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Abstract. This paper presents an overview of our most recent results concerning the Particle
Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for
detecting multiple minimizers are described. Moreover, results on the ability of the PSO in
tackling Multiobjective, Minimax, Integer Programming and �1 errors-in-variables problems,
as well as problems in noisy and continuously changing environments, are reported. Finally,
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1. Introduction

In numerous optimization problems encountered in different areas of
scientific inquiry, the search for a solution is identified with the discovery
of the global minimizer of a real valued objective function f : S → R, i.e.,
finding a point x∗ ∈ S such that

f (x∗) � f (x), ∀x ∈ S, (1)

where S ⊂ R
D is a nonempty compact set.
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Global Optimization (GO) methods can be classified into two main
categories: deterministic and probabilistic methods. Most of the deterministic
methods involve the application of heuristics, such as modifying the trajectory
(trajectory methods) or adding penalties (penalty-based methods), to escape
from local minima. On the other hand, probabilistic methods rely on proba-
bilistic judgements to determine whether or not search should depart from
the neighborhood of a local minimum (Forgó, 1988; Hansen, 1992; Horst
and Pardalos, 1995; Horst and Tuy, 1996; Pintér, 1996; Rao, 1996; Schwefel,
1995; Törn and Žilinskas, 1989).

In contrast with different adaptive stochastic search algorithms, Evolu-
tionary Computation (EC) techniques (Bäck et al., 1997) exploit a set
of potential solutions, named population, and detect the optimal problem
solution through cooperation and competition among the individuals of
the population. These techniques often find optima in complicated optimi-
zation problems faster than traditional optimization methods. The most
commonly met population-based EC techniques, such as Evolution Strategies
(ES) (Bäck, 1996; Beyer, 2001; Beyer and Schwefel, 2002; Rechenberg,
1994; Rudolph, 1997; Schwefel 1975; Schwefel, 1981; Schwefel, 1995;
Schwefel and Rudolph, 1995), Genetic Algorithms (GA) (Goldberg, 1989;
Michalewicz, 1994), Genetic Programming (Banzhaf et al., 1998; Koza,
1992), Evolutionary Programming (Fogel, 1996) and Artificial Life methods,
are inspired from the evolution of nature.

The Particle Swarm Optimization (PSO) method is a member of the wide
category of Swarm Intelligence methods (Kennedy and Eberhart, 2001), for
solving GO problems. It was originally proposed by J. Kennedy as a simu-
lation of social behavior, and it was initially introduced as an optimization
method in 1995 (Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995).
PSO is related with Artificial Life, and specifically to swarming theories, and
also with EC, especially ES and GA.

PSO can be easily implemented and it is computationally inexpensive,
since its memory and CPU speed requirements are low (Eberhart et al.,
1996). Moreover, it does not require gradient information of the objective
function under consideration, but only its values, and it uses only primitive
mathematical operators. PSO has been proved to be an efficient method for
many GO problems and in some cases it does not suffer the difficulties
encountered by other EC techniques (Eberhart and Kennedy, 1995).

In this paper, some recent approaches for solving GO problems through
PSO are presented. After an analytic description of the concepts behind PSO
and its historical background in Section 2, a recently proposed technique,
called Function “Stretching”, is described in Section 3. Incorporating Func-
tion “Stretching” in PSO, the method becomes capable of alleviating local
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minima of the objective function, thus increasing significantly its success
rates. In Section 4, PSO is tested in noisy and continuously changing envir-
onments, where the function values are imprecise and the global minimizer
moves within the search space. In this context, an application of PSO
for solving Light Scattering problems, is presented. The PSO’s ability to
cope efficiently with Multiobjective Optimization problems is investigated in
Section 5. In Section 6, PSO is used to solve �1 norm errors-in-variables prob-
lems, determining the best model for fitting sets of data. Two other interesting
classes of optimization problems are the Minimax and Integer Programming
problems. Sections 7 and 8 respectively, are devoted to the investigation of
the performance of the PSO method with respect to such problems. Finally,
a technique for locating multiple global minima, as well as a composite PSO
with dynamically controlled parameters by a Differential Evolution algorithm
(Storn and Price, 1997), are presented in Sections 9 and 10 respectively, and
conclusions are derived in Section 11.

2. Particle Swarm Optimization

2.1 Historical background

The implicit rules adhered to by the members of bird flocks and fish schools,
that enable them to move synchronized, without colliding, resulting in
an amazing choreography, was studied and simulated by several scientists
(Heppner and Grenander, 1990; Reynolds, 1987). In simulations, the move-
ment of the flock was an outcome of the individuals’ (birds, fishes etc.) efforts
to maintain an optimum distance from their neighboring individuals (Eberhart
et al., 1996).

The social behavior of animals, and in some cases of humans, is governed
by similar rules (Wilson, 1975). However, human social behavior is more
complex than a flock’s movement. Besides physical motion, humans adjust
their beliefs, moving, thus, in a belief space. Although two persons cannot
occupy the same space of their physical environment, they can have the same
beliefs, occupying the same position in the belief space, without collision.
This abstractness in human social behavior is intriguing and has constituted
the motivation for developing simulations of it. There is a general belief,
and numerous examples coming from nature enforce the view, that social
sharing of information among the individuals of a population, may provide
an evolutionary advantage. This was the core idea behind the development of
PSO (Eberhart et al., 1996).
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2.2 The Particle Swarm Optimization algorithm

PSO’s precursor was a simulator of social behavior, that was used to visualize
the movement of a birds’ flock. Several versions of the simulation model
were developed, incorporating concepts such as nearest-neighbor velocity
matching and acceleration by distance (Eberhart et al., 1996; Kennedy and
Eberhart, 1995). When it was realized that the simulation could be used as an
optimizer, several parameters were omitted, through a trial and error process,
resulting in the first simple version of PSO (Eberhart et al., 1996).

PSO is similar to EC techniques in that, a population of potential solu-
tions to the problem under consideration, is used to probe the search space.
However, in PSO, each individual of the population has an adaptable velo-
city (position change), according to which it moves in the search space.
Moreover, each individual has a memory, remembering the best position of
the search space it has ever visited (Eberhart et al., 1996). Thus, its move-
ment is an aggregated acceleration towards its best previously visited position
and towards the best individual of a topological neighborhood. Since the
“acceleration” term was mainly used for particle systems in Particle Physics
(Reeves, 1983), the pioneers of this technique decided to use the term particle
for each individual, and the name swarm for the population, thus, coming up
with the name Particle Swarm for their algorithm (Kennedy and Eberhart,
1995).

Two variants of the PSO algorithm were developed. One with a global
neighborhood, and one with a local neighborhood. According to the global
variant, each particle moves towards its best previous position and towards the
best particle in the whole swarm. On the other hand, according to the local
variant, each particle moves towards its best previous position and towards
the best particle in its restricted neighborhood (Eberhart et al., 1996). In the
following paragraphs, the global variant is exposed (the local variant can be
easily derived through minor changes).

Suppose that the search space is D-dimensional, then the i-th particle
of the swarm can be represented by a D-dimensional vector, Xi =
(xi1, xi2, . . . , xiD)�. The velocity (position change) of this particle, can be
represented by another D-dimensional vector Vi = (vi1, vi2, . . . , viD)�. The
best previously visited position of the i-th particle is denoted as Pi =
(pi1, pi2, . . . , piD)�. Defining g as the index of the best particle in the swarm
(i.e., the g-th particle is the best), and let the superscripts denote the itera-
tion number, then the swarm is manipulated according to the following two
equations (Eberhart et al., 1996):

vn+1
id = vnid + crn1 (pnid − xnid)+ crn2 (pngd − xnid), (2)

xn+1
id = xnid + vn+1

id , (3)
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where d = 1, 2, . . . ,D; i = 1, 2, . . . , N , and N is the size of the swarm; c is
a positive constant, called acceleration constant; r1, r2 are random numbers,
uniformly distributed in [0, 1]; and n = 1, 2, . . ., determines the iteration
number.

Equations (2) and (3) define the initial version of the PSO algorithm. Since
there was no actual mechanism for controlling the velocity of a particle, it was
necessary to impose a maximum value Vmax on it. If the velocity exceeded
this threshold, it was set equal to Vmax . This parameter proved to be crucial,
because large values could result in particles moving past good solutions,
while small values could result in insufficient exploration of the search space.
This lack of a control mechanism for the velocity resulted in low efficiency for
PSO, compared to EC techniques (Angeline, 1998). Specifically, PSO located
the area of the optimum faster than EC techniques, but once in the region of
the optimum, it could not adjust its velocity stepsize to continue the search at
a finer grain.

The aforementioned problem was addressed by incorporating a weight
parameter for the previous velocity of the particle. Thus, in the latest versions
of the PSO, Equations (2) and (3) are changed to the following ones (Eberhart
and Shi, 1998; Shi and Eberhart, 1998a, Shi and Eberhart, 1998b):

vn+1
id = χ

(
wvnid + c1r

n
1 (p

n
id − xnid)+ c2r

n
2 (p

n
gd − xnid)

)
, (4)

xn+1
id = xnid + vn+1

id , (5)

where w is called inertia weight; c1, c2 are two positive constants, called
cognitive and social parameter respectively; and χ is a constriction factor,
which is used, alternatively to w to limit velocity. The role of these parameters
is discussed in the next section.

In the local variant of PSO, each particle moves towards the best particle
of its neighborhood. For example, if the size of the neighborhood is 2, then
the i-th particle moves towards the best particle among the (i – 1)-th, the (i +
1)-th and itself.

The PSO method appears to adhere to the five basic principles of swarm
intelligence, as defined by (Eberhart et al., 1996; Millonas, 1994):

(a) Proximity, i.e., the swarm must be able to perform simple space and time
computations;

(b) Quality, i.e., the swarm should be a able to respond to quality factors in
the environment;

(c) Diverse response, i.e., the swarm should not commit its activities along
excessively narrow channels;

(d) Stability, i.e., the swarm should not change its behavior every time the
environment alters; and finally
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(e) Adaptability, i.e., the swarm must be able to change its behavior, when
the computational cost is not prohibitive.

Indeed, the swarm in PSO performs space calculations for several time steps.
It responds to the quality factors implied by each particle’s best position and
the best particle in the swarm, allocating the responses in a way that ensures
diversity. Moreover, the swarm alters its behavior (state) only when the best
particle in the swarm (or in the neighborhood, in the local variant of PSO)
changes, thus, it is both adaptive and stable (Eberhart et al., 1996).

2.3 The parameters of PSO

The role of the inertia weight w, in Equation (4), is considered critical for the
PSO’s convergence behavior. The inertia weight is employed to control the
impact of the previous history of velocities on the current one. Accordingly,
the parameter w regulates the trade-off between the global (wide-ranging)
and local (nearby) exploration abilities of the swarm. A large inertia weight
facilitates global exploration (searching new areas), while a small one tends
to facilitate local exploration, i.e., fine-tuning the current search area. A suit-
able value for the inertia weight w usually provides balance between global
and local exploration abilities and consequently results in a reduction of the
number of iterations required to locate the optimum solution. Initially, the
inertia weight was constant. However, experimental results indicated that it
is better to initially set the inertia to a large value, in order to promote global
exploration of the search space, and gradually decrease it to get more refined
solutions (Shi and Eberhart, 1998a; Shi and Eberhart, 1998b). Thus, an initial
value around 1.2 and a gradual decline towards 0 can be considered as a good
choice for w.

The parameters c1 and c2, in Equation (4), are not critical for PSO’s
convergence. However, proper fine-tuning may result in faster convergence
and alleviation of local minima. An extended study of the acceleration para-
meter in the first version of PSO, is given in (Kennedy, 1998). As default
values, c1 = c2 = 2 were proposed, but experimental results indicate that c1 =
c2 = 0.5 might provide even better results. Recent work reports that it might be
even better to choose a larger cognitive parameter, c1, than a social parameter,
c2, but with c1 + c2 � 4 (Carlisle and Dozier, 2001).

The parameters r1 and r2 are used to maintain the diversity of the popula-
tion, and they are uniformly distributed in the range [0, 1]. The constriction
factor χ controls on the magnitude of the velocities, in a way similar to the
Vmax parameter, resulting in a variant of PSO, different from the one with the
inertia weight.
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2.4 Differences between PSO and EC techniques

In EC techniques, three main operators are involved. The recombination, the
mutation and the selection operator.

PSO does not have a direct recombination operator. However, the
stochastic acceleration of a particle towards its previous best position, as
well as towards the best particle of the swarm (or towards the best in its
neighborhood in the local version), resembles the recombination procedure in
EC (Eberhart and Shi, 1998; Rechenberg, 1994; Schwefel, 1975; Schwefel,
1995). In PSO the information exchange takes place only among the particle’s
own experience and the experience of the best particle in the swarm, instead
of being carried from fitness dependent selected “parents” to descendants as
in GA’s.

Moreover, PSO’s directional position updating operation resembles muta-
tion of GA, with a kind of memory built in. This mutation-like procedure is
multidirectional both in PSO and GA, and it includes control of the mutation’s
severity, utilizing factors such as the Vmax and χ .

PSO is actually the only evolutionary algorithm that does not use the
“survival of the fittest” concept. It does not utilize a direct selection function.
Thus, particles with lower fitness can survive during the optimization and
potentially visit any point of the search space (Eberhart and Shi, 1998).

3. The Function “Stretching” technique

3.1 Motivation

Perhaps the most common problem encountered by many GO methods, either
deterministic or evolutionary, when coping with the GO problem as defined
in Equation (1), is the problem of local minima (Forgó, 1988; Hansen, 1992;
Horst and Pardalos, 1995; Horst and Tuy, 1996; Pintér, 1996; Rao, 1996;
Schwefel, 1995; Törn and Žilinskas, 1989). Especially in multimodal func-
tions, the existence of many local minima makes it quite difficult for most
techniques to detect the global minimum. PSO, despite being an efficient
method, also suffers from this problem.

Assume a point x̄ such that a neighborhood B of x̄ with

f (x̄) � f (x), ∀x ∈ B, (6)

exists. This point is a local minimizer of the objective function f (x) and
in many cases this sub-optimal solution is acceptable. However, there are
applications where the optimal solution, i.e., the global minimizer is not only
desirable but also indispensable. Therefore, the development of robust and
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efficient techniques for alleviating the local minima problem is a subject
of considerable ongoing research. To this end, the Function “Stretching”
technique is applied, and it is shown through simulation experiments that
Function “Stretching” provides a way to escape from the local minima when
PSO’s convergence stagnates.

