C T I O N

Numerous problems in mathemat ical physics, robotics, computer vision, computa t ional geometry,

signal processing etc., involve the solution of polynomial systems of equations. Recently, artificial

feedforward neural networks (FNNs) have been applied to the problem of comput ing the roots

of a polynomial [1-3]. The underlying idea to construct an FNN capable of finding the roots

is to factorize the polynomial into many subfactors on the outputs of the hidden layer of the

network. The connection weights from the input layer to the hidden layer are then trained using

a suitable algorithm. Thus, the connection weights of the t rained network are the roots of the

underlying polynomial [1]. A crucial advantage of this approach is tha t all the roots are obtained

simultaneously and in parallel. As t radi t ional root-finding methods identify roots sequentially,

We wish to thank the editor and the anonymous reviewers for their useful comments and suggestions. This work
was pursued during the collaboration program CALAMATA (Equipe associ~e INRIA-GRECE).

0898-1221/06/$ - see front matter (~ 2006 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.camwa.2005.07.012

Typeset by ,4A~-TEX

528 B. MOURRAIN et al.

that is, the next root is obtained by the deflated polynomial after the former root is found,
their accuracy is fundamentally limited and cannot surpass that of an FNN [4]. Furthermore,
increasing the number of processors will not increase the speed of these algorithms, as they are
inherently sequential.

In [3], FNNs were applied first to the factorization of 2D second-order polynomials. To this
end, a constrained learning algorithm which incorporates a priori information about the problem
into the backpropagation algorithm was proposed [3,5]. The results indicate that the constrained
learning algorithm not only exhibits rapid convergence compared to the standard backpropa-
gation algorithm, but also yields more accurate results. Inspired by this approach a method
for finding the roots of a polynomial using a constrained learning algorithm that imposes as
constraints the relationships between the roots and the coefficients of the polynomial, was pro-
posed in [6]. The most computationally demanding step of this method is the computation of
the constraint conditions and their derivatives. The estimated cost for these computations is of
the order (.9(2n), where n is the order of the polynomial. This exponential complexity renders
the particular method impractical for high-order polynomials [1]. To overcome this limitation.
another constrained learning algorithm based on the relationships between root moments and
the polynomial coefficients was proposed. The estimated computational cost of computing the
set of constraints and their derivatives for the latter method is O(mn3) , where n is as before the
order of the polynomial, and m is the number of constraints used by the learning algorithm [4].
Exploiting a recursive root moment method, the computational complexity can be reduced to
(9(mn 2) [4]. Note that the computational complexity of traditional root-finding methods such as
Muller and Laguerre is of the order (.9(3n), while that of the fastest methods, like Jenkins-Traub,
is of the order O(n4). In [4], these approaches were extended to the more general problem of"
finding arbitrary (including real or complex) roots of arbitrary polynomials. The experimental
results reported in [1] indicate that on the task of computing all the roots of a polynomial, the
FNNs trained through constrained learning algorithms are both faster and more accurate than
traditional Muller and Laguerre methods. Furthermore, the constrained learning algorithm is
not sensitive to the initialization of the weights (roots) of the network.

To the best of our knowledge the problem of computing the number of real roots of a univariate
polynomial, as well as, that of determining the existence of real solutions of a system of multi-
variate polynomial equations, have not been addressed through neural computation approaches.
FNNs are considered to be powerful classifiers compared to classical algorithms such as the near-
est neighbor method. The algorithms used in FNNs are capable of finding a good classifier based
on a limited, and in general small, number of training examples. This capability, also referred to
as generalization, is of particular interest in classification tasks. In this paper, we train FNNs to
determine the number of real roots of univariate polynomials using as inputs the values of the
coefficients. Next, we investigate their ability to accurately identify the number of real roots for
combinations of coefficients not encountered during training. Our findings suggest that FNNs
are highly accurate on this task even when the training set is very small in proportion to the
test set. Subsequently, we employ a system of multivariate polynomial equations, and investigate
the ability of FNNs to discriminate between combinations of coefficients that yield only complex
roots and those that also yield real solutions. This appears to be a much harder problem for
FNNs, but the trained networks are able to attain a satisfactory performance.

