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In this paper, the combination of unsupervised clustering algorithms with feedforward neural
networks in exchange rate time series forecasting is studied. Unsupervised clustering algorithms
have the desirable property of deciding on the number of partitions required to accurately
segment the input space during the clustering process, thus relieving the user from making this
ad hoc choice. Combining this input space partitioning methodology with feedforward neural
networks acting as local predictors for each identified cluster helps alleviate the problem of
nonstationarity frequently encountered in real-life applications. An improvement in the one-
step-ahead forecasting accuracy was achieved compared to a global feedforward neural network
model for the time series of the exchange rate of the German Mark to the US Dollar.
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1. Introduction

System identification and time series prediction are
embodiments of the old problem of function approx-
imation [Principe et al., 1998]. A discrete time
series is a set of observations of a given variable
z(t) ordered according to the parameter time, and
denoted as z1, z2, . . . , zN , where N is the size of the
time series.

Conventional time series models rely on global
approximation, employing techniques such as lin-
ear regression, polynomial fitting and artificial neu-
ral networks. Global models are well suited to
problems with stationary dynamics. In the analy-
sis of real-world systems, however, two of the key
problems are nonstationarity (often in the form of
switching between regimes) and overfitting (which

is particularly serious for noisy processes) [Weigend
et al., 1995]. Nonstationarity implies that the
statistical properties of the data generator vary
through time. This leads to gradual changes in
the dependency between the input and output
variables.

Noise, on the other hand, refers to the unavail-
ability of complete information from the past
behavior of the time series to fully capture the
dependency between the future and the past. Noise
can be the source of overfitting, which implies
that the performance of the forecasting model will
be poor when applied to new data [Cao, 2003;
Milidiu & Renteria, 1999]. Although global approx-
imation methods can be applied to model and
forecast time series having the aforementioned
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characteristics, it is reasonable to expect that the
forecasting accuracy can be improved if regions of
the input space exhibiting similar dynamics are
identified and subsequently a local model is con-
structed for each of them. A number of researchers
have proposed alternative methodologies to perform
this task effectively [Cao, 2003; Milidiu & Rente-
ria, 1999; Pavlidis et al., 2003; Pavlidis et al., 2005;
Principe et al., 1998; Sfetsos & Siriopoulos, 2004;
Weigend et al., 1995]. In principle, these method-
ologies are formed by the combination of two dis-
tinct approaches; an algorithm for the partitioning
of the input space and a function approximation
model. Evidently the partitioning of the input space
is critical for the successful application of these
methodologies.

In this paper we investigate the improvement
in one-step-ahead forecasting accuracy that can be
attained if the partitioning of the input space is per-
formed through unsupervised clustering algorithms,
while the function approximation model is a feed-
forward neural network. Clustering can be defined
as the process of “grouping a collection of objects
into subsets or clusters, such that those within one
cluster are more closely related to one another than
objects assigned to different clusters” [Hastie et al.,
2001]. Unsupervised clustering algorithms automat-
ically approximate the number of clusters in the
dataset during their execution. This property is
important in the context of partitioning the input
space for the purposes of time series forecasting,
since the number of partitions corresponding to the
different regimes is typically unknown a priori.

As a benchmark we consider the time series
of the spot exchange rate of the German Mark
against the US Dollar. Foreign exchange rates are
among the most important economic indices in
international monetary markets. Currently, foreign
exchange markets are the most active of all finan-
cial markets with average daily trading volumes in
traditional (nonelectronic broker) estimated at $1.2
trillion [Bank of International Settlements, 2001].
Although the precise scale of speculative trading
on spot markets is unknown it is estimated that
only around 15% of the trading is driven by non-
dealer/financial institution trading. Approximately,
90% of all foreign currency transactions involve
the US Dollar [Bank of International Settlements,
2001]. Foreign exchange rates are affected by many
highly correlated economic, political and psycholog-
ical factors, the interaction of which is very com-
plex. Thus, forecasting foreign exchange rates poses

many theoretical and experimental challenges [Yao
& Tan, 2000].