3.2 Equipping PSO with Function “Stretching”

The idea behind Function “Stretching”, is to perform a two-stage transforma-
tion of the original objective function f (x). This can be applied immediately
after a local minimum x̄ of the function f (x) has been detected. This
transformation has been proposed by Vrahatis in 1996, and it is defined as
follows:

G(x) = f (x)+ γ1‖x − x̄‖
(

sign(f (x)− f (x̄))+ 1
)
, (7)

H(x) = G(x)+ γ2

sign
(
f (x)− f (x̄)

)
+ 1

tanh
(
µ(G(x)−G(x̄))

) , (8)

where γ1, γ2, andµ are arbitrary chosen positive constants, and sign(·) defines
the well known triple valued sign function

sign(x) =



1, if x > 0,
0, if x = 0,

−1, if x < 0.

The first transformation stage, defined in Equation (7), elevates the func-
tion f (x) and eliminates all the local minima that are located above f (x̄). The
second stage, Equation (8), stretches the neighborhood of x̄ upwards, since
it assigns higher function values to those points. Both stages do not alter the
local minima located below x̄; thus, the location of the global minimum is left
unaltered. Note that the sign(·) function, used in the above transformation, can
be approximated by the well known logistic function

sign(x) ≈ logsig(x) = 2

1+ exp(−λx) − 1 � tanh

(
λx

2

)
,

for large values of λ. This sigmoid function is continuously differentiable and
is widely used as a transfer function in artificial neural networks.

At this point, it is useful to illustrate the impact of the two transformations
suggested by the Function “Stretching” technique, on a well known optimi-
zation test function (Parsopoulos et al., 2001a; Parsopoulos et al., 2001b,
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Parsopoulos et al., 2001c). The problem under consideration is a notorious
two dimensional test function, called the Levy No. 5 (Levy et al., 1981):

f (x) =
5∑
i=1

[
i cos

(
(i − 1)x1 + i

)] 5∑
j=1

[
j cos

(
(j + 1)x2 + j

)]

+ (x1 + 1.42513)2 + (x2 + 0.80032)2, (9)

where −10 � xi � 10, and i = 1, 2. There are about 760 local minima and
one global minimum with function value f (x∗) = –176.1375, at the point x∗ =
(–1.3068, –1.4248)�. The large number of local minimizers makes it difficult
for any method to locate the global minimizer. In Figure 1, the original plot
of the Levy No. 5 function, within the cube [–2, 2]2, is shown.

Figure 1. Plot of the original Levy No. 5 function.

After applying the transformation of Equation (7) (first stage of Function
“Stretching”) to the Levy No. 5 function, the new form of the function is
shown on the upper side of Figure 2. As one can observe, local minima with
higher functional values than the “stretched” local minimum (which looks as
if a pin is positioned over it and the rest of the function is stretched around it)
disappeared, while lower minima as well as the global one have not been
affected. The final shape of the landscape is shown on the lower side of
Figure 2; being the result of applying the second transformation stage to the
Levy No. 5. It is clearly shown how the whole neighborhood of the local
minimum has been elevated; thus, the former local minimum has been turned
into a local maximum of the function.

Table 1, below, provides an algorithm model for a modified PSO method,
named “Stretched” PSO (SPSO). SPSO initially applies the PSO method, for
minimizing the objective function f (x). When PSO stumbles upon a local



244 K.E. PARSOPOULOS AND M.N. VRAHATIS

Figure 2. Plot of the Levy No. 5 function, after the first stage (left) and the second stage (right)
of the Function “Stretching” transformations.

minimum, the Function “Stretching” technique is applied to the original
function and SPSO is re-initialized with the PSO for the minimization of the
stretched function.

Table 1. Algorithm model of the SPSO.

“Stretched” Particle Swarm Optimizer

Step 1. Set randomly the population and the velocities.

Step 2. While (Stopping Criterion not met) Do

Step 3. Update inertia and perform a PSO iteration for the objective function f (x).

Step 4. If a local minimum x̄ has been found, Then

Step 5. Set f (x)← H(x), where H(x) is defined in Equation (8).

Step 5. End While

Step 6. Report the results.

Details on the performance of the SPSO in some well known and widely
used test problems, as well as suggestions for selecting parameter values for
the Function “Stretching” technique are presented in the next section.

3.3 Experimental results

In this subsection, results from testing the classical PSO method and the
“Stretched” PSO on well-known test functions, are reported. Difficult optimi-
zation problems were studied, such as the minimization of several of the
Levy family test functions (Levy et al., 1981), the 2-dimensional and the
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Table 2. Analysis of the results for the minimization of several test problems. Mean and
the standard deviation of the number of required function evaluations, as well as the
corresponding success rates.

Test Problem “Stretching” applied PSO SPSO

Mean St.D. Succ. Mean St.D. Succ. Mean St.D. Succ.

Levy No. 3 15246.6 6027.3 15% 5530.5 6748.0 85% 6988.0 7405.5 100%

Levy No. 5 3854.2 1630.1 7% 1049.4 235.1 93% 1245.8 854.2 100%

Levy No. 8 0 0 0% 509.6 253.2 100% 509.6 253.2 100%

Freud.-Roth 3615.0 156.1 40% 1543.3 268.1 60% 2372.0 1092.1 100%

Goldst.-Price 17420.0 3236.56 5% 1080.0 225.6 95% 1897.0 3660.3 100%

Corana 2D 0 0 0% 1409.6 392.8 100% 1409.6 392.8 100%

Corana 4D 13704.6 7433.5 26% 2563.2 677.5 74% 5460.0 6183.8 100%

XOR 29328.6 15504.2 23% 1459.7 1143.1 77% 7869.6 13905.4 100%

4-dimensional Corana functions (Corana et al., 1987), the Freudenstein-Roth
and Goldstein-Price functions (More et al., 1981), and a classical Artificial
Neural Networks (ANN) pattern classification problem, i.e., the classification
of the eXclusive–OR (XOR) patterns.

In all the simulations reported, the values of γ1, γ2 and µ were fixed:
γ1 = 5000, γ2 = 0.5 and µ = 10−10. Default values for the parameters c1

and c2 were used: c1 = c2 = 0.5. Although the choice of the parameter values
seems not to be critical for the success of the methods, it appears that faster
convergence can be obtained by proper fine-tuning. The balance between the
global and local exploration abilities of the SPSO is mainly controlled by the
inertia weight, since the positions of the particles are updated according to the
classical PSO strategy. A time decreasing inertia weight value, i.e., start from
1 and gradually decrease towards 0.4, proved to be superior than a constant
value.

For each problem 100 runs have been performed using the SPSO and the
average performance is exhibited in terms of the mean value and the standard
deviation of the required number of function evaluations, and the percentage
of SPSO success. Results for all of the aforementioned problems are reported
in Table 2, while the size of the population used for each problem, as well as
the initial hypercube in which the initial population was randomly initialized,
are presented in Table 3.
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Table 3. Dimension, swarm’s size, and initial hypercube for each test problem.

Test Problem Dim. Popul. Size Initial Hypercube

Levy No. 3 2 20 [–10, 10]2

Levy No. 5 2 20 [–2, 2]2

Levy No. 8 3 20 [–5, 5]3

Freud.-Roth 2 20 [–5, 5]2

Goldst.-Price 2 20 [–2, 2]2

Corana 2D 2 20 [–5, 5]2

Corana 4D 4 80 [–1, 1]4

XOR 9 80 [–1, 1]9

TEST PROBLEM 3.1, Levy No. 3 (Levy et al., 1981):

f (x) =
5∑
i=1

[
i cos

(
(i − 1)x1 + i

)] 5∑
j=1

[
j cos

(
(j + 1)x2 + j

)]
, (10)

where –10 � xi � 10, i = 1, 2. There are about 760 local minima for this
function and 18 global minima with function value f (x∗) = –176.542. As it
can be seen from Table 2, in 85 out of 100 cases the plain PSO found the
global minimum, while in 15 cases it was entrapped in a local minimum, and
Function “Stretching” was successfully applied. Thus the success rate of PSO
increased by 15%.

TEST PROBLEMS 3.2–3.3, Levy No. 5 and Levy No. 8 (Levy et al., 1981): The
Levy No. 5 function is given by Equation (9), while the Levy No. 8 function
is defined by the equation:

f (x) = sin2(πy1)+
n−1∑
i=1

(yi − 1)2[1+ 10 sin2(πyi+1)] + (yn − 1)2, (11)

where yi = 1+ xi−1
4 , i = 1, . . . , n; xi ∈ [–10, 10] for i = 1, 2, 3; and has one

global minimum at the point x∗ = (1, 1, 1)� with function value f (x∗) = 0,
and, approximately, 125 local minima.
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An increase of the success rate, from 93% to 100%, was observed for the
Levy No. 5 function, where “Stretching” was applied in 7 cases, while for the
Levy No. 8, plain PSO detected the global minimum in all 100 runs.

TEST PROBLEM 3.4, Corana function (Storn and Price, 1997):

f (x) =
4∑
j=1

{
0.15

(
zj − 0.05 sign(zj )

)2
dj , if |xj − zj | < 0.05,

dj x
2
j , otherwise,

(12)

where xj ∈ [–1000, 1000], (d1, d2, d3, d4) = (1, 1000, 10, 100), and

zj =
⌊∣∣∣ xj

0.2

∣∣∣+ 0.49999
⌋

sgn(xj ) 0.2.

It is indeed a very difficult minimization problem for most methods. As illus-
trated in Table 2, plain PSO had only 74% success rate, but using SPSO the
success rate increased to 100%.

Similar results are reported for the following test problems, where the PSO
success rate was increased by 40% and 5% respectively.

TEST PROBLEM 3.5, Freudenstein-Roth function:
The Freudenstein-Roth function is defined as

f (x) = [−13+ x1 + ((5− x2)x2 − 2)x2]2 +
+[−29+ x1 + ((x2 + 1)x2 − 14)x2]2, (13)

and has a global minimizer x∗ = (5, 4)� with function value f (x∗) = 0.

TEST PROBLEM 3.6, Goldstein-Price function:
The Goldstein-Price function is given by the formula

f (x) =
[

1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )

]
[

30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2 )

]
, (14)

and has one global minimum with function value f (x∗) = 3 at the point x∗ =
(0, –1)�.

Other optimization methods, such as Steepest Descent with adaptive step-
size and backtracking (SD), Fletcher – Reeves (FR), Polak – Ribiere (PR),
Davidon – Fletcher – Powell (DFP) and Broyden – Fletcher – Goldfarb
– Shanno (BFGS) (Polak, 1997), were tested in the Freudenstein-Roth
and the Goldstein-Price functions. None of the aforementioned methods
outperformed the SPSO, as can be seen from the results exhibited in Table 4.

In a different experiment, an ANN was trained using the SPSO to learn the
XOR Boolean classification problem. The XOR function maps two binary
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Table 4. Comparative results for the Freudenstein-Roth and the Goldstein-Price
test functions. Mean and the standard deviation of the number of the required
function evaluations, as well as the corresponding success rates.

Algorithm Freudenstein-Roth Goldstein-Price

Mean St.D. Succ. Mean St.D. Succ.

SPSO 2372 1092.1 100% 1897 3660.3 100%
SD 41651 6153.4 77.3% 700 363.9 84.3%
FR 245 599.8 44.3% 1475 3097.1 71.4%
PR 120 13.2 43.8% 238 41.3 79.9%
DFP 91 9.7 43.7% 162 28.6 59.3%
BFGS 91 9.8 43.8% 161 27.0 59.9%

inputs to a single binary output and the ANN that is trained to solve the
problem, has two linear input nodes, two hidden nodes, and one output
node, all with logistic activation functions. This task corresponds to the
minimization of the following objective function (Vrahatis et al., 2000):

TEST PROBLEM 3.7, XOR function (Vrahatis et al., 2000):

f (x) =
[

1+ exp

(
− x7

1+ exp(−x1 − x2 − x5)
− x8

1+ exp(−x3 − x4 − x6)
− x9

)]−2

+
[

1+ exp

(
− x7

1+ exp(−x5)
− x8

1+ exp(−x6)
− x9

)]−2

+
[

1−
{

1+ exp

(
− x7

1+ exp(−x1 − x5)
− x8

1+ exp(−x3 − x6)
− x9

)}−1
]2

+
[

1−
{

1+ exp

(
− x7

1+ exp(−x2 − x5)
− x8

1+ exp(−x4 − x6)
− x9

)}−1
]2

.

In the context of ANNs, the parameters x1, x2, . . . , x9, are called weights,
and they are usually initialized in the interval [–1, 1]. It is well known from the
relative literature that successful training in this case, i.e., reaching a global
minimizer, strongly depends on the initial weight values and that the above-
mentioned function presents a multitude of local minima (Blum, 1989). It is
obvious from the results reported in Table 2 that the Function “Stretching”
technique increases significantly the success rates of the PSO, indeed the
success rate was increased from 77% to 100%.

3.4 Synopsis

Locating global minimizers is a very challenging task for all minimization
methods. An effective technique, named Function “Stretching”, was applied
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for the alleviation of the local minima problem for the PSO. This technique
applies a two-stage transformation to the shape of the fitness function that
eliminates undesirable local minima, but preserves the global ones.

Experiments on many difficult optimization test problems indicate that the
PSO method, when equipped with the proposed technique (SPSO), is capable
of escaping from the areas of local minima and locate the global minimizer
effectively. The Function “Stretching” technique provides stable convergence
and thus a better probability of success for the PSO. The heavier computa-
tional cost paid for SPSO, is balanced by the increased success rates, which
imply that the final result is the global minimum of the objective function
with high probability.

4. Particle Swarm Optimization for noisy and continuously changing
environments

4.1 Motivation and problem formulation

Most of the GO methods, require precise function and gradient values.
In many applications though, precise values are either impossible or time
consuming to obtain. For example, when the function and gradient values
depend on the results of numerical simulations, then it may be difficult
or impossible to get very precise values. In other cases, it may be neces-
sary to integrate numerically a system of differential equations in order
to obtain a function value, so that the precision of the computed value is
limited (Drossos et al., 1996; Kalantonis et al., 2001). Furthermore, in many
problems the accurate values of the function to be minimized are compu-
tationally expensive (Vrahatis et al., 2001). Such problems are common in
real life applications, such as the optimization of parameters in chemical
experiments, or finite element calculations. Having such applications in mind,
robust methods which progress with the fewest possible number of function
evaluations and limited precision, are required.

