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Abstract. This paper introduces a new learning algorithm for Fuzzy Cognitive Maps, which is based on the
application of a swarm intelligence algorithm, namely Particle Swarm Optimization. The proposed approach is
applied to detect weight matrices that lead the Fuzzy Cognitive Map to desired steady states, thereby refining the
initial weight approximation provided by the experts. This is performed through the minimization of a properly
defined objective function. This novel method overcomes some deficiencies of other learning algorithms and, thus,
improves the efficiency and robustness of Fuzzy Cognitive Maps. The operation of the new method is illustrated
on an industrial process control problem, and the obtained simulation results support the claim that it is robust and
efficient.
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1. Introduction

Fuzzy Cognitive Maps (FCMs) constitute a modeling methodology that combines fuzzy
logic and neural networks (Kosko, 1997). They were developed by Kosko as an expansion
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of cognitive maps (Axelrod, 1976; Kosko, 1986), and they belong to the class of neuro–
fuzzy systems, which are able to incorporate human knowledge and adapt it through learning
procedures. FCMs are designed by experts through an interactive procedure of knowledge
acquisition (Hagiwara, 1992; Stylios and Groumpos, 2000).

FCMs have a wide field of application, including modeling of complex and intelligent
systems (Jang et al., 1997), decision analysis (Khan et al., 1999), and graph behavior anal-
ysis (Hagiwara, 1992). They have also been used for planning and decision–making in
the fields of international relations and social systems modeling (Taber, 1991,1994), as
well as in management science, operations research and organizational behavior (Craiger
and Coovert, 1994). Dickerson and Kosko have used FCMs to construct virtual worlds
(Dickerson and Kosko, 1994). Furthermore, FCMs have been proposed for modeling super-
visory systems (Groumpos and Stylios, 2000; Papageorgiou et al., 2004a), decision-making
in radiation therapy planning systems (Papageorgiou et al., 2003b; Parsopoulos et al., 2004),
as well as for grading urinary bladder and tumor characterization (Papageorgiou et al.,
2004b, 2004c).

The wide recognition of FCMs as a promising modeling and simulation methodology for
complex systems, characterized by abstraction, flexibility and fuzzy reasoning, promoted the
research on new concepts and learning algorithms for FCMs. However, the existing learning
algorithms for FCMs still require enhancement, stronger mathematical justification, and
further testing on systems of higher complexity. Moreover, the elimination of deficiencies,
such as the abstract estimation of the initial weight matrix, as well as the development
of techniques that could further refine the experts’ knowledge, will significantly improve
the functionality and applicability of FCMs. In this context, the development of learning
algorithms is a stimulating research topic.

Up-to-date, a few algorithms have been proposed for FCM learning (Kosko, 1997; Pa-
pageorgiou et al., 2004b, 2004c; Papageorgiou and Groumpos, 2004). The main task is to
find proper values of the FCM’s weights that lead the FCM to a desired steady state. This
is achieved through the minimization of a properly defined objective function. Established
algorithms are mainly dependent on the initial weight matrix approximation, which is pro-
vided by the experts. Recently, a different approach has been proposed for FCM learning,
which is based on the application of Evolution Strategies for the computation of proper
weight matrices (Koulouriotis et al., 2001).

This paper proposes a new approach for FCM learning, which is based on a swarm
intelligence algorithm. More specifically, the Particle Swarm Optimization (PSO) method
is used for the determination of proper weight matrices for the system through the
minimization of a properly defined objective function. PSO is selected due to its ef-
ficiency and effectiveness on a plethora of applications in science and engineering, as
well as its straightforward applicability (Abido, 2002; Agrafiotis and Cedeno, 2002;
Cockshott and Hartman, 2001; Fourie and Groenwold, 2002; Kennedy and Eberhart, 2001;
Laskari et al., 2002a, 2002b; Lu et al., 2002; Ourique et al., 2002; Parsopoulos et al.,
2003, 2004; Papageorgiou et al., 2004a; Parsopoulos and Vrahatis, 2002b, 2002c, 2003,
2004; Ray and Liew, 2002; Saldam et al., 2002; Tandon et al., 2002). The proposed
approach is illustrated on an industrial process control problem, with promising
results.
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The rest of the paper is organized as follows: in Section 2 the main principles underlying
FCMs are described. In Section 3, the PSO algorithm is briefly presented; Section 4 is
devoted to the description and analysis of the proposed learning algorithm. The process
control problem, on which the proposed algorithm is tested, is described in Section 5, while
the obtained results are reported and discussed in Section 6. Section 7 closes the paper, with
conclusions and ideas for future research.