The remaining paper is organized as follows:
in the next section we present the clustering and
neural network algorithms employed in this study.
In Sec. 3 experimental results regarding the spot
exchange rate of the German Mark against the US
Dollar are presented. The paper ends with a short
discussion of the results and concluding remarks.

2. Methods

In this section we briefly describe the application of
unsupervised clustering and neural networks in the
context of time series modeling and prediction. Fur-
thermore, three unsupervised clustering algorithms,
as well as three neural network training algorithms
are outlined.

2.1. Unsupervised clustering
algorithms

A critical issue in the process of partitioning the
input space for the purpose of time series mod-
eling and forecasting is to obtain an appropriate
estimation of the number of subsets. Over- or under-
estimation of this quantity can cause the appear-
ance of clusters with little or no physical meaning,
and/or clusters containing patterns from regions
with different dynamics, and/or clusters with very
few patterns that are insufficient for the training of
a feedforward neural network.

This is a fundamental and unresolved prob-
lem in cluster analysis, independent of the clus-
tering technique applied. For instance, well-known
and widely used iterative techniques, such as Self-
Organizing Maps (SOMs) [Kohonen, 1997], the
k-means algorithm [Hartigan & Wong, 1979], as well
as, the Fuzzy c-means algorithm [Bezdek, 1981],
require from the user to specify the number of clus-
ters present in the dataset prior to the execution of
the algorithm.

On the other hand, algorithms that have the
ability to approximate the number of clusters
present in a dataset belong to the category of
unsupervised clustering algorithms. In this study
we consider only unsupervised clustering algo-
rithms. In particular, we employ the Growing Neu-
ral Gas [Fritzke, 1995], the DBSCAN [Ester et al.,
1996], and the unsupervised k-windows [Tasoulis
& Vrahatis, 2004; Vrahatis et al., 2002] clustering
algorithms. Next, the aforementioned unsupervised
algorithms are briefly presented.
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2.1.1. Growing Neural Gas clustering
algorithm

The Growing Neural Gas (GNG) clustering algo-
rithm [Fritzke, 1995] is an incremental neural net-
work. It can be described as a graph consisting of
k nodes, each of which has an associated weight vec-
tor, defining the node’s position in the data space
and a set of edges between the node and its neigh-
bors. During the clustering procedure, new nodes
are added to the network until a maximal number of
nodes is reached. GNG starts with two nodes, ran-
domly positioned in the data space, connected by
an edge. Adaptation of weights, i.e. the nodes’ posi-
tions, is performed iteratively. For each data object
the closest node (winner), s1, and the closest neigh-
bor of the winner node, s2, are identified. These two
nodes are connected by an edge. An age variable is
associated with each edge. When the edge between
s1 and s2 is created its age is set to zero. At each
learning step the age variable of all edges emanat-
ing from the winner node are increased by one. By
tracing the changes of the age variable it is possible
to detect inactive nodes. Edges exceeding a max-
imal age, R, and any nodes having no emanating
edges are removed. The neighborhood of the win-
ner is limited to its topological neighbors. The win-
ner and its topological neighbors are moved in the
data space toward the presented object by a con-
stant fraction of the distance, defined separately for
the winner and its topological neighbors. There is
no neighborhood function, or ranking concept and
thus, all topological neighbors are updated in the
same manner.

2.1.2. The DBSCAN clustering algorithm

The DBSCAN clustering algorithm [Sander et al.,
1998] relies on a density-based notion of clusters
and is designed to discover clusters of arbitrary
shape and to distinguish noise. More specifically,
the algorithm relies on the idea that for each point
in a cluster at least a minimum number of objects,
MinPts, should be contained in a neighborhood of
a given radius, Eps, around it. Thus, by iteratively
scanning all the points in the dataset DBSCAN
forms clusters of points that are connected through
chains of Eps-neighborhoods of at least MinPts
points each.

