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Abstract: This paper investigates the performance of particle swarm optimization (PSO) and 
unified particle swarm optimization (UPSO) in magnetoencephalography (MEG) problems. For 
this purpose, two interesting tasks are considered. The first is the source localisation problem, 
also called the ‘inverse MEG problem’, where an unknown excitation source has to be identified, 
based on a set of sensor measurements that can be contaminated by noise. We refer to the second 
task as ‘forward task for inverse use’. It consists of the detection of the proper coefficients for 
approximating the magnetic potential through a spherical expansion, as accurately as possible. 
Also, the study of their behaviour under variations of the number of available measurements is 
considered. The obtained results are statistically analysed, providing useful insight regarding the 
applicability of the employed algorithms on such problems. Also, significant indications 
regarding the behaviour of several intrinsic dependencies of the problem are derived. 
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1 Introduction 

Bioinformatics is one of the most interesting fields of 
application in evolutionary computation. The inherent 
nature of bioinformatics problems often implies modelling 
difficulties and uncertainties in computation, which cannot 
be straightforwardly addressed through classical 
methodologies. Therefore, they constitute a very 
challenging application field for approaches that require 
only minor information on the problem at hand and can take 
full advantage of modern distributed computer systems. 

MEG is one of the most interesting biomedical 
techniques since it provides a means for the study of the 
functional human brain. This is possible by capturing and 
studying the magnetic fields produced by excitations of 
small regions of the brain, using sensor measurements 
(Bronzan, 1971; Dassios, 2006, 2007, 2008a, 2008b; 
Dassios and Fokas, 2008a; Dassios et al., 2005, 2007a, 
2007b; Dassios and Kariotou, 2003a, 2003b, 2004, 2005; 
Fokas et al., 1996, 2004; Geselowitz, 1970; Grynspan and 
Geselowitz, 1973; Ilmoniemi et al., 2005; Nolte and Curio, 
1997). These data can be used to model the MEG problem 
as an optimisation problem, which is usually highly 
nonlinear, requiring efficient algorithms for its solution. 

PSO is a swarm intelligence algorithm for numerical 
optimisation problems (Eberhart and Kennedy, 1995; 
Kennedy and Eberhart, 2001). PSO has gained increasing 
popularity in recent years due to its ability to solve 
efficiently and effectively a plethora of problems in science 
and engineering (Abido, 2002; Agrafiotis and Cedeno, 
2002; Fourie and Groenwold, 2002; Ourique et al., 2002; 
Papageorgiou et al., 2005; Parsopoulos and Vrahatis, 2002b, 
2004a; Pavlidis et al., 2005; Petalas et al., 2008, 2009; 
Skokos et al., 2005; Saldam et al., 2002; Ray and Liew, 
2002). It has also been shown to be very efficient in 
biomedical applications (Cedeno and Agrafiotis, 2005; 
Forghani et al., 2007; Georgiou et al., 2006; Liu et al., 2008; 
Mohamed and Adel, 2006; Nakib et al., 2007; Qiu et al., 
2005; Wachowiak et al., 2004; Xie and Jiang, 2005; Xu et 
al., 2008; Yang et al., 2008; Zhang and Li, 2007). 

Unified particle swarm optimization (UPSO) was 
introduced by Parsopoulos and Vrahatis (2004b) as a 
modification of PSO that aggregates its local and global 
variant, combining their exploration and exploitation 
abilities without imposing additional requirements in terms 
of function evaluations. Convergence in probability was 
proved for a version of UPSO and preliminary experimental 

results on both static and dynamic benchmark problems 
suggested that UPSO can outperform both the global and 
local variant of the standard PSO (Parsopoulos and 
Vrahatis, 2005a,c, 2006, 2007). 

In this paper, we investigate the performance of PSO 
and UPSO in two interesting MEG problems. The first one 
is the well-known ‘inverse problem’, where the goal is to 
detect an unknown excitation source, using a set of (exact or 
noisy) sensor measurements. 

The second problem, called the ‘forward task for inverse 
use’, refers to the computation of proper coefficients that 
optimise the approximations of the magnetic potential 
through spherical expansions, as well as the study of their 
tolerance under variations of the number of available sensor 
measurements. 

The paper is organised as follows: the MEG problem is 
briefly described in Section 2 and the employed algorithms 
are analysed in Section 3. The experimental setup as well as 
the corresponding results for the two problems are reported 
and discussed in Section 4. The paper concludes in  
Section 5. 

2 The MEG problem 

One of the most promising, non-invasive methods for 
studying human brain activity in vivo and in real time is 
MEG. It is based on the fact that the brain is activated via an 
electrochemical excitation of a small region in the cerebral 
tissue, which produces a very weak yet measurable 
magnetic field outside the head. The biomagnetic signals are 
registered on a set of sensors divided up almost uniformly 
upon a helmet which covers the whole head except from the 
frontal face and the neck. MEG measurements are obtained 
by the SQUID, which is the most sensitive equipment ever 
built, since it can actually measure magnetic flux down to 
50–500ft. (Hamalainen et al., 1993). 

It is well established (Plonsey and Hepner, 1967) that 
biomagnetic fields live in the realm of the quasistatic 
Maxwell equations. This implies that, in the source-free 
exterior space, the magnetic field is represented by the 
gradient of a harmonic function. We refer to this function as 
the ‘scalar magnetic potential’ and denote it by U .  

For a spherical conductor, which commonly models the 
human head and for the most widely used source model of a 
dipolar current with moment Q  located at the interior point 
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r ,0  it is proved that the magnetic potential at an exterior 
point r  is given by (Sarvas, 1987), 

0

0

( )
( )

( ; )
=
Q r r

U r
F r r

Fx
 (1) 

with 

( ; ) ( ),= − + − −F r r r r r r r r r rF2
0 0 0 0  

where r  stands for the measure of the vector r . In this 
work we address the following two tasks. 

2.1 The inverse problem 

The inverse MEG problem consists of the identification of a 
source position and moment from data provided solely by 
sensor measurements. Given a set of source parameters, 
which correspond to the moment vector, 

1 2 3( , , ) ,=Q q q q F  

and position vector, 

0 0 0 01 2 3
( , , ) ,=r r r r F  

of the source, assumed to be normal to each other, we use 
equation (1) to acquire the values ( )iU r  for a number of 
sensor positions, , , , , ,= …ir i K1 2  outside the head. Using 
these values as initial data, our first task consists of applying 
PSO and UPSO to detect a vector that approximates the 
aforementioned source (moment and position vector) with a 
given accuracy. 

