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In this contribution the isolation of real roots and the computation of the topolog-
ical degree in two dimensions are considered and their complexity is analyzed. In
particular, we apply Stenger’s degree computational method by splitting properly the
boundary of the given region to obtain a sequence of subintervals along the bound-
ary that forms a sufficient refinement. To this end, we properly approximate the
function using univariate polynomials. Then we isolate each one of the zeros of these
polynomials on the boundary of the given region in various subintervals so that these
subintervals form a sufficiently refined boundary. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Many problems in different areas of science and technology can be
reduced to a study of a set of solutions of an equation of the form F(x)=p



in an appropriate space. Topological degree theory has been developed as
means of examining this solution set and obtaining information on the
existence of solutions, their number and their nature. This theory is widely
used in the study of nonlinear differential (ordinary and partial) equations.
It is useful, for example, in bifurcation theory and in providing information
about the existence and stability of periodic solutions of ordinary differen-
tial equations as well as the existence of solutions of certain partial differ-
ential equations. Several of these applications involve the use of various
fixed point theorems which can be provided by means of topological degree
[9, 33, 60–62, 65].

Since Stenger’s remarkable and pioneering work [50], many approaches
have been developed and studied to compute the topological degree of a
function (see, e.g., [1, 5, 6, 22, 23, 27, 51–54, 64, 68, 70]). Stenger’s method
expresses the topological degree of a continuous mapping Fn=(f1, ..., fn):
D̄n … RnQ Rn defined on a bounded domain Dn in Rn as a constant times a
sum of determinants of various n×n matrices. The value of the topological
degree gives information about the existence of a solution of the equation
Fn(x)=Gn (where Gn=(0, ..., 0) denotes the origin in Rn) within Dn. In
particular, Kronecker’s theorem [3, 9, 38] states that the equation
Fn(x)=Gn has at least one zero in Dn, if the degree is not zero relative
to Dn.

Although, the value of the topological degree gives qualitative informa-
tion about the existence of solutions, it does not give quantitative informa-
tion about the solution values. On the other hand, using the nonzero value
of topological degree we are able to obtain upper and lower bounds for
solution values. To this end, by computing a sequence of bounded domains
with nonzero values of topological degree and decreasing diameters, we are
able to obtain a region with arbitrarily small diameter that contains at least
one solution of the equation. These methods are now called generalized
bisection methods and have been developed and applied by several authors
(see, e.g., [10, 17, 20–24, 29, 41, 45, 50, 57–59, 64, 66, 67, 69]). The gener-
alized bisection methods are related to simplicial continuation methods
(see, e.g., [2]) and they are particularly useful when the function Fn, is not
smooth or cannot be accurately evaluated. Also, another class of bisection
methods, based on interval analysis, has been widely used. These methods
are robust and appropriate for finding starting points for Newton-like
methods (see, e.g., [24–26, 28, 30, 37]).

The accurate computation of topological degree of the mapping Fn at Gn
relative to the bounded domain Dn, using Stenger’s or other related
methods [22, 23, 52, 53], is heavily based on suitable assumptions, includ-
ing the appropriate representation of the oriented boundary of Dn. In par-
ticular, if the boundary of Dn, can be subdivided in a certain way (‘‘suffi-
ciently refined’’) then Stenger’s method gives exact value of topological
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degree. Otherwise, heuristic termination criteria have to be used and there-
fore one cannot be sure that the value of topological degree is given
correctly. On the other hand, if moduli of continuity are known (see [54]),
one can use a deterministic termination criterion in order to obtain the
degree with certainty.

To this end, Boult and Sikorski proposed in their interesting paper [6]
an optimal complexity algorithm for computing with certainty the topo-
logical degree for any function from a class F. This class consists of func-
tions F2: BQ R2 defined on the unit square B, which satisfy the Lipschitz
condition with constant K > 0 and whose infinity norm along the boundary
of B is at least d > 0. Also, they established a worst-case lower bound,
mg=4NK/(4d)M, on the number of function evaluations necessary to
compute the topological degree for any function F2 from the class F. Their
algorithm calculates the degree using Stenger’s method [50]. They have
examined the complexity, i.e. minimal cost of the problem of the calcula-
tion of topological degree for functions from class F. Notice that the value
of d is always positive since the topological degree is not defined in the case
where a solution of the equation F2(x)=G2 lie on the boundary of D2.
This is also true in the Boult and Sikorski approach, since in this case the
value of d is zero and an infinite number of points has to be considered.

If the value of the Lipschitz constant K with respect to D2 and the infi-
nity norm d of F2 along the boundary of D2 are known and we choose
equally spaced points on the boundary of D2 separated by a distance
1/NK/(4d)M in the infinity norm, then Boult and Sikorski have shown that
we are able to evaluate the topological degree with certainty using Stenger’s
method [6]. This is so because, in this case, a sufficient refinement is
obtained.

On the other hand, the values of K and d may not be known a priori and
in many cases their computation is a heavy task. To this end, we propose
an alternative procedure for computing with certainty the topological
degree in two dimensions by using Stenger’s method. Our method does not
require the values of K and d. Instead, we separate properly the boundary
of D2 to obtain a sequence of subintervals along the boundary which form
a sufficient refinement. This can be done by constructing the subintervals in
such a way that at least one component of the function F2 does not vanish
on each subinterval. To this end, we ‘‘properly’’ approximate the con-
sidered function using univariate polynomials. Then we isolate each one of
the intersection points of these polynomials with the boundary of D2 in
various subintervals so that the sequence of these subintervals forms a suf-
ficiently refined boundary relative to the sign of F2.

The paper is organized as follows. In the next section an algorithm
for isolating the real roots of a univariate polynomial is described and
its complexity is analyzed. In Section 3 we briefly give a background on
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topological degree and its complexity. We also present a fast and accurate
method for computing the value of topological degree with certainty.
Furthermore, we apply the proposed method for the isolation of complex
roots of analytic functions. The paper ends in Section 4 with some
concluding remarks and a short discussion of further research.

2. ISOLATING THE ROOTS OF A UNIVARIATE POLYNOMIAL

The aim of this section is to describe an algorithm for isolating the real
roots of a univariate polynomial, and to analyze its complexity. We will
apply it in the next section, to compute the topological degree of a poly-
nomial map, for which we need to isolate on the boundary of the con-
sidered region all the roots of its components.