2.1.3. Unsupervised k-windows

The unsupervised k-windows clustering algo-
rithm [Tasoulis & Vrahatis, 2004; Vrahatis et al.,

2002] uses a windowing technique to discover the
clusters present in a dataset. More specifically, if
we suppose that the dataset lies in d dimensions,
it initializes a number of d-dimensional windows
over the dataset. At a next step it iteratively moves
and enlarges these windows to enclose all the pat-
terns that belong to one cluster in a window. The
movement and enlargement procedures are guided
by the points that lie within a window at each iter-
ation. As soon as the movement and enlargement
procedures do not alter significantly the number of
points within a window they terminate. The final
set of windows defines the clustering result of the
algorithm. The unsupervised k-windows algorithm
(UKW) applies the k-windows algorithm using a
“sufficiently” large number of initial windows. The
windowing technique of the k-windows algorithm
allows for a large number of initial windows to
be examined without any significant overhead in
time complexity. At a final step the windows that
contain a high percentage of common points from
the dataset are considered to belong to the same
cluster. Thus the number of clusters can be deter-
mined [Alevizos et al., 2002; Alevizos et al., 2004;
Tasoulis & Vrahatis, 2004].

2.2. Feedforward Neural Networks

Artificial Neural Networks (ANNs) have been
widely employed in numerous fields and have shown
their strengths in solving real-world problems.
ANNs are parallel computational models comprised
of interconnected adaptive processing units (neu-
rons), characterized by an inherent propensity for
storing experiential knowledge. They resemble the
human brain in two fundamental respects; firstly,
knowledge is acquired by the network from its
environment through a learning process, and sec-
ondly, interneuron connection strengths (known as
weights) are employed to store the acquired knowl-
edge [Haykin, 1999].

Numerous neural network models have been
proposed, but multilayered Feedforward Neural
Networks (FNNs) are the most common. In FNNs
neurons are arranged in layers and there are connec-
tions between neurons in one layer to the neurons
of the following layer. The learning rule typically
used for FNNs is supervised training. Two critical
parameters for the successful application of FNNs
are the appropriate selection of the network archi-
tecture and the training algorithm. For the general
problem of function approximation, the universal
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approximation theorem, proved in [White, 1990]
states that:

Theorem 2.1. Standard Feedforward Networks
with only a single hidden layer can approximate any
continuous function uniformly on any compact set
and any measurable function to any desired degree
of accuracy.

An immediate implication of the above theo-
rem is that any lack of success in applications must
arise from inadequate learning and/or an insuffi-
cient number of hidden units and/or the lack of a
deterministic relationship between the input pat-
terns and the desired response (target).

In the context of time series modeling the
inputs to the FNN typically consist of a number
of delayed observations, while the target is the next
value of the series. The universal myopic mapping
theorem [Sandberg & Xu, 1997a, 1997b] states that
any shift-invariant map can be approximated arbi-
trarily well by a structure consisting of a bank
of linear filters feeding an FNN. An implication
of this theorem is that, in practice, FNNs alone
can be insufficient to capture the dynamics of a
nonstationary system [Haykin, 1999]. This is also
verified by the results presented in this paper.

The selection of the optimal network architec-
ture for a specific task remains up to date an open
problem. An upper bound on the architecture of an
FNN designed to approximate a continuous func-
tion defined on the unit cube in R

n is given by the
following Theorem [Pinkus, 1999]:

Theorem 2.2. On the unit cube in R
n any con-

tinuous function can be uniformly approximated, to
within any error by using a two hidden layer net-
work having 2n+1 units in the first layer and 4n+3
units in the second layer.

2.3. Supervised training of
neural networks

The supervised training process is an incremen-
tal adaptation of the weights that propagate infor-
mation between the neurons. Learning in FNNs is
achieved by minimizing the network error using a
batch, also called offline, or a stochastic, also called
online, training algorithm.

