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A b s t r a c t - - T h e  ability of feedforward neural networks to identify the number of real roots of 
univariate polynomials is investigated. Furthermore, their ability to determine whether a system of 
multivariate polynomial equations has real solutions is examined on a problem of determining the 
structure of a molecule. The obtained experimental results indicate that neural networks are capable 
of performing this task with high accuracy even when the training set is very small compared to the 
test set. © 2006 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Numerous problems in mathemat ical  physics, robotics, computer  vision, computa t ional  geometry, 

signal processing etc., involve the solution of polynomial  systems of equations. Recently, artificial 

feedforward neural  networks (FNNs) have been applied to the problem of comput ing the roots 

of a polynomial [1-3]. The underlying idea to construct  an FNN capable of finding the roots 

is to factorize the polynomial into many  subfactors on the outputs  of the hidden layer of the 

network. The connection weights from the input  layer to the hidden layer are then trained using 

a suitable algorithm. Thus, the connection weights of the t rained network are the roots of the 

underlying polynomial  [1]. A crucial advantage of this approach is tha t  all the roots are obtained 

simultaneously and in parallel. As t radi t ional  root-finding methods identify roots sequentially, 
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that  is, the next root is obtained by the deflated polynomial after the former root is found, 
their accuracy is fundamentally limited and cannot surpass that  of an FNN [4]. Furthermore, 
increasing the number of processors will not increase the speed of these algorithms, as they are 
inherently sequential. 

In [3], FNNs were applied first to the factorization of 2D second-order polynomials. To this 
end, a constrained learning algorithm which incorporates a priori information about the problem 
into the backpropagation algorithm was proposed [3,5]. The results indicate that  the constrained 
learning algorithm not only exhibits rapid convergence compared to the standard backpropa- 
gation algorithm, but also yields more accurate results. Inspired by this approach a method 
for finding the roots of a polynomial using a constrained learning algorithm that  imposes as 
constraints the relationships between the roots and the coefficients of the polynomial, was pro- 
posed in [6]. The most computationally demanding step of this method is the computation of 
the constraint conditions and their derivatives. The estimated cost for these computations is of 
the order (.9(2n), where n is the order of the polynomial. This exponential complexity renders 
the particular method impractical for high-order polynomials [1]. To overcome this limitation. 
another constrained learning algorithm based on the relationships between root moments and 
the polynomial coefficients was proposed. The estimated computational cost of computing the 
set of constraints and their derivatives for the latter method is O(mn3) ,  where n is as before the 
order of the polynomial, and m is the number of constraints used by the learning algorithm [4]. 
Exploiting a recursive root moment method, the computational complexity can be reduced to 
(9(mn 2) [4]. Note that  the computational complexity of traditional root-finding methods such as 
Muller and Laguerre is of the order (.9(3n), while that  of the fastest methods, like Jenkins-Traub, 
is of the order O(n4). In [4], these approaches were extended to the more general problem of" 
finding arbitrary (including real or complex) roots of arbitrary polynomials. The experimental 
results reported in [1] indicate that  on the task of computing all the roots of a polynomial, the 
FNNs trained through constrained learning algorithms are both faster and more accurate than 
traditional Muller and Laguerre methods. Furthermore, the constrained learning algorithm is 
not sensitive to the initialization of the weights (roots) of the network. 

To the best of our knowledge the problem of computing the number of real roots of a univariate 
polynomial, as well as, that  of determining the existence of real solutions of a system of multi- 
variate polynomial equations, have not been addressed through neural computation approaches. 
FNNs are considered to be powerful classifiers compared to classical algorithms such as the near- 
est neighbor method. The algorithms used in FNNs are capable of finding a good classifier based 
on a limited, and in general small, number of training examples. This capability, also referred to 
as generalization, is of particular interest in classification tasks. In this paper, we train FNNs to 
determine the number of real roots of univariate polynomials using as inputs the values of the 
coefficients. Next, we investigate their ability to accurately identify the number of real roots for 
combinations of coefficients not encountered during training. Our findings suggest that  FNNs 
are highly accurate on this task even when the training set is very small in proportion to the 
test set. Subsequently, we employ a system of multivariate polynomial equations, and investigate 
the ability of FNNs to discriminate between combinations of coefficients that  yield only complex 
roots and those that  also yield real solutions. This appears to be a much harder problem for 
FNNs, but the trained networks are able to attain a satisfactory performance. 