The problem of optimization of noisy or imprecise (not exactly known)
functions occurs in various applications, as, for instance, in the task of
experimental optimization. Also, the problem of locating local maxima and
minima of a function from approximate measurement results is vital for many
physical applications. In spectral analysis, chemical species are identified by
locating local maxima of the spectra. In Radioastronomy, sources of celes-
tial radio emission and their subcomponents are identified by locating local
maxima of the measured brightness of the radio sky. Elementary particles are
identified by locating local maxima of the experimental curves.
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The theory of local optimization provides a large variety of efficient
methods for the computation of an optimizer of a smooth function f (x).
For example, Newton-type and quasi-Newton methods exhibit superlinear
convergence in the vicinity of a nondegenerate optimizer. However, these
methods require the Hessian or the gradient, respectively, in contrast to other
optimization procedures, like the Nonlinear Simplex method (Nelder and
Mead, 1965), the direction set method of Powell (Fletcher, 1987), or some
other recently proposed methods (Boutsinas and Vrahatis, 2001; Elster and
Neumaier, 1995; Elster and Neumaier, 1997; Vrahatis et al., 1996).

In some applications, however, the function to be minimized is only known
within some (often unknown and low) precision. This might be due to the fact
that evaluation of the function implies measuring some physical or chemical
quantity or performing a finite element calculation in order to solve partial
differential equations. The function values obtained are corrupted by noise,
namely stochastic measurement errors or discretization errors. This means
that, although the underlying function is smooth, the function values avail-
able show a discontinuous behavior. Moreover, no gradient information is
available. For small variances in a neighborhood of a point the corresponding
function values reflect the local behavior of noise rather than that of the func-
tion. Thus, a finite-difference procedure to estimate the gradient fails (Elster
and Neumaier, 1995).

The traditional method for optimizing noisy functions is the simplex or
polytope method by Nelder and Mead (Nelder and Mead, 1965; Nocedal,
1991; Powell, 1988). This method surpasses other well-known optimization
methods when dealing with large noise. Yet, this is not valid in the noiseless
case. Torczon (Torczon, 1989) has shown experimentally that the algorithm
of Nelder and Mead fails even on the sphere unless the dimensionality of
the search space is very small. The ability of this method to cope with
noise is due to the fact that it proceeds solely by comparing the relative size
of function values, as is the case with the proposed method. The Simplex
method does not use a local model of the function f and works without the
assumption of continuity. Although this method has poor convergence proper-
ties (for a convergence proof of a modified version see (Torczon, 1991)),
it proved to be useful in many sequential applications. Unfortunately, the
method can be deficient when the current simplex is very “flat”. This can
be avoided by applying suitable variants (see for example (Torczon, 1991)).
More sophisticated methods in this direction are discussed by Powell (Powell,
1992).

Recently, Arnold in his Ph.D. thesis (Arnold, 2001) extensively tested
numerous optimization methods under noise, including:
(1) the direct pattern search algorithm of Hooke and Jeeves (Hooke and

Jeeves, 1961),
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(2) the simplex metdod of Nelder and Mead (Nelder and Mead, 1965),
(3) the multi-directional search algorithm of Torczon (Torczon, 1989),
(4) the implicit filtering algorithm of Gilmore and Kelley (Gilmore and

Kelley, 1995; Kelley, 1999) that is based on explicitly approximating the
local gradient of the objective functions by means of finite differencing,

(5) the simultaneous perturbation stochastic approximation algorithm due
to Spall (Spall, 1992; Spall, 1998a; Spall, 1998b),

(6) the evolutionary gradient search algorithm of Salomon (Salomon, 1998),
(7) the evolution strategy with cumulative mutation strength adaptation

mechanism by Hansen and Ostermeier (Hansen, 1998; Hansen and
Ostermeier, 2001).

To study the behavior of the above methods Arnold considered a simple
n-dimensional sphere model (see also (Beyer, 2000; Beyer, 2001)) and exten-
sively tested these methods in the presence of additive Gaussian noise. For
almost all of the methods he considered there exists a noise strength beyond
which convergence becomes unreliable. In most cases, this effect leads to
stagnation of the search process. He also made the following observations:

(1) the efficiency of the direct pattern search algorithm of Hooke and Jeeves
is quite good in the absence of noise, but rather rapidly declines if noise
is present even in small-dimensional search spaces,

(2) the simplex method of Nelder and Mead fails even on the sphere unless
the dimension of the search space is very small, and moreover the
presence of noise worsens the tendency of the method to stagnate at
non-optimal points,

(3) the multi-directional search algorithm of Torczon never stagnates but
rather diverges if the noise level is too high,

(4) the implicit filtering method in the absence of noise converges much
faster than any of the other methods as the exact gradient direction is
obtained. This method exhibits poor performance in the presence of high
noise levels,

(5) the attempt to use the simultaneous perturbation stochastic approxi-
mation to the gradient approximation, instead of computing the central
difference gradient in the implicit filtering scheme, has failed even for
zero noise strength,

(6) the evolutionary gradient search algorithm is one of the most efficient
strategies excluding implicit filtering in the absence of noise. In the
presence of noise the efficiency of this method declines,

(7) the evolution strategy with cumulative mutation strength adaptation
mechanism by Hansen and Ostermeier clearly is the most robust strategy
with respect to the effects of noise.
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In this context, to study the impact of imprecise information (regarding
the values of the objective function), we simulate imprecisions through the
following approach. Information about f (x) is obtained in the form of f η(x),
where f η(x) is an approximation to the true function value f (x), contami-
nated by a small amount of noise η. Specifically, the function values are
obtained, for the additive noise case, as (Elster and Neumaier, 1997, p. 40):

f η(x) = f (x)+ η, (15)

and for the multiplivative noise case, as:

f η(x) = f (x)(1+ η), 1+ η > 0, (16)

where η is a Gaussian noise term with zero mean and standard deviation σ

η ∼ N
(
0, σ 2

)
, (17)

i.e., relative stochastic errors are used for the test problems. Assuming a
normal noise distribution may be regarded as an approximation of reality
based on the maximum entropy principle (Beyer, 2000; Jaynes, 1979), the
probability density function of the noise reads

p(η) = 1√
2π σ

exp

[
−1

2

( η
σ

)2
]
. (18)

To obtain η, we apply the method of Box and Muller (Box and Muller, 1958),
using various noise strengths (standard deviations) σ . In our approach, the
assumption of the normal distribution is not mandatory. However, the meas-
urement errors in nature and technology are very often modeled using this
distribution. Moreover, most of the mean values of stochastic processes have
this distribution (central limit theorem of statistics) (Beyer, 2001).

Furthermore, the global minimum of the objective function, potentially
moves within the search space. The movement can be simulated by applying
a rotation of the whole space and/or adding an offset to the global minimum.

4.2 Experimental results

In initial experiments, noise was added to the actual function values,
according to Equations (16) and (17). Additive as well as multiplicative noise
was considered.

Six well known optimization test problems were investigated (Parsopoulos
and Vrahatis, 2001b; Parsopoulos and Vrahatis, 2001c), in order to check
the performance of the PSO technique: DeJong in two and ten dimensions,
Rastrigin in two dimensions, the Hyper Ellipsoid in six and nine dimen-
sions (all defined in (Storn and Price, 1997)), and the Levy No. 5 (defined
in Equation (9)).
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At each function evaluation, noise was added to the actual function values,
for different values of the noise’s strength, from 0.01 to 0.1. For all test prob-
lems, 50 runs of the PSO algorithm were performed. In all experiments the
swarm’s size was set equal to [−5, 5]D , whereD is the corresponding dimen-
sion of the problem, and c1 = c2 = 0.5. The maximum number of iterations
was 5000 and the inertia weight was gradually decreased from 1.2 towards
0.1. The desired accuracy was 10−3 and the swarm’s size was set equal to
10D for all problems (e.g., for a 10-dimensional problem it was equal to
100).

The mean distance of the obtained solution from the actual global
minimum, and the mean number of iterations performed by PSO, for both
the additive and the multiplicative noise, are reported in Tables 5–10.

In other experiments, an offset was added to the original global mini-
mizer’s position, at each iteration, as performed by Angeline (Angeline,
1997). The progress of the mean function value of the swarm, for 100 runs,
for the Rosenbrock, the Levy No. 5, and the Beale test function, defined below,
are exhibited in Figures 3, 4, and 5.

TEST PROBLEM 4.1, Rosenbrock function (More et al., 1981):
The Rosenbrock function is defined as

f (x1, x2) = (104x1x2 − 1)2 + (1− x1)
2. (19)

TEST PROBLEMS 4.2–4.3, Levy No. 5 and Beale function (More et al.,
1981):
The Levy No. 5 function is defined by Equation (9), while the Beale function
is defined as

f (x1, x2) =
[y1 − x1(1− x2)]2 + [y2 − x1(1− x2

2 )]2 + [y3 − x1(1− x3
2)]2. (20)

Different line styles in the figures correspond to different values of the
offset. For all runs, a value of the noise’s strength equal to 0.01 was used.
The vertical axis of each plot is logarithmically scaled to facilitate visual
comparison. In Figures 3 and 5, the logarithm log10 of the swarm’s mean
function value for 100 runs is exhibited, while in Figure 4 the logarithm log10
of the swarm’s mean absolute error is exhibited, due to the negative values of
the Levy No. 5 function.

TEST PROBLEM 4.4, Particle Identification by Light Scattering (Hodgson,
2000):
A very interesting application where the function value is imprecise, is the
Particle Identification by Light Scattering problem. Astronomy, Meteorology,
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Table 5. Results for the 2-dimensional DeJong function. The standard
deviation of noise, the mean distance of the obtained minimizer from the
actual global minimizer, and the mean number of iterations performed by
PSO, for both the additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.087383 1312.0 0.023535 1473.95

0.02 0.10389 1164.35 0.024269 1394.25

0.05 0.236045 941.95 0.018750 1394.55

0.07 0.256558 726.75 0.021531 1391.25

0.1 0.209896 724.8 0.017322 1400.05

Table 6. Results for the Levy No. 5 function. The standard deviation of
noise, the mean distance of the obtained minimizer from the actual global
minimizer, and the mean number of iterations performed by PSO, for both
the additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.002107 1510.6 0.146252 1875.7

0.02 0.116313 1854.9 0.152991 1715.2

0.05 0.005402 1512.8 0.059617 1502.1

0.07 0.007007 1488.2 0.171982 1218.4

0.1 0.006019 1512.4 0.814959 1483.0

Table 7. Results for the 2-dimensional Rastrigin function. The standard
deviation of noise, the mean distance of the obtained minimizer from the
mean actual global minimizer, and the number of iterations performed by
PSO, for both the additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.004984 1496.5 0.007625 1487.8

0.02 0.007584 1550.7 0.010616 1519.2

0.05 0.045541 1499.8 0.247842 1485.2

0.07 0.164456 1507.5 0.247611 1472.1

0.1 0.292265 1491.5 0.253639 1477.4
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Table 8. Results for the 6-dimensional Hyper Ellipsoid function. The standard
from the actual deviation of noise, the mean distance of the obtained minimizer
global minimizer, and the mean number of iterations performed by PSO, for
both the additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.049631 1518.8 0.011949 1522.0

0.02 0.060305 1507.4 0.012013 1517.6

0.05 0.112297 1505.6 0.011953 1522.4

0.07 0.124931 1507.2 0.011034 1518.6

0.1 0.143174 1500.6 0.017555 1518.6

Table 9. Results for the 9-dimensional Hyper Ellipsoid function. The standard
deviation of noise, the mean distance of the obtained minimizer from the actual
global minimizer, and the mean number of iterations performed by PSO, for
both the additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.050984 1536.4 0.009048 1538.2

0.02 0.072194 1536.6 0.012693 1547.6

0.05 0.093558 1531.4 0.008291 1541.0

0.07 0.134740 1525.2 0.010766 1548.8

0.1 0.142287 1528.0 0.011485 1546.8

Table 10. Results for the 10-dimensional DeJong function. The standard devia-
tion of noise, the mean distance of the obtained minimizer from the actual global
minimizer, and the mean number of iterations performed by PSO, for both the
additive and the multiplicative noise case, are reported.

Noise’s St.D. Additive Noise Multiplicative Noise

Mean Dist. Mean Iter. Mean Dist. Mean Iter.

0.01 0.143042 1525.0 0.029195 1536.5

0.02 0.193130 1530.9 0.029030 1538.6

0.05 0.293527 1524.9 0.028555 1535.9

0.07 0.376479 1522.8 0.028876 1539.0

0.1 0.444429 1517.8 0.032689 1540.6
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Figure 3. Mean fitness value for the Rosenbrock function.

Figure 4. Mean fitness value for the Levy No. 5 function.

Figure 5. Mean fitness value for the Beale function.
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Medicine and Bioengineering are just some of the fields where the laser
light scattering measurements have become an important tool in the determi-
nation of the size and optical characteristics of small particles. There are
actually two techniques for the determination of particle size using light scat-
tering: Dynamic Light Scattering (DLS) and Static Light Scattering (SLS).
In DLS a laser is focused into a small volume of solution containing the
colloidal particles and the scattered light is collected over a small solid angle.
The phase and polarization of the light scattered by any given molecule is
determined by its size, shape, and composition. Random Brownian motion
causes the total intensity at the detector to fluctuate at time. Autocorrelation
functions are generated from these fluctuations and then inverted to obtain
the distribution of particle sizes (Hodgson, 2000; Parsopoulos and Vrahatis,
2001c). On the other hand, in SLS the total intensity of the scattered light is
measured as a function of angle and this information is used to determine the
particle size distributions. For spheres the angular dependence of the scattered
light is described by the Mie scattering function (Bohren and Huffman,
1983), which depends on the refractive indices of the particle, the surrounding
medium, and the size of the particles present (Hodgson, 2000).

A fundamental problem in inverse light scattering is the determination
of the refractive index and the radius of homogeneous spherical particles
suspended in a known medium. In order to solve that problem, plane
polarized light of known wavelength is scattered from these particles and
the intensity I is measured at a series of angles. The standard Lorenz-Mie
theory (Bohren and Huffman, 1983) is used to describe the process and
the one-dimensional scattering pattern observed is used to characterize both
single particles and particle distributions. Thus, having experimental meas-
ures Is(θ1), Is(θ2), . . . , Is(θm), of the scattered light intensity for several
angles, we wish to determine the corresponding values of the index of refrac-
tion n and the particle radius r. The value of n can be either real or complex.
The intensity values vary widely relatively to the angle and thus it is better to
work with the logarithm of the intensities. The objective function that is used
is:

E1 =
m∑
j=1

[is(θj )− z(θj , r, n)]2, (21)

where is = log(Is) and the z(·) function is the logarithm of the theoretically
computed intensity. If n ∈ C, then the problem of minimizing E1 is three-
dimensional, otherwise, if n ∈ R, it is two-dimensional. Several techniques
have been used to solve the aforementioned problem. For real values of n,
random search and multilevel single-linkage clustering have been applied.
However, the function E1 has numerous local minima and thus the initial
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guess of the solution is of crucial importance. Since evolutionary techniques
do not depend on the initial guess, they appear as a proper alternative to cope
with this problem (Hodgson, 2000).