2. Description of fuzzy cognitive maps

FCMs have been introduced by Kosko (1986) as signed directed graphs for representing
causal reasoning and computational inference processing. FCMs exploit a symbolic repre-
sentation for the description and modeling of a system. Concepts are utilized to represent
different aspects of the system, as well as, their behavior. The dynamics of the system are
simulated by the interaction of concepts. FCMs are used to represent both qualitative and
quantitative data. The construction of an FCM requires the input of human experience and
knowledge on the system under consideration. Thus, FCMs integrate the accumulated ex-
perience and knowledge concerning the underlying causal relationships amongst factors,
characteristics, and components that constitute the system.

An FCM consists of nodes-concepts,

Ci , i = 1, . . . , N ,

where N is the total number of concepts. Each node–concept represents one of the key-
factors of the system and it is characterized by a value,

Ai ∈ [0, 1], i = 1, . . . , N .

The concepts are interconnected through weighted arcs, which imply the relations among
them. A simple FCM with five nodes and ten weighted arcs is illustrated in figure 1. Each
interconnection between two concepts, Ci and C j , has a weight, Wi j , which is analogous

Figure 1. A simple Fuzzy Cognitive Map.
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to the strength of the causal link between Ci and C j . The sign of Wi j indicates whether the
relation between the two concepts is direct or inverse. The direction of causality indicates
whether the concept Ci causes the concept C j or vice versa. Thus, there are three types of
weights,


Wi j > 0, expresses positive causality,

Wi j < 0, expresses negative causality,

Wi j = 0, expresses no relation.

Human knowledge and experience on the system determines the type and number of
nodes, as well as the initial weights of the FCM. The value, Ai , of a concept, Ci , expresses
the quantity of its corresponding physical value and it is derived by the transformation of
the fuzzy values assigned by the experts to numerical values. Having assigned values to the
concepts and weights, the FCM converges to a steady state through the interaction process
subsequently described. At each step, the value Ai of a concept is influenced by the values
of concepts–nodes connected to it and it is updated according to the scheme (Kosko, 1997),

Ai (k + 1) = f

(
Ai (k) +

n∑
j=1
j �=i

W ji A j (k)

)
, (1)

where k stands for the iteration counter; and W ji is the weight of the arc connecting concept
C j to concept Ci . The function f is the sigmoid function,

f (x) = 1

1 + e−λx
, (2)

where λ > 0 is a parameter that determines its steepness in the area around zero. In our
approach, the value λ = 1 has been used. This function is chosen since the values Ai of
the concepts, by definition, must lie within [0, 1]. The interaction of the FCM results in a
steady state after a few iterations, i.e., the values of the concepts are not modified further.
Desired values of the output concepts of the FCM guarantee the proper operation of the
simulated system.

The design of an FCM is a process that heavily relies on the input from experts (Stylios
et al., 1999; Stylios and Groumpos, 2000). At the beginning, experts are pooled to determine
the relevant factors that will be represented in the map as concepts. Then, they are individu-
ally asked to describe the causal relationships among the concepts, using a linguistic notion.
First, experts determine the influence of a concept on another as “negative”, “positive” or
“no influence”. Then, linguistic weights, such as “strong”, “weak”, etc., are assigned to
each arc. The linguistic variables that describe each arc, for each expert, are defined in Cox
(1999), and they are characterized by the fuzzy sets whose membership functions are shown
in figure 2. The linguistic variables are combined, and the aggregated linguistic variable is
transformed to a single linguistic weight, through the SUM technique (Lin and Lee, 1996).
Finally, the Center of Area (CoA) defuzzification method (Kosko, 1992; Lin and Lee, 1996)
is used for the transformation of the linguistic weight to a numerical value within the range
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Figure 2. Membership functions for fuzzy weights of FCMs.

[−1, 1]. This methodology has the advantage that experts are not required to assign directly
numerical values to causality relationships, but rather to describe qualitatively the degree
of causality among the concepts. Thus, an initial weight matrix,

W initial =




W11 W12 · · · W1N

W21 W22 · · · W2N

...
...

. . .
...

WN1 WN2 · · · WN N


 ,

with Wii = 0, i = 1, . . . , N , is obtained. Using the initial concept values, Ai , and the
matrix W initial, the FCM interacts through the application of the rule of Eq. (1), and it stops
to a potential steady state.

The potential convergence to undesired steady states is a major deficiency of FCMs.
Also, techniques that could further refine the experts’ knowledge enhance significantly their
performance. Learning procedures constitute means to increase the efficiency and robustness
of FCMs by updating the weight matrix so as to avoid convergence to undesired steady
states. Up-to-date, there are just a few FCM learning algorithms and they are mostly based
on ideas coming from the field of artificial neural networks training. Kosko has developed
the first algorithm, named Differential Hebbian Learning (Dickerson and Kosko, 1994).
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Two different proposed algorithms are the Active Hebbian Learning rule (Papageorgiou
et al., 2004d), which derives from the unsupervised Hebbian learning algorithm for neural
networks (Hebb, 1949), and the Nonlinear Hebbian Rule (Papageorgiou et al., 2003a). The
aforementioned algorithms start from an initial state and an initial weight matrix, W initial,
of the FCM, and adapt the weights, in order to compute a weight matrix that leads the FCM
to a desired state of the output concepts. The desired state is characterized by values of the
FCM’s output concepts that are accepted by the experts, ex post. The main drawback of this
approach is the dependence of the final weights on the initial weight matrix. Wrong initial
estimation of the weights or large deviation among the experts’ suggestions may lead in
reduced efficiency of the algorithms and/or in undesired states of the system.