In general, many problems in different areas of science are reduced to the
problem of finding all roots or extrema of a function in a given interval.
The importance of the problem has attracted the attention of many
research efforts and, as a result, many different approaches to the problem
exist. We briefly mention here the deflation techniques used for the cal-
culation of further solutions [7] or other more efficient and more recent
interval analysis based methods (see, e.g., [15, 16, 26, 28, 30, 37]) and the
methods described in [20, 21, 41]. The corresponding existence tool of
interval analysis based methods is the availability of the range of the func-
tion in a given interval, which can be implemented using interval arithme-
tic, though range overestimation, and hence efficiency problems must be
resolved. This tool will, with mathematical rigor, give either a ‘‘no’’ or an
‘‘unknown’’ answer. The former case proceeds by subdividing the interval
into two halves and employing additional criteria. The way the evaluation
of functions is encoded influences the answer, which is usually pessimistic
(i.e., ‘‘unknown’’). In the vicinity of a root, interval Newton methods (see,
e.g., [26, 37]) may however with slightly more computational effort, give
an unambiguous ‘‘yes’’ answer.

An alternate method that may give the exact number of solutions Nr

when interval methods fail to verify an unambiguous result is based on
topological degree theory using Kronecker’s integral on a Picard’s exten-
sion [18, 39]. For the computation of the topological degree see, e.g., [6,
23, 50, 52, 53]. This method can be used for the isolation of all simple
roots of a function f(x) in an interval (a, b) and returns the number of
roots using the formula (3.9) which is given in the next section.

In our approach we will use the representation of a polynomial in the
Bernstein basis and Descartes’ rule, in order to guide the subdivision
scheme and to obtain a sequence of intervals, each containing one and only
one real root of the univariate polynomial.
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2.1. Isolation of the Roots

We will use Proposition A.1 to isolate the real roots of a B-spline func-
tion f(t) on an interval [m, M]. The control polygon is a first approxima-
tion of the curve. It can be used to give an estimation of the roots. In order
to separate the roots, we can insert additional points in order to refine the
polygon.

According to Proposition A.1, if the number of crossing points of the
subpolygon corresponding to the internal [ui, ui+1] with the x-axis is 0 or
1, then we know the exact number of roots within this interval. If this is
not the case, we perform the splitting procedure.

This algorithm is related to the algorithm proposed in [13, 34] but the
corresponding authors do not give any precise result of the complexity of
this algorithm. This will be done in Section 2.2. Notice that this algorithm
is also related to the Uspensky’s method [43, 56], by applying the change
of variable t ¥ [0,+.[Q t

1+t ¥ [0, 1[. Here is a more precise description of
the algorithm:

Algorithm 2.1. Isolate the real roots.

localization :=proc (b, [m,M])
L :={ [m, M] }
Z :=empty set of intervals
if size(L) > 0 then

L :=L minus { [m,M] } ;
n :=Var(b)
if b0=0 then Z :=Z union { [m,m] }
if bd=0 then Z :=Z union { [M,M]}
if n=1 then Z :=Z union { [m,M] } ;
elif n > 1 then

L :=L union [m, (m+M)/2], [(m+M)/2,M];
[b−, b+] :=subdivide(b);
localization (b−, [m, (m+M)/2]);
localization (b+, [(m+M)/2,M]);

fi
fi
end
Output : Z

where L is the set of intervals that contain the real roots, Z is the set of
intervals containing one and only one real root, Var(b) is the number of
sign changes of the sequence b=(b0, ..., bd) and subdivide is the de
Casteljau subdivision procedure (see Appendix).
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2.2. The Complexity

The main result of this section gives the complexity of the previous
algorithm. Because the B-spline insertion procedure is local, we can restrict
ourself to the case where f(t) is a polynomial of degree d, represented in
the Bernstein Basis. In [8, p. 89], Collins and Loos study positive zero
isolation by Descartes rule of sign using a modified Uspenski algorithm. In
Lemma 2.1 we improve the bounds obtained by these authors.

Theorem 2.1. Let f(t)=;d
k=0 akB

d
k(t) be a polynomial of degree d

represented in the Bernstein basis. Let xk, k=1, ..., d be the roots of f and
s=minxi ] xj |xi−xj |. Suppose that all real roots of the polynomial f are
simple. Then the procedure localization terminates. Moreover the
following hold:

(1) An upper bound on the number of recursion steps of the procedure
localization is

l=! log2 1
5d
2s
2" ,

where the notation K · L refers to the smallest integer, which is not less than the
real number quoted.

(2) An upper bound on the number of arithmetic operations of the
procedure localization is

v=
1
2
d(d+1) r 1! log2 1

5d
2s
2"− log2 (r)+42 ,

where r is the number of sign changes of the sequence (ak)0, ..., d.
(3) The number of intervals in Z is the number of real roots of f

in [0, 1].

The study of complexity of the algorithm requires a reciprocal result of
the Descartes rule. In fact we need to know when the number of real roots
of f on [0, 1], denoted by #Zf(0, 1), equals zero implies Var(b)=0 and
when #Zf(0, 1)=1 implies Var(b)=1. We first give

Theorem 2.2. Suppose that f(t)=;d
k=0 akBk(t) with zeros x1, ..., xd with

xd ¥ R such that 0 [ xd [
1

3d−2 or
3d−3
3d−2 [ xd [ 1 and |xk | \ 1/((3/2)

1/(d−1)−1),
k=1, ..., d−1. Then, it holds that Var(a)=1.

Theorem 2.3. Suppose that f(t)=;d
k=0 akBk(t) with zeros x1, ..., xd

such that |xk | \ 1/((3/2)1/d−1), k=1, ..., d. Then, it holds that Var(a)=0.
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To prove these theorems we need

Lemma 2.1. Let g(x)=<d−1
k=1 (t+1+xk)=;d−1

k=0 bkt
k be a real poly-

nomial of degree d \ 2 such that |xk | < ed=e1/(d−1)−1, k=1, ..., d−1 with
1 < e < 2. Then, there exist real numbers dk such that

bk=R
d
k
S (1+dk) > 0, |dk | [ e−1, k=0, ..., d.

Moreover, if 0 < x [ 2− e
(d−1) e or x \

(d−1) e
2− e , then it follows that

Var(bd−2−xbd−1, ..., b0−xb1)=0.

Proof. For k=1, ..., d−1, we know that

bd−1−k= C
0 [ i1 < i2 < · · · < ik [ d−1

D
k

j=1
(1+xij ).

Consequently it holds

:bd−1−k−R
d−1
k
S : [ Rd−1

k
S max
0 [ i1 < i2 < · · · < ik [ d−1

:D
k

j=1
(1+xij )−1 : .

Since |xk | < ed=(3/2)d−1−1, k=1, ..., d−1, it is easy to see that

max
0 [ i1 < i2 < · · · < ik [ d−1

:D
k

j=1
(1+xij )−1 : [ C

k

j=1

Rk
j
S e jd

[ (1+ed)k−1 [ ((1+ed)d−1−1=e−1.

Hence, for each one of k=1, ..., d−1 there exist real numbers dk such that
bd−1−k=(

d−1
k ) (1+dk) with |dk | [ e−1. This implies that bd−1−k \ 0 for all

k=1, ..., d−1. On the other hand, we have

bd−k−1
bd−k

=
d−k
k
1+dk
1+dk−1

.