The problem of particle identification by light scattering, defined as the
minimization of the function defined in Equation (21), was investigated
using PSO. The simulated intensity functions, I (θ), were generated using
the BHMIE routine of Bohren and Huffman (Bohren and Huffman, 1983).
To these values, random amount of multiplicative noise with several variance
values was added. In the first test problem, n∗ = 1.40 and r∗ = 1.55µm were
used (these values constituted the global minimum) and the values of n and
r were bounded by 1 � n, r � 2. The angular range was between 0 and 180
degrees, with data points taken at 9 degrees increments. The wavelength was
set equal to 0.5145µm, and the refractive index of the surrounding medium
(water) was set equal to 1.336. The swarm’s size was 30, the inertia weight
w was gradually decreased from 1.2 towards 0.4, and c1 = c2 = 0.5. The
maximum number of PSO iterations was 150, and the desired accuracy for all
30 runs was 10−5. The results are reported in Table 11. The results presented
in the tables are the success rate, the mean value of the Frobenius norm of the
difference between the obtained and the actual global minimizer, the mean
number of iterations and the mean number of function evaluations required.

Table 11. Results for the light scattering problem, for n∗ = 1.40, r∗ = 1.55.

Noise’s Variance Succ. Rate Mean Dist. Mean Iter. Mean F. Ev.

0 (noiseless) 90% 0.0793 99.9 3027.0

0.1 95% 0.0369 101.6 3078.0

0.3 95% 0.0216 119.5 3615.0

0.5 65% 0.1627 130.3 3939.0

As can be seen, the addition of noise with small variance value increased
the success rate of PSO by contributing to the alleviation of local minima,
while the addition of noise with variance value around 0.5 decreased the
overall performance of the algorithm. Similar are the results for n∗ = 1.65 and
r∗ = 4.0, which is an area of the search space with many more local minima
than the one in the previous experiment. The parameters were bounded by
1 � n � 2, and 3 � r � 5, and the swarm size was increased to 50, while
the accuracy was relaxed to 10−3. The results are reported in Table 12.

For additional results, regarding the ability of PSO to cope with noisy
problems, for well-known and widely-used test functions, see (Parsopoulos
and Vrahatis, 2001b; Parsopoulos and Vrahatis, 2001c).
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Table 12. Results for the light scattering problem, for n∗ = 1.65, r∗ = 4.0.

Noise’s Variance Succ. Rate Mean Dist. Mean Iter. Mean F. Ev.

0 (noiseless) 90% 0.1237 111.33 3370.0

0.1 95% 0.1601 70 2130.0

0.3 83% 0.4886 136.2 4530.0

0.5 94% 0.0008 89 2700.0

4.3 Synopsis

The experimental results indicate that in the presence of noise, additive or
multiplicative, the PSO method is very stable and efficient. In fact, in several
cases, the presence of noise seems to contribute to the avoidance of local
minima and the detection of the global minimum of the objective function by
the PSO. Even in the cases where the strength of the noise is large, PSO is
able to move closer to the position of the global minimizer. Thus, PSO has the
ability to cope with noisy environments effectively and in a stable manner.

5. Particle Swarm for Multiobjective Optimization

5.1 Motivation and problem formulation

Multiobjective Optimization (MO) problems are very common, especially in
engineering applications, due to the multicriteria nature of most real-world
problems. Design of complex hardware/software systems (Zitzler, 1999),
atomic structure determination of proteins (Bush et al., 1995), potential func-
tion parameter optimization (Skinner and Broughton, 1995), x-ray diffraction
pattern recognition (Paszkowicz, 1996), curve fitting (Ahonen et al., 1997)
and production scheduling (Swinehart et al., 1996) are such applications,
where two or more, sometimes competing and/or incommensurable, objective
functions have to be minimized simultaneously. In contrast to the single-
objective optimization case where the optimal solution is clearly defined, in
MO there is a whole set of trade-offs which are known as Pareto Optimal
solutions. These points are optimal solutions for the MO problem when all
objectives are considered simultaneously.

Although the traditional gradient-based optimization techniques can be
used to detect Pareto Optimal solutions, this approach is not popular due to
two main drawbacks:
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(a) the objectives have to be aggregated in one single objective function and,
(b) only one solution can be detected per optimization run.
The inherent difficulty to foreknow which aggregation of the objectives is the
most proper in combination with the heavy computational cost of gradient-
based techniques, implies the necessity for more efficient and rigorous
methods. Evolutionary Algorithms (EA) seem to be especially suited to MO
because they search for multiple Pareto Optimal solutions in a single run, they
perform better global search of the search space and they have been proved
to be robust and powerful search techniques (Zitzler, 1999).

Although there are many results of the PSO performance in single-
objective optimization tasks, there are no well-known studies of the perfor-
mance of PSO in MO problems. A study of the PSO’s performance in
MO tasks, is presented through experiments on well-known test problems
(Parsopoulos and Vrahatis, 2002).

Let X be an n-dimensional search space, and fi(x), i = 1, . . . , k, be k
objective functions defined over X. Furthermore, let

gi(x) � 0, i = 1, . . . , m, (22)

be m inequality constraints. Then, the MO problem can be defined as finding
a vector x∗ = (x∗1 , x∗2 , . . . , x∗n)� ∈ X that satisfies the constraints, and opti-
mizes (without loss of generality we consider only the minimization case) the
vector function

f(x) =
(
f1(x), f2(x), . . . , fk(x)

)�
. (23)

The objective functions fi(x), may be conflicting with each other, thus, most
of the time it is impossible to obtain for all objectives the global minimum
at the same point. The goal of MO is to provide a set of solutions, to the
aforementioned problem, that are Pareto Optimal.

Let u = (u1, . . . , uk)
� and v = (v1, . . . , vk)

�, be two vectors. Then, u
dominates v if and only if ui � vi , i = 1, . . . , k, and ui < vi for at least
one component. This property is known as Pareto Dominance and it is used
to define the Pareto Optimal points. Thus, a solution x of the MO problem is
said to be Pareto Optimal if and only if there does not exist another solution
y such that f(y) dominates f(x). The set of all Pareto Optimal solutions of an
MO problem is called Pareto Optimal Set and it is denoted as P ∗. The set

PF ∗ = {(f1(x), . . . , fk(x)
) | x ∈ P ∗}, (24)

is called Pareto Front. A Pareto Front PF ∗ is called convex if and only if

∀ u, v ∈ PF ∗, ∀λ ∈ (0, 1), ∃w ∈ PF ∗ : λ‖u‖ + (1− λ)‖v‖ � ‖w‖,



RECENT APPROACHES TO GLOBAL OPTIMIZATION PROBLEMS 261

and it is called concave if and only if

∀u, v ∈ PF ∗, ∀λ ∈ (0, 1), ∃w ∈ PF ∗ : λ‖u‖ + (1− λ)‖v‖ � ‖w‖.
A Pareto Front can be convex, concave or partially convex and/or concave
and/or discontinuous. The last three cases are the most difficult for most MO
techniques.

5.2 The Weighted Aggregation approach

The Weighted Aggregation is the most common approach to MO prob-
lems. According to this approach, all the objectives, fi(x), are summed to
a weighted combination

F =
k∑
i=1

wifi(x), (25)

where wi , i = 1, . . . , k, are non–negative weights. It is usually assumed that∑k
i=1wi = 1. These weights can be either fixed or adapt dynamically during

the optimization.
If the weights are fixed, then we are in the case of the Conventional

Weighted Aggregation (CWA). Using this approach only a single Pareto
Optimal point can be obtained per optimization run and a priori knowledge
of the search space is required in order to determine the most proper weights
(Jin et al., 2001). Thus, the search has to be repeated several times to obtain
a desired number of Pareto Optimal points but this is not allowed in most
optimization problems due to time limitations and heavy computational cost.

Other Weighted Aggregation approaches have been proposed to alleviate
the problems that appear when using the CWA. Thus, for a two-objective MO
problem we can modify the weights during the optimization according to the
following equations

w1(t) = sign
(

sin(2πt/R)
)
, (26)

w2(t) = 1− w1, (27)

where t is the iteration’s index, and R is the weights’ change frequency.
This is the well-known Bang-Bang Weighted Aggregation (BWA) approach
according to which the weights are changed abruptly due to the usage of
the sign(·) function. Alternatively, the weights can be changed gradually
according to the equations

w1(t) = | sin(2πt/R)|, (28)

w2(t) = 1− w1. (29)
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This approach is called Dynamic Weighted Aggregation (DWA) and the slow
change of weights that takes place will force the optimizer to keep moving
on the Pareto Front if it is convex, thus performing better than BWA. If the
Pareto Front is concave then the performance of DWA and BWA is almost
identical (Jin et al., 2001).

The three distinct approaches mentioned above have been used for experi-
ments applying the PSO technique as optimizer, with R = 100 for the BWA
and R = 200 for the DWA case respectively. The benchmark problems that
were considered are taken from (Knowles and Corne, 2000; Zitzler et al.,
2000):

TEST PROBLEM 5.1, (convex, uniform Pareto Front):

f1 = 1

n

n∑
i=1

x2
i ,

f2 = 1

n

n∑
i=1

(xi − 2)2.

TEST PROBLEM 5.2, (convex, non–uniform Pareto Front):

f1 = x1,

g = 1+ 9

n− 1

n∑
i=2

xi,

f2 = g
(

1−√f1/g
)
.

TEST PROBLEM 5.3, (concave Pareto Front):

f1 = x1,

g = 1+ 9

n− 1

n∑
i=2

xi,

f2 = g
(
1− (f1/g)

2) .
TEST PROBLEM 5.4, (neither purely convex nor purely concave Pareto
Front):

f1 = x1,

g = 1+ 9

n− 1

n∑
i=2

xi,

f2 = g
(

1− 4
√
f1/g − (f1/g)

4
)
.
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TEST PROBLEM 5.5, (Pareto Front that consists of separated convex parts):

f1 = x1,

g = 1+ 9

n− 1

n∑
i=2

xi,

f2 = g
(

1−√f1/g − (f1/g) sin (10πf1)

)
.

Each test problem is denoted by the corresponding function F (e.g., the
Test Problem 5.1 is denoted by F1). Although simple and containing only
two objectives, these test functions comprise difficult MO problems (espe-
cially F3, F4 and F5) due to the shape of the Pareto Front (purely or partially
concave, discontinuous etc.). In order to have comparable results in detecting
the Pareto Front of the benchmark problems with the results provided in (Jin
et al., 2001) for the EA case, we used the pseudocode provided in (Jin et al.,
2001) to build and maintain the archive of Pareto solutions and we performed
all simulations using the same parameter values. Thus, 150 iterations of PSO
were performed for each problem, with x ∈ [0, 1]2. The PSO parameters were
fixed c1 = c2 = 0.5, and the inertia w was gradually decreased from 1 toward
0.4. The size of the swarm depended on the problem but it never exceeded 40.

The first experiments were performed using the CWA approach with a
small swarm of 10 particles. The desired number of Pareto Optimal points
was 20 for the functions F1, F2, F3, and 40 for the function F4. Thus we
had to run the algorithm 20 times for the first three functions and 40 times
for the fourth. The obtained Pareto Fronts are exhibited in Figure 6. The
computational cost was low and convergence rates were high (less than 2
minutes were needed for each function).

The results for the experiments done using the BWA and DWA approaches
are exhibited in Figures 7–10.

It is clear that PSO succeeds in capturing the shape of the Pareto Front
in each case. The results are better when using the DWA approach except
for the case of the concave Pareto Front of the function F3, at which the
BWA approach performed better. The swarm’s size was equal to 20 for all
simulations, except for the case of function F5 which was equal to 40.

The MO problems can be alternatively solved using population-based non-
Pareto approaches instead of Weights Aggregating approaches. One such
approach is the VEGA (Vector Evaluated Genetic Algorithm) developed by
Schaffer (Schaffer, 1985). In the next section, a modification of the PSO
algorithm using ideas from the VEGA is used to solve MO problems.
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Figure 6. CWA approach results.

Figure 7. BWA and DWA approaches results for the function F1.
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Figure 8. BWA and DWA approaches results for the function F3.

Figure 9. BWA and DWA approaches results for the function F4.

Figure 10. BWA and DWA approaches results for the function F5.
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5.3 A population-based non-pareto approach (VEPSO)

According to the VEGA approach, fractions of the next generation, or sub-
populations, are selected from the old generation according to each of the
objectives, separately. After shuffling all these sub-populations together,
crossover and mutation are applied as usual to generate the new population
(Schaffer, 1985).

The main ideas of VEGA were adopted and modified to fit the PSO
framework and develop the VEPSO algorithm (Parsopoulos and Vrahatis,
2002). Thus, we used two swarms to solve the five benchmark problems F1–
F5. Each swarm was evaluated according to one of the objectives but the
change of velocities was performed based on information coming from the
other swarm. More specifically, the best particle of the second swarm was
used for calculation of the new velocities of the first swarm’s particles, using
Equation (4), and vice versa. In a second version, we used the best positions
of the second swarm, in addition to the best particle of the second swarm, for
the evaluation of the velocities of the first swarm and vice versa. The obtained
Pareto Fronts for all benchmark problems are exhibited in Figures 11–15. The
left part of each figure is the Pareto Front obtained using only the best particle
of the other swarm while the right part is obtained using both the best particle
and the best previous positions of the other swarm. Except for the case of
Function F2, there is no significant difference between the two approaches.
For each experiment, two swarms of size 20 were used and the algorithm ran
for 200 iterations.

5.4 Synopsis

A study of the performance of the PSO technique in MO problems has been
presented. The PSO method has been used and efficiently solved well-known
and widely used test problems, including difficult cases for MO techniques,
such as concavity and/or discontinuouity of the Pareto Front, although only
two objectives were involved in each problem. We used low dimensional
objectives in order to investigate the simplest cases first. Besides, it is a
general feeling that two objectives are sufficient to reflect essential aspects
of MO (Zitzler et al., 2000). Even using very small swarms resulted in very
promising results. In addition to the Weighted Aggregation cases, a modi-
fied version of PSO that resembles the VEGA ideas has been developed and
applied on the same problems with promising results also.
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Figure 11. Results for the function F1.

Figure 12. Results for the function F2.

Figure 13. Results for the function F3.



268 K.E. PARSOPOULOS AND M.N. VRAHATIS

Figure 14. Results for the function F4.

Figure 15. Results for the function F5.