A novel learning procedure that alleviates the problem of the potential convergence to
an undesired steady state is proposed in this paper. This approach is based on a swarm
intelligence algorithm, which is briefly presented in the next section.

3. The particle swarm optimization method

Particle Swarm Optimization (PSO) is a stochastic, population-based optimization algo-
rithm. It belongs to the class of swarm intelligence algorithms, which are inspired from the
social dynamics and emergent behavior that arise in socially organized colonies (Bonabeau
et al., 1999; Eberhart et al., 1996; Kennedy and Eberhart, 1995, 2001; Parsopoulos and Vra-
hatis, 2002c, 2004). Swarm intelligence is related to the field of evolutionary computation,
which consists of algorithms inspired by natural evolution and genetic dynamics, such as Ge-
netic Algorithms (Michalewicz, 1994); Genetic Programming (Banzhaf et al., 1998; Koza,
1992); Evolution Strategies (Bäck, 1996; Beyer, 2001; Rechenberg, 1994; Schwefel, 1995);
and Evolutionary Programming (Fogel, 1996).

PSO exploits a population, called a swarm, of individuals, called particles, to probe
the search space. Each particle moves with an adaptable velocity within the search space,
and retains a memory of the best position it ever encountered. In the global variant of
PSO, the best position ever attained by all individuals of the swarm is communicated to
all the particles. In the local variant, each particle is assigned to a neighborhood consisting
of prespecified particles. In this case, the best position ever attained by the particles that
comprise the neighborhood is communicated among them (Eberhart et al., 1996; Kennedy
and Eberhart, 2001).

Assume a D-dimensional search space, S ⊂ R
D , and a swarm consisting of M particles.

The i-th particle is in effect a D-dimensional vector,

Xi = (xi1, xi2, . . . , xi D)� ∈ S.

The velocity of this particle is also a D-dimensional vector,

Vi = (vi1, vi2, . . . , vi D)�.
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The best previous position encountered by the i-th particle is a point in S, denoted by

Pi = (pi1, pi2, . . . , pi D)� ∈ S.

Usually, the particles are considered to lie on a ring topology, i.e., X M and X2 are consid-
ered the immediate neighbors of X1. In this case, the neighborhoods of Xi consist of the
particles Xi−r , . . . , Xi , . . . , Xi+r , where r is the neighborhood’s radius. Assume gi to be
the index of the particle that attained the best previous position among all the particles in
the neighborhood of Xi , and t to be the iteration counter. Then, the swarm is manipulated
by the equations (Clerc and Kennedy, 2002),

Vi (t + 1) = χ
[
Vi (t) + c1 r1(Pi (t) − Xi (t)) + c2 r2

(
Pgi (t) − Xi (t)

)]
, (3)

Xi (t + 1) = Xi (t) + Vi (t + 1), (4)

where i = 1, . . . , M ; χ is a parameter called constriction factor; c1 and c2 are two param-
eters called cognitive and social parameter, respectively; r1, r2, are random vectors with
elements uniformly distributed within [0, 1]; and gi is the index of the particle that attained
either the best position of the whole swarm (global version) or the best position in the
neighborhood of the i-th particle (local version). All vector operations in Eqs. (3) and (4)
are performed componentwise.

Alternatively, a different version of the algorithm, which incorporates a parameter called
inertia weight, has been proposed (Eberhart and Shi, 1998; Shi and Eberhart, 1998a, 1998b),

Vi (t + 1) = wVi (t) + c1 r1(Pi (t) − Xi (t)) + c2 r2
(
Pgi (t) − Xi (t)

)
, (5)

Xi (t + 1) = Xi (t) + Vi (t + 1), (6)

where w is the inertia weight.
Both the constriction factor and the inertia weight are mechanisms for controlling the

magnitude of velocities. However, there are some major differences regarding the way these
two are computed and applied. The constriction factor is derived analytically through the
formula (Clerc and Kennedy, 2002),

χ = 2κ

|2 − φ −
√

φ2 − 4φ|
, (7)

for φ > 4, where φ = c1+c2, and κ = 1. Different configurations of χ , as well as a thorough
theoretical analysis of the derivation of Eq. (7), can be found in Clerc and Kennedy (2002),
Trelea (2003). On the other hand, the inertia weight, w, in Eq. (5), is employed to manipulate
the impact of the previous history of velocities on the current velocity. Therefore, w resolves
the trade-off between the exploration (wide-ranging search) and exploitation (more refined
local search) abilities of the swarm. A large inertia weight encourages exploration, while a
small one promotes exploitation. A suitable value for w provides the desired balance in the
algorithm and improves its effectiveness. Experimental results suggest that it is preferable
to initialize the inertia weight to a large value, giving priority to global exploration of the
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search space, and gradually decrease it, so as to obtain refined solutions (Shi and Eberhart,
1998a, 1998b). This finding is intuitively very appealing. In conclusion, an initial value of
w around 1.0 and a gradual decline towards 0 is considered a proper choice for w.