2.2 The forward task for inverse use 

Since ( )U r  is a harmonic function, it enjoys a spherical 
expansion of the form, 
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with respect to the Legendre functions, 

( )θAP (cos )  and ( ) ,θA (cos )kP  

where ,A A
kA B  and A

kC  are unknown coefficients depending 
on Q  and 0r  and 

( , , ),ρ φ θ  

are the spherical coordinates of the sensor position r . 
It is proved (Dassios and Fokas, 2008b) that the eight 

first coefficients, 
1 1 2 1 1 2
1 2 2 1 2 2 ,A , A , B , B , B , C , C , C1 2  

which correspond to , ,=A 1 2  provide more than adequate 
information in order to analytically acquire the source. 
However, these coefficients must alleviate large fluctuations 
in their values when the number of sensor points used to 
reconstruct the function ( )U r  from data values, varies. This 
necessity gives rise to our second task, which is the 
detection and investigation of the behaviour of these 
coefficients under variation of the number of sensors 
measurements. 

This is possible by varying the number of sensors from 
very small to reasonable large values with a fixed 
increment, while, for each case, detecting with PSO and 
UPSO the coefficients that provide the smallest possible 
error in the approximation of ( )U r  with the spherical 
expansion of equation (2). Recording and analysing the 
absolute relative error between the values of the coefficients 
for consecutive different number of measurements, can 
provide useful insight regarding their stability. 

In the next section, the employed algorithms are 
described in detail. 

3 The employed algorithms 

For completeness, we first describe the employed PSO and 
UPSO algorithms. 

3.1 Particle swarm optimization 

PSO is considered as one of the most promising  
population-based algorithms for numerical optimisation 
problems. It was introduced in 1995 by Eberhart and 
Kennedy (Eberhart and Kennedy, 1995; Kennedy and 
Eberhart, 1995) and, since then, it has gained a constantly 
increasing popularity that is attributed to its efficiency and 
simplicity. 

The fields of social psychology and evolutionary 
computation constituted the main sources of inspiration for 
the development of PSO. Fundamental laws encountered in 
natural swarms and socially organised groups were 
modelled to simulate patterns and emergent behaviours in 
nature. Swarm intelligence consists of models that adheres 
to the following five principles due to Millonas (1994): 

1 ‘proximity’, i.e., ability to perform space and time 
computations 

2 ‘quality’, i.e., ability to respond to environmental 
quality factors 

3 ‘diverse response’, i.e., ability to have a wide range of 
responses 

4 ‘stability’, i.e., ability to retain stable behaviour under 
mild environmental changes 

5 ‘adaptability’, i.e., ability to alter the behaviour when it 
is inevitable. 
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PSO was developed based on models that simulated social 
behaviour, following these properties. Thus, it was 
categorised as a swarm intelligence algorithm. Although 
PSO shares many common concepts with evolutionary 
algorithms, it has also some essential differences, revealed 
in the following paragraphs. 

Similarly to other population-based approaches, PSO 
operates on a population of search points that probe the 
search space simultaneously. In the context of PSO, the 
population is called the swarm and its individuals are called 
the particles. The swarm is randomly initialised in the 
search space and the particles are let to move with an 
adaptable velocity, visiting new and unexplored regions. 
The movement is based on a scheme that takes into 
consideration the particle’s own experience as well as the 
experience of a group of other particles, considered as its 
neighbours. The search stops as soon as a stopping criterion, 
usually related to the quality of the best solution found so 
far or the required computational cost, is achieved. 

Let : ⊂ →nf S Y  be the objective function and 

min ( ),
x S
f x

∈
 

be the minimisation problem under consideration. PSO 
assumes a swarm of N particles, 

{ },= 1 2, ,…, Nx x xS�  

to probe S. Each particle is an n-dimensional vector, 

i i i inx x x x S,F=( , ) ∈1 2,…,  

that moves within S with an adaptable velocity at each 
iteration of the algorithm. The term velocity shall not be 
confused with the corresponding physical quantity, but it is 
rather a position shift added to the current particle position. 

During its movement, the particle records the best 
position, 

i i i inp p p p SF=( , , , ) ∈ ,1 2 …  

it has ever visited, i.e., the position with the lowest function 
value. This position is the piece of information that will be 
communicated from the particle to a group of other particles 
that constitute its neighbourhood. 

The neighbourhood provides a set of abstract 
communication channels between the particles and it can be 
defined in several different ways. The most obvious idea is 
to form neighbourhoods based on the actual distances of the 
particles using a metric in S.  However, this approach is not 
viable in some high-dimensional spaces with large swarms 
due to its significant computational cost. Also, it promotes 
the formation of particle clusters that could be easily 
trapped around local minimisers. Moreover, there are search 
spaces where it may be difficult to define a proper metric. 
For these reasons, the idea of defining abstract 
neighbourhoods, based on the indices of the particles, 
gained ground and finally established. According to this 
idea, a neighbourhood of the particle ix  is a set, 

{ }=
Mi k k kx x xN �

1 2
, ,…, ,  

where, 

{ } { }1,2⊆Mk ,k , k N1 2 …, ,…, ,  

and M  is an integer denoting the size of the 
neighbourhood. 

The graph representing the connections among the 
particles is also called the neighbourhood’s topology. The 
most common neighbourhood topology, based on the 
indices of the particles, is the ring topology, illustrated in 
the left part of Figure 1. Under this topology, each particle 
is assumed to have only two immediate neighbours, which 
are the particles with neighbouring indices. For example, the 
particle ix  in the ring topology has two immediate 
neighbours, the particles i−x 1  and i+x 1 , with x1  following 
immediately after .Nx  In the ring topology we can define a 
radius that determines the neighbourhoods size. Thus, a 
neighbourhood of ix  with radius <ir N  is a set 

{ }.− − −=
ri

i r i r i i r i ri i i i i
x x x x xN +1 + 1 +, ,…, ,…, ,  

The special case where =ir N  for each particle 

i =x i N, 1,2,…, ,  assumes the whole swarm as the 
neighbourhood for every particle. Thus, the best positions of 
all particles are communicated among them and the overall 
best position is exploited by each particle. This scheme is 
illustrated in the right part of Figure 1 where the best 
position is assumed to be identified and communicated to all 
other particles. Different topologies have also been 
proposed and studied in the literature (Kennedy, 1999; 
Mendes et al., 2004; Suganthan, 1999). The use of equal 
neighbourhood size and topology for all particles is not 
mandatory in PSO, although it is the most common choice. 
The variant where each particle assumes the whole swarm 
as its neighbourhood is called the global PSO, also denoted 
as gbest, while in the case of strictly smaller 
neighbourhoods we have the local PSO, also denoted as 
lbest. 

