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Abstract

This paper introduces a new technique for the alleviation of local minima in minimization
problems. The proposed “stretching” technique transforms the objective function by
stretching upwards the neighborhood of a given point, and assists in eliminating local
minima, while preserving the global ones. Experiments indicate that when a global search
method converges to an undesired local minimum, the use of the new technique provides
a way of escape and helps convergence to the global minimum.

1 Introduction

In many practical optimization problems the search is focused on locating the global
minimizer z* of a real-valued objective function f:& — R, such that

f(@") < f(z), Vezek, (1)

where the compact set £ C R? is a D-dimensional parallelepiped. There are many
Global Optimization {GO) methods developed so far to deal with this problem,
which can be classified in two main categories: deterministic methods and prob-
abilistic methods [3,4]. GO strategies possess, in general, strong theoretical con-
vergence properties, and, at least in principle, are straightforward to implement
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and apply. Issues related to their numerical efficiency are considered by equipping
GO algorithms with a “traditional” local optimization phase. Global convergence,
however, needs to be gnaranteed by the global-scope algorithm component, which,
theoretically, should be used in a complete, “exhaustive” fashion. These remarks in-
dicate the inherent computational demand of the GO algorithms, which increases
non—polynomially as a function of problem-size even in the simplest cases. Un-
fortunately,in practical applications, most of the GO strategies can detect just
sub—optimal solutions of the function f. In many cases these sub—optimal solutions
are acceptable but there are applications where the optimal solution is not only
desirable but also indispensable. Therefore, the development of robust and efficient
GO methods is a subject of considerable ongoing research.

In this paper a new technique, named Function “Stretching” is proposed. It can
be combined with GO strategies to help them escaping from local minima by
applying a two-step transformation to the objective function. In Section 2, the
new technique is presented. In Section 3, the Particle Swarm Optimizer (PSO), a
recently proposed GO method [2,5], is equipped with the Function “Stretching”
technique, and we show through simulation experiments that “Stretching” provides
a way of escape from the local minima when PSO’s convergence stalls. Finally,
concluding remarks are presented in Section 4.

2 “Stretching” the objective function

Let a point & be a local minimizer of the-objective function f, i.e. there exists a
neighborhood B of z with f(z) < f(z), V& € B. In many cases, such undesirable
minima attract GO methods, resulting premature convergence. To alleviate such
problems, soon after a local minimum & of the function f has been detected, the
following two—step transformation is applied in f(z):

Stepl: Glz)=f(z)+ 5 |}z - & (sign(f(=) - /(&) + 1), (2)

e iy s T2 iEn (@) = F@E) + 1
St HE) =)t S ik (W) - 6@) ®

where 1,7, and p are arbitrarily chosen positive constants, and sign(-) defines the
well known three—valued sign function.

Step 1 elevates the function f(z) and makes disappear all the local minima which
are located above Z. Step 2 helps to stretch the neighborhood of Z upwards, since
it assigns higher function values to those points. Both steps do not alter the local
minima located below Z; thus, the location of the global minimum s left unchanged.
The effect of this transformation on the form of the objective function is illustrated
below for the function Levy No.
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flz)=>icos[(i+ a1 +1] x Y_ jeos[(j + 1)z + j] +

i=1 1=1

+(z1 + 1.42513)% 4 (2 + 0.80032)° (4)

where —10 < z; < 10,7 = 1,2. There are about 760 local minima and one global
minimum with value f* = —176.1375 at #* = (—1.3068, —1.4248). The large num-
ber of local optimizers makes extremely difficult for any method to locate the global
minimizer. In Fig. 1 (left), the original plot of the Levy No. 5 into the cube [—2,2]?
is shown. After applying the proposed transformations to the Levy No. 5 the new
form of the function is shown in Fig. 1 (right). The whole neighborhood of the
local minimum has been elevated; thus, the former local minimum has now turned
to be a local maximum of the function, while lower minima as well as the global
one have been left unaffected.

Fig. 1. Plot of the original Levy No. 5 function (left) and plot of the “stretched” objective
function (right).

3 Application example

The proposed technique can be combined with any global search strategy. As an
application example, the global search method PSO, which is briefly described
below, is equipped with the “Stretching” technique. The modified algorithm is
tested in hard-optimization problems, like the minimization of the functions Levy
No. 5 and Corana, and in training Artificial Neural Networks (ANNs) for the
classification of the classical eXclusive-OR (XOR) patterns.

3.1 Review of the PSO method

In [2,5] Eberhart and Kennedy proposed the PSO algorithm. In PSO the popula-
tion dynamics do not simulate the human genetic procedures, like other evolution—
motivated evolutionary computation techniques, but a “bird flock’s” behavior where
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social sharing of information takes place and individuals can profit from the discov-
eries and previous experience of all other companions, also called particles, during
the search for food. Thus, in PSO, each particle (a point in a D—-dimensional space)
in the population (the set of potential solutions), also called swarm, “flies” over
the search space looking for promising regions of the landscape. For example, in
a minimization problem, promising regions possess lower functional values than
previously visited regions. Although, in general, PSO results good solutions, in
high—dimensional spaces it stumbles on local minima.