In general, the constriction factor version of PSO is faster than the one with the inertia
weight, although in some applications its global variant suffers premature convergence.
Proper fine–tuning of the parameters c1 and c2 results in faster convergence and alleviation
of local minima (Kennedy, 1998). The default values, c1 = c2 = 2, have been proposed,
but experimental results indicate that alternative configurations, depending on the problem
at hand, can produce superior performance (Clerc and Kennedy, 2002; Parsopoulos et al.,
2001; Parsopoulos and Vrahatis, 2002c).

The initialization of the swarm and the velocities is usually performed randomly and
uniformly in the search space, although more sophisticated initialization techniques can
enhance the overall performance of the algorithm (Parsopoulos and Vrahatis, 2002a).

4. The proposed approach

The present work focuses on the development of an FCM learning procedure based on
PSO. The purpose is to determine the values of the cause-effect relationships among the
concepts, i.e., the values of the weights of the FCM that produce a desired behavior of the
system. The determination of the weights is of major significance and it contributes towards
the establishment of FCMs as a robust methodology. The desired behavior of the system is
characterized by output concept values that lie within desired bounds prespecified by the
experts. These bounds are in general problem dependent.

The learning procedure is, to some extent, similar to that of neural networks training. Let

C1, . . . , CN ,

be the concepts of an FCM, and let

Cout1 , . . . , Coutm , 1 ≤ m ≤ N ,

be the output concepts, while the remaining concepts are considered input or interior con-
cepts. The user is interested in restricting the values of these output concepts in strict
bounds,

Amin
outi ≤ Aouti ≤ Amax

outi , i = 1, . . . , m,

predetermined by the experts, which are crucial for the proper operation of the modeled
system. Thus, the main goal is to detect a weight matrix,

W = [Wi j ], i, j = 1, . . . , N ,

that leads the FCM to a steady state at which, the output concepts lie in their corresponding
bounds, while the weights retain their physical meaning. The latter is attained by imposing
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constraints on the potential values assumed by weights. To do this, we consider the following
objective function,

F(W ) =
m∑

i=1

H
(

Amin
outi − Aouti

)∣∣Amin
outi − Aouti

∣∣ +
m∑

i=1

H
(

Aouti − Amax
outi

)∣∣Amax
outi − Aouti

∣∣,
(8)

where H is the well-known Heaviside function

H (x) =
{

0, x < 0,

1, x ≥ 0,

and Aouti , i = 1, . . . , m, are the steady state values of the output concepts that are obtained
through the application of the procedure of Eq. (1), using the weight matrix W .

Obviously, the global minimizers of the objective function, F , are weight matrices that
lead the FCM to a desired steady state, i.e., all output concepts are bounded within the desired
regions. The objective function suits straightforwardly the problem, however, it is non–
differentiable and, thus, gradient–based methods are not applicable for its minimization.
On the other hand, in the proposed approach, PSO is used for the minimization of the
objective function defined by Eq. (8). The non–differentiability of F poses no problems in
our approach since PSO, like all evolutionary algorithms, requires function values solely,
and can be applied even on discontinuous functions.

The weight matrix W is represented by a vector, which consists of the rows of W in turn,
excluding the elements of its main diagonal, W11, W22, . . . , WN N , which are by definition
equal to zero,

X =
[

W12, . . . , W1N︸ ︷︷ ︸
row 1

, W21, . . . , W2N︸ ︷︷ ︸
row 2

, . . . , WN1, . . . , WN ,N−1︸ ︷︷ ︸
row N

]
.

Thus, an FCM with N fully interconnected concepts (i.e., each concept interacts with all
other concepts) corresponds to an N (N − 1)-dimensional minimization problem. If some
interconnections are missing, then their corresponding weights are zero and they can be
omitted, thereby reducing the dimensionality of the problem. This is most often the case,
since the FCMs provided by experts are rarely fully connected.

Each interconnection of an FCM has a specific physical meaning, and, thus, several con-
straints are posed by the experts on the values of the weights. Constraints are provided in
the form of negative or positive relations between two concepts. So, if two concepts Ci

and C j are negatively related, then the weight Wi j takes values in the range [−1, 0], while
if they are positively related, it takes values within [0, 1]. More strict constraints may be
additionally posed on some weights, either by the experts, or by taking into considera-
tion the convergence regions obtained through the application of the learning algorithm,
as illustrated in Section 6. Such constraints may enhance the overall performance of the
algorithm.
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Figure 3. Flowchart of the proposed learning procedure.