Figure 1 The ring (left) and star (right) neighbourhood topology 
of PSO 

 

Let t  denote the iteration counter and ig  be the index of the 
best position within the neighbourhood iN  of ix , i.e., 
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arg min ( )i j
j

g f p= ,  

such that .j ix N∈  Then, the particles and velocities are 
updated according to the following equations (Clerc and 
Kennedy, 2002): 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

⎡ −⎣
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=1,2,…, , =1,2,…, ,
 (4) 

where χ  is the constriction coefficient; c ,c1 2  are positive 
acceleration parameters, called cognitive and social 
parameter, respectively; and r , r1 2  are random numbers 
uniformly distributed in the range [0,1]. The best positions 
are then updated at each iteration as follows: 

( ) ( )( ) ( ) ( )
( )

( )
⎧ <⎪
⎨
⎪⎩

i i i
i

i

x t f x t f p t
p t

p t

+1 , if +1 ,
+1 =

, otherwise.
 

The constriction coefficient is used to control the magnitude 
of the velocities, alleviating the ‘swarm explosion’ effect 
that has been shown to be detrimental for the convergence 
of early PSO versions (Angeline, 1998). In those versions, 
the parameters were determined empirically, based on 
extensive experimentation on benchmark problems. In 
recent versions, the results reported in the PSO stability 
analysis due to Clerc and Kennedy (2002) and Trelea (2003) 
imply that parameters are selected such that the relation, 

,
− − −

χ
ϕ ϕ ϕ2

2
=
2 4

 (5) 

holds for >4,ϕ  where c cϕ 1 2= + ,  to ensure convergence. 
Further theoretical studies have been also reported in the 
literature (Cai et al., 2008; Cui and Zeng, 2004). 

Also, in early PSO versions, a threshold υmax  was 
imposed on the velocity, such that, 

, .ij i N j n-υ υmax, =1,2,…, =1,2,…,  

Although its use is not mandatory in the constriction 
coefficient version of PSO described by equations (3) and 
(4), experimental results indicate that it can enhance the 
algorithms performance (Eberhart and Shi, 2000). 

The initialisation of the swarm and velocities is usually 
performed randomly in the search space, following a 
uniform distribution. The selection of such an initialisation 
is based on its simplicity and wide applicability since all 
modern computer systems are equipped with uniform 
random number generators. Nevertheless, more 
sophisticated initialisation schemes can enhance the 
performance of PSO (Parsopoulos and Vrahatis, 2002a). 
The best positions are assumed to coincide initially with the 
particle positions. 

The search procedure of a population-based algorithm 
such as PSO consists of two main phases, exploration and 
exploitation. The former is responsible for the detection of 
the most promising regions in the search space, while the 
latter promotes convergence of the particles towards the best 
solution detected so far. These two phases can take place 
either once or successively during the execution of the 
algorithm. 

An experimentally verified fact, which can be also 
intuitively inferred, is the dependence of PSO convergence 
speed on the information diffused among the particles 
through their interactions. Thus, a global variant, where the 
overall best position is available to all particles at each 
iteration, converges faster than a local variant, since all 
particles are attracted by the same best position. Therefore, 
it is distinguished for its exploitation ability. On the other 
hand, the local variant has better exploration properties, 
since the information regarding the best position of each 
neighbourhood is gradually communicated to the rest of the 
particles through their neighbours. Thus, the attraction 
towards a specific point is weaker, preventing the swarm 
from getting trapped in suboptimal solutions. 

Evidently, proper selection of the neighbourhood size 
affects PSO trade-off between exploration and exploitation, 
albeit there is no formal procedure to determine the optimal 
size. The aforementioned neighbourhood-related properties 
of different PSO variants stand behind the development of 
UPSO, which is described in the next section. 

3.2 Unified particle swarm optimization 

UPSO was introduced by Parsopoulos and Vrahatis (2004b) 
as a PSO variant that harnesses the local and global PSO, 
combining their exploration and exploitation properties. 

Let ix  be the −i th  particle of the swarm. Let also g  
be the index of the best particle in the whole swarm and ig  
be the index of the best particle in the neighbourhood of ix , 
as described in the previous section. If ( )i tG� +1  denotes the 
updated velocity of ix  under the global PSO variant, i.e., 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

⎡+ = + − +⎣
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ij ij ij ij

gj ij

t t c r p t x t

c r p t x t

G� �χ υ 1 1

2 2

1

,
 (6) 

and ( )+i tL� 1  denotes the updated velocity of ix  under the 
local PSO variant, i.e., 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

⎡+ = + − +⎣
⎤− ⎦

1 1

2 2

1

,
i

ij ij ij ij

g j ij

t t c r p t x t

c r p t x t

L� �χ υ
 (7) 

then, the main UPSO scheme is defined by replacing 
equations (3) and (4) in the standard PSO scheme, with the 
following equations (Parsopoulos and Vrahatis, 2004b): 

( ) ( ) ( ) ( )+ = + + − +ij ij ijt u t u t�U G� L�1 1 1 1 ,  (8) 
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( ) ( ) ( )+ = + +

= =
ij ij ijx t x t t

i N j n

U�1 1 ,

1,2,…, , 1,2,…, .
 (9) 

The parameter [ ]u 0, 1∈  is called the unification factor and 
it balances the influence of the global and local search 
directions (velocities). 