The rest of the paper is organized as follows. Section 2 briefly introduces FNNs and discusses 
some of their theoretical properties. Section 3 is devoted to the presentation of the experimental 
results obtained. Finally, conclusions and directions for future research are provided in Section 4. 

2. A R T I F I C I A L  N E U R A L  N E T W O R K S  

FNNs are parallel computational models comprised of densely interconnected, simple, adaptive 
processing units, characterized by an inherent propensity for storing experiential knowledge and 
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rendering it available for use. FNNs resemble the human brain in two fundamental respects. First, 
knowledge is acquired by the network from its environment through a learning process. Second, 
interneuron connection strengths, known as synaptic weights are employed to store the acquired 
knowledge [7]. The structure of FNNs enables them to learn highly nonlinear relationships and 
adapt to changing environments. Among the highly desirable features of FNNs is their capability 
to handle incompleteness, i.e., missing parameter values; incorrectness, i.e., systematic, or random 
noise in the data; sparseness, i.e., few and/or nonrepresentable records; and inexactness, i.e., 
inappropriate selection of parameters for the given task. These characteristics render FNNs 
capable of finding a good classifier based on a limited number of training examples. 

In FNNs neurons are organized in layers and no feedback connections are present. Inputs 
are assigned to the sensory neurons, which form the input layer of the network, while outputs 
are obtained by the neurons of the final layer, also called the output layer. All other neurons 
are organized in the intermediate layers, which are called hidden layers. This structure allows 
the representation of an FNN with a series of integers. For example, with x-y-z we refer to an 
FNN with x input neurons, a single hidden layer consisting of y neurons, and an output layer 
containing z neurons. Inputs to the network are assigned to the input neurons and after the 
computations at each layer are completed the outputs are propagated to the subsequent layer. 
The output of the network is the outcome of the computations of the output layer neurons. 

The operation of an FNN is based on the following equations that  describe the workings of the 
jth neuron at the 1 th layer of the network, 

n i - - I  

net~ Z l-l,l '-I ' = (net~), = w,j yi +0r, ~ f (1) 
i=1 

where net~ is the sum of the weighted inputs of the jth neuron in the l th layer, where j = 2 , . . . ,  O. 

The additional term 0~ denotes the bias of this neuron. The weighted sum net~ is called the 
excitation level of the neuron [7]. The weight connecting the output of the ith node at the (l - 1) 
layer to the j th  neuron  at the /th layer is denoted by wlj  1'l. Finally, y~ is the output of the  j th 
neuron of the I th layer, and f(net~) is the activation function of that  neuron. 

In supervised training there is a fixed, finite set of input-output samples (patterns) that are 
employed by the training procedure to adjust the weights of the network. Assuming that  there 
are P input-output samples, the squared error over the training set is defined as 

P n o  P n o  

E (w) = ~ ~ ( y ? p  - tip) 2 = ~ ~ [fo (net o )  _ tjp] 2, (2) 
p = l  j = l  p = l  j = l  

where, no stands for the number of neurons at the output layer of the network, yOp stands 
for the output of the j th  output neuron when the input to the network was the pth training 
pattern, and tip denotes the j th  desired response for the pth training pattern. Equation (2) is 
called the error function of the network, and the purpose of training is to yield a set of network 
weights that  will minimize it. It  should be noted at this point that  any distance function, such 
as the Minkowsky, Mahalanobis, Camberra, Chebychev, quadratic, correlation, Kendall's rank 
correlation and Chi-square distance metrics; the context-similarity measure; the contrast model; 
hyperectangle distance functions and others [8], can be used in the error function. 