The application of PSO for the minimization of the objective function F , starts with an
initialization phase, where a swarm of M particles (weight matrices in vector form),

S = {X1, . . . , X M},

is generated randomly and it is evaluated using F . Then, Eqs. (3) and (4) or, alternatively,
(5) and (6) are used to evolve the swarm. As soon as a weight configuration that globally
minimizes F is reached, the algorithm is terminated. A flowchart of this procedure is
depicted in figure 3.

There is, in general, a plethora of weight matrices that lead to convergence of the FCM
to the desired regions of the output concepts. PSO is a stochastic algorithm, and, thus, it
is quite natural to obtain such suboptimal matrices that differ in subsequent experiments.
All these matrices are proper for the design of the FCM and follow the constraints of
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the problem, though, each matrix may have different physical meaning for the system.
Statistical analysis of the obtained weight matrices may help in the better understanding of
the system’s dynamic as it is implied by the weights, as well as in the selection of the most
appropriate suboptimal matrix.

The aforementioned procedure uses only primitive information from the experts. How-
ever, any information available a priori, may be incorporated to enhance the procedure,
either by modifying the objective function in order to exploit the available information or
by imposing further constraints on the weights. The proposed approach has proved to be
very efficient in practice. In the following section, its operation is illustrated on an industrial
process control problem.

5. Application on an industrial process control problem

A simple process control problem encountered in chemical industry is selected to illustrate
the workings of the proposed learning algorithm (Stylios and Groumpos, 1998). The process
control problem, illustrated in figure 4, consists of one tank and three valves that influence
the amount of a liquid in the tank. Valve 1 and Valve 2 pour two different liquids into the
tank. During the mixing of the two liquids, a chemical reaction takes place in the tank, and
a new liquid is produced. Valve 3 empties the tank when the amount of the produced liquid
reaches a specific level. A sensor is placed inside the tank to measure the specific gravity of
the produced liquid. When the value, G, of the specific gravity lies in a range [Gmin, Gmax],
the desired liquid has been produced. There is also a limit on the height, T , of the liquid
in the tank, i.e., it cannot exceed a lower limit, Tmin, and an upper limit, Tmax. The control
target is to keep the two variables, T and G, within their bounds,

Tmin ≤ T ≤ Tmax,

Gmin ≤ G ≤ Gmax.

Figure 4. Illustration of a process control problem from industry.
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Figure 5. The FCM that corresponds to the problem of figure 4.

A group of experts constructs the FCM for the simulation of this system, following the
procedure described in Section 2. The FCM that models and controls the specific system is
depicted in figure 5. It consists of five concepts which are defined as:

• Concept 1—the amount of the liquid in the tank. It depends on the operational state of
Valves 1, 2 and 3;

• Concept 2—the state of Valve 1 (closed, open or partially opened);
• Concept 3—the state of Valve 2 (closed, open or partially opened);
• Concept 4—the state of Valve 3 (closed, open or partially opened);
• Concept 5—the specific gravity of the produced liquid in the tank.

There is a consensus among the experts regarding the direction of the arcs among the
concepts. For each weight, the overall linguistic variable and its corresponding fuzzy set
are also determined by the experts. The ranges of the weights implied by the fuzzy regions
are:

−0.50 ≤ W12 ≤ −0.30,

−0.40 ≤ W13 ≤ −0.20,

0.20 ≤ W15 ≤ 0.40,

0.30 ≤ W21 ≤ 0.40,
(9)

0.40 ≤ W31 ≤ 0.50,

−1.00 ≤ W41 ≤ −0.80,

0.50 ≤ W52 ≤ 0.70,

0.20 ≤ W54 ≤ 0.40,
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and the initial weight matrix derived through the CoA defuzzification method is,

W initial =




0.00 −0.40 −0.25 0.00 0.30

0.36 0.00 0.00 0.00 0.00

0.45 0.00 0.00 0.00 0.00

−0.90 0.00 0.00 0.00 0.00

0.00 0.60 0.00 0.30 0.00


 .

All experts agreed on the same range for the weights W21, W31, and W41, and most of
them agreed on the same range for the weights W12 and W13. However, there was no such
agreement on the cases of the weights W15, W52, and W54, where their opinions varied
significantly.

PSO is applied to update the eight nonzero weight values of the FCM. To avoid phys-
ically meaningless weights, the bounds [−1, 0] or [0, 1], implied by the directions of the
corresponding arcs of the FCM, are imposed on each weight.