The standard local PSO is obtained by setting u = 0.0  
in equation (8), while u =1.0  corresponds to the standard 
global PSO. All intermediate values of ( )u 0, 1∈  define 
composite UPSO variants that combine the exploration and 
exploitation properties of the global and local PSO. 
Obviously, values near 0.0 favour the local PSO component, 
thereby promoting exploration, while values near 1.0 
promote exploitation since the dominant component is that 
of global PSO. An extensive experimental study on the 
parameter u  was conducted by Parsopoulos and Vrahatis 
(2007). The rest of the parameters adhere to the same 
principles as for the standard PSO case. 

Besides the main UPSO scheme defined above, a 
stochastic parameter can also be incorporated in equation 
(8) to further enhance the exploration ability of the 
algorithm. In this case, equation (8) becomes either, 

( ) ( ) ( ) ( )+ + + − +ij ij ijt r u t u tU� G� L�31 = 1 1 1 ,  (10) 

which is mostly based on the local variant, or, 

( ) ( ) ( ) ( )+ + + − +ij ij ijt u t r u tU� G� L�31 = 1 1 1 ,  (11) 

which is mostly based on the global variant (Parsopoulos 
and Vrahatis, 2004b). The parameter ( )μ σr N∼ 2

3 ,  is a 
normally distributed random number with mean μ  and 
standard deviation .σ  The use of r3  imitates mutation in 
evolutionary algorithms. However, the mutation in UPSO is 
biased towards directions consistent with the PSO dynamic, 
in contrast to the pure random mutation used in evolutionary 
algorithms. 

Following the assumptions of Matyas (1965), 
convergence in probability was proved for the mutated 
UPSO variants (Parsopoulos and Vrahatis, 2004b). UPSO 
has been shown to be effective, outperforming the standard 
PSO in several optimisation problems (Kotsireas et al., 
2006; Parsopoulos and Vrahatis, 2005a, 2005b, 2005c, 
2006, 2007). 

4 Experimental results 

Two different sets of experiments were conducted. In the 
first set, the ability of PSO and UPSO to address the inverse 

(source identification) problem was investigated, while, in 
the second set, the most promising approach from the first 
set of experiments was used to compute the coefficients of 
the spherical expansion and investigate their behaviour with 
respect to the available number of sensors. The 
experimental setups per task as well as the obtained results 
are reported in detail in the following sections. 

4.1 Experimental setup for the inverse problem 

In this set of experiments, we investigated the ability of 
PSO and UPSO in locating the position of an unknown 
source when only the positions of a number of sensors and 
their corresponding measurements are available. 

For this purpose, three source points were randomly 
generated inside a 3-dimensional sphere of radius 
rsphere = 9,  assuming that the origin coincides with the 
centre of the sphere. The source points are described by 
their moment, Q  and position vector r0 , as described in 
Section 2 and they are reported in Table 1. Also, three 
different levels of the number of sensors, namely 
Ksensor = 50, 100, 200,  were considered and the 
corresponding equidistant sensor positions were generated 
on a sphere of radius rkask =10.  For each sensor position, 

kr k Ksensor, = 1,2,…, ,  a measurement, ( )k kU U r= ,  is 
obtained through equation (1) for a given source. 

We investigated the case of exact measurements as well 
as the case of measurements contaminated by noise. In the 
latter, three different levels of multiplicative noise were 
considered. More specifically, each measurement assumed a 
noisy value, 

( )′ +k kU U k Kη sensor= 1 , =1,2,…, ,  

where ( )σNη ∼ 2
meas0,  is a normally distributed random 

number with zero mean and standard deviation σmeas . The 
selection of normally distributed noise was based on the fact 
that measurement errors in nature and technology are very 
often modelled using this distribution. Also, multiplicative 
noise was preferred since the measurement noise is usually 
specified as a percentage of the actual measurement of the 
equipment. Thus, a noise value of η  corresponds to an 

η100 % , percentage of measurement alteration. There is 
only the need to retain values of > −1η  in order to avoid 
changing the sign of kU . In our noisy experiments we used 
three different values for .σmeas = 0.01,0 05,0.10.  
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Table 1 The three source points defined by their Q  and r0  components 

Source Vector Components 

Q  –1.326594766376694 2.725358603156122 –2.288518082508507 1 

r0  –1.896352580757411 –2.523289249725142 –1.905677167021398 

Q  –0.365605139798790 0.558853821949274 –0.661437543925054 2 

r0  4.061952539256966 0.816869532093309 –1.555037320414602 

Q  –7.081215162607069 0.271084188968493 4.561706488935927 3 

r0  2.334806885106570 1.455721569544961 3.537852962411117 

The unknown source, as described by its 
( )FQ q q q1 2 3= , ,  and ( )r r r r F

1 2 30 0 0 0= , , ,  was 

encoded as a vector that contains all components in a 
single array. Thus, each particle ix  constituted a potential 
source described as: 

( )1 2 3

( ) ( ) ( ) ( ) ( )
1 2=

Fi i i i i
ix q q r r r0 0 0, , , , ,  

resulting in a five-dimensional, highly nonlinear 
optimisation problem. The third component of ( )iQ  was 
computed as, 

1 2

3

( ) ( ) ( ) ( )
1 2( )

3 ( ) ,
+

= 0 0

0

i i i i
i

i

q r q r
q

r
 

in order to preserve orthogonality between ( )iQ  and ( )ir0  

(although special care was taken in the case of ( )ir
30
= 0).  

For each particle, the function values 
( )i
kU k Ksensor, ,2,…, ,=1  were computed through 

equation (1), using the aforementioned generated sensor 
positions, kr k Ksensor, ,2,…, ,=1  and ix  as the 
potential source location. The summed square-error 
against all measurements, 

( )( )( ) −∑
K

i
i k k

k

f x U U
sensor 2

,
=1

=  (12) 

was used as the objective function value of ix  (in the 
noisy case, the corresponding noisy values were used). 

Regarding the parameters of the algorithms, UPSO 
was used with values of u  ranging from 0.0 to 1.0 with 
increments of 0.1, i.e., 

.u = 0 0, 0.1, 0.2,…, 1.0,  

in order to gain intuition regarding the efficiency of both 
local and global variants (recall that .u = 0 0  and u =1.0  
correspond to the local and global variant of the standard 
PSO, respectively). Moreover, UPSO with mutation, 
described by equation (10), was also applied with μ = 0  
and σUPSO =1.  