The following inequalities, for k=1, ..., d−1,

(1) 2− e [ 1− |dk | [ 1+dk [ 1+|dk |=e,

(2)
1
d−1

[
d−k
k

[ d−1,
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imply the point estimates:

2− e
(d−1) e

[
bd−k−1
bd−k

[
(d−1) e
2− e

.

Consequently, if we have

0 [ x [
2− e
(d−1) e

, or x \
(d−1) e
2− e

,

then all the quantities bd−k−1−xbd−k for k=1, ..., d have the same sign.
Hence, it holds that

Var (bd−2−xbd−1, ..., b0−xb1)=0.

Thus the lemma is proved. L

Proof of Theorem 2.2. Let us consider fg(t)=(1+t)d f(1/(1+t)). The
roots xg

k of fg(t) are xg
k=1/xk−1. The polynomial g(t)=<d−1

k=1 (t−x
g
k )=

;d−1
k=0 bkt

k satisfies the assumption of Lemma 2.1 with e=3/2 since
1/|xk | < ed=(3/2)1/(d−1)−1. Since, 0 [ xd [

1
3d−2 or 3d−33d−2 [ xd [ 1, it follows

that xg
d \ 3d−3 or 0 < xg

d [
1

3d−3 . Hence, it holds that

Var(bd−2−x
g
dbd−1, ..., b0−x

g
db1)=0.

The coefficients of the polynomial fg(t)=a0(t−x
g
d) g(t) are

Rd
k
S ad−k
a0
=bk−1−x

g
dbk, k=1, ..., d−1,

ad
a0
=−xg

db0.

The number of sign changes of the sequence

−xg
db0, bd−2−x

g
dbd−1, ..., b0−x

g
db1, 1,

is one. Thus the theorem is proved. L

Proof of Theorem 2.3. Let us again consider fg(t)=(1+t)d f(1/(1+t)).
The roots xg

k of fg(t) are xg
k=1/xk−1. The roots of the polynomial

<d
k=1 (t−x

g
k )=;d

k=0 (
d
k) akt

k satisfy the assumption of Lemma 2.1 with
e=3/2 since 1

|xk|
[ (3/2)1/d−1. Consequently, the coefficients ak are posi-

tive numbers and Var(a)=0. L
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Proof of Theorem 2.1. At the level n of the recursion step, the algorithm
localization computes polynomials f r(t)=f(t/2n+rn/2n+·· ·+r1/2)
where r=(r1, ..., rn), ri ¥ {0, 1}. A root t of f r is linked with a root x of f
by

x=t/2n+rn/2n+·· ·+r1/2.

If f has a multiple real root, the algorithm localization does not ter-
minate since the condition Var(f r) [ 1 cannot to be reached.

We first compute an upper bound for the number of recursion steps to
get Var(f r)=1 in the case where f has simple real roots. Let xd ¥ [0, 1] be
a simple real root of f. From Lemma 2.1, we obtain sufficient conditions
for which Var(f r)=1. These are td [

1
3d−2 and |tk | \ 1/((

3
2)
1/(d−1)−1). We

now estimate n for which

td=2n 1xd− C
n

k=1

rk
2k
2 [ 1
3d−2

[ 2ns,

and

|tk | \ |tk−td |− td \ 2n |xk−xd |−1 \ 2ns−1 \
1

(32)
1
d−1−1

, k=1, ..., d−1.

Since 52 (d−1) > 1/((
3
2)
1/(d−1)−1), the previous inequalities hold when

n \ max 3 log2 1
1

(3d−2) s
2 , log2 1

5d−3
2s
24=log2 1

5d−3
2s
2 .

Next, we give an upper bound for the number of recursion steps to get
Var(f r)=0. From Theorem 2.3, we have Var(f r)=0 when |tk | \

5
2 d for

k=1, ..., d. This previous inequality holds when 2ns \ 5d
2 , i.e., n \ log2(

5d
2s).

Finally, the number of recursion steps is bounded by Klog2 (
5d
2s)L.

There are 2k polynomials of type f r at the level k of recursion. The De
Casteljau algorithm needs additions and divisions by 2: it is easy to see that
there are d(d+1) arithmetic operations. Moreover, when we split the
interval, the total number r of sign variations can only decrease (because of
the variation diminishing property). Moreover, we remove the interval with
sign variation equal to 0 and do not split anymore those with sign variation
equal to 1. Consequently, the recursion tree of height at most l=Klog2 (

5d
2s)L

has a maximal number of edges when its log2(
r
2) first levels are filled and
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the subtrees are of maximal height. The number of edges is thus bounded
by

C
log2(r/2)

k=0
2k+1 l− log2 1

r
2
2+12 r

2
[
1
2
r(l− log2(r)+4).

As each step requires d(d+1) operations, we obtain the desired complexity
bound. L

3. THE TOPOLOGICAL DEGREE AND ITS COMPLEXITY

We briefly outline topological degree theory for determining the exact
number of zeros of a system of nonlinear transcendental equations by
computing the value of the topological degree using Kronecker’s integral
[3, 14, 22, 31, 36, 50] on Picard’s extension [18, 19, 39, 40, 49].

Suppose that a function Fn=(f1, f2, ..., fn): D̄n … RnQ Rn is defined
and twice continuously differentiable in an open and bounded domain Dn
of Rn with boundary JDn. Suppose further that the zeros of the equation
Fn(x)=p, where p ¥ Rn is a given vector, are not located on JDn, and that
they are simple, i.e., the determinant, det JFn , of the Jacobian matrix of Fn
at these zeros is non-zero.

Definition 3.1. The topological degree of Fn at p relative to Dn is
denoted by deg[Fn, Dn, p] and is defined by the sum

deg[Fn, Dn, p]= C
x ¥ F−1n (p) 5Dn

sgn(detJFn (x)), (3.1)

where sgn(k) defines the well known three valued sign function:

sgn(k)=˛
−1, if k < 0,

0, if k=0,

1, if k > 0.

(3.2)

The topological degree is invariant under changes of the vector p in the
sense that, if q ¥ Rn is any vector, then it holds that [38, p. 157]

deg[Fn, Dn, p] — deg[Fn−q, Dn, p−q],

where Fn−q denotes the mapping Fn(x)−q, x ¥Dn. Thus, for simplicity
reason, we consider the case where the topological degree is defined at the
origin Gn=(0, ..., 0) in Rn.
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The topological degree deg[Fn, Dn, Gn] can be represented by the
Kronecker integral which is closely tied with facts used later and is defined
as

deg[Fn, Dn, Gn]=
C(n/2)
2pn/2

FF · · ·
JDn

F
;n
i=1 Ai dx1 · · · dxi−1 dxi+1 · · · dxn
(f21+f

2
2+·· ·+f

2
n)
n/2 ,

(3.3)

where the Ai define the following determinants,

Ai=(−1)n(i−1) det 5Fn
“Fn
“x1
· · ·
“Fn
“xi−1

“Fn
“xi+1

· · ·
“Fn
“xn
6 , (3.4)

where “Fn/“xk=(“f1/“xk, “f2/“xk, ..., “fn/“xk) is the kth column of the
determinant det JFn of the Jacobian matrix JFn .