Batch training is considered as the classical
machine learning approach. In time series applica-
tions, a set of patterns is used for modeling the

system, before the network is actually used for pre-
diction. In this case, the goal is to find a minimizer
w∗ = (w∗

1, w
∗
2, . . . , w

∗
n) ∈ R

n, such that:

w∗ = min
w∈Rn

E(w),

where E is the batch error measure of the
FNN, whose lth layer (l =1, . . . ,M) contains Nl

neurons:

E =
1
2

P∑
p=1

NM∑
j=1

(yM
j,p − tj,p)2 =

P∑
p=1

Ep. (1)

In the above relation, the error function is based
on the squared difference between the actual out-
put value at the jth output layer neuron for pat-
tern p, yM

j,p, and the target output value, tj,p. Ep is
the error of the pth pattern and p is the index over
the input–output pairs. To predict the next value
of the time series, there is only one output neuron
(NM = 1). On the other hand, when the problem is
formulated as a classification task the value of NM

can vary according to the number of classes.
Supervised training is a difficult task since, in

general, the dimension of the weight space is very
high and the function E generates a complicated
surface, characterized by multiple local minima and
broad flat regions adjoined to narrow steep ones.

In online training, the FNN weights are
updated after the presentation of each training pat-
tern. Online training may be the appropriate choice
for learning a task either because of the very large
(or even redundant) training set, or because of the
slowly time-varying nature of the task. Although
batch training seems faster for small-size training
sets and networks, online training is probably more
efficient for large training sets and FNNs. It often
helps to avoid local minima and provides a more
natural approach for learning nonstationary tasks,
such as time series modeling and prediction. Online
methods seem to be more robust than batch meth-
ods as errors, omissions, or redundant data in the
training set can be corrected, or ejected during the
training phase.

In this paper we have employed and com-
pared four algorithms for batch training and one
online training algorithm. The batch training algo-
rithms were the well-known Resilient Propagation
(RPROP) [Riedmiller & Braun, 1993], a Scaled
Conjugate Gradient (SCG) [Møller, 1993] and two
population based algorithms, namely the Differ-
ential Evolution algorithm (DE) [Storn & Price,
1997] and the Particle Swarm Optimization (PSO)
[Eberhart et al., 1996]. We also implemented the
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recently proposed Adaptive Online BackPropaga-
tion training algorithm (AOBP) [Magoulas et al.,
2001; Plagianakos et al., 2000]. Next, we briefly
describe the AOBP, the DE, as well as, the PSO
algorithms.

2.3.1. The Online Neural Network
training algorithm

Despite the abundance of methods for learning from
examples, there are only a few that can be used
effectively for online learning. For example, the clas-
sic batch training algorithms cannot straightfor-
wardly handle nonstationary data. Even when some
of them are used in online training the problem of
“catastrophic interference” appears, in which train-
ing on new examples interferes excessively with pre-
viously learned examples, leading to saturation and
slow convergence [Sutton & Whitehead, 1993].

Methods suited to online learning are those
that can handle time-varying data, while at the
same time, require relatively little additional mem-
ory and computation in order to process an
additional example. The AOBP method proposed
in [Magoulas et al., 2001; Plagianakos et al., 2000]
belongs to this class of methods.

The key features of this method are the low
storage requirements and the inexpensive computa-
tions. At each iteration, the d-dimensional weight
vector is evaluated using the following update
formula:

wg+1 = wg − ηg∇E(wg).

To calculate the learning rate for the next iteration,
ηg+1, AOBP uses information from the current and
the previous iteration. In detail, the new learning
rate is calculated through the following relation:

ηg+1 = ηg + K〈∇E(wg−1),∇E(wg)〉,
where η is the learning rate, K is the meta-learning
rate constant (typically K = 0.5), and 〈·, ·〉 stands
for the usual inner product in R

d. This approach
stabilizes the learning rate adaptation process, and
previous experiments [Magoulas et al., 2001; Pla-
gianakos et al., 2000] have shown that it allows
the method to exhibit good generalization and high
convergence rate.