In all experiments, a swarm of size equal to 50 was 
used with the default parameters 

c c0.729, 2.051 2= = =χ  (Clerc and Kennedy, 2002). 
The algorithm was terminated either when a position with 
objective function value (defined by equation (12)) 
smaller than 10–16 was detected or a maximum of 3000 
iterations was reached. Since all potential solutions are 
chosen to lie within a sphere of radius rsphere 9=  centred 
at the origin, the particles were all bounded within the 
range [ ] .− 59,9  All parameter values are summarised in 
Table 2. 

Table 2 Parameters for the experiments of the inverse 
problems 

Type Description Values 

Number of 
sensors 

Ksensor = 50, 100, 200  

Sphere 
(head) radius 

rsphere = 9  

Kask radius rkask =10  

Measurement 
noise 

meas = 0.01,0.05,0.1σ  

Solution 
bounds [ ]− 59,9  

Problem-related 

Required 
solution 
accuracy 

−1610  

Unification 
factor 

u = 0.0, 0.1, 0.2,…,1.0  

Mutation 
strength 

σUPSO =1  

Velocity 
update 

parameters 
c c1 2= = 2.05

χ = 0.729,  

Swarm size N = 50  

UPSO-related 

Maximum 
iterations 

3000 

4.2 Results for the inverse problem 

The results for the cases of exact as well as noisy 
measurements are analysed in the following subsections. 
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4.2.1 The case of exact measurements 

We initially investigated the noiseless case where 
measurements are considered to be accurate. For each 
value of the unification factor, source and number of 
sensors, a total of 100 experiments were conducted for the 
plain UPSO as well as for the mutated UPSO approach, 
resulting in a total number of 18000 runs of the 
algorithms. In these experiments, the number of successes, 
i.e., the number of experiments (out of 100) where the 
solution was detected with the desired accuracy (10–16) 
within the maximum number of 3000 iterations was 
recorded. The mean as well as the standard deviation, 
minimum and maximum number of required iterations 
averaged over all successful experiments was also 
recorded for each case. 

The UPSO variant with .u = 0 1  as well as the local 
PSO (i.e., .u = 0 0 ) were the only algorithms that 
achieved a success rate of 100% in all cases, i.e., they 
were able to detect the solution with the required accuracy 
within the available number of iterations. The 
corresponding results for the two successful approaches 
are reported in Tables 3 and 5. The rest of the algorithms 
were characterised by loss of efficiency as u  was 
increasing towards 1.0. This is a strong indication that the 
objective function is highly nonlinear; thereby algorithms 
that promote exploration are more efficient. The results 
for the less efficient approaches are omitted due to space 
limitations. 

Table 3 contains the results for the local PSO variant. 
Three rows of the table are devoted to each source, one 
per different number of sensors. Local PSO can be 
obtained by the UPSO equations for .u = 0 0.  Thus, the 
mutated term of equation (10) vanishes. For this reason, 
no mutation was applied and the corresponding indicator 
in the fourth column of the table is 0 for each case. It can 
be observed that for the Sources 1 and 3, the mean 
required number of iterations increases with the number of 
sensors. On the other hand, for the Source 2 there was a 
slight decrease in the mean number when 100 sensors 
were used instead of 50. However, an increase was 
observed again for the case of 200 sensors. This is an 
expected observation, since an increase in the number of 
sensors offers more error terms in equation (12), thereby 
requiring higher computational cost. 

 
 
 
 
 

In order to justify statistically the aforementioned 
observation, a Wilcoxon rank sum test was performed 
between the samples of required iterations received for the 
different numbers of sensors and the results are reported in 
Table 4. More specifically, for each source, we compared 
statistically the samples of the required iterations for the 
100 experiments between the different numbers of 
sensors, under the null hypothesis that ‘the medians of the 
samples are equal’. Acceptance of the null hypothesis is 
denoted by 0 and rejection by 1. The statistical tests were 
performed in a significance level of 0.05 and the 
corresponding p -values are reported along with the 
decision (0 or 1) for rejecting the null hypothesis, inside a 
parenthesis after each p -value. As we can see, in most 
cases the samples were statistically different, although in 
two cases for the Source 2, the null hypothesis could not 
be rejected. This implies that, although there is a general 
trend for increased computational cost under higher 
numbers of sensors, the final cost depends heavily on the 
source point. 

Similar analysis was performed for the case of UPSO 
with .u = 0 1,  except that we considered also the mutated 
variant of equation (10). The results are reported in Table 
5 for both plain and mutated UPSO. We can observe that 
the plain UPSO outperformed in all cases its mutated 
counterpart, requiring almost half iterations in all cases. 
Nevertheless, both UPSO approaches clearly 
outperformed the local PSO, exhibiting smaller mean 
number of iterations and smaller standard deviations, 
which indicates that they were better with respect to both 
efficiency and robustness. 

The most successful UPSO variant (the one without 
mutation) was statistically investigated, similarly to the 
local PSO, in order to identify statistical significance in 
the differences of its performance under different numbers 
of sensors. The corresponding hypothesis tests are 
reported in Table 6. Obviously, UPSO seems to be less 
affected by the addition of small number of sensors, since 
in most cases the null hypothesis of equal medians 
between the samples of 50 and 100 sensors as well as of 
100 and 200 sensors could not be rejected. However, a 
significant increase (from 50 to 200 sensors) corresponded 
to statistically different performance of the algorithm for 
the two out of three sources. Again, the source position 
proved to play a substantial role on the performance of the 
algorithm. 
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Table 3 Results of the inverse problem without noise for the local PSO ( 0.0)u =  

u  Source Ksensor  Mutation Suc Mean Std Min Max 

50 0 100% 1136.79 132.96 841.00 1501.00 
100 0 100% 1213.59 194.46 655.00 1802.00 

1 

200 0 100% 1284.04 166.35 877.00 1708.00 
50 0 100% 1296.50 140.15 968.00 1616.00 

100 0 100% 1249.28 137.00 898.00 1611.00 
2 

200 0 100% 1276.91 121.32 1032.00 1692.00 
50 0 100% 545.78 57.69 416.00 741.00 

100 0 100% 581.51 58.10 490.00 854.00 

0.0 

3 

200 0 100% 600.69 56.04 438.00 758.00 

Note: Statistics on the required number of iterations are reported. 