The rest of the paper is organized as follows. Section 2 briefly introduces FNNs and discusses
some of their theoretical properties. Section 3 is devoted to the presentation of the experimental
results obtained. Finally, conclusions and directions for future research are provided in Section 4.

2. A R T I F I C I A L N E U R A L N E T W O R K S

FNNs are parallel computational models comprised of densely interconnected, simple, adaptive
processing units, characterized by an inherent propensity for storing experiential knowledge and

Real Roots of Polynomials 529

rendering it available for use. FNNs resemble the human brain in two fundamental respects. First,
knowledge is acquired by the network from its environment through a learning process. Second,
interneuron connection strengths, known as synaptic weights are employed to store the acquired
knowledge [7]. The structure of FNNs enables them to learn highly nonlinear relationships and
adapt to changing environments. Among the highly desirable features of FNNs is their capability
to handle incompleteness, i.e., missing parameter values; incorrectness, i.e., systematic, or random
noise in the data; sparseness, i.e., few and/or nonrepresentable records; and inexactness, i.e.,
inappropriate selection of parameters for the given task. These characteristics render FNNs
capable of finding a good classifier based on a limited number of training examples.

In FNNs neurons are organized in layers and no feedback connections are present. Inputs
are assigned to the sensory neurons, which form the input layer of the network, while outputs
are obtained by the neurons of the final layer, also called the output layer. All other neurons
are organized in the intermediate layers, which are called hidden layers. This structure allows
the representation of an FNN with a series of integers. For example, with x-y-z we refer to an
FNN with x input neurons, a single hidden layer consisting of y neurons, and an output layer
containing z neurons. Inputs to the network are assigned to the input neurons and after the
computations at each layer are completed the outputs are propagated to the subsequent layer.
The output of the network is the outcome of the computations of the output layer neurons.

The operation of an FNN is based on the following equations that describe the workings of the
jth neuron at the 1 th layer of the network,

n i - - I

net~ Z l-l,l '-I ' = (net~), = w,j yi +0r, ~ f (1)
i=1

where net~ is the sum of the weighted inputs of the jth neuron in the l th layer, where j = 2 , . . . , O.

The additional term 0~ denotes the bias of this neuron. The weighted sum net~ is called the
excitation level of the neuron [7]. The weight connecting the output of the ith node at the (l - 1)
layer to the j th neuron at the /th layer is denoted by wlj 1'l. Finally, y~ is the output of the j th
neuron of the I th layer, and f(net~) is the activation function of that neuron.

In supervised training there is a fixed, finite set of input-output samples (patterns) that are
employed by the training procedure to adjust the weights of the network. Assuming that there
are P input-output samples, the squared error over the training set is defined as

P n o P n o

E (w) = ~ ~ (y ? p - tip) 2 = ~ ~ [fo (net o) _ tjp] 2, (2)
p = l j = l p = l j = l

where, no stands for the number of neurons at the output layer of the network, yOp stands
for the output of the j th output neuron when the input to the network was the pth training
pattern, and tip denotes the j th desired response for the pth training pattern. Equation (2) is
called the error function of the network, and the purpose of training is to yield a set of network
weights that will minimize it. It should be noted at this point that any distance function, such
as the Minkowsky, Mahalanobis, Camberra, Chebychev, quadratic, correlation, Kendall's rank
correlation and Chi-square distance metrics; the context-similarity measure; the contrast model;
hyperectangle distance functions and others [8], can be used in the error function.

The efficient supervised training of FNNs, which amounts to the minimization of the error
function, is a subject of considerable ongoing research and a number of efficient and effective

algorithms have been proposed in literature [9-18].
Two crucial parameters for the successful application of FNNs on any problem, are the selec-

tion of appropriate network architecture and training algorithm. The problem of identifying the
optimal network architecture for a specific task remains up to date an open and challenging prob-
lem. For the general problem of function approximation, the universal approximation theorem
[19-21] states the following.

530 B. MOURRAIN et al.

THEOREM l. Standard feedforward networks with only a single hidden layer can approximate
any continuous function uniformly on any compact set and any measurable function to any desired
degree of accuracy.