2.3.2. Differential Evolution training
algorithm

DE [Storn & Price, 1997] is a novel minimiza-
tion method designed to handle nondifferentiable,

nonlinear and multimodal objective functions, by
exploiting a population of NP potential solutions,
that is d-dimensional vectors, to probe the search
space. At each iteration of the algorithm, called gen-
eration, g, three steps, mutation, recombination and
selection, are performed to obtain more accurate
approximations [Plagianakos & Vrahatis, 2002]. Ini-
tially, all weight vectors are initialized by using a
random number generator. At the mutation step,
for each i = 1, . . . , NP a new mutant weight vector
vi
g+1 is generated by combining weight vectors, ran-

domly chosen from the population, and exploiting
the following variation operator:

vi
g+1 = ωi

g + µ(ωbest
g − ωi

g + ωr1
g − ωr2

g ), (2)

where ωr1
g and ωr2

g are randomly selected vectors,
different from ωi

g, and ωbest
g is the member of the

current generation that yielded the lowest error
function value. Finally, the positive mutation con-
stant µ, controls the magnification of the difference
between two weight vectors (typically µ = 0.8).

The resulting mutant vectors are mixed with
a predetermined weight vector, called target vec-
tor. This operation is called recombination, and it
gives rise to the trial vector. At the recombina-
tion step, for each component j = 1, 2, . . . , d of the
mutant weight vector a random number r ∈ [0, 1] is
generated. If r is smaller than the predefined recom-
bination constant p (typically p = 0.9), the jth com-
ponent of the mutant vector vi

g+1 becomes the jth
component of the trial vector. Otherwise, the jth
component of the target vector, ωi

g, is selected as
the jth component of the trial vector. Finally, at
the selection step, the trial weight vector obtained
after the recombination step is accepted for the next
generation, if and only if, it yields a reduction of the
value of the error function relative to the previous
weight vector; otherwise, the previous weight vector
is retained.

2.3.3. Particle Swarm Optimization
training algorithm

PSO is a swarm-intelligence optimization algorithm
capable of minimizing nondifferentiable, nonlinear
and multimodal objective functions. Each member
of the swarm, called particle, moves with an adapt-
able velocity within the search space, and retains in
its memory the best position it ever encountered.
At each iteration, the best position ever attained
by the swarm is communicated among the parti-
cles [Eberhart et al., 1996].
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Assume a d-dimensional search space, S ⊂ R
d,

and a swarm of NP particles. Both the position and
the velocity of the ith particle are d-dimensional
vectors, xi ∈ S and vi ∈ R

d, respectively. The best
previous position ever encountered by the ith parti-
cle is denoted by pi, while the best previous position
attained by the swarm is denoted by pg. The veloc-
ity [Clerc & Kennedy, 2002] of the ith particle at
the (g +1)-th iteration is obtained through Eq. (3).
The new position of this particle is determined by
simply adding the velocity vector to the previous
position vector, Eq. (4).

v
(g+1)
i = χ(v(g)

i + c1r1(p
(g)
i − x

(g)
i )

+ c2r2(p(g)
g − x

(g)
i )), (3)

x
(g+1)
i = x

(g)
i + v

(g+1)
i , (4)

where i = 1, . . . ,NP ; c1 and c2 are positive con-
stants (typically c1 = c2 = 2.05); r1, r2 are random
numbers uniformly distributed in [0, 1]; and χ is the
constriction factor (typically χ = 0.729). In general,
PSO has proved to be very efficient and effective in
tackling various difficult problems [Parsopoulos &
Vrahatis, 2002].

3. Presentation of Experimental
Results

The time series considered was that of the daily spot
prices of the exchange rate of the German Mark rel-
ative to the US Dollar [Keogh & Folias, 2002]. The
time period considered extends from 10/9/1986 to
8/9/1996, covering approximately ten years. The
total number of observations was 2567. The first

2317 were used to evaluate the parameters of the
predictive models, while the remaining 250, cover-
ing approximately the final year of the dataset, were
used to evaluate their performance.