Table 4 Wilcoxon rank sum hypothesis tests at significance level 0.05 for the results of Table 3 

Number of sensors 
u  Source 

50–100 100–200 50–200 

1 1.662650e–03 (1) 5.324471e–03 (1) 1.951387e–10 (1) 

2 2.569073e–02 (1) 1.644320e–01 (0) 2.507944e–01 (0) 

0.0 

3 8.218731e–06 (1) 2.883652e–03 (1) 1.176060e–11 (1) 

Note: The p -value as well as the acceptance (0) or rejection (1) of the null hypothesis for equal medians are reported. 

Table 5 Results of the inverse problem without noise for UPSO with ,=u 0.1  with and without mutation 

u  Source Ksensor  Mutation Suc Mean StD Min Max 

0 100% 347.67 65.70 256.00 733.00 50 
1 100% 674.82 98.12 512.00 1042.00 
0 100% 351.60 48.81 248.00 513.00 100 
1 100% 716.66 101.31 457.00 966.00 
0 100% 361.59 44.72 290.00 612.00 

1 

200 
1 100% 778.44 97.95 541.00 1006.00 
0 100% 376.54 54.48 245.00 615.00 50 
1 100% 802.78 104.27 609.00 1172.00 
0 100% 373.53 42.57 289.00 529.00 100 
1 100% 762.90 101.40 531.00 1071.00 
0 100% 385.96 48.03 291.00 503.00 

2 

200 
1 100% 766.22 81.94 554.00 1043.00 
0 100% 231.66 19.77 179.00 307.00 50 
1 100% 318.52 27.18 248.00 417.00 
0 100% 237.76 24.99 198.00 388.00 100 
1 100% 333.53 28.99 266.00 442.00 
0 100% 246.01 22.99 204.00 373.00 

0.1 

3 

200 
1 100% 351.76 31.69 278.00 464.00 

Note: Statistics on the required number of iterations are reported. 
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Table 6 Wilcoxon rank sum hypothesis tests at significance level 0.05 for the results of Table 5 without mutation 

Number of sensors 
u  Source 

50–100 100–200 50–200 

1 2.350101e–01 (0) 6.523472e–02 (0) 1.471446e–03 (1) 

2 9.454514e–01 (0) 7.956398e–02 (0) 9.061419e–02 (0) 

0.1 

3 7.264613e–02 (0) 2.252211e–03 (1) 1.212955e–06 (1) 

Note: The p -value as well as the acceptance (0) or rejection (1) of the null hypothesis for equal medians are reported. 
 

Summarising the results, UPSO outperformed local PSO 
in all cases, exhibiting significantly better efficiency and 
robustness. Also, UPSO has shown to be less effected by 
relatively small increases in the number of sensors than 
local PSO. Nevertheless, in all cases, the results seem to 
depend on the source position. In the next section we 
investigate the case where noise is introduced in the 
measurements. 

4.2.2 The case of noisy measurements 

In this set of experiments, the obtained measurements for 
all different numbers of sensors are considered to be 
contaminated by noise, as described in Section 4.1. The 
two most successful algorithms reported in the previous 
section, namely the local PSO and UPSO with .u = 0 1  
without mutation, were exposed to the noisy problem for 
different levels of noise. 

Since in the noisy case we are not able to identify 
exactly a solution by its function value, the algorithms 
were let to run at each experiment for a maximum number 
of 3000 iterations and the distance of the final best 
solution from the actual one under the −A2 norm,  was 
considered as the performance quality measure. 

The results for the local PSO are reported in Table 7. 
As expected, for given number of sensors, increasing 
levels of noise resulted in worst solutions, in terms of their 
distance from the actual source. Also, for given level of 
noise (e.g., 1%) the algorithm’s performance in some 
cases was improved by adding sensors, while in other 
cases it deteriorated, depending on the source. Thus, it is 
not clear whether, in the presence of noise (which is the 

case closer to reality), providing more measurements can 
enhance the efficiency of the algorithm. A possible 
explanation is that more measurements provide more 
information regarding the source location but also impose 
a higher accumulated error to the objective function of 
equation (12). This is also reflected to the hypothesis tests 
reported in Table 8, were in all cases the algorithm 
exhibits statistically significant differences under changes 
of the number of sensors. 

Almost identical results were obtained for UPSO, as 
reported in Table 9. The existence of noise seems to 
degrade the performance of UPSO to the levels of plain 
local PSO, distorting the search directions that provide 
UPSO with a performance advantage. Thus, the detected 
solutions are almost identical with that of local PSO, 
differing only in the last few decimal digits of each 
component. This is reflected to the identical mean 
distances reported in the Tables 7 and 9. The same 
observation holds also for the hypothesis tests reported in 
Table 10. Therefore, in the case of noise the two 
algorithms exhibit almost identical behaviour for the 
considered levels of noise. 

Summarising the results, in the noisy case there seems 
to be no crucial difference that could distinguish the two 
algorithms. In all cases, statistically significant differences 
in their performance are observed under changes in the 
number of sensors. These differences are in some cases 
beneficial for the algorithms, while in other cases are 
detrimental, depending on the source location, which has 
been shown again to play a crucial role. 
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Table 7 Results of the inverse problem with noise for the local PSO ( 0.0)u =  