The output concepts for this problem are C1 and C5. The desired regions for the two
output concepts, which are crucial for the proper operation of the modeled system, have
been defined by the experts,

0.68 ≤ C1 ≤ 0.70, (10)

0.78 ≤ C5 ≤ 0.85. (11)

In the next section, the simulation results are reported and analyzed.

6. Simulation results

Two main scenarios have been considered for the simulations. The first scenario investigates
the behavior of the system accepting, initially, all the constraints that are imposed on
the weights by the experts. The second scenario considers only the constraints for which
there was an unanimous agreement amongst the experts. The results are very interesting
and provide insight regarding the appropriateness of the experts’ suggestions as well as
suboptimal weight matrices that lead the FCM to a desired steady state.

For each scenario, 100 independent experiments have been performed using the local
variant of the constriction factor PSO version with neighborhood radius equal to 3. This
version was selected due to its fast convergence rates and efficiency. Swarm size has been
set equal to 20, for all experiments, since it proved sufficient to detect global minimizers of
the objective function effectively and efficiently. Moreover, further experiments with larger
swarms and different PSO versions did not result in significantly different convergence
rates, in terms of the required number of function evaluations. The constriction factor
as well as the cognitive and the social parameters have been set to their optimal values,
χ = 0.729, c1 = c2 = 2.05 (Clerc and Kennedy, 2002; Trelea, 2003). The accuracy for
the determination of the global minimizer of the objective function has been equal to 10−8.
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The mean number of function evaluations required, varied from 40 to 620, depending on
the considered scenario.

6.1. First scenario

The first scenario initially considers the weights that lie in the ranges defined by Relation (9),
which are derived by the fuzzy regions proposed by the experts. A hundred experiments
were performed using the proposed approach and the eight constraints for the weights.
However, no solution was detected, indicating that the suggested ranges for the weights, as
well as the initial weight matrix, W initial, provided by the experts are not proper and do not
lead the FCM to a desired steady state. The best weight matrix detected in these regions,
in terms of its objective function value (i.e., the matrix that corresponds to the smallest
objective function value) is,

W =




0.00 −0.35 −0.20 0.00 0.40

0.40 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00

−0.80 0.00 0.00 0.00 0.00

0.00 0.75 0.00 0.20 0.00


 ,

which led the FCM to the steady state,

C1 = 0.6723, C2 = 0.7417, C3 = 0.6188, C4 = 0.6997, C5 = 0.7311,

that clearly violates the constraints for both C1 and C5, defined in Relations (10) and
(11).

Since the consideration of all eight constraints on the weights prohibits the detection
of a suboptimal matrix, some of the constraints were omitted. Specifically, the constraints
for the three weights W15, W52, and W54, for which the experts’ suggestions regarding
their values varied widely, were omitted, one by one at the beginning, and subsequently
in pairs. The corresponding weights were allowed to assume values in the range [−1, 0]
or [0, 1], in order to avoid physically meaningless weight matrices. Despite this, no so-
lutions were detected in these cases. However, suboptimal matrices were detected after
omitting all three constraints. The statistics of the weights’ values for this case are re-
ported in Table 1 and depicted in the boxplot of figure 6. A boxplot is a box and whisker
statistical plot. The box has lines at the lower quartile, median, and upper quartile val-
ues. The whiskers are lines extending from each end of the box to show the extent of the
rest of the data. Outliers are data with values beyond the ends of the whiskers. Notches
represent a robust estimate of the uncertainty about the medians for box to box compar-
ison. As shown in the figure, the weights W21, W31, and W41, converged to almost the
same value in each experiment; a value which is close to the bounds defined by the ex-
perts. The weights W13 and W54 converged also in very small ranges, while the remaining
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Figure 6. Boxplot of the obtained results for the weights for the first scenario.

weights assumed values in wider regions. Moreover, the three unconstrained weights W15,
W52, and W54, converged in regions significantly different than those determined by the
experts.

The ranges of the output concepts’ values for the obtained suboptimal matrices are
depicted in figure 7. The output concept C1 converges to almost the same value for each
suboptimal matrix, while C5 takes a wide range of values, always within the desired bounds.
Regarding the remaining concepts, C3 and C4, they converge to almost the same values,
while the values of C2 vary slightly. The obtained values for these three concepts are
physically meaningful and appropriate for the operation of the system.

Table 1. Statistical analysis of the results for the first scenario.

W12 W13 W15 W21 W31 W41 W52 W54

Mean −0.4027 −0.2016 0.8991 0.3999 0.5000 −0.8000 0.9659 0.1043

Median −0.4329 −0.2000 0.9050 0.4000 0.5000 −0.8000 0.9837 0.1000

St.dev. 0.0487 0.0056 0.0909 0.0011 0.0003 0.0002 0.0420 0.0090

Min −0.4500 −0.2291 0.7156 0.3889 0.4971 −0.8014 0.8685 0.1000

Max −0.3500 −0.2000 1.0000 0.4000 0.5000 −0.8000 1.0000 0.1363
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Figure 7. Boxplot of the obtained results for the concepts for the first scenario.