6. Solving �1 norm errors-in-variables problems using Particle Swarm
Optimization

6.1 Motivation and problem formulation

Data fitting is a central problem in Approximation Theory and can be met
in many engineering applications. A fundamental issue in such problems is
the choice of the measure of quality of the fit which should be used. Of
course, this choice depends on the underlying problem but, in general, the
�p norms are used. Given an m-dimensional vector, x ∈ R

m, the �p norm of
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x is defined as

‖x‖p =
( m∑
i=1

|xi |p
)1/p

, 1 � p <∞,

‖x‖∞ = max
1�i�m

|xi |.

The two most commonly met norms are the �1 and �2, which are defined as:

‖x‖1 =
m∑
i=1

|xi |,

‖x‖2 =
( m∑
i=1

|xi|2
)1/2

.

The �1 norm plays an important role in data fitting, especially when there
are large errors or “wild” points in the data. This is due to the assignment
of smaller weights to these points than the weights assigned by other more
popular measures, such as the �2 norm (least squares) (Watson, 1998). The
case considered here is the one where all variables have errors and the explicit
or implicit models, which are used for fitting the data, are in general nonlinear.
In the case of implicit models, constraints appear and a common technique
to solve them involves solving a sequence of linear subproblems, whose
solutions are constrained to lie in a trust region (Watson, 1997; Watson,
1998; Watson and Yiu, 1991). Thus, Trust Region methods, such as the one
presented in (Watson, 1997; Watson and Yiu, 1991), are used to solve the
problem, exploiting the structure of the subproblems, which can be solved as
equality bounded variable linear programming problems.

Suppose that we have a set of observations yi ∈ R, i = 1, . . . , n, at points
xi ∈ R

t , i = 1, . . . , n, and a model for the underlying relationship

y = F(x, α), (30)

where α ∈ R
p is a vector of free parameters. We are interested in finding the

values of the free parameters that give the best fit. If it is assumed that both
yi and xi contain significant errors, ri and εi respectively, then the model can
be written as

yi + ri = F(xi + εi, α), i = 1, 2, . . . , n. (31)

A proper vector α has to be chosen, in order to minimize the errors ri and εi
for i = 1, 2, . . . , n.

Although the least squares norm (�2) is widely used in data fitting
modeling, and it is well studied, there are some drawbacks, becoming evident
whenever “wild” points or large errors are introduced into the data set. This
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is due to the assignment of excessive weights to these points, which results
in non-satisfactory estimators. The alternative, which is commonly used in
cases of this sort, is the �1 norm and to this end several algorithms have been
developed (Watson, 1997; Watson and Yiu, 1991).

Although Equation (30) is in explicit form, it can always be written in the
more general implicit form

f (x, α) = 0, (32)

where x ∈ R
k, k = t + 1, represents all the variables. The corresponding

model for Equation (32) is

f (xi + εi, α) = 0, i = 1, 2, . . . , n, (33)

where εi represents now the vector of the errors for all the variables. Thus,
the problem under consideration is

minα,ε ‖ε‖1, (34)

subject to f (xi + εi, α) = 0, i = 1, . . . , n, (35)

which is a constrained problem, in contradiction to the case of the explicit
model of Equation (31), where the corresponding problem is unconstrained

min
α,ε

{‖r‖1 + ‖ε‖1}, (36)

with ri = F(xi + εi, α)− yi , i = 1, . . . , n.
There are several ways to solve the constrained minimization problem.

The Kuhn-Tucker theory provides necessary conditions for the solution of
such problems, but a subgradient has to be used (Hirriart, 1978). Alter-
natively, this can be solved by using an �1 penalty function (Fletcher, 1987;
Watson, 1997). In this case, the problem under consideration is

min
α,ε

{‖f ‖1 + ν‖ε‖1}, (37)

where ν > 0.
In (Watson, 1997; Watson and Yiu, 1991), a Trust Region type algorithm

which involves Simplex steps for solving the linear subproblems has been
considered and it has been applied to various test problems. Although
the solutions resulted from that algorithm are acceptable, there is another
approach to tackle the problem. This approach is more straightforward, easy
to implement as well as economic in function evaluations, and it uses the PSO
technique to solve the problem of Equation (37) (Parsopoulos et al., 2001d).
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6.2 Experimental results

The models that we consider in this section are (or are assumed to be) implicit
and they are the same as those reported in (Watson, 1997; Watson and Yiu,
1991), in order to obtain comparable results. All the models are simple and
some of them are actually explicit, but yet treated as implicit. The initial
approximation for the vector ε is usually set equal to zero and this is the
approach we followed too. Concerning parameter ν, the fixed value 0.1 was
used, although it is more proper for many problems to gradually decrease
its value to force convergence of the penalty function to zero. Parameter α
had a different initial value for each model and the desired accuracy for all
unknowns was 10−3.

The values of the PSO parameters were c1 = c2 = 2 (default values) and
w was gradually decreased from 1.2 toward 0.1. The maximum allowable
number of PSO iterations was 500 and the size of the swarm was fixed and
equal to 150 for all experiments.

In all the tables, the retrieved optimal values for α and for the �1 norm of
ε, denoted as α∗ and ‖ε∗‖1 respectively, are reported.

TEST PROBLEM 6.1, (Watson, 1997):
The first model considered was the hyperbolic model introduced by Britt and
Luecke in (Britt and Luecke, 1973) with

f = x2
1 x

2
2 − α.

The data used is given in Table 13 and the initial value of α was taken
equal to 100. The results for both the Trust Region and the PSO methods are
given in Table 14. PSO found the solution after 130 iterations.

Table 13. Data set 1, used in experiments 6.1 and 6.3.

x1 0.1 0.9 1.8 2.6 3.3 4.4 5.2 6.1 6.5 7.4

x2 5.9 5.4 4.4 4.6 3.5 3.7 2.8 2.8 2.4 1.5

Table 14. Results of Experiment 6.1.

Trust Region PSO

α∗ 133.402 139.688

‖ε∗‖1 7.255 3.446

TEST PROBLEM 6.2, (Watson, 1997):
The second model considered has

f =
2∑
i=0

αix
i
1 − x2,
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and the data used is given in Table 15. Initially, α = (1, 1, 1)� was taken
and PSO found the solution after 158 iterations. The results are exhibited in
Table 16.

Table 15. Data set 2, used in experiments 6.2, 6.4 and 6.5.

x1 0.05 0.11 0.15 0.31 0.46 0.52 0.70 0.74 0.82 0.98 1.17

x2 0.956 0.89 0.832 0.717 0.571 0.539 0.378 0.370 0.306 0.242 0.104

Table 16. Results of Experiment 6.2.

Trust Region PSO

α∗ (1.001,−1.038, 0.232)� (0.997,−1.001, 0.201)�
‖ε∗‖1 0.112 0.001

TEST PROBLEM 6.3, (Watson, 1997):
This is another model with

f =
3∑
i=0

αix
i
1 − x2,

and the data used is given in Table 13, after setting the first value of x1 equal
to 0.0. Initially, α = 0 was taken, and PSO found the solution after 160
iterations. The results are exhibited in Table 17.

Table 17. Results of Experiment 6.3.

Trust Region PSO

α∗ (5.9,−0.839, 0.142,−0.015)� (5.91,−0.624, 0.057,−0.006)�
‖ε∗‖1 1.925 0.298

TEST PROBLEM 6.4, (Watson, 1997):
Here we had the nonlinear model

f = α1 + α2

x1 + α3
− x2,

and the data used is given in Table 18. The initial approximation was α =
(−4, 5,−4)� and PSO found the solution after 282 iterations. The results are
exhibited in Table 18.

Table 18. Results of Experiment 6.4.

Trust Region PSO

α∗ (−1.934, 7.761,−2.638)� (0.503,−17.009,−482.805)�
‖ε∗‖1 0.109 0.165
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TEST PROBLEM 6.5, (Watson, 1997; Watson and Yiu, 1991):
This is a growth model with

f = α1 + α2e
−x1 − x2,

and the data used is given in Table 15. The initial approximation was
α = (0, 0)� and PSO found the solution after 490 iterations. The results
are exhibited in Table 19.

Table 19. Results of Experiment 6.5.

Trust Region PSO

α∗ (−0.225, 1.245)� (−0.227, 1.247)�
‖ε∗‖1 0.169 0.005

TEST PROBLEM 6.6, (Watson and Yiu, 1991):
This is the ordinary rational function model with

f = α1

x1 − α2
− x2,

and the data was generated according to the scheme

xi = 0.01+ 0.05 (i − 1),

yi + ri = 1+ xi + (xi + εi)2, i = 1, . . . , 40,

where ri are uniformly distributed in (−0.15, 0.15), and εi are uniformly
distributed in (−0.05, 0.05). The initial approximation was α = (1, 1)�
and PSO found the solution after 211 iterations. The results are exhibited
in Table 20.

Table 20. Results of Experiment 6.6.

Trust Region PSO

α∗ (0.978, 1.006)� (1.0017, 1.0002)�
‖ε∗‖1 1.458 1.011

TEST PROBLEM 6.7, (Watson and Yiu, 1991):
This is the simple decay curve, which describes the decay of a radioactive
substance,

f = α1 − α2 e
−α3x1 − x2.
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The data was generated according to the scheme

xi = 0.02 (i − 1),

yi + ri = 3− e−(xi+εi), i = 1, . . . , 40,

where ri are uniformly distributed in (−0.15, 0.15), and εi are uniformly
distributed in (−0.05, 0.05). The initial approximation was α = (3, 1, 1)�
and PSO found the solution after 315 iterations. The results are exhibited in
Table 21.

Table 21. Results of Experiment 6.7.

Trust Region PSO

α∗ (2.528, 0.918, 4.396)� (2.709, 1.007, 0.975)�
‖ε∗‖1 2.564 2.231

TEST PROBLEM 6.8, (Watson and Yiu, 1991):
This is the logistic curve, which describes the decay of a radioactive
substance,

f = α1 − log
(
1+ e−(α2+α3x1)

)− x2.

The data was generated according to the scheme

xi = 0.02 (i − 1),

yi + ri = 3− log
(
1+ e−(1+xi+εi)), i = 1, . . . , 40,

where ri are uniformly distributed in (−0.15, 0.15)�, and εi are uniformly
distributed in (−0.05, 0.05)�. The initial approximation was again α =
(3, 1, 1)� and PSO found the solution after 336 iterations. The results are
exhibited in Table 22.

Table 22. Results of Experiment 6.8.

Trust Region PSO

α∗ (2.812, 0.487, 16.033)� (2.722, 0.851, 1.164)�
‖ε∗‖1 2.348 0.471

As exhibited in all tables, PSO outperformed the Trust Region algorithm
in almost all of the cases. It was able to detect superior solutions even in
vicinities of the search space that were far removed from the vicinity of solu-
tions obtained by the Trust Region method. Although, the same initial vector
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for the parameter α, as in (Watson, 1997), was used, in further experiments,
we obtained the same good solutions starting from arbitrarily chosen initial
points. The number of iterations performed by the PSO method to detect the
optimum solutions was surprisingly small.

6.3 Synopsis

The ability of the PSO to tackle data fitting models was investigated on
well-known implicit, as well as explicit models. The results obtained by our
approach have been contrasted with the corresponding results presented in
(Watson, 1997; Watson and Yiu, 1991), where a Trust Region method was
used instead.

The results reported, are indeed very promising and clarify that PSO
can solve efficiently such problems. In many cases, the problem becomes
easier due to the ability of the method to detect good solutions starting from
several initial points, in contrast to the Trust Region method whose behavior
is heavily dependent on the starting point. Furthermore, the solutions are
obtained after a relatively small number of iterations. An important role is
played by the penalty parameter ν. Usually, the convergence rates of both
techniques and the quality of results depend on the value of ν.

7. Particle Swarm Optimization for Minimax problems

7.1 Motivation and problem formulation

Minimax problems are encountered in numerous optimal control, engineering
design, discrete optimization, Chebyshev approximation and game theory
applications (Demyanov and Molozemov, 1974; Du and Pardalos, 1995;
Polak, 1987; Waren et al., 1967; Zuhe et al., 1990). Specifically, in Cheby-
shev approximation, given a function g : Y (0) ⊂ R

m → R, the Chebyshev
approximate pz of g in pn solves the following minimax problem (Zuhe et
al., 1990):

min
z

max
y∈Y (0)

(g(y)− pz(y))2.

In game theory, a game is a triple (Y, Z, k) where Y , Z denote the spaces
of strategies for player I and II, respectively, and k is a real-valued pay-off
function of y ∈ Y and z ∈ Z. Under natural conditions, the optimal strategies
for both players solve the saddle point problem (Zuhe et al., 1990):

min
z∈Z max

y∈Y
k(y, z) = max

y∈Y
min
z∈Z k(y, z).
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Additionally, in many engineering design problems, one is interested in
minimizing the largest eigenvalue of an n×n symmetric matrix-valued func-
tion A(y) of a variable y in R

n. Thus, if λi(y), i = 1, . . . , n, is the i-th
eigenvalue of A(y) and by setting f (i, n) = λi(y), then the following
minimax problem is obtained (Zuhe et al., 1990):

min
y∈Y (0)

max
i=1,...,n

f (i, y).

Another example is the minimization of error in the manufacturing of elec-
tronic parts, with a prespecified level of tolerance. Specifically, suppose that
when a state z is specified, the process actually produces the state y + z
for some y in the tolerance set Z and let θ(y + z) measure the resulting
distortion. Since y is not known in advance, the worst–case distortion should
be minimized, leading to the minimax problem (Zuhe et al., 1990):

min
z∈Z max

y∈Y
θ(y + z).

Numerous other important applications involve solving minimax problems,
justifying the ongoing interest for development of techniques that can cope
efficiently with it.

In general, the minimax problem can be stated as

min
x
f (x), (38)

where

f (x) = max
i=1,...,m

fi(x), (39)

with fi(x) : S ⊂ R
n → R, i = 1, . . . , m.

The nature of the objective function f (x) may pose difficulties in the
process of solving minimax problems. Specifically, at points where fj (x) =
f (x) for two or more values of j ∈ {1, . . . , m}, the first partial deriva-
tives of f (x) are discontinuous, even if all functions fi(x), i = 1, . . . , m,
have continuous first partial derivatives. This difficulty cannot be addressed
directly by the well-known and widely used gradient–based methods, and
several techniques have been proposed to cope with it (Charalambous and
Conn, 1978; Murray and Overton, 1980; Osborne and Watson, 1969; Waren
et al., 1967).

Smoothing methods have proved to be very useful in solving the minimax
problem. Following this approach, a smoothing function, which is sometimes
called the Exponential Penalty Function or Aggregate Function, is used to
approximate the objective function f (x) (Bertsekas, 1976a; Bertsekas, 1977;
Kort and Bertsekas, 1972; Li, 1991). The smoothing function is minimized



RECENT APPROACHES TO GLOBAL OPTIMIZATION PROBLEMS 277

using a gradient-based technique with line-search. Line-search is used to
ensure the global convergence of the algorithm.