u  Source Ksensor  Noise Mean Std Min Max 

1% 3.540907e–02 6.230506e–09 3.540906e–02 3.540909e–02 

5% 2.585456e–01 9.259604e–09 2.585456e–01 2.585457e–01 

50 

10% 3.411434e–01 1.486605e–08 3.411434e–01 3.411434e–01 

1% 3.507655e–02 6.427307e–09 3.507653e–02 3.507657e–02 

5% 1.304847e–01 1.195694e–08 1.304846e–01 1.304847e–01 

100 

10% 2.825110e–01 2.165706e–08 2.825110e–01 2.825111e–01 

1% 4.380892e–02 6.263326e–09 4.380890e–02 4.380893e–02 

5% 1.865135e–01 1.268799e–08 1.865134e–01 1.865135e–01 

1 

200 

10% 5.076858e–01 2.315223e–08 5.076857e–01 5.076858e–01 

1% 1.122122e–02 2.416897e–09 1.122122e–02 1.122123e–02 

5% 1.078816e–01 1.068674e–08 1.078816e–01 1.078816e–01 

50 

10% 3.795751e–01 1.275627e–08 3.795751e–01 3.795751e–01 

1% 2.144142e–02 3.742187e–09 2.144141e–02 2.144143e–02 

5% 3.166544e–02 9.424213e–09 3.166541e–02 3.166546e–02 

100 

10% 1.886913e–01 1.316551e–08 1.886913e–01 1.886914e–01 

1% 1.145255e–02 2.745366e–09 1.145254e–02 1.145256e–02 

5% 1.884985e–02 5.071426e–09 1.884984e–02 1.884986e–02 

2 

200 

10% 1.118533e–01 7.548534e–09 1.118533e–01 1.118533e–01 

1% 5.071279e–02 3.852004e–09 5.071278e–02 5.071280e–02 

5% 1.729159e–01 1.476072e–08 1.729159e–01 1.729160e–01 

50 

10% 6.403098e–01 1.958203e–08 6.403098e–01 6.403099e–01 

1% 2.919449e–02 4.292731e–09 2.919447e–02 2.919449e–02 

5% 9.882122e–02 6.412320e–09 9.882120e–02 9.882124e–02 

100 

10% 8.840037e–01 1.620393e–08 8.840037e–01 8.840038e–01 

1% 1.935374e–02 4.447081e–09 1.935373e–02 1.935376e–02 

5% 1.212993e–01 7.702303e–09 1.212993e–01 1.212993e–01 

0.0 

3 

200 

10% 2.413499e–01 1.833406e–08 2.413498e–01 2.413499e–01 

Note: Statistics on the distance between the best solution found and the actual one are reported. 
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Table 8 Wilcoxon rank sum hypothesis tests at significance level 0.05 for the results of Table 7 

Number of sensors 
u  Source Noise 

50–100 100–200 50–200 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

2 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

0.0 

3 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

Note: The p -value as well as the acceptance (0) or rejection (1) of the null hypothesis for equal medians are reported. 
 

4.3 Experimental setup for the forward task for 
inverse use 

For our second task, we considered the most promising 
variant of the experiments for the inverse problem, namely 
UPSO with .u = 0 1.  The algorithm used the same 
parameter values with the inverse problem, except the 
maximum number of iterations, which was increased to 
5000 iterations, since the problem’s dimension for the new 
task is increased to eight. The three source points used for 
the inverse problem were also used here. 

For a given source point, the number of sensors varied 
from 0Ksensor =1  up to 1000 with increments of 10. For 
each value of Ksensor,  an optimisation of the approximated 
potential function U , defined by equation (2), in the 
unknown coefficients was conducted by the aforementioned 
UPSO variant. Each particle of the swarm consisted of eight 
potential coefficients and it was bounded within  
[–100,100]8. Each experiment was repeated five times and 
the final value of each coefficient was averaged over the 
five experiments, in order to avoid possible deficiencies due 
to the algorithm’s stochasticity. 

For two consecutive values, K1  and K2  of Ksensor,  the 
absolute relative error between the averaged values of each 
coefficient was recorded, 

→

−K KY
K K

K

Y Y

Y
ε = 2 1

1 2

1

,  

where 
Ki
Y  stands for the averaged value of coefficient Y  

computed using iK  sensors. These errors were statistically 
analysed to provide information regarding the behaviour of 
the coefficients under variations of the number of 
measurements, as it is described in the next section. 

4.4 Results for the forward task for inverse use 

For each source point, the absolute relative error per 
coefficient was recorded for varying number of 
measurements, 0 0 0Ksensor , , ,…, 1000,=1 2 3  as described 
in the previous section. Thus, for each coefficient, a sample 
of 99 such errors, 

010 20 20 990 1000, ,…, ,→ →3 →ε ε ε  

were obtained. The mean, standard deviation, minimum and 
maximum value of these errors were computed and reported 
in Table 11. 
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Table 9 Results of the inverse problem with noise for UPSO with 0.1u =  

u  Source Ksensor  Noise Mean Std Min Max 

1% 3.540907e–02 8.304670e–09 3.540906e–02 3.540909e–02 

5% 2.585456e–01 1.037415e–08 2.585456e–01 2.585457e–01 

50 

10% 3.411434e–01 2.083517e–08 3.411433e–01 3.411434e–01 

1% 3.507655e–02 8.130485e–09 3.507653e–02 3.507657e–02 

5% 1.304847e–01 1.471345e–08 1.304846e–01 1.304847e–01 

100 

10% 2.825110e–01 3.071261e–08 2.825110e–01 2.825111e–01 

1% 4.380892e–02 6.494797e–09 4.380890e–02 4.380893e–02 

5% 1.865135e–01 1.683970e–08 1.865134e–01 1.865135e–01 

1 

200 

10% 5.076858e–01 3.024798e–08 5.076857e–01 5.076859e–01 

1% 1.122122e–02 3.263589e–09 1.122121e–02 1.122123e–02 

5% 1.078816e–01 1.459702e–08 1.078816e–01 1.078816e–01 

50 

10% 3.795751e–01 1.800545e–08 3.795751e–01 3.795752e–01 

1% 2.144142e–02 5.435641e–09 2.144141e–02 2.144143e–02 

5% 3.166543e–02 1.305754e–08 3.166541e–02 3.166546e–02 

100 

10% 1.886913e–01 1.840231e–08 1.886913e–01 1.886914e–01 

1% 1.145255e–02 3.931817e–09 1.145254e–02 1.145256e–02 

5% 1.884985e–02 7.649541e–09 1.884983e–02 1.884987e–02 

2 

200 

10% 1.118533e–01 1.322483e–08 1.118533e–01 1.118533e–01 

1% 5.071279e–02 4.020203e–09 5.071278e–02 5.071280e–02 

5% 3.136403e–01 1.407244e + 00 1.729159e–01 1.424535e + 01 

50 

10% 6.403098e–01 2.299225e–08 6.403098e–01 6.403099e–01 

1% 2.919448e–02 5.838540e–09 2.919447e–02 2.919450e–02 

5% 9.882122e–02 6.413688e–09 9.882121e–02 9.882124e–02 

100 

10% 8.840037e–01 1.595273e–08 8.840037e–01 8.840037e–01 

1% 1.935375e–02 6.113328e–09 1.935373e–02 1.935376e–02 

5% 1.212993e–01 8.137813e–09 1.212993e–01 1.212993e–01 

0.1 

3 

200 

10% 2.413498e–01 2.057229e–08 2.413498e–01 2.413499e–01 

Note: Statistics on the distance between the best solution found and the actual one are reported. 
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Table 10 Wilcoxon rank sum hypothesis tests at significance level 0.05 for the results of Table 9 

Number of sensors 
u  Source Noise 

50–100 100–200 50–200 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

2 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

1% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

5% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

0.0 

3 

10% 2.562144e–34 (1) 2.562144e–34 (1) 2.562144e–34 (1) 

Note: The p -value as well as the acceptance (0) or rejection (1) of the null hypothesis for equal medians are reported. 
 