The first step in the analysis and prediction
of time series originating from real-world systems
is the choice of an appropriate time delay, T ,
and the determination of the embedding dimen-
sion, D. To select T an established approach is
to use the value that yields the first minimum
of the mutual information function [Fraser, 1989].
For the considered time series no minimum occurs
for T = 1, . . . , 20, as illustrated in Fig. 1. In this
case a time delay of one is typically selected. To
determine the minimum embedding dimension for
state space reconstruction we applied the method
of “False Nearest Neighbors” [Hegger et al., 1999;
Kennel et al., 1992]. As illustrated in Fig. 1 the pro-
portion of false nearest neighbors as a function of
D drops sharply to the value of 0.006 for D equal
to five, which is the embedding dimension that we
selected, and it becomes zero for dimensions higher
than seven. With this embedding dimension the
number of patterns used to evaluate the parameters
of the predictive models was 2312 while the perfor-
mance of the models was evaluated on the last 250
patterns.

Having selected an embedding dimension, we
tested numerous FNNs with different architectures
and training algorithms, but no FNN was capa-
ble of producing a satisfactory test set prediction
accuracy. In fact, the forecasts resembled a time-
lagged version of the original series. Next, the three
unsupervised clustering algorithms, namely GNG,
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Fig. 1. Mutual information as a function of T (left) and proportion of “false nearest neighbors” as a function of D (right).
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DBSCAN and UKW, were applied on the pat-
terns of the training set to obtain a partition of
the input space. Note that the value to be pre-
dicted (target value) by the FNNs acting as local
approximators, was also included in the patterns
comprising the dataset supplied to the cluster-
ing algorithms. Our experience suggests that this
approach slightly improves the overall forecasting
performance. Once the clusters present in the train-
ing set are identified, each pattern from the test
set is assigned to one of the clusters. Since the tar-
get value for patterns in the test set is unknown
the assignment is performed by not taking into
consideration the additional dimension that corre-
sponds to the target component. A test set pattern
is assigned to the cluster to which the nearest (in
terms of Euclidean distance) node, pattern, window
center, belongs for the GNG, DBSCAN, and UKW
algorithms, respectively.

We evaluate the accuracy of the FNNs by
the percentage of correct sign prediction [de Bodt
et al., 2001; Giles et al., 2001; Walczak, 2001].
This measure captures the percentage of forecasts
in the test set for which the following inequality is
satisfied:

(x̂t+d − xt+d−1) · (xt+d − xt+d−1) > 0, (5)

where, x̂t+d represents the prediction generated by
the FNN, xt+d refers to the true value of the
exchange rate at period t + d and, finally, xt+d−1

stands for the value of the exchange rate at the cur-
rent period, t + d − 1. Correct sign prediction in
effect captures the percentage of profitable trades
enabled by the forecasting system. To successfully
train FNNs capable of forecasting the direction of
change of the time series, a modified, nondifferen-
tiable, error function was implemented:

Ek =




0.5 · |xt+d − x̂t+d| , if (x̂t+d − xt+d−1)
· (xt+d − xt+d−1)
> 0

|xt+d − x̂t+d| , otherwise.
(6)

Since RPROP, SCG and AOBP are gradient based
algorithms, this function is employed only when
the FNNs are trained through the DE and PSO
algorithms.

Numerical experiments were performed using
a Clustering and a Neural Network C++ Inter-
face, built under the Fedora Core Linux 3.0
operating system using the GNU compiler col-
lection (gcc) version 3.4.2. The results obtained
are reported in Tables 1–3 and the accompany-
ing figures. Each table reports the total number
of clusters identified in the training set. Further-
more, it reports the number of clusters to which
test set patterns were assigned. For each such
cluster the number of patterns from the train-
ing set and the test set assigned to this clus-
ter are also reported. Notice that irrespective of

Table 1. UKW: Results.

Patterns in the

Train Set Test Set

Cluster 1 84 33
Cluster 2 82 57
Cluster 3 65 3
Cluster 4 239 67
Cluster 5 210 90

Total number of clusters: 13.
Clusters used in test set: 5.
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Fig. 2. Proportion of correct sign prediction based on the clustering of
the input space using the UKW algorithm.
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Table 2. DBSCAN: Results.