The efficient supervised training of FNNs, which amounts to the minimization of the error 
function, is a subject of considerable ongoing research and a number of efficient and effective 

algorithms have been proposed in literature [9-18]. 
Two crucial parameters for the successful application of FNNs on any problem, are the selec- 

tion of appropriate network architecture and training algorithm. The problem of identifying the 
optimal network architecture for a specific task remains up to date an open and challenging prob- 
lem. For the general problem of function approximation, the universal approximation theorem 
[19-21] states the following. 
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THEOREM l. Standard feedforward networks with only a single hidden layer can approximate 
any continuous function uniformly on any compact set and any measurable function to any desired 
degree of accuracy. 

An immediate implication of the above theorem is that  any lack of success in applications must 
arise either due to inadequate learning, or an insufficient number of hidden units, or the lack of a 
deterministic relationship between the inputs and the targets. A second theorem proved in [22] 
provides an upper bound for the architecture of an FNN destined to approximate a continuous 
function defined on the hypercube in R n. 

THEOREM 2. On the unit cube in R n any continuous function can be uniformly approximated, 

to within any error by using a two hidden layer network having 2n + 1 units in the first layer and 
4n + 3 units in the second layer. 

3. R E S U L T S  

In the present study, we investigate the ability of FNNs to determine the number of real 
roots of polynomials. In more detail, for polynomials of a specific degree, we construct a series 
of combinations of the values of the coefficients. We solve these polynomials and determine the 
number of real roots for each coefficient combination. Thus, we construct datasets with the values 
of the coefficients and the number of real roots corresponding to these coefficient values. We split 
these datasets into two parts, a training set and a test set, and employ the patterns belonging 
to the training set to perform the supervised training of the FNNs. As input to the FNN we 
supply the values of the coefficients, while the desired output (target) is the number of real roots. 
After the training procedure has adjusted the weights of the network, we investigate its ability to 
correctly identify the number of real roots for combinations of the values of the coefficients that 
the FNN has not previously encountered. In other words, we evaluate its classification ability on 
the test set. 

To compute the number of real roots of the polynomials, we employed routines included in 
the symbolic numeric applications (SYNAPS 2.1.2) library [23]. One of the methods that  we 
used for solving the univariate equations is a subdivision solver, based on Descartes rule. The 
univariate polynomial is expressed into the Bernstein basis and the domain is subdivided until 
the number of sign changes of the coefficients is 0 or 1, or until a given precision e is reached. 
This yields isolating intervMs containing one root if the root is simple and its multiplicity (up 
to a perturbation ~) otherwise. The interest of the method is its speed and the certification for 
well-separated simple roots. For more details on this method, see [24]. 

The other method that  we considered is called Aberth 's  method. It  is an extension of Weier- 
strass method, which consists of applying Newton's iteration to the square multivariate system 
connecting the roots with the coefficients of a univariate polynomial. This iteration converges 
to a vector that  contains all the roots of the polynomial. We use the implementation by Bini 
and Fiorantino provided in SYNAPS [23]. This method yields the complex roots, from which we 
extract the real roots by using a threshold c on the imaginary part. The interest of this method 
is the control of the error, even in the case of multiple roots. See [25] for more details. 

Next, we proceed with the description of the datasets employed in the present study. For 
univariate polynomials of degree two to four, all coefficients were allowed to assume integer values 
in the range [1, 10]. For the fifth-, sixth-, and seventh-degree polynomials, integer coefficients in 
[-3,  3], [-6,  6], and [-6,  6], respectively, were considered. The data sets used for training and 
testing were constructed by taking all the permutations of the coefficients in the aforementioned 
ranges. The only exceptions to this rule were for the sixth- and seventh-degree polynomials for 
which a total of 218748 and 475938, respectively, random permutations of the coefficients were 
constructed. 