Next, we have used a recently proposed modified PSO [1,7,8] and adopted the fol-
lowing notation: the i-th particle of the swarm is represented by the D-dimensional
vector X; = (1, Zi; - .., 2ip) and the best particle in the swarm is denoted by the
index g. The best previous position (the position giving the best fitness value)
of the i-th particle is stored and represented as P; = (pi1,pi2,.--,piD), and the
position change {velocity) of the i-th particle is V; = (vi,vi2,...,vip). The i-th
particle’s new velocity is calculated using the particle’s previous velocity, the dis-
tance between the particle’s best previous and current position, and the distance
between swarm’s best experience (the position of the best particle in the swarm)
and ¢-th particle’s current position

Vid = Woiq + c1T1(pid — Tid) + cor2(Pga — Zia), )

where d = 1,2,...,D; 1 = 1,2,...,N (N is the size of population); ¢; and ¢,
are two positive constants; r; and r, are two random values in the range [0, 1].
The inertia weight w is employed to control the impact of the previous history of
velocities on the current velocity and regulates the trade—off between the global
(wide-ranging) and local (nearby) exploration abilities of the swarm. In our case
a time decreasing inertia weight has been used: start with a large inertia weight
value, to make better global exploration of the search space, and gradually decrease
it to get more refined solutions.

In the next step, the i-th particle updates its position by exploiting its own search
experience, as well as the experience and the discoveries of other companions ac-
cording to the relation

Tid = %id + Vid- (6)
3.2  Ezperiments description and results

In all the simulations reported the following parameter values were used: v, =
10000,v, = 1, u = 107'° ¢, = ¢; = 0.5. Although, our choices seem not to
be critical for the success of the method, faster convergence can be obtained by
proper fine—tuning. A time decreasing inertia weight, i.e. start from 1 and gradually
decrease towards 0.4, worked better than a constant value. In all experiments, when
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PSO converges to a local minimum, “Stretching” technique is applied to the original
function and PSO is re-initialized.

Table 1
Analysis of the results for the minimization of the Levy No.5 function.

“Stretching” No “Stretching” Overall
Mean Value 3854.2 10494 1245.8
Standard Deviation 1630.1 235.1 854.2
Success T/7 93/93 100/100

The first test refers to the minimization of the Levy No. § function. The results of
Table 1 have been obtained after 100 runs with a swarm of size 20, initialized into
the cube [—2, 2]%. The average performance is exhibited in terms of the mean value
and standard deviation of the number of function evaluations, and successful runs.
As it can be seen from the first two columns of the table, in 93 out of 100 cases
PSO found the global minimum without any help, while in 7 cases it got stuck in
a local minimum. In these cases “Stretching” was applied and the global minimum
had finally been detected. Thus the success rate of PSO increased by 7%, reaching
an overall success of 100%.

Table 2

Analysis of the results for the minimization of the Corana function.

“Stretching” No “Stretching” Overall
Mean Value 13704.6 2563.2 5460.0
Standard Deviation 7433.5 677.5 6183.8
Success 26/26 74/74 100/100

In the second experiment the Corana function is minimized. 100 simulations were
run with a swarm of 40 particles, initialized and constrained inside the hypercube
[—1, 1]%. Overall success was 100% (see last column of Table 2), but the success of
the plain PSO was just 74% (see the No “Stretching” column of Table 2). Thus,
the “Stretching” technique increased the success by 26% and significantly improved
the performance of the PSO.

Table 3
Analysis of the results for the XOR problem.

“Stretching” No “Stretching”  Overall
Mean Value 29328.6 1459.7 7869.6
Standard Deviation 15504.2 1143.1 13905.4
Success 23/23 T/ 100/100

The third experiment concerns training an ANN to classify the XOR patterns.
The XOR function maps two binary inputs to a single binary output, and an
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ANN with 2 linear input nodes, two hidden nodes with logistic activations and one
linear output node was used. From this problem relevant literature, it is known
that reaching a global minimizer strongly depends on the initial weights, and that
the objective function presents a multitude of local minima. As shown in Table 3,
the “Stretching” technique helped to increase significantly the success of the PSO,
i.e. from 77% to 100%.

4 Concluding remarks

The main feature of the “Stretching” techniqueis the use of a two—step transforma-
tion of the objective function to eliminate local minima, while preserving the global
ones. Experiments indicate that the PSO when equipped with the proposed tech-
nique is able to escape from local minima and locate the global one effectively. The
“Stretching” techunique provides stable convergence, and, thus, a better probability
of success for the PSO.

Preliminary experiments with Evolutionary and Genetic Algorithms [6] show that
the “Stretching” techunique can assure that these algorithms will not stall to a
previously detected minimum. Extensive testing on high-dimensional and more
complex real-life optimization tasks is necessary to fully investigate the properties
and evaluate the performance of the function “Stretching” technique.
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