An immediate implication of the above theorem is that any lack of success in applications must
arise either due to inadequate learning, or an insufficient number of hidden units, or the lack of a
deterministic relationship between the inputs and the targets. A second theorem proved in [22]
provides an upper bound for the architecture of an FNN destined to approximate a continuous
function defined on the hypercube in R n.

THEOREM 2. On the unit cube in R n any continuous function can be uniformly approximated,

to within any error by using a two hidden layer network having 2n + 1 units in the first layer and
4n + 3 units in the second layer.

3. R E S U L T S

In the present study, we investigate the ability of FNNs to determine the number of real
roots of polynomials. In more detail, for polynomials of a specific degree, we construct a series
of combinations of the values of the coefficients. We solve these polynomials and determine the
number of real roots for each coefficient combination. Thus, we construct datasets with the values
of the coefficients and the number of real roots corresponding to these coefficient values. We split
these datasets into two parts, a training set and a test set, and employ the patterns belonging
to the training set to perform the supervised training of the FNNs. As input to the FNN we
supply the values of the coefficients, while the desired output (target) is the number of real roots.
After the training procedure has adjusted the weights of the network, we investigate its ability to
correctly identify the number of real roots for combinations of the values of the coefficients that
the FNN has not previously encountered. In other words, we evaluate its classification ability on
the test set.

To compute the number of real roots of the polynomials, we employed routines included in
the symbolic numeric applications (SYNAPS 2.1.2) library [23]. One of the methods that we
used for solving the univariate equations is a subdivision solver, based on Descartes rule. The
univariate polynomial is expressed into the Bernstein basis and the domain is subdivided until
the number of sign changes of the coefficients is 0 or 1, or until a given precision e is reached.
This yields isolating intervMs containing one root if the root is simple and its multiplicity (up
to a perturbation ~) otherwise. The interest of the method is its speed and the certification for
well-separated simple roots. For more details on this method, see [24].

The other method that we considered is called Aberth 's method. It is an extension of Weier-
strass method, which consists of applying Newton's iteration to the square multivariate system
connecting the roots with the coefficients of a univariate polynomial. This iteration converges
to a vector that contains all the roots of the polynomial. We use the implementation by Bini
and Fiorantino provided in SYNAPS [23]. This method yields the complex roots, from which we
extract the real roots by using a threshold c on the imaginary part. The interest of this method
is the control of the error, even in the case of multiple roots. See [25] for more details.

Next, we proceed with the description of the datasets employed in the present study. For
univariate polynomials of degree two to four, all coefficients were allowed to assume integer values
in the range [1, 10]. For the fifth-, sixth-, and seventh-degree polynomials, integer coefficients in
[-3, 3], [-6, 6], and [-6, 6], respectively, were considered. The data sets used for training and
testing were constructed by taking all the permutations of the coefficients in the aforementioned
ranges. The only exceptions to this rule were for the sixth- and seventh-degree polynomials for
which a total of 218748 and 475938, respectively, random permutations of the coefficients were
constructed.

For the polynomials of degree two to four, approximately two-thirds of the total patterns
were used for training the networks, while the remaining one-third was used to evaluate the

Real Roots of Polynomials 531

general izat ion performance. The obta ined results suggested tha t the general izat ion capabi l i ty of

the t ra ined networks was not significantly inhibi ted by a reduct ion of the size of the t ra ining

set. To this end, we employed subs tan t ia l ly smaller t ra in ing sets for the fifth- and s ixth-degree

polynomials . In par t icular , for the fifth-degree polynomials , only 900 pa t t e rns were used for

t ra ining and the remaining 99144 pa t te rns were assigned to the tes t set. For the sixth-degree

polynomials , the t ra in ing set consisted of 1250 pat terns , while the tes t set contained 217498

pat terns . Similarly, for the seventh-degree polynomials , the t ra in ing set was comprised of 838
pa t te rns , while the tes t set contained 475100 pat terns .