Definition 3.1 can be generalized when the function is only continuous
[9, 38]. In this case, Kronecker’s theorem [3, 9, 38] states that Fn(x)=Gn
has at least one zero in Dn if deg[Fn, Dn, Gn] ] 0. Furthermore, if Dn=
D1
n 2D2

n where D1
n and D2

n have disjoint interiors and Fn(x) ] Gn for all
x ¥ JD1

n 2 JD2
n, then the topological degree is additive, i.e,

deg[Fn, Dn, Gn]=deg[Fn, D
1
n, Gn]+deg[Fn, D

2
n, Gn]. (3.5)

Now, since deg[Fn, Dn, Gn] is equal to the number of zeros of Fn(x)=Gn
that give positive determinant of the Jacobian matrix minus the number of
zeros that give negative determinant of the Jacobian matrix, the total
number Nr of zeros of Fn(x)=Gn can, of course, be obtained by the value
of deg[Fn, Dn, Gn] if all these zeros have the same sign of the determinant
of the Jacobian matrix. Note that, by assumption, all the zeros of
Fn(x)=Gn are simple. To this end, Picard considered the following exten-
sion of the function Fn and the domain Dn,

Fn+1=(f1, ..., fn, fn+1) : Dn+1 … Rn+1Q Rn+1, (3.6)

where fn+1=y det JFn , and Dn+1 is the direct product of the domain Dn
with an arbitrary interval of the real y-axis containing the point y=0.
Then the zeros of the following system of equations,

fi(x1, x2, ..., xn)=0, i=1, ..., n,

y det JFn (x1, x2, ..., xn)=0,
(3.7)

are the same as the zeros of Fn(x)=Gn provided that y=0. On the other
hand, it is easily seen that the determinant of the Jacobian matrix of (3.7) is
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equal to [det JFn (x)]
2 which is always nonnegative (positive at the simple

zeros). Thus we may conclude the following.

Theorem 3.1 [39, 40]. The total number Nr of zeros of Fn(x)=Gn is
given by

Nr=deg[Fn+1, Dn+1, Gn+1], (3.8)

under the hypotheses that Fn is twice continuously differentiable and that all
the zeros are simple and lie in the strict interior of Dn+1.

Based on this, we are able to give closed formulas for the total number
of roots. As for example in the univariate case, let (a, b) be an open inter-
val in R, and suppose that f: [a, b] … RQ R is twice continuously differ-
entiable. Assume further that f(a) f(b) ] 0 and that all the roots of f that
lie in (a, b) are simple. Then, by applying (3.1) for n=2 we obtain that the
total number N r of roots of f that lie in (a, b) is given by [21],

Nr=−
c

p
F
b

a

f(x) fœ(x)−fŒ2(x)
f2(x)+c2fŒ2(x)

dx

+
1
p

arctan 1c[f(a) fŒ(b)−f(b) fŒ(a)]
f(a) f(b)+c2fŒ(a) fŒ(b)

2 , (3.9)

where c is an arbitrary small real positive constant, i.e, c % 1, ( for a varia-
tion of the CPU time for the computation of N r versus c see [67]). It was
explicitly shown by Picard [39, 40] that Relation (3.9) is independent of
the value of c.

The formula (3.9) can be used for the isolation of all simple roots of a
function f in a specific interval [a, b]. Results with this approach can be
found in [20, 21, 41]. Also, in [20, 21] a framework for the study of the
expected complexity of the problem of finding with certainty all simple
roots of a function has been presented and results have been shown for the
case when the roots are uniformly or arbitrarily distributed (with a contin-
uous distribution) in the considered interval. Furthermore, in [20] it is
proved that the expected value (with respect to the considered distribution)
of the times that we need to apply the formula (3.9) in order to isolate n
roots (n \ 2) is O(n log n). Notice that an optimal algorithm for sorting has
complexity time O(n log n). On the other hand, using our approach we are
able to sort n numbers with the same cost if we consider them as roots of a
univariate polynomial. We intend to present results in this direction in a
future communication.

The Kronecker–Picard integral can be also applied for the determination
of the total number of multiple roots [11, 19, 21, 55].
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For the case of complex zeros the following theorem states that the total
number of complex zeros can be obtained by the value of the topological
degree without Picard’s extension:

Theorem 3.2 [68]. Let D2 … C be an open bounded region and let
f: D2 Q C be analytic. Suppose that f has no zeros on JD2 and assume that
all zeros of f that lie in D2 are simple. Then the total numberN r of zeros of
f is equal to deg[F2, D2, G2], where:

F2(x1, x2)=(f1(x1, x2), f2(x1, x2))=(R(f(x1+ix2)), I(f(x1+ix2))),

where R(z) is the real and I(z) is the imaginary part of z ¥ C.

3.1. Optimal Computation of 2−D Topological Degree

Several methods for the computation of the topological degree have been
proposed in the past few years (see, e.g., [6, 22, 23, 50, 52, 53]). To
evaluate the topological degree, we use Stenger’s method that in some
classes of functions is an almost optimal complexity algorithm (see for
example [6, 47, 50]). The accurate computation of topological degree using
Stenger’s or other related methods [22, 23, 52, 53], is based on suitable
assumptions, including appropriate representation of the boundary of Dn.
In particular, if the boundary of Dn, can be ‘‘sufficiently refined’’ then
Stenger’s method gives the value of topological degree.

Definition 3.2 [22, 23, 50–54]. Let Pn be an n-polyhedron. Suppose
that Fn=(f1, f2, ..., fn) :Pn … RnQ Rn is continuous with Gn ¨ Fn(JPn).
If n=1, JP1 is said to be sufficiently refined relative to sgn Fn, if
0 ¨ F1(JP1). If n > 1, JPn is said to be sufficiently refined relative to sgn Fn,
if JPn has been subdivided so that it may be written as a union of a finite
number of (n−1)-dimensional regions Qn−11 , Q

n−1
2 , ..., Q

n−1
m , each consist-

ing of a union of a finite number of (n−1)-simplices with pairwise disjoint
(n−1)-dimensional interiors and having the following properties:

(a) the interiors of the Qn−1i are pairwise disjoint and each Qn−1i is
connected;

(b) for each region Qn−1i , there exists at least one component of Fn,
( for example fri ), that does not vanish on it;

(c) if fri ] 0 on Qn−1i , then JQn−1i is sufficiently refined relative to
sgn Fri , where

F rin−1=(f1, f2, ..., fri −1, fri+1, · · · , fn).