Recently, a new smoothing function has been proposed in (Xu, 2001), and
a quadratic approximation of it is solved by using a gradient-based method
with line-search.

In this section, the performance of the PSO with regard to minimax prob-
lems is reported (Laskari et al., 2002a), and for some cases its performance
is compared with the performance of the Smoothing algorithm proposed in
(Xu, 2001).

7.2 The Smoothing technique

Recently, an interesting Smoothing Technique has been proposed in (Xu,
2001) for solving minimax problems. It exploits the smoothing function

f (x, µ) = µ ln
m∑
i=1

exp

(
fi(x)

µ

)
, (40)

to approximate the objective function f (x). This function is considered a
good approximation of f (x) in the sense that

f (x) � f (x, µ) � f (x)+ µ lnm,

for µ > 0, as it is mentioned in (Xu, 2001).
The proposed method solves a quadratic approximation of f (x, µ) for

decreasing values of µ. The global convergence of the algorithm is ensured
using Armijo’s line-search procedure (Polak, 1997; Vrahatis et al., 2000).
The method bears similarity to the recently proposed smoothing methods
for Complementarity Problems and for Mathematical Programming with
Equilibrium Constraints (Burke and Xu, 2000; Facchinei et al., 1999).

A point x∗ is a stationary point to the minimax problem defined in
Equation (38), if there exists a vector y∗ = (y∗1 , . . . , y∗m), such that

m∑
j=1

y∗j ∇fj (x∗) = 0, (41)

with

y∗j � 0, j = 1, . . . , m, (42)∑m
j=1 y

∗
j = 1, (43)

y∗j = 0, if fj (x∗) < max{f1(x
∗), . . . , fm(x∗)}. (44)

Related to the above, the following two theorems have been proved:

Theorem 1. (Demyanov and Molozemov, 1974; Xu, 2001) If x∗ is a local
minimum to the problem defined in Equation (38), then it is a stationary point
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that satisfies Equations (41)–(44). Conversely, assume that f (x) is convex,
then if x∗ is a stationary point, x∗ is a global minimum to the minimax
problem.

Theorem 2. (Peng and Lin, 1999; Xu, 2001) Suppose that fi(x), i = 1, . . . , m,
are twice continuous differentiable, f (x) and f (x, µ) are defined in Equa-
tions (39) and (40) respectively, then
(i) f (x, µ) is increasing with respect to µ, and

f (x) � f (x, µ) � f (x)+ µ lnm.

(ii) f (x, µ) is twice continuous differentiable for all µ > 0, and

∇xf (x, µ) =
m∑
i=1

λi(x, µ)∇fi(x), (45)

∇2
xf (x, µ) =

m∑
i=1


λi(x, µ)∇2fi(x)+ 1

µ
λi(x, µ)∇fi(x)∇fi(x)�




− 1

µ


 m∑
i=1

λi(x, µ)∇fi(x)



 m∑
i=1

λi(x, µ)∇fi(x)


�
, (46)

where

λi(x, µ) =
exp

(
fi(x)
µ

)
∑m
j=1 exp

(
fj (x)

µ

) ∈ (0, 1),
m∑
i=1

λi(x, µ) = 1. (47)

(iii) For any x ∈ R
n and µ > 0, it holds that 0 � f ′µ(x, µ) � lnm.

An extended theoretical presentation of all the aforementioned aspects, as
well as the convergence properties of the Smoothing Technique, can be found
in (Xu, 2001).

7.3 Experimental results

The performance of the PSO was studied on several test problems defined in
(Charalambous and Conn, 1978; Luks̆an and Vlc̆ek, 2000; Schwefel, 1995;
Xu, 2001). For all experiments, the maximum number of PSO iterations was
set to 500, the desired accuracy was equal to 10−8, the inertia weight w was
gradually decreased from 1.2 towards 0.4, and c1 = c2 = 0.5. For each test
problem, 25 experiments were performed, and the obtained results are the
total number of PSO successes in finding the global minimum, as well as the
mean number of required iterations and function evaluations.
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First, the functions given in Examples 1 and 2 in (Xu, 2001), were
considered (we denote them as F1 and F2). They are both 2-dimensional,
involving 3 functions fi(x), and they are defined as follows:

TEST PROBLEM 7.1, (Xu, 2001):

min
x
F1(x),

where

F1(x) = max{fi(x)}, i = 1, 2, 3,

f1(x) = x2
1 + x4

2 ,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2 exp(−x1 + x2),

TEST PROBLEM 7.2, (Xu, 2001):

min
x
F2(x),

where

F2(x) = max{fi(x)}, i = 1, 2, 3,

f1(x) = x4
1 + x2

2 ,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2 exp(−x1 + x2).

The initial swarm was uniformly distributed in [−5, 5]2 and its size was
20 in both cases. The results are exhibited in Table 23.

Table 23. Success rates, mean number of iterations and mean
number of function evaluations, for the functions F1 and F2.

Function Succ. Mean Iter. Mean F. Ev.

F1 25/25 331.2 6644.0

F2 25/25 297.36 5967.2

Consider the nonlinear programming problem:

minF(x),

subject to gi(x) � 0, i = 1, . . . , m.

Then, the following minimax problem can be constructed:

min
x
f (x),
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where

f (x) = max
1�i�m

fi(x),

f1(x) = F(x),

fi(x) = F(x)− αigi(x),
αi > 0,

for 2 � i � m.
It has been proved that for sufficiently large αi the optimum of the

minimax function coincides with that of the nonlinear programming problem
(Bandler and Charalambous, 1974). Following this approach, the two
minimax problems in Examples 3 and 4 in (Xu, 2001) were constructed (we
denote them as F3 and F4 respectively) and they are defined as follows:

TEST PROBLEM 7.3, (Xu, 2001):

F3(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

g2(x) = −x2
1 − x2

2 − x3
3 − x2

4 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10,

g4(x) = −x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5,

and

TEST PROBLEM 7.4, (Xu, 2001):

F4(x) = (x1 − 10)2 + 5(x2 − 12)2 + 3(x4 − 11)2 + x4
3 + 10x6

5 +
+7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

g2(x) = −2x2
1 − 3x4

3 − x3 − 4x2
4 − 5x5 + 127,

g3(x) = −7x1 − 3x2 − 10x2
3 − x4 + x5 + 282,

g4(x) = −23x1 − x2
2 − 6x2

6 + 8x7 + 196,

g5(x) = −4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7.

These problems are four and seven dimensional with m = 4 and m = 5
respectively, and a PSO with a swarm of 20 particles was used to solve both.
The initial swarm was again uniformly distributed in the range [−5, 5]D , were
D is the corresponding dimension. The results are exhibited in Table 24.

Table 24. Success rates, mean number of iterations and mean
number of function evaluations, for the functions F3 and F4.

Function Succ. Mean Iter. Mean F. Ev.

F3 25/25 365.56 7331.2

F4 25/25 335.08 6721.6
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At this point it is important to note that the solutions found by PSO satisfy
all the constraints of the nonlinear programming problem, while the solutions
obtained using the Smoothing Technique do not satisfy the constraints g2(x)

for F3, and g5(x) for F4, respectively.
Furthermore, two minimax problems defined in (Schwefel, 1995) were

considered. The first is 2–dimensional (we will refer it as F5) and it is
defined as:

TEST PROBLEM 7.5, (Schwefel, 1995):

min max{|x1 + 2x2 − 7|, |2x1 + x2 − 5|}.
The swarm’s size for this problem was 20 and the initial swarm was uniformly
distributed in [−5, 5]2. The second problem was considered in dimension 10
(we will refer it as F6), and it is defined as:

TEST PROBLEM 7.6, (Schwefel, 1995):

min max{|xi |}, 1 � i � 10.

The swarm’s size for this problem was 100 and the initial swarm was
uniformly distributed in [−5, 5]10. The results are exhibited in Table 25.

Table 25. Success rates, mean number of iterations and mean
number of function evaluations, for the functions F5 and F6.

Function Succ. Mean Iter. Mean F. Ev.

F5 25/25 285.44 5728.8
F6 25/25 320.8 32180.0

TEST PROBLEMS 7.6–7.13, (Luks̆an and Vlc̆ek, 2000):
Furthermore, seven test problems were selected from (Luks̆an and Vlc̆ek,
2000) to investigate further the performance of PSO. The name of each
problem, its dimension, and the number of fi(x) functions involved are
reported in Table 26.

Table 26. Dimension and number of functions fi(x)
for the test problems.

Function Dimension # fi(x)

CB2 2 3
WF 2 3
SPIRAL 2 2
EVD52 3 6
POLAK6 4 4
WONG1 7 5
WONG2 10 9
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For all problems mentioned in Table 26, the swarm’s size was 20 except
for the two WONG problems where it was set equal to 70 and 100 respec-
tively. The initial swarm was uniformly distributed in [−5, 5]D , where D
is the corresponding dimension, except for the WONG2 case were it was
distributed in [−3, 3]10. The results are exhibited in Table 27.

Table 27. Success rates, mean number of iterations
and mean number of function evaluations, for the
test problems.

Function Succ. Mean Iter. Mean F. Ev.

CB2 25/25 319.48 6409.6

WF 25/25 306.04 6140.8

SPIRAL 25/25 257.52 5170.4

EVD52 25/25 319.12 6402.4

POLAK6 25/25 337.8 6777.6

WONG1 24/25 366.04 25692.8

WONG2 25/25 353.48 35448.0

7.4 Synopsis

Experimental results indicate that PSO is highly efficient in solving minimax
problems. Comparison of the results obtained in some test problems with
the results obtained using a smoothing technique, indicate that the quality of
the solutions obtained through PSO in many cases is superior than that of
smoothing.

Furthermore, the success rates were 100% in almost all experiments and
the mean number of function evaluations as well as the mean number of
PSO’s iterations were very small, even in high dimensional test problems.

Thus, PSO can be considered as a good alternative for solving minimax
problems, in cases where the gradient-based techniques fail.

8. Particle Swarm Optimization for Integer Programming

8.1 Motivation and problem formulation

In the context of numerous optimization problems, fractional values for the
variables are either not permitted or practically meaningless. For instance,
consider a variable representing the number of employees working on a
project, or the number of machines in a production line; evidently such
variables cannot take fractional values (Rao, 1996).
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In effect, a remarkably wide variety of problems can be represented by
discrete optimization models. An important area of application concerns the
efficient management of a limited number of resources so as to increase
productivity and/or profit. Such applications are encountered in Operational
Research problems such as goods distribution, production scheduling, and
machine sequencing. Capital budgeting, portfolio analysis, network and VLSI
circuit design, as well as automated production systems are some other
applications in which Integer Programming problems are met (Nemhauser
et al., 1989).

Yet another recent and promising application is the training of neural
networks with integer weights, where the activation function and weight
values are confined in a narrow band of integers. Such neural networks
are better suited for hardware implementations than the real weight ones
(Plagianakos and Vrahatis, 1999; Plagianakos and Vrahatis, 2000).

The Integer Programming problem can be stated as

min
x
f (x), x ∈ S ⊆ Z

n, (48)

where Z is the set of integers, and S is a not necessarily bounded set, which
is considered as the feasible region (maximization Integer Programming
problems are very common in the literature, but we will consider only the
minimization case, since a maximization problem can be easily turned to a
minimization problem).

Optimization techniques applied on real search spaces can be applied
on such problems and determine the optimum solution by rounding off the
real optimum values to the nearest integer. However, in many cases, certain
constraints of the problem are violated due to the rounding of the real
optimum solutions. Moreover, the rounding might result in a value of the
objective function that is far removed from the optimum (Nemhauser et al.,
1989; Rao, 1996).

Early approaches in the direction EA for Integer Programming can be
found in (Gall, 1966; Kelahan and Gaddy, 1978). In GA, the potential solu-
tions are encoded in binary bit strings. Since the integer search space, of the
problem defined in Equation (48), is potentially not bounded, the representa-
tion of a solution using a fixed length binary string is not feasible (Rudolph,
1994). As an alternative, ES can be used, by embedding the search space Z

n

into R
n and truncating the real values to integers. However, this approach

is not always efficient. The reason behind this is the existence of certain
features of these algorithms, that are used for detecting real valued minima
with arbitrary accuracy. These features are not needed in integer spaces since
the smallest distance of two points in �1 norm is equal to 1. Thus, the search
is performed only if the step sizes are greater than 1, and therefore EA for
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Integer Programming should operate directly on the integer space (Rudolph,
1994).

In this section, results regarding the performance of the PSO method on
the class of problems known as Integer Programming, are reported. The
truncation of real values to integers seems not to affect significantly the
performance of the method as the experimental results indicate.

8.2 Experimental results

Seven Integer Programming test problems were selected to investigate the
performance of the PSO method. Each particle of the swarm was trun-
cated to the closest integer, after the determination of its new position using
Equation (5).

The test problems are defined immediately below:

TEST PROBLEM 8.1, (Rudolph, 1994):

F1(x) = ‖x‖1 = |x1| + . . .+ |xD|,
with x = (x1, . . . , xD) ∈ [−100, 100]D , where D is the corresponding
dimension. The solution is x∗i = 0, i = 1, . . . ,D, with F1(x

∗) = 0.

TEST PROBLEM 8.2, (Rudolph, 1994):

F2(x) = x� x =
(
x1 . . . xD

)
x1
...

xD


 ,

with x = (x1, . . . , xD)
� ∈ [−100, 100]D , where D is the corresponding

dimension. The solution is x∗i = 0, i = 1, . . . ,D, with F2(x
∗) = 0.

TEST PROBLEM 8.3, (Glankwahmdee et al., 1979):

F3(x) = − (
15 27 36 18 12

)
x + x�




35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10

32 −31 −6 38 −20
−10 32 −10 −20 31


 x,

with best known solutions x∗ = (0, 11, 22, 16, 6)� and x∗ = (0, 12, 23, 17,
6)�, with F3(x

∗) = –737.

TEST PROBLEM 8.4, (Glankwahmdee et al., 1979):

F4(x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2,

with solution x∗ = (3, 2)� and F4(x
∗) = 0.

TEST PROBLEM 8.5, (Glankwahmdee et al., 1979):

F5(x) = (9x2
1 + 2x2

2 − 11)2 + (3x1 + 4x2
2 − 7)2,



RECENT APPROACHES TO GLOBAL OPTIMIZATION PROBLEMS 285

with solution x∗ = (1, 1)� and F5(x
∗) = 0.

TEST PROBLEM 8.6, (Glankwahmdee et al., 1979):

F6(x) = 100(x2 − x2
1 )

2 + (1− x1)
2,

with solution x∗ = (1, 1)� and F6(x
∗) = 0.