For the polynomials of degree two to four, approximately two-thirds of the total patterns 
were used for training the networks, while the remaining one-third was used to evaluate the 
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general izat ion performance.  The  obta ined  results  suggested tha t  the  general izat ion capabi l i ty  of 

the  t ra ined  networks was not significantly inhibi ted by a reduct ion of  the  size of the t ra ining 

set. To this  end, we employed subs tan t ia l ly  smaller  t ra in ing sets for the  fifth- and s ixth-degree 

polynomials .  In par t icular ,  for the  fifth-degree polynomials ,  only 900 pa t t e rns  were used for 

t ra ining and the  remaining 99144 pa t te rns  were assigned to the  tes t  set. For the  sixth-degree 

polynomials ,  the  t ra in ing set consisted of 1250 pat terns ,  while the  tes t  set contained 217498 

pat terns .  Similarly, for the  seventh-degree polynomials ,  the  t ra in ing  set was comprised of 838 
pa t te rns ,  while the  tes t  set contained 475100 pat terns .  

The  problem of selecting the op t imal  network archi tecture  for a par t icu lar  t a sk  remains  u p - t o -  

da te  an open problem. In this  work we employed FNNs  with  two hidden layers and archi tecture  

Z-8-7-Y, where Z s tands  for the  number  of coefficients of the  polynomial  and Y represents  the  

number  of classes in each case. To t ra in  the  networks,  we employed three  well es tabl ished batch 

t ra ining algor i thms,  and an on-line t ra in ing algori thm; namely, the  resilient p ropaga t ion  algo- 

r i thm ( R P R O P )  [14], the  improved resilient p ropaga t ion  a lgor i thm ( iRPROP)  [10], the scaled 

conjugate  gradient  me thod  (SCG) [18], and the adapt ive  on-line backpropaga t ion  a lgor i thm 

(AOBP)  [11]. All  methods  were allowed to perform 500 epochs, and  for each method  100 ex- 

per iments  were performed.  The  parameters  employed by the  methods  were set to  the  values 
suggested in the  references [10,11,14,18]. The  scope of this  work is to invest igate the  capabi l i ty  

of FNNs to address  the  problem of determining the number  of real roots, and not  to provide an 
extensive review of the  performance of different t ra in ing methods.  We intend to pursue this issue 
in a future correspondence.  

For univar ia te  polynomials  of degree two to five the  choice of t ra in ing  a lgor i thm did not  bear 

a significant impac t  on the  result ing performance.  The  obta ined  results  from an indicat ive ex- 

per iment  for these cases are repor ted  in t ru th  Tables 1 and 2. Each tab le  repor ts  the  number  of 

Table 1. 

Polynomials of degree 2. 
Class 1: Zero real roots. Class 2: Two real roots. 

Training Set Performance 

c lass  I C l ~  2 C.A. (~ )  

Class 1 542 4 99.267 

Class 2 0 154 100 

Test Set Performance 

Class 1 246 I 1 I 99.595 
Class 2 1 52 98.1132 

Polynomials of degree 4. 
Class i: Zero real roots. Class 2: Two real roots. 

Training Set Performance 

Class 1 Class 2 C.A. (%) 

Class 1 18621 113 99.396 

Class 2 227 41039 99.449 

Test Set Performance 

Class 1 11870 109 99.090 

Class 2 151 27121 99.446 

Polynomials of degree 3. 
Class 1: One real root: Class 2: Three real roots. 

Clams I 

Class 2 

Class 1 

Class 2 

Training Set Performance 

Class i Class 2 C.A. (%) 

5951 2 99.966 

7 40 85.106 

Test Set Performance 

3930 I 2 99.949 
8 " 36 '- 81.818 

Table 2. 

Polynomials of degree 5. Class 1: One real root. 
Class 2: Three real roots. Class 3: Five real roots. 