We now concentrate on dimension 2, although many of the following
results can be extended to a higher dimension.
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Definition 3.3. A segment [pi, pj] is defined to be a closed coun-
terclockwise oriented portion of JD2 with endpoints pi and pj and interior
(pi, pj). A partition P of JD2 is either the empty set or a set {pi}

g
i=1 of

counterclockwise ordered points from JD2 such that

JD2=C
g

i=1
[pi, pi+1], pg+1=p1. (3.10)

Lemma 3.1. A nonempty partition P forms a sufficient refinement of the
boundary JD2 relative to the sign of a function F2=(f1, f2) if and only if
(pi, pi+1) 5 (pj, pj+1)=” for all i ] j and on each [pi, pi+1], there exists a
component of F2, say fj, that is of constant sign (i.e., ] 0) on [pi+pi+1]
and the remaining component of F2 is nonzero at pi and pi+1.

Proof. The proof is obvious (cf. Definition 3.2). L

Stenger proved (see [50]) that, given a sufficient refinement of the
boundary JD2 of D2, the topological degree can be computed as

deg[F2, D2, G2]=
1
4 C
g

i=1
(−1) ji −1 deg[fji+1, [pi, pi+1], 0]× sign fji (pi),

(3.11)

where ji is the index of the component of F2=(f1, f2) that has constant sign
on [pi, pi+1], f3=f1, deg[fj, [pi, pi+1], 0]={sign fj(pi+1)−sign fj(pi)}/2,
and sign fj(pi)= (1, if fj(pi) > 0, −1 if fj(pi) < 0).

A worst-case lower bound for the number of function evaluations needed
by this algorithm is expressed in terms of the Lipschitz constant of F2 with
respect to D2 and the infinity norm of F2 along the boundary of D2.

More specifically, let B — [0, 1]×[0, 1] be the unit square in R2 and
|| · ||. be the infinity norm in R2. For given positive d and K define

F={F2: BQ R2, F2=(f1, f2) : ||F2(x)−F2(y)||. [K ||x−y||. -x, y ¥B

||F2(x)||. \ d -x ¥ JB and K/(4d) \ 1}.
(3.12)

Boult and Sikorski presented in [6] an optimal complexity algorithm for
computing the topological degree for any function from the class F. Their
algorithm calculates the degree using (3.11). They have examined the com-
plexity, i.e. minimal cost of the problem of the calculation of topological
degree for functions from class F and concluded that it is an almost
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optimal complexity algorithm. They assumed that each arithmetic opera-
tion (+, −, f, ÷ , abs()), each logical operation (and, or, not) or compari-
son ( > , < , \ , [ , =, ] ) costs unity, and that each function evaluation
costs c. Also, they proved that any algorithm that solves the problem must
use at least mg=4NK/(4d)M function evaluations and a lower bound on the
computational complexity is mg×(c+2)−1.

The above can be extended to the case where the domain of interest is an
arbitrary polyhedron in R2 [6]. This extension consists of choosing points
on the boundary of the polyhedron separated by a distance 1/NK/(4d)M in
the infinity norm [6].

3.2. A New Approach

To evaluate the topological degree using the optimal complexity algo-
rithm of [6] we need the value of the Lipschitz constant

K=max
x ] y
x, y ¥D2

||F2(x)−F2(y)||.
||x−y||.

,

with respect to D2 and the infinity norm d of F2 along the boundary of D2.
We propose another scheme that involves only d=minx ¥ JD2 ||F2(x)||..

The scheme consists of two steps:

• First, we approximate the function F2 on the boundary by B-splines,
controlling the error of approximation in terms of second derivatives. This
approximation step is not required if map F2 is a polynomial.

• Second we use the B-spline approximation and the isolation proce-
dure of Section 2, in order to compute the topological degree of F2.

In order to compute topological degree of F2 from an approximation of
its components on the boundary of the domain, we will exploit the homo-
topy invariance of the degree. More precisely, we use the following defini-
tion:

Definition 3.4. Suppose that j1, j2: D̄n … RnQ Rn are two continuous
mappings defined on the closure D̄n, of an open and bounded domain Dn.
If p ¥ Rn is any point such that p ¨ j1(JDn) and p ¨ j2(JDn), and if there is
a homotopy:

H: D̄n×I … Rn+1Q Rn, I=[0, 1],

such that H(x, 0)=j1(x), H(x, 1)=j2(x) with H(x, t) ] p for all
(x, t) ¥ JDn×I, then j1 and j2 are said to be homotopic avoiding p.

The homotopy invariance of the degree is given by:
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Theorem 3.3 (Homotopy Invariance [4, 9, 33, 38]). If j1 and j2 are
homotopic avoiding p then deg[H( · , t), Dn, p] has the same value for all
t ¥ I and consequently deg[j1, Dn, p]=deg[j2, Dn, p].

As conclusion of Theorem 3.3, we find that the topological degree
depends only on the values of the considered function on the boundary JDn
of the domain Dn. In particular, if j1, j2: D̄n … RnQ Rn are two continuous
mappings defined on the closure D̄n of an open and bounded domain Dn
and if p ¥ Rn is any point for which the deg[j1, Dn, p], deg[j2, Dn, p] are
defined, then Theorem 3.3 implies the following three theorems:

Theorem 3.4 (Boundary-Value [4, 9, 33, 38]). If j1(x)=j2(x) for
x ¥ JDn, then deg[j1, Dn, p]=deg[j2, Dn, p].

Theorem 3.5 (Poincaré-Bohl [4, 9, 33, 38]). If for each x ¥ JDn the line
segment [j1(x), j2(x)] does not intersect the point p, then deg[j1, Dn, p]
=deg[j2, Dn, p].

Theorem 3.6 (Rouché [4, p. 226; 9; 33; 38]). If for some positive
number g < p it holds that ||j1(x)−p|| > g for x ¥ JDn and if ||j1(x)−j2(x)||
< g for x ¥Dn then deg[j1, Dn, p]=deg[j2, Dn, p].

Thus, if F2 does not vanish on the boundary of the domain and if its
components are approximated closely enough on this boundary, the topo-
logical degree of the map and its approximation will be the same. We are
going to approximate components of F2 by B-splines within E < d=
minx ¥ JD2 ||F2(x)||.. By Theorem 3.6, the topological degree will not change.
The approximation error is controlled as follows. Let us denote by Sd the
Schoenberg operator defined by

S(F2)= C
L−d+1

i=0
F2(zi) B

d
i ,

where zi=
1
d (ui+·· ·+ui+d−1), B

d
i is the Bézier basis from Section A.2 and

ud [ a, b [ uL. The fundamental property of S is that it reproduces straight
lines, i.e. S(f)=f when f is a polynomial of degree one. The following
well known result, is given in, e.g., [35, p. 8; 42, p. 36].