One of the obtained suboptimal matrices is the following,

W =




0.00 −0.45 −0.20 0.00 0.84

0.40 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00

−0.80 0.00 0.00 0.00 0.00

0.00 0.99 0.00 0.10 0.00


 ,

which leads the FCM to the desired steady state,

C1 = 0.6805, C2 = 0.7798, C3 = 0.6176, C4 = 0.6816, C5 = 0.7967.

6.2. Second scenario

In this scenario, only the constraints for the three weights W21, W31, and W41, for which
all the experts agreed regarding their bounds, are considered. The remaining weights are
unconstrained within the ranges [−1, 0] or [0, 1]. The statistics of the obtained weight
matrices as well as the corresponding boxplot are given in Table 2 and figure 8, respectively.
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Table 2. Statistical analysis of the results for the second scenario.

W12 W13 W15 W21 W31 W41 W52 W54

Mean −0.2832 −0.1595 0.9198 0.3994 0.4994 −0.8000 0.8915 0.1216

Median −0.2389 −0.1166 0.9611 0.4000 0.5000 −0.8000 0.9599 0.1000

St.dev. 0.1847 0.0805 0.0917 0.0035 0.0035 0.0005 0.1397 0.0438

Min −0.6662 −0.3965 0.7143 0.3753 0.4679 −0.8048 0.5196 0.1000

Max −0.1000 −0.1000 1.0000 0.4000 0.5000 −0.8000 1.0000 0.2770

Figure 8. Boxplot of the obtained results for the weights for the second scenario.

It is observed that, the three constrained weights take values in a small subset of their initial
bounds, namely,

0.38 ≤ W21 ≤ 0.40,

0.47 ≤ W31 ≤ 0.50, (12)

−0.81 ≤ W41 ≤ −0.80.

This is an indication that their ranges can be further shortened. The convergence regions
of the concepts are depicted in figure 9. Based on the obtained results, three cases are
considered.
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Figure 9. Boxplot of the obtained results for the concepts for the second scenario.

6.2.1. Case A. In this case, the three weights W21, W31, and W41, are constrained in the
bounds defined in Relation (13), while the remaining weights are unconstrained within
[−1, 0] or [0, 1]. The statistics of the obtained results for this case, are reported in Table 3
and a boxplot for the weights is given in figure 10. The corresponding convergence regions
of the concepts are depicted in figure 11. We observe that the weights W21, W31, and W41,
take almost the same value in each experiment, while the remaining weights lie in the
following regions,

−0.57 ≤ W12 ≤ −0.10,

−0.31 ≤ W13 ≤ −0.10,

Table 3. Statistical analysis of the results for the Case A.

W12 W13 W15 W21 W31 W41 W52 W54

Mean −0.2328 −0.1443 0.9106 0.4000 0.4991 −0.8100 0.8828 0.1132

Median −0.1952 −0.1006 0.9475 0.4000 0.5000 −0.8100 0.9349 0.1000

St.dev. 0.1408 0.0651 0.0976 0.0000 0.0051 0.0000 0.1295 0.0297

Min −0.5742 −0.3182 0.7141 0.4000 0.4700 −0.8100 0.6045 0.1000

Max −0.1000 −0.1000 1.0000 0.4000 0.5000 −0.8100 1.0000 0.2324
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Figure 10. Boxplot of the obtained results for the weights for the Case A.

Figure 11. Boxplot of the obtained results for the concepts for the Case A.
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0.71 ≤ W15 ≤ 1.00, (13)

0.60 ≤ W52 ≤ 1.00,

0.10 ≤ W54 ≤ 0.23.

One of the obtained suboptimal matrices is the following,

W =




0.00 −0.44 −0.10 0.00 1.00

0.40 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00

−0.81 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.13 0.00


 ,

which leads the FCM to the desired steady state,

C1 = 0.6805, C2 = 0.7872, C3 = 0.6390, C4 = 0.6898, C5 = 0.8172.

6.2.2. Case B. Since in the previous case the three weights W21, W31, and W41, assume
almost fixed values, we consider them fixed and equal to their mean values reported in
Table 3, while the remaining weights are constrained within the ranges determined in
Relation (13). The statistics of the obtained results are reported in Table 4. We observe that
the weights W12, W13, W15, and W54, take values in the same regions determined by their
bounds, while only the weight W52 takes values in a smaller region, namely [0.72, 1]. The
convergence regions of the concepts are depicted in figure 12. Obviously their convergence
regions are small and have an acceptable physical meaning. A suboptimal matrix for this

Table 4. Statistical analysis of the results for the Case B.