TEST PROBLEM 8.7, (Glankwahmdee et al., 1979):

F7(x) =
(x1 + 10x2)

2 + 5(x3 − x4)
2 + (x2 − 2x3)

4 + 10(x1 − x4)
4, (49)

with solution x∗ = (0, 0, 0, 0)� and F7(x
∗) = 0.

The PSO’s parameters used for all experiments were c1 = c2 = 0.5 and w
was gradually decreased from 1.2 toward 0.4 during the three quarters of the
maximum allowed number of iterations.

For the test functions F1 and F2, several experiments were performed
for different dimensions. For all experiments the initial swarm was taken
uniformly distributed inside [−100, 100]D , where D is the corresponding
dimension. The swarm’s size as well as the maximum number of iterations,
for each dimension, for the first two test functions, are exhibited in Table 28.
For each dimension and for each function, 100 experiments were performed.
The success rate, the mean number of PSO’s iterations as well as the mean
number of function evaluations for each dimension are reported in Table 29.

Table 28. Swarm’s size and maximum number of iterations,
for different dimension’s values, for the functions F1 and F2.

D Swarm’s Size Max. It.

5 20 1000
10 50 1000
15 100 1000
20 200 1000
25 250 1500
30 300 2000

For the test functions F3–F7, the swarm’s size was fixed and 100 experi-
ments were done for each of the three different intervals, within which the
initial swarm was uniformly distributed. The swarm’s size as well as the
maximum number of iterations for each of these test functions, are exhibited
in Table 30.

The success rate, the mean number of iterations and the mean number
of function evaluations for each of the intervals [−100, 100]D , [−50, 50]D ,
[−25, 25]D , where D is the corresponding dimension of the function, are
exhibited in Tables 31–33.
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Table 29. Success rates, mean number of iterations and mean
number of function evaluations for different dimensions of the
functions F1 and F2.

Function D Suc. Rate Mean Iter. Mean F. Eval.

F1 5 100% 440.72 8834.3
F2 5 100% 440.92 8838.4

F1 10 100% 453.48 22724.0
F2 10 100% 454.88 22794.0

F1 15 100% 459.44 46044.0
F2 15 100% 462.88 46388.0

F1 20 100% 465.24 93248.0
F2 20 100% 467.08 93616.0

F1 25 100% 683.44 171110.0
F2 25 100% 685.44 171610.0

F1 30 80% 914.64 274692.0
F2 30 84% 913.28 274284.0

Table 30. Dimension, swarm’s size and maximum
number of iterations, for the functions F3–F7.

Function D Swarm’s Size Max. It.

F3 5 150 1000

F4 2 20 1000

F5 2 20 1000

F6 2 20 1000

F7 4 40 1000

Table 31. Success rates, mean number of iterations and mean
number of function evaluations for the F3–F7 with initial
interval [–100, 100]D .

Function Suc. Rate Mean Iter. Mean F. Eval.

F3 80% 499.4 75060.0

F4 100% 402.32 8066.4

F5 100% 415.08 8321.6

F6 100% 418.4 8388.0

F7 92% 460.92 18476.8
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Table 32. Success rates, mean number of iterations and mean
number of function evaluations for the F3–F7 with initial
interval [−50, 50]D .

Function Suc. Rate Mean Iter. Mean F. Eval.

F3 92% 447.72 67308.0

F4 100% 328.48 6589.6

F5 100% 357.12 7162.4

F6 100% 342.64 6872.8

F7 100% 440.8 17672.0

Table 33. Success rates, mean number of iterations and mean
number of function evaluations for the F3–F7 with initial
interval [−25, 25]D .

Function Suc. Rate Mean Iter. Mean F. Eval.

F3 96% 420.28 63192.0

F4 100% 246.16 4943.2

F5 100% 228.28 4585.6

F6 100% 332.08 6661.6

F7 100% 429.32 17212.8

In a second round of experiments, a PSO with gradually truncated particles
was used. Specifically, the particles for the first 50 iterations were rounded
to 6 decimal digits (d.d.), for another 100 iterations they were rounded to 4
d.d., for another 100 iterations they were rounded to 2 d.d., and for the rest
iterations they were rounded to the nearest integer. The results obtained using
this gradually truncated version of PSO, were almost similar to the results
exhibited in the tables for the plain PSO. In general, our experience is that
PSO is able to cope with Integer Programming problems efficiently.

8.3 Synopsis

Experimental results indicate that PSO is an efficient method and should be
considered as a good alternative to handle Integer Programming problems.
The behavior of the PSO seems to be stable even for high dimensional cases,
exhibiting very high success rates even with modest swarm sizes. Moreover,
the method does not seem to suffer from search stagnation. The aggregate
movement of each particle towards its own best position and the best posi-
tion ever detected by the swarm, added to its weighted previous position



288 K.E. PARSOPOULOS AND M.N. VRAHATIS

change, ensures that particles maintain a position change during the process
of optimization, which is of proper magnitude.

9. Finding multiple minima using Particle Swarm Optimization

9.1 Motivation and problem formulation

In numerous applications, the objective function exhibits multiple global
minima, and all or a number of them have to be computed quickly and
reliably.

Although, in general, PSO results in global solutions even in high-
dimensional spaces, there are some problems that might arise, whenever the
objective function has many global and few (or none) local minima.

In this section a strategy that detects all global minima (or some of
them if their number is unknown or infinite) is described (Parsopoulos and
Vrahatis, 2001a). It is shown, through simulation experiments, that, using a
modification of the PSO technique, this strategy is efficient and effective.

Let f : S → R be an objective function that has many global minima
inside a hypercube S. If we use the plain PSO algorithm to compute just one
global minimizer, i.e., a point x∗ ∈ S, such that f (x∗) � f (x), for all x ∈ S,
there are two things that might happen: either the PSO will find one global
minimum (but we don’t foreknow which one) or the swarm will ramble over
the search space failing to decide where to land. This rambling might happen
due to the equally “good” information that each global minimizer possesses.
Each particle moves toward a global minimizer and influences the swarm in
order to move toward that direction, but it is also affected by the rest of the
particles in order to move toward the other global minimizer that they target.
The result of this interaction between particles is a cyclic movement over
the search space and results in a disability to detect a minimum. A strategy
to overcome these problems and find multiple global minimizers of f (x) is
described in the rest of this section (Parsopoulos and Vrahatis, 2001a).

In many applications, such as neural networks training, the goal is to find
a global minimizer of a nonnegative function. The global minimum value is
a priori known and is equal to zero, but there is a finite (or infinite in the
case of neural networks) number of global minimizers. In order to avoid the
problem mentioned in the previous paragraph, we can do the following: we
determine a not-so-small threshold ε > 0 (e.g., if the desired accuracy is
10−5, a threshold around 0.01 or 0.001 will work) and whenever a particle
has a functional value that is smaller than ε, we pull this particle away from
the swarm and isolate it. Simultaneously, we apply Deflation:

f (x)← f (x)

‖x − x∗‖ ,
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where x∗ is the isolated point, or apply Function “Stretching” (see Section 3)
to the original objective function f (x) at that point, in order to repel the rest
of the swarm from moving toward it. Additionally, a new particle (randomly
generated) is added in the swarm, in the place of the isolated particle, in order
to keep the swarm’s size constant.

Thus, after isolating a particle, we check its functional value. If the
functional value is far from the desired accuracy, we can generate a small
population of particles around it and constrain this small swarm in the
isolated neighborhood of f (x) to perform a finer search, while the big swarm
continues searching the rest of the search space for other minimizers. If we set
the threshold to a slightly higher value, then the isolated particle is probably
a local minimizer and during the local search, a global minimum will not
be detected but we have already instructed PSO to avoid it by deflating or
stretching it. If we know how many global minimizers of f (x) exist in S
then, after some cycles, we will find all of them. In case we do not know the
number of global minimizers, we can ask for a specific number of them, or
let the PSO run until it reaches the maximum number of iterations in a cycle.
This will imply that no other minimizers can be detected by PSO. The whole
algorithm can be parallelized and run the two procedures (for the big and the
small swarm) simultaneously. A model for the algorithm is given in Table 34.

Table 34. Algorithm model of PSO for locating multiple global minima.

PSO for Locating Multiple Global Minima

Step 0. Set a threshold ε > 0 and the number of desired minima N .

Step 1. Set randomly the population, velocities and set the initial

inertia w← w0 for PSO. Set the set of found global minima L = ∅.

Step 2. Set maximum number of iterationsMI and the counter i ← 0

Step 3. While {card(L) �= NAND i < MI } Do

Step 4. Perform a single PSO step and set i ← i + 1, w← w − c.
Step 5. If the best particle’s value fbest � ε, Then isolate xbest .

Step 6. Perform constrained local search around xbest (using PSO with

a constrained small swarm or another technique).

Step 7. If a minimizer x∗ is found by the local search, Then set L← L ∪ {x∗}.
Step 8. Perform Deflation

(
f (x)← f (x)

‖x−x∗‖
)

or Function “Stetching”

to xbest and add a new, randomly chosen, particle into the swarm.

Step 9. End While

Step 10. Report all points in L and other desired results.

In the next section, results regarding the proposed algorithm are reported.



290 K.E. PARSOPOULOS AND M.N. VRAHATIS

9.2 Experimental results

Let f be the 2-dimensional function

f (x1, x2) = cos(x1)
2 + sin(x2)

2, (50)

where (x1, x2) ∈ R
2. This function has infinite number of minima (all

global) in R
2, at the points (κ π2 , λ π), where κ = ±1,±3,±5, . . . and,

λ = 0,±1,±2, ±3, . . .. We assume that we are interested only in the subset
[−5, 5]2 of R

2. In this hypercube, the function f has 12 global (equal to zero)
minima. The plot of f is given in Figure 16.

Figure 16. Plot of the function f (x1, x2) = cos(x1)
2 + sin(x2)

2, in [−5, 5]2.

If we try to find a single global minimizer of f then we realize that the
swarm moves back and forth as described in the previous section, until the
maximum number of iterations is attained, failing to detect the minimizer.
The trajectory of a single particle, at the first iterations, can be seen in
Figure 17. As already mentioned, this happens due to the same information
(i.e., functional value) that each global minimizer has. Thus, we could say
that the swarm is so “excited” that it cannot decide where to land. Applying
the algorithm given in Table 34, we are able to detect all the global mini-
mizers, with accuracy 10−5, even without the need for further local search.
The minimizers detected by the algorithm are plotted in Figure 18.

In a second experiment, the algorithm was applied on the Levy No. 5 test
function, defined in Equation (9). Using the presented algorithm, we were
able to detect any desired number of minima (local or the global one), in cpu
time that does not surpass 760 times the mean cpu time needed to compute
each minimizer separately.

In another experiment a neural network has been trained using the PSO
to learn the XOR Boolean classification problem. It is well known from the



RECENT APPROACHES TO GLOBAL OPTIMIZATION PROBLEMS 291

Figure 17. The trajectory of a single particle for some iterations. The particle cannot “land”
on a minimizer, although it passes through the neighborhood of several of them. Dark contour
lines denote lower function values.

Figure 18. The detected minimizers (denoted as stars).

neural networks literature that successful training in this case, i.e., reaching
a global minimizer, strongly depends on the initial weight values and that
the error function of the network presents a multitude of local minima. To
solve this problem, we use the new algorithm as follows: we set a threshold
of 0.1 and start the algorithm as above, but once the standard deviation of
the population in an iteration was too close to zero without having functional
value close to the threshold, (e.g., if the error value of the network is around
0.5, where there is a well known local minimum of the function), we removed
the best particle of the population and isolated it. This particle was potentially
a local minimizer (or close to one). Thus, we provided it some new particles
(in our simulation the size of the population was 40 thus we were adding
10 particles to the isolated one) and performed a local search in its vicinity
(we considered an area of radius 0.01 around it) while the rest of the big
swarm continued searching the rest of the space. If the local search yielded a
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global minimizer, we added it to our list of found global minima, otherwise it
was just a local minimizer that we had avoided. In this way, we were able to
detect an arbitrarily large number of global minimizers, while simultaneously
avoiding the local ones.

9.3 Synopsis

A strategy for locating efficiently and effectively all the global minimizers of
a function with many global and local minima has been introduced. Experi-
mental results indicate that the proposed modification of the PSO method is
able to detect effectively all the global minimizers instead of rambling over
the search space or being attracted by the local minima.

The algorithm provides stable and robust convergence and thus a higher
probability of success for the PSO. Also, it can be straightforwardly paralle-
lized.

10. Determination of the heuristic parameters of the Particle Swarm
Optimization method

10.1 Motivation and problem formulation

All the evolutionary algorithms include a plethora of heuristic parameters
that control several of their features. These parameters are usually problem-
dependent and defined by the user. A proper choice is a matter of the user’s
experience and the available information on the problem under consideration.
Most importantly, these heuristic parameters may impact the convergence
properties of the algorithm. Due to the fact that, even experienced users may
provide the algorithm with an inappropriate set of parameters, causing failure,
there is an ongoing demand for numerical algorithms that involve effective
mechanisms for the parameters’ manipulation.

In this section, the Differential Evolution (DE) algorithm (Storn and Price,
1997) is used to manipulate the heuristics of the PSO method (Laskari et al.,
2001). Although DE itself contains heuristics, they are not of critical impor-
tance for the convergence of the overall method. As shown in experimental
results, the mean values of the parameters selected by the DE algorithm, are
similar to the values proposed in other studies through numerous experiments
(Carlisle and Dozier, 2001; Eberhart and Shi, 2000).

10.2 The Differential Evolution algorithm

The DE algorithm has been developed by Storn and Price (Storn and Price,
1997). It is a numerical algorithm for GO, that utilizes a population of NP,
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D-dimensional parameter vectors xi,G, i = 1, 2, . . ., NP, to probe the search
space simultaneously. The initial population is uniformly distributed within
the search space. At each iteration, the so-called in this context, mutation and
crossover operators are applied on the population and a new population is
generated. After that, the selection phase starts, and the best NP points are
selected to comprise the next generation’s population.

Applying the mutation operator, for each vector xi,G, i = 1, 2, . . ., NP, a
mutant vector is determined according to the equation

vi,G+1 = xr1,G + F (xr2,G − xr3,G), (51)

where r1, r2, r3 ∈ {1, 2, . . ., NP}, are mutually different random indexes, and
F ∈ [0, 2]. The indexes r1, r2, r3, also need to differ from the current index
i. Consequently, NP must be greater than or equal to 4, to apply the mutation
operator.