Training Set Performance 

Class 1 Class 2 Class 3 C.A. (%) 

Class 1 396 4 0 99 

Class 2 3 397 0 99.25 

Class 3 0 3 97 97 

Test Set Performance 

Class 1 61908 5563 133 91.57 

Class 2 2916 27087 1023 87.30 

Class 3 8 89 425 82.68 
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correct ly classified and misclassified pa t te rns ,  as well as the  resul t ing classification accuracy 

(C.A.), for both the training set and the test set. As shown in Tables 1 and 2, FNNs were 
successfully trained to identify the number of real roots of polynomials of degree two to five, 
achieving classification accuracies a round 99% on the  t ra in ing set. The  only exception to this  
behavior  was witnessed for th i rd-degree  polynomials  wi th  three  real roots  (as shown in the  right 

par t  of Table  1), bu t  this  can be a t t r ibu ted  to the  very small  representa t ion  o f  such polynomials  

in the  t ra in ing  set (47 out  of 6000 pat terns) .  The  most  impor t an t  finding, however, is tha t  

the t ra ined  FNNs  exhibi ted  a general izat ion capabi l i ty  very close to  their  performance on the 
t ra ining set. Even for the  class of th i rd  degree polynomials  wi th  th ree  real roots,  the  t ra ined  

FNNs exhibited a generalization performance of 81.818%. 
On the other hand, for univariate polynomials of degree six and seven the choice of the training 

a lgor i thm bore a subs tan t ia l  impac t  on performance.  To allow a be t t e r  v isual izat ion of the  

performance on the  test  set, we present  the  results using boxplots.  A boxplot  is a d iagram tha t  

conveys locat ion and var ia t ion informat ion about  a cer tain variable.  The  median  classification 
accuracy is displayed as a horizontal  line and a box is drawn between the  first and th i rd  quart i le  

of observations.  Then,  the  min imum and max imum values tha t  lie into the  range with center 

the median and length 1.5 multiplied by the interquartile range are connected to the box. If a 
value lies outs ide this  range, then it is considered as an outl ier  and displayed as a dot. Notches 

represent  a robust  es t imate  of the  uncer ta in ty  abou t  the  median.  
As i l lus t ra ted in F igure  1, for polynomials  of degree six the  best  performing method  was 

iRPROP.  This  me thod  a t t a ined  the  highest  median  performance,  for polynomials  with zero, two, 

and four real roots  (classes 1, 2, and 3). I t  also exhibi ted the  most  robust  performance for these 
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Figure 1. Polynomials of degree 6. Class 1: Zero real roots; Class 2: Two real roots; 
Class 3: Four real roots; Class 4: Six real roots. 
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F igure  2. Polynomia ls  of degree 7. Class  1: One  real root;  Class  2: Th ree  real roots;  
Class  3: Five real roots;  Class  4: Seven real roots.  

classes, as suggested by the width of the boxes. For polynomials with six real roots, no method 
proved capable of achieving a good classification performance on average. This finding can be 
attributed to the relatively small representation of this class of polynomials in the training set 
(50 patterns out of 1250). iRPROP and RPROP were the only methods that  managed to train 
networks that  achieved a high classification accuracy for this class. Overall, the performance of 
the RPROP method was close to that  of iRPROP, while AOBP performed slightly worse than the 
two previously mentioned methods. The worst performing method was SCG, whose performance 
varied greatly for polynomials of class one and two, despite the fact that  its median performance 
was high for these classes. 

The results for the seventh-degree univariate polynomials, illustrated in Figure 2, suggest that 
iRPROP was the best performing and most robust method. As in the case of sixth-degree polyno- 
mials, the trained networks misclassified polynomials belonging to class four, that  is polynomials 
with seven real roots. Once again, the representation of this class in the data set was very small. 
iRPROP was the only considered method that  exhibited a median performance higher than zero 
for this class. The performance of SCG and RPROP were close to that  of iRPROP. In this case. 
the worst performing method was AOBP that  exhibited a very low classification accuracy on the 
third class, and a relatively volatile performance on class two. 

The reported results for polynomials of degree five, six, and seven support the claim that  even 
when the number of training patterns is greatly smaller than that  of the test patterns the trained 
FNNs manage to attain a high classification accuracy on the test set. 