The problem of selecting the op t imal network archi tecture for a par t icu lar t a sk remains u p - t o -

da te an open problem. In this work we employed FNNs with two hidden layers and archi tecture

Z-8-7-Y, where Z s tands for the number of coefficients of the polynomial and Y represents the

number of classes in each case. To t ra in the networks, we employed three well es tabl ished batch

t ra ining algor i thms, and an on-line t ra in ing algori thm; namely, the resilient p ropaga t ion algo-

r i thm (R P R O P) [14], the improved resilient p ropaga t ion a lgor i thm (iRPROP) [10], the scaled

conjugate gradient me thod (SCG) [18], and the adapt ive on-line backpropaga t ion a lgor i thm

(AOBP) [11]. All methods were allowed to perform 500 epochs, and for each method 100 ex-

per iments were performed. The parameters employed by the methods were set to the values
suggested in the references [10,11,14,18]. The scope of this work is to invest igate the capabi l i ty

of FNNs to address the problem of determining the number of real roots, and not to provide an
extensive review of the performance of different t ra in ing methods. We intend to pursue this issue
in a future correspondence.

For univar ia te polynomials of degree two to five the choice of t ra in ing a lgor i thm did not bear

a significant impac t on the result ing performance. The obta ined results from an indicat ive ex-

per iment for these cases are repor ted in t ru th Tables 1 and 2. Each tab le repor ts the number of

Table 1.

Polynomials of degree 2.
Class 1: Zero real roots. Class 2: Two real roots.

Training Set Performance

c lass I C l ~ 2 C.A. (~)

Class 1 542 4 99.267

Class 2 0 154 100

Test Set Performance

Class 1 246 I 1 I 99.595
Class 2 1 52 98.1132

Polynomials of degree 4.
Class i: Zero real roots. Class 2: Two real roots.

Training Set Performance

Class 1 Class 2 C.A. (%)

Class 1 18621 113 99.396

Class 2 227 41039 99.449

Test Set Performance

Class 1 11870 109 99.090

Class 2 151 27121 99.446

Polynomials of degree 3.
Class 1: One real root: Class 2: Three real roots.

Clams I

Class 2

Class 1

Class 2

Training Set Performance

Class i Class 2 C.A. (%)

5951 2 99.966

7 40 85.106

Test Set Performance

3930 I 2 99.949
8 " 36 '- 81.818

Table 2.

Polynomials of degree 5. Class 1: One real root.
Class 2: Three real roots. Class 3: Five real roots.

Training Set Performance

Class 1 Class 2 Class 3 C.A. (%)

Class 1 396 4 0 99

Class 2 3 397 0 99.25

Class 3 0 3 97 97

Test Set Performance

Class 1 61908 5563 133 91.57

Class 2 2916 27087 1023 87.30

Class 3 8 89 425 82.68

532 B. MOURRAIN et al.

correct ly classified and misclassified pa t te rns , as well as the resul t ing classification accuracy

(C.A.), for both the training set and the test set. As shown in Tables 1 and 2, FNNs were
successfully trained to identify the number of real roots of polynomials of degree two to five,
achieving classification accuracies a round 99% on the t ra in ing set. The only exception to this
behavior was witnessed for th i rd-degree polynomials wi th three real roots (as shown in the right

par t of Table 1), bu t this can be a t t r ibu ted to the very small representa t ion o f such polynomials

in the t ra in ing set (47 out of 6000 pat terns) . The most impor t an t finding, however, is tha t

the t ra ined FNNs exhibi ted a general izat ion capabi l i ty very close to their performance on the
t ra ining set. Even for the class of th i rd degree polynomials wi th th ree real roots, the t ra ined

FNNs exhibited a generalization performance of 81.818%.
On the other hand, for univariate polynomials of degree six and seven the choice of the training

a lgor i thm bore a subs tan t ia l impac t on performance. To allow a be t t e r v isual izat ion of the

performance on the test set, we present the results using boxplots. A boxplot is a d iagram tha t

conveys locat ion and var ia t ion informat ion about a cer tain variable. The median classification
accuracy is displayed as a horizontal line and a box is drawn between the first and th i rd quart i le

of observations. Then, the min imum and max imum values tha t lie into the range with center

the median and length 1.5 multiplied by the interquartile range are connected to the box. If a
value lies outs ide this range, then it is considered as an outl ier and displayed as a dot. Notches

represent a robust es t imate of the uncer ta in ty abou t the median.
As i l lus t ra ted in F igure 1, for polynomials of degree six the best performing method was

iRPROP. This me thod a t t a ined the highest median performance, for polynomials with zero, two,

and four real roots (classes 1, 2, and 3). I t also exhibi ted the most robust performance for these

|

100

90

SO

70

60

50

40

30

20

10

0

RPROP

,::!: 4-
............ :: :~:.::~:~:.: ::