Once mutation is completed, the crossover operator is applied on the
population. A trial vector

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1), (52)

is generated, where

uji,G+1 =
{
vji,G+1 if (randb(j) � CR) or j = rnbr(i),
xji,G if (randb(j) > CR) and j �= rnbr(i),

(53)

where j = 1, 2, . . . ,D; randb(j) is the j -th evaluation of a uniform random
number generator within the range of [0, 1]; CR is the crossover constant
within the range [0, 1] (user defined); and rnbr(i) is a randomly chosen index
from the set {1, 2, . . . ,D}.

The vector ui,G+1 is defined as xi,G+1, i.e., it is included in the population
comprising the next generation, if and only if it has a lower function value
than xi,G. Otherwise xi,G+1 equals ui,G+1.

The procedure described above is the standard variant of the DE algorithm.
Different types of mutation and crossover operators have been studied with
promising results (Storn and Price, 1997). In the next section, the proposed
algorithm is exposed.

10.3 The Composite PSO algorithm

In initial experiments, the tuning of the heuristic PSO parameters was
assigned to a second PSO. In effect, there was one PSO solving the GO
problem, and a second PSO running as a background procedure, tuning the
heuristics of the first. The results for this approach were not very promi-
sing. It seems that the utilization of a method of the same dynamic could
not provide PSO with information concerning the appropriate values of its



294 K.E. PARSOPOULOS AND M.N. VRAHATIS

parameters. Thus experiments on this idea were abandoned. A potential
theoretical explanation for this phenomenon is being studied, and may appear
in future work.

Alternatively, in a second experiment, we developed a composite nume-
rical algorithm that utilizes the DE method to determine the appropriate set
of parameters for the PSO at each iteration, during the optimization. Thus, a
population of 3-dimensional vectors is used, where each vector assigns values
to w, c1 and c2. The technique is described in the following paragraphs.

Suppose that we are at the n-th iteration of the PSO technique and the
appropriate values of w, c1 and c2 have to be determined, in order to update
velocities and generate the new swarm. The swarm Sn−1 of the (n−1)-th itera-
tion is already known. The DE algorithm generates randomly a population,
P , of 3-dimensional vectors, where each consists of the values of the three
PSO parameters. For each vector, pl, of this population, the new velocities are
determined and the corresponding new swarm is obtained. The new swarm is
then evaluated, and the function value of its best particle characterizes the
vector pl , i.e. it is taken as its fitness function value. The same procedure
is applied to all vectors pl of the population, P . Afterwards, the DE opera-
tors are applied to P , and transform it. Finally, selection takes place and a
new population is generated. The DE algorithm performs a small number
of iterations, and the best vector of the population is the final choice for
the generation of the n-th iteration’s swarm. The algorithm is exhibited in
Table 35.

A common termination criterion for the DE algorithm is the performance
of a predefined maximum number of iterations. If a satisfactory solution
is obtained during the DE iterations, i.e., a solution of the GO problem
is obtained during the evaluation process of the DE algorithm, the overall
algorithm is immediately terminated. The termination condition for the PSO
is usually the achievement of a solution with the desired accuracy or the loss
of the swarm’s diversity. A maximum number of allowed iterations is also set
for the PSO, and the algorithm stops as soon as this number is reached.

Clearly, the proposed algorithm is slower than the plain PSO, due to the
DE iterations that are performed for each PSO iteration. However, the time
needed for these iterations is usually short, since their number is small and
DE is a very fast algorithm. The advantage is that the convergence of the PSO
algorithm becomes independent of the heuristic parameters and consequently
the user need not be concerned with the parameters’ configuration. Most
importantly, the proposed technique exhibits higher success rates than the
plain PSO.

It is very interesting to compare the mean values of the parameters w, c1

and c2, which are determined by the DE algorithm, with the values that are
presented in other extensive studies, and considered as good default values if
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Table 35. The Composite PSO algorithm.

The Composite PSO algorithm

Input: Initial swarm S0 and velocities V0. Set i ←−1.

Step 1. Set i ← i + 1 and j ← 0.

Step 2. Generate a random population Pj of 3-dimensional vectors pj
l

,
l = 1, 2, . . . , popsize.

Step 3. For each pj
l

,
Set w← p

j
l
(1), c1 ← p

j
l
(2) and c2 ← p

j
l
(3) and

Determine Vi+1 and Si+1 using Equations (4) and (5).

Step 4. Evaluate Si+1. Let sg be its best particle. Use F(sg) as the
fitness value of pjl .

Step 5. Apply mutation, crossover and selection on Pj , according to
Equations (51), (52) and (53), and generate a new population Pj+1. Let
p∗ be the best individual of Pj+1.

Step 6. Check the DE stopping criterion. If it is not satisfied,
Set j ← j + 1 and go to Step 3. Otherwise go to Step 7.

Step 7. Take w← p∗(1), c1 ← p∗(2) and c2 ← p∗(3) and
Determine Vi+1 and Si+1 using Equations (4) and (5).

Step 8. Check the PSO stopping criterion. If it is not satisfied, go
to Step 1. Otherwise terminate the algorithm.

the user has no prior information of the problem under consideration. These
results form the core of the next section.

10.4 Experimental results

We used the proposed algorithm to find the global minimum of twelve
test functions (Laskari et al., 2001). The names of the test functions,
their dimensions as well as their corresponding references, are reported in
Table 36.

For each test function 25 runs were performed. The size of the DE popu-
lation and its maximum number of iterations were fixed for all experiments,
equal to 5 and 15 respectively. The DE parameters were fixed, F = 0.5, CR
= 0.1. These values are considered as good default values. Different sets of
parameters were also tested, but no significant changes were observed. The
swarm’s size, the hypercube inside which the initial swarm was taken, and the
maximum allowed number of PSO iterations were problem-dependent. Their
values for the various test functions, are exhibited in Table 37.

The values for w, c1 and c2, were bounded in 1.2 � w � 0.4 and
4 � c1, c2 � 0.1. The iterations performed by the proposed algorithm were
far less than the iterations required by the plain PSO method. As expected,
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Table 36. Test functions used in experiments.

Function’s Name Dimension Reference

Banana Valley 2 (Storn and Price, 1997)

Rosenbrock 2 (More et al., 1981)

Six-Hump Camel Valley 2 (Snyman and Fatti, 1987)

Goldstein-Price 2 (Snyman and Fatti, 1987)

Griewangk 2D 2 (Snyman and Fatti, 1987)

Branin 2 (Storn and Price, 1997)

Levy No. 5 2 (Levy et al., 1981)

Hellical Valley 3 (More et al., 1981)

Levy No.8 3 (Levy et al., 1981)

Hyperbolic Ellipsoid 6 (Storn and Price, 1997)

Rastrigin 6D 6 (Storn and Price, 1997)

Griewangk 10D 10 (Storn and Price, 1997)

Table 36. PSO parameters.

Function’s Name Swarm Size Init. Hyperc. Max. Iter.

Banana Valley 20 [−5, 5]2 200

Rosenbrock 20 [−5, 5]2 200

Six-Hump Camel Valley 20 [−5, 5]2 200

Goldstein-Price 20 [−5, 5]2 200

Griewangk 2D 20 [−5, 5]2 200

Branin 20 [−5, 5]2 200

Levy No. 5 20 [−5, 5]2 200

Hellical Valley 20 [−2, 2]3 300

Levy No.8 20 [−5, 5]3 200

Hyperbolic Ellipsoid 40 [−0.5, 0.5]6 300

Rastrigin 6D 40 [−0.2, 0.2]6 300

Griewangk 10D 60 [−0.2, 0.2]10 300

the total number of function evaluations was larger. The success rates of the
proposed algorithm were higher than those of plain PSO, more specifically
the success rates were always 100%, even in cases where the plain PSO
performed badly (e.g., the Hellical Valley function).

The aspect of critical importance is the comparison of the mean values
of the PSO parameters chosen by the DE algorithm, and their corresponding
values presented in related studies (Carlisle and Dozier, 2001; Eberhart and
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Shi, 2000; Shi and Eberhart, 1998b). Both the mean values for all test func-
tions, as well as the success rates for both the proposed and the plain PSO
algorithm, are exhibited in Table 38.

Table 38. Mean Values for w, c1, c2, and success rates.

Function’s Name Mean w Mean c1 Mean c2 Plain PSO Comp. PSO

Banana Valley 0.7145 2.0967 1.2919 84% 100%

Rosenbrock 0.7337 2.0421 1.1943 88% 100%

Six-Hump Camel Valley 0.7153 2.1574 1.2706 100% 100%

Goldstein-Price 0.7085 2.0378 1.2712 100% 100%

Griewangk 2D 0.7082 2.0171 1.3926 96% 100%

Branin 0.7329 2.0197 1.3148 100% 100%

Levy No. 5 0.7023 2.0145 1.2098 84% 100%

Hellical Valley 0.7053 2.1062 1.1694 36% 100%

Levy No.8 0.7739 1.9722 1.3063 100% 100%

Hyperbolic Ellipsoid 0.7179 1.9796 1.3812 100% 100%

Rastrigin 6D 0.7027 2.0462 0.9881 90% 100%

Griewangk 10D 0.6415 2.1291 1.4534 100% 100%

As reported in Table 38, the DE algorithm always chose a larger c1 than c2.
This tends to enforce the global perspective of the PSO, i.e., to maintain the
population’s diversity for a large number of iterations, and consequently, to
avoid premature convergence to local, instead of global, minima. Parameters
c1 and c2 appear to be interrelated, and their sum is around 3.5. The mean
value of w was always within the range [0.6, 0.8] and the deviation from
these values was not large. These results are in line with the values reported
in the related literature (Carlisle and Dozier, 2001; Eberhart and Shi, 2000;
Shi and Eberhart, 1998b). The contribution of the proposed algorithm lies in
the fact that the determination of the heuristic parameters was assigned to
the DE algorithm, in contrast to the previous common practice of running
numerous experiments.

10.5 Synopsis

A variant of the PSO algorithm that utilizes the DE algorithm to manipulate
its heuristic parameters has been exposed. The utilization of the DE algorithm
was chosen following the failure to manipulate these parameters by a second
PSO, running as a background procedure. Different values of the DE heuristic
parameters seem not to impact the convergence of the overall method.

The social parameter, c2, of the PSO was always assigned smaller values
than the cognitive parameter, c1. The implication of this assignment of values
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is the maintenance of the diversity of the swarm, which in turn, tends to
alleviate local minima. Therefore, our results indicate that the original assign-
ment of equal values to c1 and c2, may be misleading and result in inefficient
solutions. A value of w within the range [0.6, 0.8] appears to be a good
alternative if gradually decreasing values are not used. The results are in
line with those reported in the related literature (Carlisle and Dozier, 2001;
Eberhart and Shi, 2000; Shi and Eberhart, 1998b). The central contribution of
the proposed algorithm lies in the fact that the manipulation of the heuristic
parameters was assigned to the DE algorithm, in contrast to the previous
common practice of running numerous experiments to determine these para-
meters. Furthermore, the proposed algorithm surpassed the success rates of
the plain PSO, detecting the global minima in all experiments.

11. Conclusions

An overview of recent results of ours, regarding the PSO method was
presented. Techniques for the alleviation of local minima, and for detecting
multiple minimizers were described and algorithm models were given.
Moreover, the ability of PSO to solve problems in noisy and continu-
ously changing environments was investigated, and results were reported for
test functions as well as for the Light Scattering problem. Multiobjective,
Minimax, Integer Programming and �1 errors-in-variables problems were
also tackled using PSO with very promising results. Finally, a Composite
PSO, in which a DE strategy was incorporated to control the heuristic para-
meters of the plain PSO during the optimization, was described, and results
for many well-known test functions were given with respect to it.

Conclusively, PSO appears to be a very useful technique for solving
GO problems, and a good alternative in cases where other techniques fail,
although further research is required to fully comprehend the dynamics and
the potential limits of this technique.
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Appendix

A SIMPLE IMPLEMENTATION OF THE
Particle Swarm Optimization IN MATLAB

function [xmin, fxmin, iter] = PSO

% Initializing variables
success = 0; % Success flag
PopSize = 20; % Size of the swarm
MaxIt = 5000; % Maximum number of iterations
iter = 0; % Iterations’counter
fevals = 0; % Function evaluations’ counter
maxw = 1.2; % Maximum inertia weight’s value
minw = 0.1; % Minimum inertia weight’s value
weveryit = floor(0.75*MaxIt); % Inertia decr. step
c1 = 0.5; % PSO parameter C1
c2 = 0.5; % PSO parameter C2
inertdec = (maxw-minw)/weveryit; % Inertia weight’s decrement
w = maxw; % initial inertia weight
f = “DeJong”; % Objective Function
dim = 2; % Dimension of the problem
upbnd = 5; % Upper bound for init. of the swarm
lwbnd = –5; % Lower bound for init. of the swarm
GM = 0; % Global minimum (used in the stopping criterion)
ErrGoal = 1e–3; % Desired accuracy

% Initializing swarm and velocities
popul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;
vel = rand(dim, PopSize);

% Evaluate initial population
for i = 1:PopSize,

fpopul(i) = feval(f, popul(:,i));
fevals = fevals + 1;

end

% Initializing Best positions’ matrix and
% the corresponding function values
bestpos = popul;
fbestpos = fpopul;

% Finding best particle in initial population
[fbestpart,g] = min(fpopul);
lastbpf = fbestpart;

% SWARM EVOLUTION LOOP ∗ START ∗
while (success == 0) & (iter < MaxIt),

iter = iter + 1;
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% Update the value of the inertia weight w
if (iter<=weveryit)

w = maxw – (iter–1)∗inertdec;
end

% VELOCITY UPDATE
for i=1:PopSize,

A(:,i) = bestpos(:,g);
end
R1 = rand(dim, PopSize);
R2 = rand(dim, PopSize);
vel = w∗vel + c1∗R1.∗(bestpos-popul) + c2∗R2.∗(A-popul);

% SWARM UPDATE
popul = popul + vel;

% Evaluate the new swarm
for i = 1:PopSize,

fpopul(i) = feval(f,popul(:, i));
fevals = fevals + 1;

end

% Updating the best position for each particle
changeColumns = fpopul < fbestpos;
fbestpos = fbestpos.*(~changeColumns) + fpopul.*changeColumns;
bestpos(:, find(changeColumns)) = popul(:, find(changeColumns));

% Updating index g
[fbestpart, g] = min(fbestpos);
% Checking stopping criterion
%if abs(fbestpart-lastbpf) <= ErrGoal
if abs(fbestpart-GM) <= ErrGoal

success = 1;
else

lastbpf = fbestpart;
end

end
% SWARM EVOLUTION LOOP ∗ END ∗

% Output arguments
xmin = popul(:,g);
fxmin = fbestpos(g);

function DeJong=DeJong(x)
DeJong = sum(x.∧2);
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