W12 W13 W15 W21 W31 W41 W52 W54

Mean −0.2366 −0.1349 0.8637 0.4000 0.5000 −0.8100 0.9124 0.1214

Median −0.2220 −0.1223 0.8674 0.4000 0.5000 −0.8100 0.9223 0.1166

St.dev. 0.0880 0.0375 0.0805 0.0000 0.0000 0.0000 0.0695 0.0232

Min −0.5700 −0.3040 0.7147 0.4000 0.5000 −0.8100 0.7226 0.1000

Max −0.1000 −0.1000 1.0000 0.4000 0.5000 −0.8100 1.0000 0.2050
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Figure 12. Boxplot of the obtained results for the concepts for the Case B.

case is,

W =




0.00 −0.27 −0.20 0.00 1.00

0.40 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00

−0.81 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.10 0.00


 ,

and its steady state is,

C1 = 0.6816, C2 = 0.8090, C3 = 0.6174, C4 = 0.6822, C5 = 0.8174.

6.2.3. Case C. In this final case the three weights W21, W31, and W41, are fixed and equal
to the same values as in Case B, while the remaining weights are constrained within the
ranges defined by their

Mean Value ± Standard Deviation,
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Figure 13. Boxplot of the obtained results for the weights for the Case C.

where the mean values and standard deviations reported in Table 4 are used, i.e., the weights
are constrained in the following regions,

−0.32 ≤ W12 ≤ −0.15,

−0.17 ≤ W13 ≤ −0.10,

0.78 ≤ W15 ≤ 0.94, (14)

0.84 ≤ W52 ≤ 0.98,

0.10 ≤ W54 ≤ 0.14.

The obtained results are reported in Table 5 and a boxplot for the weights is depicted
in figure 13. The convergence regions of the weights W12, W13, W15, W52, and W54, are

Table 5. Statistical analysis of the results for the Case C.

W12 W13 W15 W21 W31 W41 W52 W54

Mean −0.2268 −0.1321 0.8659 0.4000 0.5000 −0.8100 0.9165 0.1192

Median −0.2298 −0.1320 0.8654 0.4000 0.5000 −0.8100 0.9127 0.1180

St.dev. 0.0486 0.0212 0.0422 0.0000 0.0000 0.0000 0.0402 0.0135

Min −0.3177 −0.1714 0.7848 0.4000 0.5000 −0.8100 0.8433 0.0983

Max −0.1525 −0.0976 0.9440 0.4000 0.5000 −0.8100 0.9818 0.1440
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Figure 14. Boxplot of the obtained results for the concepts for the Case C.

almost the same with the regions defined in Relation (14). Further experiments have been
performed, using the new mean values and the new standard deviations, reported in Table 5,
to constrain the weights, but significantly different convergence regions of the weights,
were not obtained. The convergence regions of the concepts are depicted in the boxplot of
figure 14. An obtained suboptimal matrix for this case is,

W =




0.00 −0.23 −0.13 0.00 0.86

0.40 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00

−0.81 0.00 0.00 0.00 0.00

0.00 0.92 0.00 0.12 0.00


 ,

and the corresponding steady state is,

C1 = 0.6817, C2 = 0.7985, C3 = 0.6323, C4 = 0.6860, C5 = 0.8007.

From the different scenarios examined, it is clear that there is a significant divergence
of some weights from the initial weight values suggested by the experts. Specifically, the
weights W13, W15, W52, and W54, always converge to regions significantly different than the
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fuzzy regions suggested by the experts. The weights W21, W31, and W41, take almost identical
values in every experiment, near the initial bounds suggested by the experts. Finally, the
weight W12 deviates slightly from its initial region. Thus, the proposed learning algorithm is
able to provide proper weight matrices for the design of the FCM, efficiently and effectively,
alleviating deficiencies caused by deviation in the experts’ suggestions. Exploiting a priori
information, such as constraints posed by the experts on weights, enhances its performance.
Moreover, a primitive statistical study of the obtained results provides an intuition on the
operation and the dynamics of the modeled system.

7. Conclusions

Fuzzy Cognitive Maps (FCMs) are widely used to successfully model and analyze complex
systems. The need to improve the functional representation of FCMs has been outlined. A
new learning algorithm for determining suboptimal weight matrices for Fuzzy Cognitive
Maps with fixed structures, in order to reach a desired steady state, is introduced. The
proposed approach is based on the minimization of a properly defined objective function
through the Particle Swarm Optimization algorithm. The new learning approach for the
determination of the FCM’s weight matrix is formulated and explained.

An industrial process control problem is used for the illustration of the proposed learning
algorithm, and different scenarios are investigated. The results appear to be very promising,
verifying the effectiveness of the learning procedure. The physical meaning of the obtained
results is retained. The proposed approach also provides a robust solution in the event of
divergent opinions of the experts concerning the system.

Future work will also consider the automatic selection of the FCM’s arcs through swarm
intelligence algorithms, as well as the application of the proposed approach on systems of
higher complexity.
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