Theorem 3.7. Let f be a function twice differentiable on the interval
[a, b]. Suppose further that |u|=supd [ i [ L |ui+1−ui |. Then, for all d \ 1, we
have

||f−S(f)||. [ Cd |u|d ||f (d)||..

First, let us consider a rectangular domain D2. We approximate F2 on
the boundary JD2 by a univariate B-spline, which yields control polygons
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on the boundary JD2. The complete B-spline 2D map is obtained by con-
structing any mesh that fits with the control polygons on the boundary JD2
and by computing the corresponding tensor B-spline, corresponding to the
representation in the bivariate basis (Bdi (t) B

d
j (s))0 < i, j [ d, (see [12]).

If we consider triangular domain, then we will use triangular meshes and
B-splines. We assume hereafter that the map F2=(f1, f2) is twice contin-
uously differentiable on the boundary JD2 and we denote by S(F2)=
(S(f1), S(f2)) the B-spline approximation associated with Schoenberg
operator on segments defining the boundary of the domain.

Proposition 3.1. Assume that ||F2 || > g on JD2 and that the perimeter of
D2 is s. Then a B-spline approximation of F2 such that

deg[S(F2), D2, G2]=deg[F2, D2, G2],

can be constructed with L nodes if

L \ !s d=||F
(2)
2 ||
2g
" .

Proof. We take for u a regular subdivision of points on the boundary
D2 such that |u| < sL where L is the number of nodes and we apply
Theorem 3.6. Thus the proposition is proved. L

This result suggests that linear approximation (d=1) will yield the
optimal number of nodes. Higher order spline approximations can be
however be exploited if the function f is of class Ck with k [ 2 by using
Schoenberg-like operators which reproduce polynomial functions of degree
(k−1). For more details, see [44].

The next step consists of computing effectively the topological degree of
the B-spline map S(F2). We use the following results.

Proposition 3.2. Suppose that F2=(f1, f2): D2 … R2Q R2 is continu-
ous and that G2 ¨ F2(JD2). Then a partition P of counterclockwise ordered
points {pi}

g
i=1 from the boundary JD2 that forms a sufficient refinement of

JD2 relative to the sign of F2 can be obtained by g=2×min{Nr
j , j=1, 2}

points whereN r
j determines the total number of sign changes of fj along the

boundary JD2.

Proof. By Bolzano’s existence criterion for each sign change of a com-
ponent of F2, say fj, there exists a closed counterclockwise oriented portion
of JD2 with endpoints pi and pi+1 such that fj vanishes exactly once within
(pi, pi+1), fj ] 0 at pi and pi+1 and the remaining component of F2 is of
constant sign on [pi, pi+1]. The latter holds since G2 ¨ F2(JD2). Then the
proof follows by Lemma 3.1. L
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Hereafter, we will assume that F2 is a B-spline map of degree d (and thus
continuous).

Definition 3.5. We define an optimal partition Popt as the partition
{pi}

g
i=1 of g counterclockwise ordered points from the boundary JD2

forming a sufficient refinement of JD2 relative to the sign of a function F2
obtained with the minimum number g.

Remark 3.1. The optimal partition is obtained by applying Proposi-
tion 3.2 to the longest possible portions of the boundary JD2 with end-
points pi and pi+1 such that a component of F2, say fj, vanishes exactly
once within (pi, pi+1), fj ] 0 at pi and pi+1 and the remaining component
of F2 is of constant sign on [pi, pi+1].

In order to effectively compute this optimal partition, we use the isola-
tion procedure of Section 2. We decompose the boundary JD2 into
segments, on which we isolate the roots of the product f1f2. Using
Theorem 2.1 we get the following results.

Theorem 3.8. Assume that JD2 is a rectangular cell and that F2 does not
vanish on JD2. Then the number of operations needed to compute a suffi-
ciently refined subdivision of JD2 is bounded by

w=4d(d+1) (r1+r2) 1 log2 1
5d
s
2+42 ,

where s=mini ] j |xi−xj | for xi, xj ¥ {[f
−1
1 (0) 2 f−12 (0)] 5 JD2}, (xi, xj are

the zeros of f1 or f2 along the boundary JD2), and ri is the number of sign
changes of fi along the boundary JD2.

Proof. We apply Theorem 2.1 to the product f1f2, each subdivision
requiring d(d+1) arithmetic operations and the number of segments on the
boundary of a rectangular cell being 4. Thus the theorem is proved. L

Once we have isolated the roots of f1 and f2 on the boundary, that is
when we obtain a sequence of intervals containing exactly one of the roots
of f1 or f2, we derive immediately an optimal partition of the boundary, by
simplifying the resulting subdivision.

We summarize the algorithm for computing topological degree of F2:

Algorithm 3.1. Computing the topological degree
Assume that D2 is a rectangle in R2.

1. if F2 is not polynomial, approximate F2 on the boundary, by the
B-spline map S(F2)=(f1, f2) of degree d,
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2. for each segment of the boundary JD2, isolate the roots of f1f2,
using Algorithm 2.1,

3. deduce a sufficiently refined subdivision of the boundary (see
Lemma 3.1),

4. compute the topological degree of F2, according to the for-
mula (3.11).

Combining previous results, we get:

Theorem 3.9. The total number of operations required to compute topo-
logical degree of polynomial map F2=(f1, f2) of degree d on D2 is bounded
by

O 1d2(r1+r2) log2 1
5d
s
22 ,

where s=mini ] j |xi−xj | for xi, xj ¥ {[f
−1
1 (0) 2 f−12 (0)] 5 JD2} and ri is

the number of sign changes of fi along the boundary JD2.

3.3. The Characteristic Polyhedron Criterion and the
Characteristic Bisection Method

The aim of this section is to describe a generalized bisection method for
the computation of a solution of

Fn(x)=Gn, (3.13)

where Fn=(f1, ..., fn): D̄n … RnQ Rn is continuous. This method of bisec-
tion avoids all calculations concerning the topological degree.

Once we have obtained a domain for which the value of the topological
degree relative to this domain is nonzero, we are able to obtain upper and
lower bounds for solution values. To this end, by computing a sequence of
bounded domains with nonzero values of topological degree and decreasing
diameters, we are able to obtain a region with arbitrarily small diameter
that contains at least one solution of Eq. (3.13). However, although the
nonzero value of topological degree plays an important role in the existence
of a solution of Eq. (3.13), the computation of this value is a time-consum-
ing procedure. The bisection method, on the other hand, which is briefly
described below, avoids all calculations concerning the topological degree
by implementing the concept of the characteristic n-polyhedron criterion for
the existence of a solution of Eq. (3.13) within a given bounded domain.
This criterion is based on the construction of a characteristic n-polyhedron
[58, 59, 64]. To define a characteristic n-polyhedron (n-dimensional convex
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polyhedron) we construct the n-complete 2n×n matrixMn, whose rows are
formed by all possible combinations of −1 and 1. To this end we compute
the n-binary 2n×n matrix Mg

n=[e
g
ij]
2n, n
i, j=1 where egij the jth digit of the

n-digit binary representation of the number (i−1) counting the left-most
digit first. Then the elements of Mn=[eij]

2n, n
i, j=1 are given by eij=2e

g
ij−1.