L
Class I

i

Class 2 Class 3
I

C las s 4

100

90

80

4O

20

10

0

IRPROP

Class I Class 2 Class 3 Class 4

100

90

80

70

60

5O

4O

30

2O

I0

0i

~.: : :!...........,~

(a) (b)
AOBP SCG

100

. f

i i':::::::::: ::::::;': 80 '

70

60

.5O

40

3o :

2O

111

t I i 0
Class I Class 2 C l a u 3 C la~ 4 Class 1 Class 2 Class 3

(c) (d)

Figure 1. Polynomials of degree 6. Class 1: Zero real roots; Class 2: Two real roots;
Class 3: Four real roots; Class 4: Six real roots.

ClaSs 4

Real Roots of Polynomia ls 533

i |

100

8O

' ° I
0

100

90

80

70

60

50

40

30

20

10

0

~:.:;.~:~: ::: ~::,:

i
Class I

RPROP

.......... i~il

? :

............. iil

i
Class 2 Class 3

(~)

AOBP

i i

Class 4

i i
i }

i i ~
Class 2 C l a ~ 3

100

eoF

60F

7ol-

60F

s o l -

4o~-

3 o F

2 o F

10 t-

O I i

Class I

IRPROP

" !

i
Class 2 Class 3

i

Class 4

100 1

60I
6 0 ~

7o l

60i
50F

4 0 ~

OO~

2 0 ~

101-
i

0

:::::::::::::::::::::

(b)

SCG

B

i
C ~ 4

Cla~ 1 Class 1 Class 2 Class 3 Class 4

(c) (d)

F igure 2. Polynomia ls of degree 7. Class 1: One real root; Class 2: Th ree real roots;
Class 3: Five real roots; Class 4: Seven real roots.

classes, as suggested by the width of the boxes. For polynomials with six real roots, no method
proved capable of achieving a good classification performance on average. This finding can be
attributed to the relatively small representation of this class of polynomials in the training set
(50 patterns out of 1250). iRPROP and RPROP were the only methods that managed to train
networks that achieved a high classification accuracy for this class. Overall, the performance of
the RPROP method was close to that of iRPROP, while AOBP performed slightly worse than the
two previously mentioned methods. The worst performing method was SCG, whose performance
varied greatly for polynomials of class one and two, despite the fact that its median performance
was high for these classes.

The results for the seventh-degree univariate polynomials, illustrated in Figure 2, suggest that
iRPROP was the best performing and most robust method. As in the case of sixth-degree polyno-
mials, the trained networks misclassified polynomials belonging to class four, that is polynomials
with seven real roots. Once again, the representation of this class in the data set was very small.
iRPROP was the only considered method that exhibited a median performance higher than zero
for this class. The performance of SCG and RPROP were close to that of iRPROP. In this case.
the worst performing method was AOBP that exhibited a very low classification accuracy on the
third class, and a relatively volatile performance on class two.

The reported results for polynomials of degree five, six, and seven support the claim that even
when the number of training patterns is greatly smaller than that of the test patterns the trained
FNNs manage to attain a high classification accuracy on the test set.

At a next step we tested this approach on a system of multivariate polynomials with a given
support. In detail, we used the system of polynomials exhibited in equation (3). This set of
polynomials describes the six atom molecule problem. More specifically, the six-atom molecule

534 B. MOURRAIN et al.

100

90

8O

70

~ 6o

j -
30

20

IO0

80

8O

70

!-
40

3O

2O

10

0

RPROP

CIItsS 1 Class 2

(a)

A~P

i

11111

61)

5O =

10

J

i
Class 1 Class 2

(~)

0

80

70

6O

5O

40

3O

2O

10

0

Figure 3. Results for the six a tom molecule problem.
Class 2: Real solutions exist.