Patterns in the

Train Set Test Set

Outliers 1353 123
Cluster 1 95 59
Cluster 2 81 53
Cluster 3 4 4
Cluster 4 11 11

Total number of clusters: 12.
Clusters used in test set: 5.
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Fig. 3. Proportion of correct sign prediction based on the clustering of
the input space using the DBSCAN algorithm.

Table 3. GNG: Results.

Patterns in the

Train Set Test Set

Cluster 1 90 57
Cluster 2 61 29
Cluster 3 94 6
Cluster 4 496 158

Total number of clusters: 9.
Clusters used in test set: 4.
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Fig. 4. Proportion of correct sign prediction based on the clustering of
the input space using the GNG algorithm.

the clustering algorithm, a relatively small pro-
portion of the patterns contained in the training
set was actually used to generate the predictions,
since training only the FNNs corresponding to
the particular clusters is necessary. The accom-
panying figures provide candlestick plots. Each
candlestick depicts for a cluster and a training
algorithm the forecasting accuracy with respect sign
prediction, obtained over 100 experiments. A filled
box is plotted between the first and third quar-
tile of the data. The lines extending from each end

of the box (whiskers) show the range of the data.
The black line inside the box stands for the mean
value of the measurements. An immediate observa-
tion from the inspection of the figures is that there
are significant differences in the predictability of the
different clusters, irrespective of the clustering algo-
rithm. Moreover, within the same cluster, different
training algorithms produced FNNs yielding differ-
ent predictive accuracy.

For clusters 1, 3, 5 identified by the UKW algo-
rithm and having the corresponding FNNs trained
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by the DE and PSO algorithms, a mean predic-
tive accuracy exceeding 60% was achieved. These
three clusters together comprise more than 50% of
the test set. However, the predictability of cluster
4 (26.8% of the test set) is rather low. As previ-
ously mentioned, DBSCAN has the ability to iden-
tify outliers in a dataset. In this case close to 50%
of the patterns of the test set were characterized
as outliers. The FNN trained on these patterns
produced a poor performance. On the other hand,
the mean predictability for clusters 1 and 2 was
around 55%. Note that cluster 3 (to which four test
patterns were assigned) exhibited extremely high
predictability. The GNG algorithm distinguished
cluster 2 for which the corresponding FNN pro-
duced a mean accuracy close to 60% irrespective
of the training algorithm used. For cluster 4, PSO
and DE exhibited good performance, but the other
three algorithms yielded the worst performance wit-
nessed in this study.

4. Discussion and Concluding
Remarks

In this study, we report results from the applica-
tion of unsupervised clustering algorithms, com-
bined with feedforward neural networks in exchange
rate time series forecasting. The desirable property
of unsupervised clustering algorithms is that they
can automatically approximate the number of parti-
tions (clusters), thus relieving the user from making
this critical, problem-specific, choice.

Combining this input space partitioning
methodology with feedforward neural networks
acting as local predictors for each identified clus-
ter helps alleviate the problem of nonstationar-
ity frequently encountered in real-life applications.
Feedforward neural networks are selected as local
approximation models due to their ability to cope
with noise. Through this approach an improvement,
compared to global feedforward neural networks, in
the one-step-ahead prediction of the direction of
change of the daily spot exchange rate of the Ger-
man Mark to the US Dollar was achieved.

Among the unsupervised clustering algorithms
considered, UKW’s performance is more robust.
Both the DBSCAN and the GNG algorithms how-
ever, were capable of identifying meaningful clus-
ters that yielded increased predictability in the
test set. From the training algorithms considered,
FNNs trained using the AOBP training algorithm
exhibited the highest maximum performance. The

performance of the population based algorithms,
DE and PSO, exhibited wide variations.

Future work will include the synthesis of
the results of the different clustering algorithms
to improve the forecasting performance in larger
regions of the input space, and also the examina-
tion of other real-life time series.
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