Suppose now that Pn=OV1, V2, ..., V2nP is an oriented (i.e., an orientation
has been assigned to its vertices) n-dimensional convex polyhedron with 2n

vertices, Vi ¥ Rn, and let Fn=(f1, f2, ..., fn):Pn … RnQ Rn be a continu-
ous mapping.

Definition 3.6. The 2n×n matrix S(Fn;Pn) whose entries in the kth
row are the corresponding coordinates of the vector

sgn(Fn(Vk))=(sgn(f1(Vk)), sgn(f2(Vk)), ..., sgn(fn(Vk))), (3.14)

will be called matrix of signs associated with Fn and Pn, where sgn(k)
defines the three valued sign function (3.2).

Definition 3.7. An n-polyhedron Pn is called characteristic
n-polyhedron relative to Fn, iff the matrix S(Fn;Pn) is identical with the
matrix Mn, after some permutation of its rows.

Definition 3.8. A polyhedron which is a convex hull of 2n−1 vertices of
a characteristic n-polyhedron Pn relative to Fn, will be called r-side of Pn

and will be noted by Pr, r=1, 2, ..., n iff for all its vertices Vk,
k=1, 2, ..., 2n−1 the corresponding vectors sgn(Fn(Vk)) have their rth
coordinate equal to each other. Moreover, if this common rth element is
−1 (or 1) then the Pr will be called negative (or positive) r-side.

Lemma 3.2 [64]. In each characteristic n-polyhedron relative to Fn there
are n positive and n negative sides. Moreover, each side Pr of a characteristic
n-polyhedron Pn relative to Fn=(f1, f2, ..., fn):Pn … RnQ Rn is itself a
characteristic (n−1)-polyhedron relative to F rn−1=(f1, f2, ..., fr−1, ..., fn):
Pr Q Rn−1.

Now, if the boundary JPn of a characteristic polyhedron Pn can be suf-
ficiently refined then there is (at least) one zero within Pn. More specifi-
cally, the following theorem holds:

Theorem 3.10 [64]. Let V=OVP2ni=1 and P={Pi}
2n
i=1 be the ordered

set of vertices and the set of the sides, respectively, of a characteristic
n-polyhedron Pn relative to continuous Fn:Pn … RnQ Rn for which en
Gn ¨ Fn(JPn). Suppose that S={Si, j}

2n, ji
i=1, j=1 is a finite set of (n−1)-

dimensional oriented simplices which lie on JPn with the following properties:
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(1) JPn=;2n
i=1 ; ji

j=1 Si, j,
(2) the interiors of the members of S are disjoint,
(3) these simplices make JPn sufficiently refined relative to sgn(Fn),

and

(4) the vertices of each simplex Si, j are a subset of vertices of Pi.

Then, it holds that deg[Fn,Pn, Gn]=±1.

The above result implies the existence of at least one solution of
Eq. (3.13) within Pn. For more details on how to construct a characteristic
n-polyhedron and locate a desired solution see [58, 59, 61]. The character-
istic polyhedron can be considered as a translation of the Poincaré–
Miranda hypercube [32, 50, 60].

Next, we describe a generalized bisection method. This method
combined with the above mentioned criterion, produces a sequence of
characteristic polyhedra of decreasing size always containing the desired
solution. We call it Characteristic Bisection. This version of bisection does
not require the computation of the topological degree at each step, as
others do [10, 23, 57]. It can be applied to problems with imprecise func-
tion values, since it depends only on their signs. The method simply
amounts to constructing another refined characteristic polyhedron, by
bisecting a known one, say Pn. To do this, we compute the midpointM of
the longest edge OVi, VjP, of Pn (where the distances are measured in
Euclidean norms). Then we obtain another characteristic polyhedron, Png,
by comparing the sign, sgn(Fn(M)), of Fn(M) with that of Fn(Vi) and
Fn(Vj) and substituting M for that vertex for which the signs are identical
[58, 59, 61]. Then we select the longest edge of Png and continue the above
process. If the assumptions of Theorem 3.10 are satisfied, one of the
sgn(Fn(Vi)), sgn(Fn(Vj)) coincides with sgn(Fn(M)), otherwise, we continue
with another edge.

Theorem 3.11 [64]. Suppose that Pn is a characteristic n-polyhedron
whose longest edge length is D(Pn). Then, the minimum number z of bisec-
tions of the edges of Pn required to obtain a characteristic polyhedron Png
whose longest edge length satisfies D(Png) [ e, for some accuracy e ¥ (0, 1), is
given by

z=Klog2 (D(Pn) e−1)L. (3.15)

Notice that z is independent of the dimension n and that the bisection
algorithm has the same number of iterations as the bisection in one-
dimension which is optimal and possesses asymptotically the best rate of
convergence [46].
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3.4. Application to the Isolation of Complex Roots of an Analytic Function

These tools can now be combined to compute complex roots of an ana-
lytic function in a bounded domain. Let f: CQ C be an analytic map and
let

F2: R2Q R2,

(x1, x2)W (R(f(x1+ix2)), I(f(x1+ix2))),

where R(z) is the real and I(z) is the imaginary part of z ¥ C. Suppose that
D2 is a bounded domain of R2 and let us assume that F2 does not vanish on
its boundary. According to Theorem 3.1, the topological degree of F2 on
D2 is the number of complex roots in the domain D2. This criterion can be
used to split a rectangular domain D2, as described in the following
algorithm:2

2 It can be extended to general polygonal domains.

Algorithm 3.2. Isolating the complex roots within a precision s.
While deg[F2, D2, G2] > 1 and diameter (D2) > s,

1. split D2 along its longest dimension (edge) into D1
2 and D2

2,
2. compute deg[F2, D

1
2, G2] and deg[F2, D

2
2, G2].

Notice that, if the topological degree is not well defined at Step (2), that
is if F2 vanishes on the new edge (or if the isolation process cannot separate
the roots of F2 by intervals of size greater than E), we perturb the splitting
by using an edge which do not split exactly into equal parts.

Proposition 3.3. Assume that D2 is a rectangle of width a and height b.
Then, the number of recursion steps in Algorithm 3.2 is bounded by

b=2 log2 1
`a2+b2

s
2 ,

where s=mini ] j |zi−zj | and zi is a root of f in D2.

Proof. Every two steps we divide the diameter by two and we stop
when this diameter is less than s. Thus, if k is the number of steps, we have

`a2+b2

2
k
2

< sS k < 2 log2 1
`a2+b2

s
2 .

Thus the proposition is proved. L
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Once the roots have been isolated, we can refine the isolation by using
the characteristic polyhedron approach of the previous section.