IRPROP

Cla~l Class2

(b)

SCG
L
i

Class I Class 2

(d)

Class 1: No real solutions;

problem amounts to finding the global geometry of the molecule, knowing the lengths between
the atoms and the angles between two consecutive links. It is known that the problem can be
modeled with the following three polynomial equations of three variables,

f l = ~11 -{- ~12 t2 + /~13t 2 + /314 t2 t3 -t-/~lst2t 322 = 0,

f 2 ~21 -I- ~22 t 2 + / ~ 2 3 t l 2 + ~24t :3 t l 2 2 = - t - /325t3t 1 = O, (3)

f3 ~31 + ~32 t2 + ~33t22 + ~34 t l t2 2 2 = -t-)~35tlt 2 = 0.

It is known further that there are at most 16 isolated solutions to this problem. For this problem,
we constructed 45000 real valued random combinations for the coefficients/30, from a uniform
distribution in the range [-10, 10]. The FNNs were employed to determine whether a combination
of coefficients results in a polynomial system that has solely complex roots, or whether real roots
also exist. Thus, a coefficient combination is assigned to Class 1 if all the solutions of the
corresponding polynomial system are complex, and to Class 2 if real solutions exist. Prom the
45000 combinations 9000 were used for training and 35000 for testing. The topology of the FNbl
employed was 15-8-7-2. Figure 3 illustrates the results obtained for the four different methods
over 100 runs for each Mgorithm.

On this test problem the best performing methods were RPROP and iRPROP, with RPROP
being slightly more robust. Both these methods attained a median classification accuracy close
to 80% for both classes. AOBP achieved a lower median performance for Class 1. On the other
hand, it attained the highest maximum classification accuracy among all the considered methods.
Finally, SCG attained slightly worse performance to RPROP and iRPROP for Class 1, but its
performance is much worse on Class 2, in which there is a significant variation of performance.

Real Roots of Polynomials 535

4. D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

In the present paper , we invest igated the abi l i ty of FNNs to de te rmine the number of real

roots of univar ia te polynomials . To this end, we considered three well known and widely used

batch t ra in ing algori thms, and an on-line t ra in ing algori thm. The exper imenta l results suggest

t ha t FNNs are capable of accurate ly classifying the number of real roots of low-degree univar ia te

polynomials using as input the coefficients. Most impor tant ly , the considered FNNs exhibi ted a

very high general izat ion ability, even when the size of the t ra in ing set was very small compared

to t ha t of the tes t set. For polynomials of degree two to five the choice of t ra in ing a lgor i thm did
not bear a significant impac t on the result ing general izat ion ability. Differences were witnessed~
however, for the s ixth-degree and seventh-degree polynomials . For these polynomials , among the

four considered t ra ining algori thms the resilient p ropagat ion and the improved resilient propaga-

t ion algori thms exhibi ted the highest and most robust classification accuracies. The classes tha t

corresponded to the six and seven real roots, for the six- and seven-degree polynomials respec-

tively, were margina l ly represented in the dataset . For these classes all the t ra in ing algori thms

exhibi ted a very low, and in most cases zero, median general izat ion ability. Among the methods

considered, the only ones t ha t were capable of t ra in ing networks t ha t yielded high classification

accuracies wi th respect to these classes were the resilient p ropaga t ion and the improved resilient
propagat ion.

Training feedforward neural networks to determine if the sys tem of mul t ivar ia te polynomial
equat ions corresponding to the six a tom molecule problem has real solut ions for a random com-
binat ion of coefficients, proved to be a more difficult task. The t ra ined networks achieved a lower

t ra ining and general izat ion abi l i ty in comparison to the cases of univar ia te polynomials . However,

even in this case a general izat ion accuracy close to 80% was achieved using only a small por t ion

of the da tase t as t ra in ing set. In a future correspondence, we intend to perform a thorough

invest igat ion of the performance of FNNs on higher degree univar ia te polynomials , as well as,

systems of mul t ivar ia te polynomial equations, using an extensive range of t ra in ing algori thms.