Also, boxplots of the samples are illustrated in Figures 2, 3 
and 4, for Sources 1, 2 and 3, respectively. Each boxplot 
consists of a box and whisker plot, with lines at the lower 
quartile, median and upper quartile values of the sample. 
The whiskers are the lines extending from each end of the 
box to show the extent of the rest of the data. Outliers are 
data with values beyond the ends of the whiskers. The 
notches at the boxes represent a robust estimate of the 
uncertainty about the medians for box-to-box comparison. 
Boxes whose notches do not overlap indicate that the 
medians of the two groups differ at significance level of 5%. 
Moreover, line plots for each coefficient are illustrated in 
Figures 5, 6 and 7, for the Sources 1, 2 and 3, respectively. 
Figure 2 Boxplots for the absolute relative error per coefficient 

for Source 1 (see online version for colours) 
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As we observe in the boxplots of Figures 2, 3 and 4, each 
coefficient exhibits different sensitivity with respect to the 
magnitude of its error under different number of sensors, 
depending on the source. For example, coefficient B12  
(denoted with index 4) has the widest range of values for 
Source 1, having also the most outliers (denoted with the 

cross symbol beyond the boxplots whiskers), as illustrated 
in Figure 2. On the other hand, the coefficients B11  and B22  
denoted with the indices 3 and 5 have the most wide ranges 
for Source 2, as depicted in Figure 3. 
Figure 3 Boxplots for the absolute relative error per coefficient 

for Source 2 (see online version for colours) 
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Figure 4 Boxplots for the absolute relative error per coefficient 
for Source 3 (see online version for colours) 
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Table 11 Statistics for the absolute relative error per coefficient for the three different source points 

Source Coefficient Mean Std Min Max 

A1  2.490319e–03 6.120053e–03 2.887405e–05 5.721209e–02 

A2  1.412178e–02 7.501637e–02 2.989729e–04 7.527117e–01 

B11  4.507019e–03 8.227689e–03 1.547161e–05 5.422713e–02 

B12  6.287132e–02 1.121695e–01 7.042640e–06 6.629800e–01 

B22  7.690445e–03 2.408808e–02 3.213835e–05 2.406614e–01 

C 11  8.477095e–03 1.133411e–02 4.504846e–05 9.332840e–02 

C 12  5.001746e–03 1.207610e–02 3.940336e–05 1.048814e–01 

1 

C 22  1.860749e–02 3.042333e–02 5.014709e–05 1.963787e–01 

A1  2.947133e–03 9.190543e–03 1.585956e–05 8.933862e–02 

A2  2.944760e–02 7.183022e–02 8.392572e–05 6.460923e–01 

B11  1.769297e–01 4.612871e–01 2.859028e–04 4.229604e+00 

B12  2.269677e–02 3.620677e–02 4.442574e–04 2.479617e–01 

B22  8.218983e–02 1.571869e–01 7.672256e–05 1.328881e+00 

C 11  3.979562e–03 1.024991e–02 2.001097e–06 9.261034e–02 

C 12  3.533910e–02 1.932437e–01 7.775762e–05 1.925033e+00 

2 

C 22  2.647546e–02 4.287386e–02 3.620287e–04 2.461121e–01 

A1  9.095403e–03 2.827707e–02 3.973026e–06 2.770089e–01 

A2  1.903460e–02 3.994171e–02 2.123445e–04 3.667366e–01 

B11  2.353916e–02 2.313453e–02 7.602856e–05 1.295982e–01 

B12  1.439589e–02 1.811302e–02 2.426462e–05 1.132401e–01 

B22  2.073995e–02 3.909941e–02 1.427720e–04 3.480031e–01 

C 11  4.371840e–03 6.414704e–03 4.601086e–05 3.593720e–02 

C 12  8.203973e–03 2.107555e–02 7.560453e–05 1.895634e–01 

3 

C 22  1.279361e–02 2.051233e–02 1.852000e–04 1.588921e–01 
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Figure 5 Plots for the absolute relative error for all coefficients 
for Source 1 
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Figure 6 Plots for the absolute relative error for all coefficients 
for Source 2 
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Figure 7 Plots for the absolute relative error for all coefficients 
for Source 3 
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Overall, the coefficients C 11  and C 12 , denoted with indices 6 
and 7, respectively, exhibited the most robust behaviour. 
Figures 5, 6 and 7 reveal also that fluctuations for all 
coefficients become milder when at least 600 sensors are 
used, although there is no significant improvement when 

their number is further increased up to 1000 sensors. This is 
an indication that higher number of sensors do not 
necessarily correspond to more robust approximation 
through equation (2). Finally, we must notice that also in 
this problem the position of the source had a crucial impact 
on the results, in all cases. 

5 Conclusions 

This paper presented an application of PSO and UPSO to 
MEG problems. The experimental results in two different 
tasks revealed the effectiveness of PSO and especially 
UPSO for tackling source localisation problems as well as 
best estimating the coefficients of approximations to the 
magnetic potential function. Furthermore, it provided useful 
insight regarding the behaviour of the coefficients under 
variations in the number of sensors where the measurements 
are recorded. 

Naturally, the large amount of data obtained through 
numerous experiments cannot be fully reported in limited 
availability of space. For this reason, we selected to analyse 
only the most interesting and promising approaches. Further 
investigation is needed to fully reveal the potential of 
application of these algorithms on MEG problems. Future 
investigation will contain experiments with real data, as 
well as the study of these problems under different isolated 
and clusters of sources. 
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