At a next step we tested this approach on a system of multivariate polynomials with a given 
support. In detail, we used the system of polynomials exhibited in equation (3). This set of 
polynomials describes the six atom molecule problem. More specifically, the six-atom molecule 
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problem amounts to finding the global geometry of the molecule, knowing the lengths between 
the atoms and the angles between two consecutive links. It is known that the problem can be 
modeled with the following three polynomial equations of three variables, 

f l  = ~11 -{- ~12 t2 + /~13t 2 + /314 t2 t3  -t-/~lst2t 322 = 0, 

f 2  ~21 -I- ~22 t  2 + / ~ 2 3 t l  2 + ~24t :3 t l  2 2 = - t - /325t3t  1 = O, (3) 

f3  ~31 + ~32 t2 + ~33t22 + ~34 t l t2  2 2 = -t- )~35tlt 2 = 0. 

It is known further that there are at most 16 isolated solutions to this problem. For this problem, 
we constructed 45000 real valued random combinations for the coefficients/30, from a uniform 
distribution in the range [-10,  10]. The FNNs were employed to determine whether a combination 
of coefficients results in a polynomial system that has solely complex roots, or whether real roots 
also exist. Thus, a coefficient combination is assigned to Class 1 if all the solutions of the 
corresponding polynomial system are complex, and to Class 2 if real solutions exist. Prom the 
45000 combinations 9000 were used for training and 35000 for testing. The topology of the FNbl 
employed was 15-8-7-2. Figure 3 illustrates the results obtained for the four different methods 
over 100 runs for each Mgorithm. 

On this test problem the best performing methods were RPROP and iRPROP, with RPROP 
being slightly more robust. Both these methods attained a median classification accuracy close 
to 80% for both classes. AOBP achieved a lower median performance for Class 1. On the other 
hand, it attained the highest maximum classification accuracy among all the considered methods. 
Finally, SCG attained slightly worse performance to RPROP and iRPROP for Class 1, but its 
performance is much worse on Class 2, in which there is a significant variation of performance. 
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4. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

In the  present  paper ,  we invest igated the  abi l i ty  of FNNs  to de te rmine  the number  of real 

roots  of univar ia te  polynomials .  To this  end, we considered three  well known and widely used 

batch t ra in ing algori thms,  and an on-line t ra in ing algori thm. The  exper imenta l  results suggest 

t ha t  FNNs  are capable  of accurate ly  classifying the number  of real roots  of low-degree univar ia te  

polynomials  using as input  the  coefficients. Most  impor tant ly ,  the  considered FNNs  exhibi ted a 

very high general izat ion ability, even when the size of the  t ra in ing  set was very small  compared  

to t ha t  of the  tes t  set. For polynomials  of degree two to five the  choice of t ra in ing a lgor i thm did 
not bear  a significant impac t  on the  result ing general izat ion ability. Differences were witnessed~ 
however, for the  s ixth-degree and seventh-degree polynomials .  For these polynomials ,  among the 

four considered t ra ining algori thms the  resilient p ropagat ion  and the  improved resilient propaga-  

t ion algori thms exhibi ted  the  highest and most robust  classification accuracies. The  classes tha t  

corresponded to the  six and seven real roots,  for the  six- and seven-degree polynomials  respec- 

tively, were margina l ly  represented in the  dataset .  For these classes all the  t ra in ing  algori thms 

exhibi ted  a very low, and in most  cases zero, median general izat ion ability. Among the  methods  

considered, the  only ones t ha t  were capable  of t ra in ing networks t ha t  yielded high classification 

accuracies wi th  respect  to these classes were the  resilient p ropaga t ion  and the improved resilient 
propagat ion.  

Training feedforward neural  networks to determine  if the  sys tem of mul t ivar ia te  polynomial  
equat ions corresponding to the  six a tom molecule problem has real solut ions for a random com- 
binat ion of coefficients, proved to be a more difficult task. The  t ra ined  networks achieved a lower 

t ra ining and general izat ion abi l i ty  in comparison to  the  cases of univar ia te  polynomials .  However, 

even in this  case a general izat ion accuracy close to 80% was achieved using only a small  por t ion 

of the  da tase t  as t ra in ing set. In  a future correspondence,  we intend to  perform a thorough 

invest igat ion of the  performance of FNNs on higher degree univar ia te  polynomials ,  as well as, 

systems of mul t ivar ia te  polynomial  equations,  using an extensive range of t ra in ing algori thms.  
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