R E F E R E N C E S
1. D.S. Huang, H.H.S. Ip and Z. Chi, A neural root finder of polynomials based on root moments, Neural

Computation 16 (8), 1721-1762, (2004).
2. D.S. Huang and C. Zheru, Neural networks with problem decomposition for finding real roots of polynomials,

In Proceedings of the International Joint Conference on Neural Networks 2001 (IJCNN'01), July 15-19.
pp. 25-30, Washington, DC, (2001).

3. S.J. Perantonis, N. Ampazis, S. Varoufakis and G. Antoniou, Constrained learning in neural networks: Ap-
plication to stable factorization of 2-D polynomials, Neural Processing Letters 7, 5-14, (1998).

4. D.S. Huang, A constructive approach for finding arbitrary roots of polynomials by neural networks, IEEE
Transactions on Neural Networks 15 (2), 477-491, (2004).

5. D.A. Karras and S.J. Perantonis, An efficient constrained learning algorithm for feedforward networks, IEEE
Transactions on Neural Networks 6, 1420-1434, (1995).

6. D.S. Huang, Constrained learning algorithms for finding the roots of polynomials: A case study, In Proc.
IEEE Region 10 Tech. Conf. on Computers, Communications, Control and Power Engineering, pp. 1516-
1520, (2002).

7. S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New
York, (1999).

8. D.R. Wilson and T.R. Martinez, Improved heterogeneous distance functions, Journal of Artificial Intelligence
Research 6, 1-34, (1997).

9. M.T. Hagan and M. Menhaj, Training feedforward networks with the marquardt algorithm, IEEE Transac-
tions on Neural Network 5 (6), 989-993, (1994).

10. C. Igel and M. Hiisken, Improving the Rprop learning algorithm, In Proceedings of the Second International
ICSC Symposium on Neural Computation (NC 2000), (Edited by H. Bothe and R. Rojas), pp. 115-121.
ICSC Academic Press, (2000).

11. G.D. Magoulas, V.P. Plagianakos and M.N. Vrahatis, Adaptive stepsize algorithms for on-line training of
neural networks, Nonlinear Analysis, Theory, Methods and Applications 47, 3425-3430, (2001).

12. G.D. Magoulas, M.N. Vrahatis and G.S. Androulakis, Effective backpropagation training with variable step-
size, Neural Networks 10 (1), 69-82, (1997).

13. G.D. Magoulas, M.N. Vrahatis and G.S. Androulakis, Increasing the convergence rate of the error backprop-
agation algorithm by learning rate adaptation methods, Neural Computation 11 (7), 1769-1796, (1999).

536 B. MOURRAIN et al.

14. M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: The rprop
algorithm, In Proceedings of the IEEE International Conference on Neural Networks, pp. 586-591, San
Francisco, CA, (1993).

15. M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and G.D. Magoulas, A class of gradient unconstrained
minimization algorithms with adaptive stepsize, J. Comput. Appl. Math. 114 (2), 367-386, (2000).

16. M.N. Vrahatis, G.D. Magoulas and V.P. Plagianakos, Globally convergent modification of the quickprop
method, Neural Processing Letters 12, 159-170, (2000).

17. M.N. Vrahatis, G.D. Magoulas and V.P. Plagianakos, From linear to nonlinear iterative methods, Applied
Numerical Mathematics 45 (1), 59-77, (2003).

18. M. Moiler, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6, 525-533.
(1993).

19. G. Cybenko, Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and
Systems 2, 303-314, (1989).

20. K. Hornik, Multilayer feedforward networks are universal approximators, Neural Networks 2, 359-366, (1989).
21. H. White, Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary

mappings, Neural Networks 3, 535-549, (1990).
22. A. Pinkns, Approximation theory of the mlp model in neural networks, Acta Numerica, 143-195, (1999).
23. G. Dos Reis, B. Mourrain, F. Rouillier and Ph. Tribuchet, An environment for symbolic and numeric compu-

tation, Technical Report ECG-TR-122102-03, INRIA, Sophia-Antipolis, (2002).
24. B. Mourrain, M.N. Vrahatis and J.C. Yakoubsohn, On the complexity of isolating real roots and computing

with certainty the topological degree, Journal of Complexity 18 (2), 612-640, (2002).
25. D. Bini, Numerical computation of polynomial zeros by means of Aberth 's method, Numerical Algorithms

13, 179-200, (1996).