This algorithm can be applied directly to a complex polynomial of degree
d to compute all its roots in the complex plane, as follows. We replace its
real part f1 and imaginary part f2 by the polynomials

f̃i=(1−t1)d (1−t2)d fi 1
t1
1−t1

,
t2
1−t2
2 , i=1, 2,

and isolate the roots of F̃2=(f̃1, f̃2) on the domain D2=[0, 1[×[0, 1[,
which will yield the roots of F2 on [0,+.[×[0,+.[. Using symmetry
along the axes, we compute in a similar way the roots in the other
quadrants.

4. CONCLUSIONS AND FURTHER RESEARCH

The approach that we proposed for the computation of the topological
degree consists of:

(1) approximation (if required) of a function by a B-spline map on
the boundary of the domain,

(2) isolating of the real zeros of its components on this boundary,
and

(3) computation of the topological degree by direct sign computa-
tions.

We focused on the two dimensional case and analyzed in detail different
steps of this approach. We provided new complexity results, that improve
previously known bounds. We mentioned a direct application of this
method to the isolation of complex roots of a univariate polynomial.

The interesting feature of this approach is that it is based on very simple
operations such as sign evaluations, additions, divisions by 2, which may be
of importance in the practical implementation of the algorithm. Also, the
method can be adapted to a specific domain of interest, which is not the
case of algebraic methods.

Many improvements can be added. First, most of the operations can be
extended to higher dimensions, by applying recursively topological degree
computation. Second, several steps can be adapted to a local behavior of
the function, refining for instance the approximation where the function is
small or adapting the domain to the geometry of the zeros. The validation
of numerical stability of the method in the context of equations with
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approximate coefficients is under study. The topological degree theory
should provide pertinent answers to problems for which the roots move
from the complex domain to the real domain in a neighborhood of the
input coefficients.

APPENDIX A: B-SPLINE REPRESENTATION

We recall here the basic results that we use on Bézier polynomials and
B-spline representations. For more details see, e.g., [12].

A.1. Bézier Curves

Let f: RQ R be a polynomial of degree d, with coefficients in R. A pos-
sible representation for this polynomial is its (d+1)-array of coefficients in
the monomial basis 1, t, ..., td:

f(t)=C
d

k=0
fktk.

We will consider her another basis, given by the Bézier polynomials:

Bdi (t)=R
d
i
S t i(1−t)d−i, i=0, ..., d.

We denote by (ai)i=0, ..., d the coefficients of f in this basis:

f(t)=C
d

i=0
aiB

d
i (t).

The points (pi)i=0, ..., d where pi=[
i
d , ai] form what is called the control

polygon of the polynomial f (see [12]).
A value of a polynomial f can be easily computed from this representa-

tion, using the de Casteljau algorithm:

b0i=ai, i=0, ..., d,

b ri=(1−t) b
r−1
i +tb

r−1
i+1 (t), i=0, ..., d−r.

The value of f(t) is bd0(t). This algorithm requires O(d2) arithmetic opera-
tions and O(d) memory space. Moreover, the control polygons P−(t)=
(p00, p

1
0, ..., p

d
0) and P+(t)=(qd0 , q

d−1
1 , ..., q

0
d) (where p ji=[

j
d , b

j
i] and
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q ji=[
i
d , b

j
i]) refer to the restriction of f on [0, t] and [t, 1]. We consider

the special value t=1
2 , for the subdivision step in our algorithm. The two

control polygons P−(t), P+(t) describe the functions f0(t)=f(t2) and
f1(t)=f(t+12 ) on the interval [0, 1].

A fundamental property of the Bernstein representation is that the curve
defined by

t ¥ [0, 1]Q (t, f(t)) ¥ R2,

is contained in the convex hull of the points (k/d, ak), k=0, ..., d. This
follows easily from the classical equality t=;d

k=0
k
d B

d
k(t).

We denote by fg(t) the following polynomial:

fg(t)=(1+t)d f 1 1
1+t
2=C

d

k=0

Rd
k
S aktd−k.

Consequently, the localization of the real roots of f(t) in the interval [0, 1]
is equivalent to the localization of the real roots of fg(t) in the interval
[0,+.[.

Another interesting property of this representation is the following:

Proposition A.1. The number of sign changes of the sequence a=
(ai)i=0, ..., d bounds the number of roots of f in the interval [0, 1]. Moreover,
this bound is equal to the number of roots modulo 2.

Proof. The first point is a direct consequence of the Variation Dimi-
nishing property of Bézier curves [12, p. 54].

For the second point, we remark that, by applying the change of
variables tQ t

1+t , we can use the classical Descartes rule for fg, giving a
bound and the parity of the number of positive real roots of a univariate
polynomial [42]. Thus the proposition is proved. L

The control polygon of a curve is a very rough but quite intuitive
description of the curve. This description can be refined by insertion of
points, given by the following formula,

p −i=
i
d+1

pi−1+11−
i
d+1
2 pi, i=0, ..., d+1,

which requires O(d) arithmetic operations. Iterating this refinement yields a
sequence of polygons which converge to the curve [12].
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A.2. B-splines

In our approach we also use B-splines. We briefly recall their construc-
tion (for more details see for instance [12]). Let u0=a, ..., uL=b be a set
of non-decreasing numbers, also called a subdivision of [a, b]. A B-spline
curve of order d associated with the subdivision u=(u0, ..., uL), is a curve
which is piecewise polynomial of degree d on the interval [a, b], and of
class C ri at the node ui. Notice that these nodes may not be distinct. The
curve is polynomial (of degree d) on the interval [ui, ui+1] and defined by
the control polygon ([ti+j, bi+j])j=0, ..., d−1 where

ti=
1
d
(ui+·· ·+ui+d−1).

In order to represent a polynomial P of degree d with control values
b0, ..., bL on the interval [0, 1], we take the subdivision u0=·· ·=ud−1=0,
ud=·· ·=u2d−1=1. Thus we have tj=

j
d , and the control polygon defining

the curve is the curve is

[t0, b0], ..., [tL−d+1, bL−d+1].

The internal representation of such a B-spline is thus given by:

• the sequence of nodes u0, ..., uL,
• the control values b0, ..., bL.

The abscissas (ti)i=0, ..., L−d can be computed directly from these values.

Refining the Representation. Given a B-spline, in order to get a more
precise representation of the same curve we can refine the subdivision. This
task is performed by the insertion algorithm described in [12], and similar
to de Casteljau algorithm. This refinement procedure has the following
properties:

• Variation diminishing property: a line intersects the control polygon
in more points than the number of real zeros of the polynomial P on the
interval [a, b].

• By inserting a sequence of equidistant points in [a, b], the sequence
of polygons converge to the curve.

Consequently, the number of sign changes in the sequence bi bounds the
number of real roots in the interval [a, b]. This bound is equal to the
actual number of real roots, modulo 2.
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